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Chapter 1. 

General Introduction and Outline of the Thesis 
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ATHEROSCLEROSIS 

Atherosclerosis, which is chronic inflammatory lipid-drive disease, consists of the 

build-up of a plaque (starting in the inner layer) of medium and large arteries that 

compromises blood flow. The formation of these lesions is a slow multifactorial 

process and in general remains asymptomatic for decades.1 Narrowing of the 

arterial lumen, which initially can be compensated by small wall enlargements 

with no change in the lumen caliber, becomes more severe after decades of living.2 

When symptoms arise, they usually relate to chronic ischemia, by critical 

narrowing of the lumen (>75%), or, more often, to acute ischemia in the form of 

plaque rupture or erosion and subsequent thrombosis. 

Clinical manifestations, depend on the organ and/or artery affected.3 When an 

atherosclerotic plaque progresses in the coronary arteries affecting heart’s own 

circulation, it can cause chronic ischemia, such as stable angina pectoris, but also 

acute events such as myocardial infarction.4 Plaque progression, in the carotid 

artery can lead to acute ischemic stroke, and in the peripheral arteries, it5 can 

jeopardize limb viability.6 

Cardiovascular diseases (CVD) include all heart and blood vessel diseases and 

despite the improved treatment, acute arterial ischemia is the major cause of 

mortality worldwide.7 In most CVD, the main underlying pathology is 

atherosclerosis.4 Therefore, it is important to understand the processes involved 

and identify new therapeutic targets to prevent the initiation, growth and rupture 

of an atherosclerotic plaque. 

│GENERAL INTRODUCTION 
 
 

11 

PLAQUE FORMATION  

Dysfunctional changes in the endothelium induced by disturbed shear stress and 

the cumulative exposure to oxLDL over the years leads to endothelial cell (EC) 

activation.2, 3 Activated ECs upregulate the expression of several adhesion 

molecules, such as ICAM-1, VCAM-1 and selectins, promoting leukocytes 

arrestment and adherence to the endothelium. These leukocytes subsequently 

migrate through the EC junctions by combined actions of PECAM-1 and 

chemokines produced in the intima.7, 8 These infiltrated inflammatory leukocytes 

increase in number by local proliferation.9, 10 

OxLDL, which can no longer be recognized by LDL receptors (LDLRs)11, is taken 

up by macrophage scavenger receptors, thereby inducing foam cell differentiation, 

a hallmark in early atherosclerotic lesions.12 Moreover, oxLDL particles also induce 

inflammation by furnish neo-epitopes that stimulate humoral and adaptive 

immunity.13, 14 For instance, phosphorylcholine (PC) epitopes, which mediate the 

binding of oxLDL to scavenger receptors15, are recognized as damage associated 

molecular patterns (DAMPs)16, trigger complex immunoinflammatory responses, 

induce toxic oxidative stress, apoptosis, EC activation17 and dysfunction18. 

Elevated LDL cholesterol levels can be reduced by statins and PCSK9 inhibitors. 

Both effectively control LDL cholesterol and reduce major adverse cardiovascular 

events (by ≈50%).1 However, other risk factors, such as hypertension and insulin 

resistance, can also promote inflammation and/or aggravate atherosclerosis. 

Angiotensin II is implicated in hypertension pathogenesis, and activate nuclear 

factor-κB (NF-κB) pathway.19 Insulin resistance, the underlying cause of type 2 

diabetes mellitus, is associated with elevated levels of C reactive protein, 

plasminogen activator inhibitor-1, and fibrinogen.20 These extravascular sites of 
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inflammation can affect distant artery walls, by releasing soluble inflammatory 

