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Neuroimaging MRI data in scientific research is increasingly pooled, but the reliability
of such studies may be hampered by the use of different hardware elements. This
might introduce bias, for example when cross-sectional studies pool data acquired with
different head coils, or when longitudinal clinical studies change head coils halfway. In
the present study, we aimed to estimate this possible bias introduced by using different
head coils to create awareness and to avoid misinterpretation of results. We acquired,
with both an 8 channel and 32 channel head coil, T1-weighted, diffusion tensor imaging
and resting state fMRI images at 3T MRI (Philips Achieva) with stable acquisition
parameters in a large group of cognitively healthy participants (n = 77). Standard analysis
methods, i.e., voxel-based morphometry, tract-based spatial statistics and resting state
functional network analyses, were used in a within-subject design to compare 8 and
32 channel head coil data. Signal-to-noise ratios (SNR) for both head coils showed
similar ranges, although the 32 channel SNR profile was more homogeneous. Our data
demonstrates specific patterns of gray and white matter volume differences between
head coils (relative volume change of 6 to 9%), related to altered image contrast and
therefore, altered tissue segmentation. White matter connectivity (fractional anisotropy
and diffusivity measures) showed hemispherical dependent differences between head
coils (relative connectivity change of 4 to 6%), and functional connectivity in resting state
networks was higher using the 32 channel head coil in posterior cortical areas (relative
change up to 27.5%). This study shows that, even when acquisition protocols are
harmonized, the results of standardized analysis models can be severely affected by the
use of different head coils. Researchers should be aware of this when combining multiple
neuroimaging MRI datasets, to prevent coil-related bias and avoid misinterpretation of
their findings.
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INTRODUCTION

Large multicenter data samples are increasingly used to establish
and reproduce MRI neuroimaging findings. Although pooling
MR imaging data contributes to increased study power, the
reliability and results from such studies may be compromised
by the use of different hardware elements (Cannon et al., 2014;
Smith and Nichols, 2018). For example, changing head coils
during a longitudinal study, or combining cross-sectional data
acquired with different head coils may introduce a coil-related
bias (Focke et al., 2011; Pardoe et al., 2016). Studies that depict
the effect of using multiple head coils are currently limited
to analysis of T1 weighted imaging data (Focke et al., 2011;
Pardoe et al., 2016), demonstrating a difference in gray matter
volume (Focke et al., 2011), and cortical thickness (Pardoe et al.,
2016). Still, the effects on other quantitative MRI variables,
for instance obtained with diffusion tensor imaging or resting
state functional MRI, are unknown, but highly important for
multicenter or longitudinal studies using different types of
hardware. Identification of the brain regions affected by coil-
related bias is essential, not only to increase awareness, but more
importantly to avoid misinterpretation of results from studies
using multiple MRI hardware elements (Li et al., 2018). In the
present study, we aimed to estimate and depict the impact of
using different receive-only phased array head coils (8 channel
head coil and 32 channel head coil) on T1 weighted, DTI and
resting state functional MRI data using a within-subject design
in a large cohort of cognitively healthy subjects.

MATERIALS AND METHODS

Study Procedure and Participants
For the present study, we included 77 cognitively healthy
participants who underwent MRI of the brain on a 3Tesla Philips
Achieva scanner (Philips Medical Systems, Best, Netherlands)
at the Leiden University Medical Center, Leiden, Netherlands.
The MRI protocol contained T1 weighted, DTI and resting
state functional MR images, acquired with both an 8 channel
SENSE head coil (8CH) and an 32 channel SENSE head coil
(32CH) within one MRI session (coil geometry is displayed in
Supplementary Figure S1). During acquisition, optimal image
quality was obtained by using the incorporated “constant level
appearance” (CLEAR) inhomogeneity correction algorithm on
the scanner. We display one raw dataset for all sequences
from both coils from a representative healthy participant in
Supplementary Figure S2.