mediators such as cytokines.21 

Atherosclerosis is also early accompanied by the migration of VSMCs from the 

media to the intima.22, 23 Intimal VSMCs are considered to be the most important 

source of extracellular matrix (ECM) components, such as collagen, elastin, 

proteoglycans and glycosaminoglycans. 22, 23 These proteins can entrap 

lipoproteins within the intima,24 undergo modifications, and thereby trigger 

inflammation. Until recently, most researchers considered monocyte-derived 

macrophages the only precursors of foam cells. However, oxLDL by binding to 

intimal proteoglycans, forms aggregates that are cleared by the LDLR-related 

receptors in VSMCs. VSMCs, like macrophages, become engorged with lipids, 

contribute to lesion growth.25 

PLAQUE GROWTH AND PLAQUE INSTABILITY 

An environment rich in growth factors and cytokines can trigger arterial wall 

remodeling. Proteases, such as MMPs, plasmin, cathepsin can degrade the ECM 

and stimulate the migration of VSMCs.26-29 As VSMCs migrate from the media to 

the intima, they can lose their contractility, differentiating into a proliferative and 

secretory phenotype that can contribute to vascular wall thickening which on its 

turn can result in gradual loss of luminal patency.30 ECM degradation products can 

act as endogenous ligands for toll-like receptors (TLRs), thereby driving 

inflammatory responses, such as the invasion of T cells, NK cells, and mast cells.31 

Inflammation and excessive protease activity can promote cellular apoptosis. 

Macrophages and VSMC, undergo in particular due to oxLDL uptake, programmed 

cell death being the basis of the necrotic core formation of the advance plaques.32, 

│GENERAL INTRODUCTION 
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33 However, advanced atherosclerotic plaques do not necessarily lead to clinical 

events. Plaques, with limited lipid accumulation and thicker fibrous caps can 

remain stable for years. but they may also in time, or eventually, become 

unstable. 

Unstable plaques are characterized by necrotic core expansion, increased 

cholesterol content, calcifications, and ECM remodeling. ECM remodeling and 

VSMCs apoptosis decrease collagen synthesis, affecting VSMCs ability to maintain 

the skeleton of the fibrous cap.34, 35  

Concomitantly, severe stenosis compromises oxygen diffusion (from vasa 

vasorum (VV) and lumen) and active inflammatory cells increase oxygen 

consumption, aggravating hypoxia.36-38 A hypoxic large necrotic core drives strong 

changes in the plaque, such as intraplaque angiogenesis (IPA) and successively 

intraplaque hemorrhage (IPH), both frequently observed features of unstable 

plaques. Plaque rupture exposes thrombogenic material in the plaque core the 

ultimate and most dreaded complication of atherosclerosis. 

INTRAPLAQUE ANGIOGENESIS AND INTRAPLAQUE HEMORRHAGE 

Although angiogenesis arises as a natural physiological response to the increased 

oxygen demand in the necrotic core, IPA is a major plaque instability factor due 

to the active and immature nature of the neovessels. 

During hypoxia, hypoxia-inducible transcription factors (HIF)-1α, HIF-2α and HIF-

1β heterodimerize, triggering the expression of genes containing hypoxia‐

responsive elements, such as the vascular endothelial growth factor (VEGF). 

Activation of the VEGF receptor 2 (VEGFR2) in a quiescent vascular network, 

induces microvessel disturbance and EC sprouting.39, 40 Through a VEGF gradient, 
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ECs proliferate and migrate towards the intima, as extensively discussed in 

chapter 2. 

Also, during hypoxia, ANGPT2 is released from storage granules called Weibel–

Palade bodies, antagonizing ANGPT1-Tie2 downstream signaling in ECs and in 

pericytes.41, 42 ANGPT1 and ANGPT2, are highly homologous but exert different 

effects on the Tie2 receptor.41, 43 ANGPT1, continuously secreted by mural cells, is 

a canonical agonist of Tie2 receptor, promoting vessel maturation by stimulating 

pericytes recruitment44, 45 and junctional accumulation.46, 47 ANGPT2 destabilizes 