Cognitively healthy participants were included in the context
of the prospective longitudinal frontotemporal dementia risk
cohort (FTD-RisC) in which families with autosomal dominant
inherited FTD gene mutations are followed using standardized
assessment protocols including an MRI of the brain every year, as
described previously (Dopper et al., 2014; Papma et al., 2017). To
confirm cognitively healthy status of all participants, Mini Mental
State Examination [MMSE (Folstein et al., 1975)] and the Frontal
Assessment Battery [FAB (Dubois et al., 2000)] are reported
as cognitive screening measures and the Neuropsychiatric

Inventory [NPI-Q (Cummings et al., 1994)] and Frontotemporal
Dementia Rating Scale [FRS (Mioshi et al., 2010)] are reported as
behavioral screening questionnaires.

MRI Acquisition
Signal to Noise Assessment
For signal to noise ratio’s (SNR) assessment, we acquired proton
density weighted single-slice images with one noise-only image,
i.e., without radiofrequency pulses, in one healthy volunteer,
following the procedures described by Wiggins et al. (2006).
For both coils, we acquired the images in the axial, coronal
and sagittal direction, with the following parameters: Repetition
time (TR) = 200 ms, echo time (TE) = 3.1 ms, field of view
(FOV) = 220 × 220 × 3 mm, flip angle = 20◦ (for noise scan 0◦),
slice thickness = 3 mm, voxel size 0.85× 0.85× 3.0 mm, number
of averages = 10, acquisition time = 9 min and 24 s.

T1 Weighted Imaging
For the 3DT1 weighted acquisition, scanning parameters
were as follows: MPRAGE, TR = 9.7 ms, TE = 4.6 ms,
FOV = 224 × 177 × 168 mm, flip angle = 8◦, slices = 140,
voxel size = 0.88 × 0.88 × 1.2 mm, SENSE = none, acquisition
time = 4 min and 56 s. Identical parameters were used for both
the 8CH and the 32CH coils.

Diffusion Imaging
Diffusion imaging was performed in 60 non-collinear gradient
directions using single shot echo planar imaging. The phase
encoding direction was anterior to posterior for both coils.
The following parameters were used for the 8CH coil:
60 b = 1000 s/mm2, TR = 8250 ms, TE = 80 ms,
FOV = 256 × 208 × 140 mm, flip angle = 90◦, slices = 70,
voxel size = 2 × 2 × 2 mm, SENSE = 2.0, one b = 0 s/mm2
acquisition, scan time = 8 min and 48 s, 2 signal averages. For
the 32CH coil, we increased the number of slices to 80, to have
sufficient coverage to include the cerebellum in the imaging
volume for our longitudinal FTD-RisC study (Papma et al., 2017).
As a result, the TR for the 32CH coil was 9245 ms, FOV was
256 × 232 × 160 mm, and acquisition time increased to 9 min
and 52 s with a SENSE factor of 2.3. Other parameters were
identical between both head coils.

Resting State Functional MRI
For resting state fMRI, T2∗-weighted images were acquired
using whole brain multislice gradient echo planar imaging. For
both coils, the following parameters were used: TR = 2200 ms,
TE = 30 ms, FOV = 220 × 220 × 113 mm, flip angle = 80◦,
slices = 38, voxel size = 2.75 × 2.75 × 2.99 mm, including
10% interslice gap, SENSE = 3.0, volumes = 200, acquisition
time = 7 min and 28 s. Participants were instructed to lie
still with their eyes closed and stay awake during the resting
state fMRI scans.

MRI Processing
Before image preprocessing and analysis, we checked the scans
thoroughly for image quality and the presence of artifacts.
Data processing and statistical analyses were carried out using
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Functional Magnetic Resonance Imaging of the Brain Software
Library (FSL) version 5.0.8. (Jenkinson et al., 2012).

Signal to Noise Ratio
For both the 8CH coil and 32CH coil, we isolated an average
signal image and one noise-only image for each orientation
plane. We subdivided the signal and noise images into non-
overlapping regions of interest (ROI) of 16 by 16 voxels. Next, we
calculated the mean signal of the ROI using the averaged signal
image, and the standard deviation of the noise of the ROI using
the noise-only image. Since the noise images were amplitude-
reconstructed, the measured standard deviation was corrected for
the Rician noise distribution (Haacke et al., 1999). Ultimately, for
each ROI, SNR was calculated according to:

SNR =
Mean Signal√
2

4−π
× Std. Noise

Third, we translated the SNR ROI matrices into color-coded
maps, in order to visualize the SNR distribution throughout the
brain for both coils.

Structural Imaging
To assess the influence of the head coil on gray and white
matter volume measurements, we applied the standard voxel-
based morphometry (VBM) pipeline as implemented in FSL.
Preprocessing of the T1 weighted images included brain
extraction followed by radiofrequency (RF) inhomogeneity
correction, tissue segmentation and realignment to Montreal
Neurological Institute (MNI) standard space using non-linear
registration. We performed quality control to ensure good brain
extraction, that was not different between both head coils. Next,
FMRIB’s Automated Segmentation Tool (FAST) was used for
correction for spatial intensity variations, also known as bias
field or RF inhomogeneity, and segmentation of the T1 weighted
images (Zhang et al., 2001). The corrected, segmented gray
matter images were re-registered non-linearly to a study-specific
template with a balanced set of 8CH and 32CH coil images. The
registered partial volume images were divided by the Jacobian of
the warp field to correct for any local expansion or contraction.
An isotropic Gaussian kernel with a sigma of 3 mm, which
corresponds to a full width at half maximum kernel (FWHM)
of approximately 7 mm, was used to smooth the gray matter
segmentations. We also applied the VBM processing pipeline to
the white matter segmentations, resulting in registered, corrected
and smoothed white matter images for voxel-wise analyses.

Diffusion Imaging
Diffusion scans were corrected for motion artifacts and eddy
currents by alignment to the b = 0 image using the FMRBIB
Diffusion Toolbox. The tensor was fitted each voxel to create
fractional anisotropy (FA) and mean diffusivity (MD) images.
Subsequently, we applied standard tract-based spatial statistics
(TBSS) as implemented in FSL (Smith et al., 2006). FA images
were aligned to standard space using non-linear registration and
averaged into a mean FA image. To create a study-specific FA
mask, we thresholded the mean FA image with a minimum value

of FA ≥ 0.2. This binarised FA mask was applied to voxel-wise
comparisons of FA and MD between coils.

Resting State Functional MRI
For preprocessing of the resting state fMRI scans, we applied
the fMRI Expert Analysis Tool (FEAT) as implemented in
FSL, consisting of motion correction with MCFLIRT and
spatial smoothing with a kernel of 6 mm FWHM. The data-
driven independent component analysis (ICA) based Automatic
Removal of Motion Artifacts (ICA-AROMA) approach was used
to identify and remove noise components from the resting
state fMRI data (Pruim et al., 2015). After denoising, high pass
temporal filtering was performed with a cut-off frequency of
0.01 Hz. The functional resting state images were registered
to the corresponding T1 weighted images using Boundary-
Based Registration and were subsequently registered to the
2 mm isotropic MNI standard space using non-linear registration
with a warp resolution of 10 mm. Voxel-based functional
connectivity was studied in a standardized manner using the
eight standard Beckmann resting-state functional networks of
interest (Beckmann et al., 2005), i.e., the medial and lateral
visual system network, the primary auditory network – also
known as the salience network –, the sensory motor network,
the default mode network, the executive control network and
the left and right dorsal visual processing stream networks. To
further account for noise, white matter and CSF templates were
included in the analyses as regressors. Functional connectivity
of each network of interest was calculated using dual regression,
as previously described (Hafkemeijer et al., 2017). In short, the
eight standard resting state networks (Beckmann et al., 2005)
were used as a reference. Voxel-based resting state functional
connectivity was determined in terms of similarity of the BOLD
fluctuations in the brain in relation to characteristic fluctuations
in the standard resting state networks. With dual regression,
individual time series were first extracted for each template, using
the resting state networks, and the two additional white matter
and cerebrospinal fluid maps, in a spatial regression against the
individual fMRI data set (regression 1). The resulting matrices
described temporal dynamics for each template and individual.
Next, the temporal regressors were used to fit a linear model to
the individual fMRI data set (regression 2), to estimate the spatial
maps for each individual. This results in 3D images for each
individual, with voxel-wise z-scores representing the functional
connectivity to each of the predefined standard networks.