the vasculature to potentiate the angiogenesis triggered by VEGFA48, inducing 

junction internalization between ECs and pericytes.49, 50 Microvessel growth is 

tightly controlled under physiological conditions, however, when the balance 

between pro- and anti‐angiogenic molecules balances toward angiogenic inducers, 

neovessels maturation is strongly compromised.51-53 

Neovessel maturation, which comprehends the structural integrity and 

composition of the endothelium, basement membrane and pericyte coverage, is a 

determining factor in the regulation of vascular permeability. Ruptured 

atherosclerotic plaques often present extended angiogenic microvasculature with 

poor pericyte coverage and lack of several junctions with a low ANGPT1/ANGPT2 

ratio.54 

Moreover, immature microvessels haven been co-localized with the presence of 

extravasated erythrocytes, constituting the main source of IPH.55, 56 Erythrocytes 

trapped in the plaque tend to lyse delivering a potent combination hemoglobin 

(Hb), iron, phospholipids membranes and free cholesterol.57 
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Figure 1. Graphical representation of the Angiopoietin-Tie2 axis. (a) Expression of 

the receptor Tie2 is heavily enriched in the endothelium. Tie2 is activated by ANGPT1 which 
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is secreted by platelets and peri-endothelial cells. Activation of Tie2 receptor, culminates in 

recruitment of pericytes and junctional accumulation between ECs. (b) ANGPT2 is almost 

exclusively expressed by EC and thereby acts as dynamic autocrine modulator of 

ANGPT1/Tie2 signaling. In the context of hypoxia (or even inflammation), ANGPT2 stored in 

Weibel–Palade bodies (WPBs) is released and antagonizes ANGPT1, inducing vascular 

leakage by VE-Cadherin (VE-CAD) junctional internalization. 

Hb binds to haptoglobin (Hp) creating hemoglobin:haptoglobin (Hb:Hp) 

complexes. Intake of hemoglobin by the hemoglobin-haptoglobin receptor CD163 

leads to a distinct alternative non-foam cell anti-inflammatory macrophage 

phenotype, previously considered atheroprotective.58, 59 

Guo, Akahori, et al. showed that CD163+ macrophages (M(CD163+) are 

abundantly present in human atherosclerotic plaques, mainly near the 

neovascularized, VEGF-positive hemorrhagic areas.58 Genetic analysis of 

cardiovascular disease patient cohorts revealed an association between an 

polymorphism that increases CD163 expression and plaque rupture and plaque 

angiogenesis (independently of traditional cardiovascular risk factors). 

Furthermore, these authors also showed that Hb:Hp uptake by macrophages 

increases iron export. M(CD163+) intracellular iron deprivation inhibits PHD2 

activity, inducing of HIF1α activation. Consequently, CD163+ macrophages secrete 

VEGF-A, promoting angiogenesis, vascular permeability and VCAM-1 endothelial 

expression that enhances inflammatory response.60 

Additionally, iron is also strong lipid oxidizer, and extravasated erythrocytes 

increase plaque lipid content by accumulation of free cholesterol and 

phospholipidic membranes.57, 61 In combination with the impaired mechanisms 

regulating the clearance of debris and apoptotic cell in advance plaques, IPH drives 

necrotic core expansion by feeding a vicious cycle of IPA and inflammation.62, 63. 

│GENERAL INTRODUCTION 
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Figure 2. Plaque angiogenesis. Once in the plaque macrophages engulf oxLDL and 

become lipid filled foam cells. Their accumulation activates cytokine production that 

promotes the influx of neutrophils, mast cells and monocytes. The high oxygen consumption 

of these inflammatory cells leads to hypoxia. HIF-1α and VEGF, together with an unbalanced 

143846 Baganha BNW.indd   16143846 Baganha BNW.indd   16 04-05-20   14:4604-05-20   14:46



1

CHAPTER 1│  
 
 

16 

is secreted by platelets and peri-endothelial cells. Activation of Tie2 receptor, culminates in 

recruitment of pericytes and junctional accumulation between ECs. (b) ANGPT2 is almost 

exclusively expressed by EC and thereby acts as dynamic autocrine modulator of 

ANGPT1/Tie2 signaling. In the context of hypoxia (or even inflammation), ANGPT2 stored in 

Weibel–Palade bodies (WPBs) is released and antagonizes ANGPT1, inducing vascular 

leakage by VE-Cadherin (VE-CAD) junctional internalization. 

Hb binds to haptoglobin (Hp) creating hemoglobin:haptoglobin (Hb:Hp) 

complexes. Intake of hemoglobin by the hemoglobin-haptoglobin receptor CD163 

leads to a distinct alternative non-foam cell anti-inflammatory macrophage 

phenotype, previously considered atheroprotective.58, 59 

Guo, Akahori, et al. showed that CD163+ macrophages (M(CD163+) are 

abundantly present in human atherosclerotic plaques, mainly near the 

neovascularized, VEGF-positive hemorrhagic areas.58 Genetic analysis of 

cardiovascular disease patient cohorts revealed an association between an 

polymorphism that increases CD163 expression and plaque rupture and plaque 

angiogenesis (independently of traditional cardiovascular risk factors). 

Furthermore, these authors also showed that Hb:Hp uptake by macrophages 

increases iron export. M(CD163+) intracellular iron deprivation inhibits PHD2 

activity, inducing of HIF1α activation. Consequently, CD163+ macrophages secrete 

VEGF-A, promoting angiogenesis, vascular permeability and VCAM-1 endothelial 

expression that enhances inflammatory response.60 

Additionally, iron is also strong lipid oxidizer, and extravasated erythrocytes 

increase plaque lipid content by accumulation of free cholesterol and 

phospholipidic membranes.57, 61 In combination with the impaired mechanisms 

regulating the clearance of debris and apoptotic cell in advance plaques, IPH drives 

necrotic core expansion by feeding a vicious cycle of IPA and inflammation.62, 63. 

│GENERAL INTRODUCTION 
 
 

17 

 

Figure 2. Plaque angiogenesis. Once in the plaque macrophages engulf oxLDL and 

become lipid filled foam cells. Their accumulation activates cytokine production that 

promotes the influx of neutrophils, mast cells and monocytes. The high oxygen consumption 

of these inflammatory cells leads to hypoxia. HIF-1α and VEGF, together with an unbalanced 

143846 Baganha BNW.indd   17143846 Baganha BNW.indd   17 04-05-20   14:4604-05-20   14:46



CHAPTER 1│  
 
 

18 

presence of the destabilizing factor Ang2 bound to its receptor Tie2, trigger the formation of 

leaky neovessels. (Magnification) Intraplaque hemorrhage, with extravasation of red blood 

cells and inflammatory cells, is due to immature neovessels, lacking proper enveloping 

pericytes and poor tight junctions between endothelial cells. Macrophages phagocytize 

extravasated red blood cells. 

VEIN GRAF FAILURE 

Vein graft (VG) surgery is part of the standard revascularization strategies for 

patients with coronary and peripheral artery diseases and more than two million 

surgeries are performed worldwide annually.64, 65 VG surgery can markedly 

improve survival and symptoms in selected patients, however within in one month 

after surgery, 10% of the VGs fail due to acute thrombosis. After one year, 15% 

of the VG occlude due to pathological intimal thickening. By 10 years after surgery, 

only 60% of VG are still patent, pointing out that VG failure (VGF) is a serious 

clinical problem.66-68 VGF results from complex pathophysiological processes that 

lead to a partial or complete occlusion of the graft. The progression of VGF over 

time involves vascular wall remodeling and inflammation as central processes 

throughout all distinct phases, as extensively discuss in the chapter 5. 