Statistical Analysis
For all analyses, we designed within-subject paired sample
t-tests with each subject’s mean effect to analyze head coil
differences in gray and white matter volume, FA, MD, and
resting state functional connectivity. We performed voxel-based
non-parametric permutation testing (Nichols and Holmes, 2002)
with 5000 permutations using FSL-randomize. The statistical
threshold was set at p < 0.05, using threshold-free cluster
enhancement (TFCE) technique and family-wise error (FWE)
correction to correct for multiple comparisons across voxels. We
quantified the severity of head coil differences by calculating
effect sizes and percentage of change.
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Voxel-Specific Scaling Factors
For our own longitudinal clinical study (Dopper et al., 2014;
Papma et al., 2017), we aimed to create voxel-based scaling
factors to correct for the use of different head coils. For the T1-
weighted, DTI and resting state fMRI images, we calculated and
validated voxel-specific scaling images. Procedures are described
in detail in the Supplementary Material. In short, we separated
our sample into a template dataset (n = 39) and validation dataset
(n = 38), matched for age and sex. For the template dataset, we
merged and averaged the images into a mean 8CH coil image and
32CH coil image. The averaged 32CH coil image was divided by
the averaged 8CH coil image, resulting in a voxel-based scaling
factor. We reduced noise by applying a median filter with a kernel
of 5 mm. Next, the 8CH coil images from the validation set were
multiplied with the voxel-based scaling factor, equalizing the 8CH
coil images to the signal intensity of the 32CH coil images. We
repeated previous described statistical analysis on the validation
set to complete verification of the scaling factor.

RESULTS

Participants
In total 77 participants were included in this study (Table 1).
Cognitive and behavioral screening tests confirmed a cognitively
healthy status of all participants.

Signal to Noise Ratio
Visualization of the SNR ROI matrices revealed a quite
homogeneous distribution of SNR throughout the brain using the
32CH coil, with the highest SNR in posterior cortical areas of the
brain. SNR of the 8CH coil was highest in the frontal lobe, but
dropped in central and medial areas (Figure 1).

Structural Imaging
Quality control showed no differences in brain extraction of
the T1 weighted images between the 8CH and 32CH coil. Gray
matter volumes obtained with the 32CH coil were larger than
obtained with the 8CH coil (pFWE < 0.05, effect size = 2.096,
increase = 6.2%), particularly in the middle and inferior frontal
lobe, the superior and middle temporal lobe, the anterior insular
cortex, the temporo-parietal junction, the paracingulate, and
the cuneus (yellow areas in Figure 2A). Gray matter volumes
appeared smaller using the 32CH coil (pFWE < 0.05, effect
size = 2.571, decrease = 8.9%) in frontal and deeper cerebral
areas, such as the medial temporal lobe, medial frontal lobe, basal
ganglia, posterior insular cortex, anterior cingulate, superior
frontal cortex, occipital lobe, and the cerebellum (blue areas in
Figure 2A). In the white matter, we found larger white matter
volumes in subcortical and posterior cortical regions using the
32CH coil compared with the 8CH coil (pFWE < 0.05, effect
size = 1.951, increase = 8.5%; see yellow areas in Figure 2B).
White matter volumes were smaller using the 32CH coil in
frontotemporal regions (pFWE < 0.05, effect size = 1.637,
decrease = 6.1%; see blue areas in Figure 2B).

TABLE 1 | Sample characterization.

Age, years 54.2 (28–76)

Sex, female/male 54/23

Educationa 5.29 (1–7)

MMSEb 29.3 (25–30)

FABb 16.8 (11–18)

NPIb 1.6 (0–18)

FRSb 96.4 (73–100)

Values are means (range) for continuous variables and ratio for dichotomous
variables. Abbreviations: MMSE = Mini-Mental State Examination; FAB = Frontal
Assessment Battery; NPI = Neuropsychiatric Inventory; FRS = Frontotemporal
Dementia Rating Scale. aEducation is presented on a 7-point scale ranging from
1 (less than elementary school) to 7 (university or technical college) according to
Verhage (1964). bMissing data: MMSE 1/77, FAB 1/77, NPI 17/77, FRS 16/77.