Vessel narrowing, unstable atherosclerotic lesions and subsequent plaque rupture 

are the main causes of late VGF.67, 69 Although the start of the lesion deviates as 

well as some morphological differences, there is a marked resemblance between 

vein graft accelerated atherosclerosis and native atherosclerotic lesions. 

Therefore, VG surgery in a preclinical model mouse model has been used to study 

instability features of advance atherosclerosis lesion, such as intraplaque 

angiogenesis and intraplaque hemorrhage, as will be discussed in the next section. 
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MODELS FOR ADVANCED ATHEROSCLEROSIS  

The use of animal models for accelerated atherosclerosis is essential to understand 

the pathophysiological mechanisms behind plaque rupture since it is a systemic 

process with multiple organs and tissues involved; and is of importance to study 

the potential of (new) treatments for plaque instability. 

Mice have a different lipid profile compared to humans (most of the cholesterol is 

transported in HDL instead of the atherogenic LDL and VLDL), making them 

relatively resistant to atherosclerosis. However, due to their fast reproduction, 

easy genetic manipulation, and introduction of modifying diets (such as 

hypercholesterolemic and high-fat) and additional atherosclerosis risk factors 

(such as diabetes), mice became prevalent in experimental atherosclerosis.70, 71 

APOE AND LDLR KO MICE 

ApoE KO mice and LDLR KO mice, the most common used models for 

atherosclerosis,72 result from the genetic deletion of LDLR (that withdraws LDL 

from the blood) and ApoE (a ligand for the LDLR on LDL and VLDL).70 Such 

deficiencies result in increased cholesterol plasma levels, driving the formation of 

spontaneous atherosclerosis in regions of low and/or oscillatory shear stress.73 

Furthermore, hypercholesteremic and high-fat diets further increase cholesterol 

plasma levels, resulting in a faster and more advanced atherogenic phenotype.74 

However, LDLR and ApoE are crucial proteins in LDL clearance, and due to their 

absence, established human lipid-lowering drugs such as statins, fail to lower 

cholesterol plasma levels in ApoE KO mice. 
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APOE3*LEIDEN MICE 

ApoE3*Leiden mice are a transgenic strain generated using a genomic 27-kilobase 

DNA construct (containing the ApoE gene, ApoC1 gene and all regulatory 

elements) found in a large Dutch family with a genetic form of hyperlipidemia.75, 

76 Due to the defective binding of the ApoE3*Leiden protein to the LDLR, mice 

have an impaired clearance of chylomicron and VLDL remnant lipoproteins.75, 76 

As a consequence, ApoE3*Leiden mice are able to develop diet-dependent 

hyperlipidemia and are highly susceptible to diet-induced atherosclerosis. 

Contrary to ApoE and LDLR-KO mice, in which atherosclerosis is not diet 

dependent, ApoE3*Leiden mice allows titration of cholesterol plasma levels with 

different cholesterol content diets, as discussed in chapter 4. 

Although ApoE3*Leiden mice are less prone to spontaneous atherosclerosis than 

ApoE KO, when fed with hypercholesterolemic diets, ApoE3*Leiden atherosclerotic 

lesion are similar to ApoE KO. Additionally, the ApoE3*Leiden lipoprotein profile 

resembles the human situation more closely.77 

Moreover, they have the ability to synthesize functional mouse ApoE, which is 

useful to study atherogenesis (as they offer a possibility to evaluate increased 

lipid levels effects without disturbing macrophage functions78) but also LDL-

lowering drugs (and pleiotropic) effects, as discussed in chapter 4. Also, 

ApoE*3 Leiden mice express ApoE in the liver and in macrophages, keeping them 

able to respond the statins (as discussed below in more detail), whereas in ApoE 

KO mice this does not occur. Therefore, the hypercholesterolemic ApoE3*Leiden 

is considered one of the atherosclerosis models closest to humans.79, 80 
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Hypercholesterolemic APOE3*LEIDEN Vein Graft Model to study 

Intraplaque Angiogenesis and Intraplaque Hemorrhage 

Because similarities were found between lesions in VG and atherosclerosis, a 

murine model of VG graft disease has been established. One of the most 

frequently used models for vein graft disease is the model described by Xu et al.80 

In this model, the caval vein of a donor mouse is interpositioned in the carotid 

artery of a receiver mouse. The carotid artery is dissected from its surrounding 

from the bifurcation at the distal end toward the proximal end. On both the 

proximal and distal artery end a nylon cuff is sleeved and fixated on the cuff-

handles with hemostatic clamps. After dissecting the ligature from the distal artery 

end, the artery is everted over the cuff and this procedure is repeated on the 

proximal artery end. The caval vein is fixed over both the cuffs with ligatures. 

Pulsatile flow through the venous conduit confirms a successful procedure. Within 

28 days after the surgery, a vein graft develops from a few cell layers at the start 

of the engraftment up to a massive thickened vessel wall. After surgery, the 

endothelial cell lining of the graft is severely damage due to handling and 

dilatation. 

These VG procedure has been used in both, ApoE KO and ApoE3*Leiden mice, and 

their VG lesions presented typical histological features of late-stage 

atherosclerosis.81-83 Hypercholesterolemic ApoE3*Leiden VG lesions, in particular, 

show severe VG thickening (up to 50 times the original), microcalcifications, 

cholesterol clefts, lipid-loaded foam cell accumulation dissections and erosion 

areas, 28 days after surgery.79, 81, 82, 84 Remarkably, these lesion present vasa 

vasorum derived neovascularization stimulated by hypoxia84, with the unique 

presence leaky intimal neovessels and intraplaque hemorrhage.62 The majority of 
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plaque neovessels in VG have heterogeneous basement membrane and poor 

pericyte-coverage related to an ANGPT1/ANGPT2 unbalance.62, 84 Moreover, 

CD163 macrophages can be abundantly found throughout the vein graft lesion but 

mostly in close proximity of neovessels.62 

The fact that hypercholesterolemic ApoE3*Leiden VG lesions show a complete 

range of plaque destabilization features occurring within four weeks, emphasizes 

its advantages to study rupture-prone atherosclerotic plaques. 

IMAGING OF INTRAPLAQUE ANGIOGENESIS 

Imaging of vulnerable plaque features can represent a step forward in the 

detection of high-risk atherosclerotic patients. Significant investments have been 

made in the cardiovascular imaging field, and the most prominent human imaging 

technologies, such as PET, MRI and CT have shown to be crucial for detection of 

plaque angiogenesis, (as discussed in Chapter 2).34 However, these clinical 

imaging techniques do not have sufficient resolution to image the detailed 

microvessel network in small-sized preclinical animal models, providing low 

benefit when it comes to the development of target-tracers and target-therapeutic 

approaches. Therefore, high-resolution hardware has emerged to visualize the 

microvasculature and explore cellular events in small size animals, in vivo.60 

Intravital microscopy (IVM), in particular, due to its high resolution provides 

unparalleled insights into dynamic molecular aspects of angiogenesis.85, 86 IVM 

was first described in the 19th century by Wagner, who applied brightfield 

microscopy to visualize leukocyte trafficking in translucent tissues of a frog.87 

Under visible light, intravascular leukocytes appeared colorless, and only cells 
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slowed by adhesive processes could be distinguished from rapidly flowing cells in 

the background.88 

Currently, it can be performed using several light microscopy techniques including 

widefield fluorescence, confocal, two-photon (2P), and others. The main 

considerations rely on the depth and/or detail needed to image the area of 

interest. If the area of interest is more than 50–100 µm depth, which is the case 

of plaque neovessels, two-photon (2P)-IVM is required.89 Equipped with 

fluorescence-tracers and pulsed infrared two-photon laser, 2P-IVM allows 

visualization and quantification of microvessel permeability in real time. 