Diffusion Tensor Imaging
We found higher FA values (pFWE < 0.05, effect size = 2.197,
increase = 5.7%) with the 32CH coil compared with the 8CH
coil in all tracts of the right hemisphere and frontal tracts of
the left hemisphere, such as the forceps minor, anterior parts
of the uncinate fasciculus, anterior thalamic radiation, inferior
fronto-occipital fasciculus, and superior longitudinal fasciculus
(yellow areas in Figure 3A). On the contrary, we found lower
FA values using the 32CH coil (pFWE < 0.05, effect size = 2.038,
decrease = 5.0%) in part of the left-sided posterior tracts, such as
the forceps major, the corticospinal tract, the inferior longitudinal
fasciculus, and the central and posterior parts of the anterior
thalamic radiation (blue areas in Figure 3A). MD was lower
using the 32CH coil compared to 8CH coil (pFWE < 0.05, effect
size = 1.871, decrease = 4.6%) in the entire right hemisphere,
and some tracts of the left hemisphere located in the prefrontal
and the occipital lobe (red-yellow areas in Figure 3B). Using the
32CH coil, MD was higher (pFWE < 0.05, effect size = 1.952,
increase = 4.7%) in all tracts of the left hemisphere, except for
the prefrontal and occipital lobe (blue areas in Figure 3B).

Resting State Functional MRI
Resting state functional connectivity was predominantly higher
when using the 32CH coil compared with the 8CH coil (yellow
areas in Figure 4), between the medial visual network and
the lateral occipital cortex, calcarine cortex, and lingual gyrus
(pFWE < 0.05, effect size = 0.392, increase = 13.5%; Figure 4A),
between the lateral visual network, the lateral occipital cortex
and the occipital pole (pFWE < 0.05, effect size = 0.637,
increase = 27.5%; Figure 4B), between the default mode network
and the lateral occipital cortex (pFWE < 0.05, effect size = 0.505,
increase = 9.4%; Figure 4E), and between the dorsal visual
stream networks and regions of the lateral occipital cortex
(right: pFWE < 0.05, effect size = 0.368, increase = 13.6%;
Figure 4G and left: pFWE < 0.05, effect size = 0.391,
increase = 12.04%; Figure 4H). Functional connectivity was
lower with the 32CH coil in the executive control network and
a small area in the frontal pole (pFWE < 0.05, effect size = 0.608,
decrease = 23.1%; blue area in Figure 4F). No differences in
functional connectivity between both coils were found neither in
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FIGURE 1 | Color-coded SNR brain maps in the sagittal, axial and coronal direction for 8 channel head coil (8CH) and 32 channel head coil (32CH). Colorbar
represents SNR values, ranging 0-85.

FIGURE 2 | Voxel-based coil differences in panel (A) gray matter (GM) and (B) white matter volume (WM) using voxel-based morphometry paired sample t-tests on
T1 weighted images. 8CH = 8 channel head coil, 32CH = 32 channel head coil. p values are color coded from 0.05 to <0.0001 FWE corrected.

the auditory, or salience network (Figure 4C), nor the sensory-
motor network (Figure 4D).

Voxel-Specific Scaling Factors
Results are described in detail in the Supplementary Material.
For T1-weighted imaging, after applying the scaling factor,
VBM analyses showed almost complete removal of the head
coil differences throughout the brain for both GM and WM
(Supplementary Figure S3). Validation of the DTI scaling factors
showed a successful harmonization of the FA images, removing
all significant coil differences. For MD, head coil differences
were reduced, except for some small areas at the forceps major
and right thalamus (Supplementary Figure S4). For resting
state analyses, validation of the scaling factors showed extensive

reduction of coil differences in the medial and lateral visual
networks, and complete removal of all significant differences in
the default mode network, executive control network (salience
network), and the left and right dorsal visual stream networks
(Supplementary Figure S5).

DISCUSSION

In this study, we demonstrated that quantitative results of
standard processing pipelines for T1-weighted MRI, diffusion
tensor imaging and resting state fMRI will be severely affected
by the use of different head coils. Paired-wise group analyses
between coils revealed different patterns of gray and white matter
volume, white matter connectivity and functional connectivity.
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FIGURE 3 | Voxel-based coil differences in panel (A) fractional anisotropy (FA) and (B) mean diffusivity (MD) using tract-based spatial statistics paired sample t-test
on diffusion weighted images. 8CH = 8 channel head coil, 32CH = 32 channel head coil. p values are color coded from 0.05 to <0.0001 FWE corrected.

FIGURE 4 | Voxel-based coil differences in network-based functional connectivity using dual regression paired sample t-test on resting state fMRI images. 8CH = 8
channel head coil, 32CH = 32 channel head coil. (A–H) Represents standard resting state networks of interest, illustrated and named in green. p values are color
coded from 0.05 to <0.0001 FWE corrected.

Voxel-based morphometric analysis of T1-weighted imaging
data, revealed smaller apparent gray matter volume for the
32CH coil in the outer frontal, temporal and parietal cortex, the
inner cerebellum, the precuneus, and posterior cingulate cortex
compared to the 8CH coil. Gray matter volume was larger using
the 32CH coil in the occipital lobe, the central layer of the frontal,
temporal, parietal cortex, the peripheral layer of the cerebellum,
and subcortical areas. A less extensive but similar pattern of
gray matter volume differences was previously found using two
identical scanners with, respectively, an 8-channel and a 12-
channel head coil (Focke et al., 2011). Compared to gray matter

VBM, we found an opposite pattern of head coil differences for
the white matter VBM, meaning that in areas where gray matter
volume was larger, white matter volume was smaller and vice
versa. The visual overlap of gray and white matter differences
may be a result of the spatial smoothing (7 mm). When the
contrast between gray and white matter is unclear, a higher level
of smoothing is necessary to account for the uncertainties in
partial volume estimation. Our results indicate that differences
in gray/white matter contrast of the images leads to differences
in tissue classification during segmentation (Zhang et al., 2001;
Tohka, 2014). Three factors could have led to altered image
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contrast: (1) despite using inhomogeneity correction prior to
segmentation, the SNR of the 8CH and 32CH coil has affected
the probabilities of gray and white matter (Wiggins et al., 2006;
Reiss-Zimmermann et al., 2013). For example, in our case, higher
SNR in posterior cortical areas for the 32CH coil increased the
probability of a voxel being white matter, and the same principle
may explain the results in the frontal areas of the 8CH coil,
(2) both coils have differences in signal distribution due to the
coil geometry (Blamire, 2008) and the CLEAR algorithm does
not fully correct for these (Yun et al., 2007), or (3) there has
been a difference in the effective b1 distribution (Marques et al.,
2010). As we demonstrate here, differences in image contrast
in structural images could pose serious problems for studies
combining MRI hardware elements and need to be equalized
before tissue segmentation and partial volume estimation to
prevent methodological errors.

We demonstrated that for DTI, measured FA was higher
for nearly the entire white matter when comparing the 32CH
coil with the 8CH coil, except for parts of the left temporal
and parietal lobe. For MD, the results were hemispherical
dependent, i.e., the 32CH coil showed higher MD compared
to the 8CH coil in the white matter of the left hemisphere
but lower MDs in the right hemisphere. The asymmetry in
especially MD metrics was unexpected and inexplicable. Previous
research demonstrated that MD may have more variance and be
less reproducible than FA, even within sites (Fox et al., 2012;
Jovicich et al., 2014; Helmer et al., 2016). Interestingly, the
unexpected pattern in diffusion metrics was different from the
SNR profiles of both coils and volumetric results. Therefore,
we emphasize that SNR profiles and pattern of changes that
occur in T1-weighted data cannot be translated to DTI data. Our
results underline previous studies that already demonstrated the
possible pitfalls of pooling diffusion data (Pagani et al., 2010;
Vollmar et al., 2010; Takao et al., 2012; Venkatraman et al., 2015).
Harmonization methods have been investigated in a number
of studies, in attempt to overcome the problems with pooled
DTI data, but sufficient harmonization has proven to be difficult
(Mirzaalian et al., 2015; Venkatraman et al., 2015; Pohl et al.,
2016; Fortin et al., 2017). Note that we slightly increased our
FOV to allow coverage of the cerebellum for the 32CH coil
data, which also increased TR, and could have influenced our
results. This is, however, expected to be a very minor effect,
since both TRs are significantly longer than five times the T1 of
the white matter.