2P-IVM differs from traditional fluorescence microscopy, in which the excitation 

wavelength is shorter than the emission wavelength, as the wavelengths of the 

two exciting photons are longer than the wavelength of the resulting emitted 

light.90 2P-IVM typically uses infrared light to minimize scattering. Together these 

effects increase the light penetration depth, with a good signal/background ratio 

until 500 µm deep.90 Moreover, 2P-IVM pulsed approach decreases phototoxicity, 

allowing recurrent imaging over prolonged periods.89 Remarkably, the 

development of imaging windows, allows long-term 2P-IVM to track single EC 

proliferation and migration in the same area in living animals, with need for 

recurrent surgeries.91 

The usefulness of these techniques, however, can be adversely affected by limited 

possibilities of a unified standard of quantification software. Most manufacture 

software is aimed for general applications, lacking specific software tools for 

quantification of more detailed aims. 

Nevertheless, 2P-IVM can be an interesting tool to study intraplaque leaky 

neovessels in murine advance atherosclerotic lesions, as discussed in chapter 
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3. Moreover, these techniques can potentially improve in preclinical assessment 

of antiangiogenic therapies. 

OUTLINE OF THE THESIS 

Despite the available treatment options and sophisticated imaging technologies 

for monitoring lesion development, the morbidity and mortality from acute 

cardiovascular events remain unacceptably high. 

While cholesterol-lowering, anti-inflammatory and anti-platelet therapies benefits 

can increase survival as a primary or secondary prevention, they are not sufficient 

for plaque rupture prevention. Moreover, the most advance imaging technologies 

to detect high-risk atherosclerotic patients fail to visualize and explore cellular 

events in small preclinical models. Therefore, there is a clear need for the 

development of new therapies and the application of high-resolution imaging 

modalities. 

In the current thesis, we evaluated new possibilities to inhibit and image 

intraplaque angiogenesis, as highlighted by the following scope: 

In Chapter 2, we review the new insights of atherosclerotic neovascularization, 

including the effects of leaky neovessels on intraplaque hemorrhage, both in 

experimental animal models and humans. Moreover, we give an overview of 

therapeutic interventions targeting angiogenesis and in vivo imaging modalities 

used to study atherosclerosis. 

In Chapter 3, we use 2P-IVM to visualize and study the architecture of adventitial 

and intimal plaque neovessels in murine advanced atherosclerotic vein graft 

lesions. Moreover, we report a 2P-IVM method to assess passive diffusion by 
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quantification of labeled-dextrans extravasation in healthy microvessels as well as 

plaque microvessels in real time. 

In Chapter 4, we evaluate both, the lipid lowering-dependent and independent 

effects of atorvastatin on vein graft atherosclerosis, including intraplaque 

angiogenesis and intraplaque hemorrhage. We also present evidence of the 

pathophysiological and molecular mechanism of atorvastatin-mediated inhibition 

on neovascularization. 

In Chapter 5, we review the pathophysiological mechanisms underlying the 

development of vein graft failure, emphasizing the role of immune response and 

associated factors related to VG remodeling and failure. Moreover, we discuss 

potential therapeutic options that can improve patency based on data from both 

preclinical studies and the latest clinical trials. 

In Chapter 6, we describe the effect of a newly constructed humanized 

monoclonal antibody against phosphorylcholine PC (PCmAB) on accelerated 

atherosclerotic lesions in ApoE3*Leiden mice. PC is one of the main oxLDL 

epitopes and plays a central role in atherosclerosis, triggering complex 

immunoinflammatory responses, EC activation and dysfunction. We investigate 

the role of PCmAB on vascular remodeling, plaque stability, inflammation as well 

as on intraplaque angiogenesis and intraplaque hemorrhage. Additionally, we 

investigated the isolated effect of PCmAB in in vitro angiogenesis assays and 

CD163+ macrophage cultures. 

In Chapter 7, a summarizing discussion of the different chapters and future 

perspectives, concludes this thesis. 
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