Resting state fMRI analyses showed increased functional
connectivity between multiple posterior located networks and
brains areas using the 32CH coil, corresponding to the SNR
profile. Decreased functional connectivity using the 32CH coil
was found between a small frontal area and the executive control
network. Previous studies demonstrated around 10 percent
variability between scanner hardware (Costafreda et al., 2007;
Friedman et al., 2008; Kaza et al., 2011), but others could not
detect significant differences in resting state networks between
the 8CH and 32CH Philips head coils (Paolini et al., 2015).
As our current sample size (n = 77) is larger than previous
studies (n = 26), we assume that the increased power in
our study allowed for detection of coil differences in resting

state functional connectivity. Concordant with the results from
our study, past research demonstrated that the 32CH coil has
particularly increased SNR in posterior cortical areas compared
to coils with less channels, caused by a difference in coil
geometry (Wiggins et al., 2006; Reiss-Zimmermann et al., 2013).
Resting state functional MRI studies may benefit from increased
SNR in the 32CH coil, especially when posterior cortical areas
are of interest.

Since changing head coils during longitudinal clinical research
might introduce bias, we aimed to create voxel-based scaling
images (Supplementary Material) for our own longitudinal
clinical study (Dopper et al., 2014; Papma et al., 2017). The
unique within-subject design in a large cohort (n = 77) with
stable acquisition parameters allowed for the use of voxel-specific
information for VBM, DTI, and resting state fMRI scaling.
We validated the use of the scaling factors on independent
data and demonstrated that coil differences can be substantially
reduced when using voxel-based scaling in all modalities (see
Supplementary Material). Our voxel-specific scaling factors
may be an interesting harmonization method for within-subject
variation. In previous literature, many harmonization methods
have aimed to equalize neuroimaging data, all with their own
advantages and shortcomings (Fennema-Notestine et al., 2007;
Keihaninejad et al., 2010; Takao et al., 2011; Chen et al., 2014;
Griffanti et al., 2014; Salimi-Khorshidi et al., 2014; Feis et al.,
2015; Mirzaalian et al., 2015; Venkatraman et al., 2015; Pardoe
et al., 2016; Pohl et al., 2016; Fortin et al., 2017; Li et al., 2018). For
example, additional complexity in statistical models may cause
decreased sensitivity for the actual outcome of interest (Li et al.,
2018). Neuroimaging studies combining multiple MRI head coils
and other hardware elements should be aware of confounding
factors and be committed to use robust, sensitive and validated
methods to deal with these factors (Jack et al., 2008; Smith and
Nichols, 2018; Boeve and Rosen, 2019). We aim to deepen our
research into neuroimaging harmonization methods and our
scaling factors in the near future.

Major strengths of this study are the large sample size and the
within-subject study design of two protocols within one scanning
session using similar acquisition parameters. Despite our best
efforts, some confounding factors are essentially inevitable, such
as scanner drift, re-positioning of the participants heads inside
the different coils and use of head cushions (Littmann et al.,
2006). Other factors that could have influenced the results in our
study may be habituation of the subject and scanner warm-up,
especially for the resting state fMRI, and the anisotropic voxel
size of the T1 weighted sequence. We are aware that extrapolating
the results from our study to other head coils or other vendors
may be difficult. Instead, we emphasize that our study may
be appreciated as increasing awareness for the variability and
possible bias in quantitative MRI metrics in data originating
from different hardware elements. This is especially important
for clinical research, where data acquired with different hardware
elements is increasingly pooled.

In conclusion, this study provides evidence that the results
of standard analysis models are severely compromised when
data from different head coils is combined, or when head
coils are changed during longitudinal clinical studies, even
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though acquisition protocols are completely harmonized. Studies
combining neuroimaging MRI data with multiple head coils
or other MRI hardware elements should be aware that
measurements of gray and white matter volume, white matter
connectivity and functional connectivity will differ between head
coils and should handle these confounding factors with caution.
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