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SUMMARY

The unfolded protein response (UPR) pathway senses unfolded proteins and regulates proteostasis

and cell fate through activity of the transcription factors ATF4, ATF6, and XBP1 within a complex

network of three main branches. Here, we investigated contributions of the three branches to UPR

activity in single cells using microscopy-based quantification and dynamic modeling. BAC-GFP

HepG2 reporter cell lines were exposed to tunicamycin, and activation of various UPR components

was monitored for 24 h. We constructed a dynamic model to describe the adaptive UPR signaling

network, for which incorporation of all three branches was required to match the data. Our calibrated

model suggested that ATF6 shapes the early dynamics of pro-apoptotic CHOP. We confirmed this hy-

pothesis by measurements beyond 24 h, by perturbing single siRNA knockdowns and by ATF6 mea-

surements. Overall, ourwork indicates that ATF6 is an important regulator of CHOP,which in turn reg-

ulates cell fate decisions.

INTRODUCTION

Cells activate adaptive stress responses to be able to cope with different types of stress. For instance,

various chemicals cause the accumulation of unfolded proteins within the endoplasmic reticulum (ER).

Drugs, such as nefazodone and diclofenac, lead to such ER stress, and as a consequence ER stress-related

genes are upregulated, giving rise to the unfolded protein response (UPR), which counters chemical-

induced protein stress (Ren et al., 2016; Fredriksson et al., 2014). Besides chemicals, also modifications

in the rate of protein synthesis or in the cellular environment, such as nutrient level fluctuations or inflam-

mation, can trigger the UPR (Wang and Kaufman, 2016). Moreover, the UPR can be exploited by malignant

cells, assisting their development of drug resistance (Chevet et al., 2015).

Under homeostatic conditions, the ER is responsible for protein synthesis and tightly controls the correct

folding andmaturation of proteins by various chaperones (such as heat shock protein [Hsp] 70 and 90 family

members, ER-localized DnaJ like proteins and calnexin), and foldases (such as protein disulfide isomerases

and prolyl peptidylcistransisomerases). Afterward, proteins are transported to the Golgi through a secre-

tory pathway (Braakman and Hebert, 2013). Upon disruption of ER homeostasis, cells react by activating the

adaptive UPR. This will lead to an increase of the ER folding capacity, to temporary interruption of the trans-

lational machinery, and to degradation of unfolded proteins, altogether with the aim to recover from ER

stress (Hetz and Papa, 2017; Wang and Kaufman, 2016).

The UPR is under control of three sensors, each activating distinct signaling cascades and transcription fac-

tors (TFs), namely, PKR-like ER kinase (PERK), inositol requiring 1a (IRE1a), and activating transcription fac-

tor 6 (ATF6) (Figure 1). These sensors are bound to the chaperone binding immunoglobulin protein (BiP/

HSPA5) and are kept in an inactive state in unstressed conditions (Carrara et al., 2015; Shen et al., 2002).

Upon ER stress, the sensors are released by BiP (Oikawa et al., 2009) or bound by misfolded proteins (Sun-

daram et al., 2018) enabling their activation. After activation of IRE1a in the first UPR branch, its endoribo-

nuclease domain splices the b-ZIP TF XBP1mRNA resulting in the transcriptionally active protein pXBP1(S)

(Calfon et al., 2002), which induces the expression of ER stress-related genes involved in protein folding

(Lee et al., 2003), ER-associated degradation (ERAD) (Oda et al., 2006; Yoshida et al., 2003), and ER expan-

sion (Shaffer et al., 2004). In the second branch, active PERK phosphorylates eukaryotic translation-initiation

factor 2 (eIF2a) leading to attenuation of the translation of mRNAs, which reduces the protein load in the ER

(Harding et al., 1999). Moreover, the expression of some genes, such as a b-ZIP TF ATF4, depends on the

phosphorylation status of eIF2a (Lu et al., 2004). ATF4 induces the expression of ER stress-related genes to
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Figure 1. Cartoon Illustrating the UPR Pathway Involving Multiple Organelles and Three Branches, Several TFs,

and Downstream Molecules Involved in Feedback Loops
restore homeostasis (Ameri and Harris, 2008; Han et al., 2013) and also induces the b-ZIP TF C/EBP homol-

ogous protein (CHOP), which promotes cell death (Harding et al., 2000; Urra et al., 2013; Marciniak et al.,

2004). In the third branch, ATF6 translocates to the Golgi where it is cleaved (Chen et al., 2002; Ye et al.,

2000). The ensuing ATF6 fragment (pATF6(N)) translocates to the nucleus and initiates the expression of

its target genes such as chaperones, genes involved in ERAD, and pXBP1(S) and also of the pro-apoptotic

gene CHOP (Yoshida et al., 2000, 2001; Yamamoto et al., 2007).

As many molecules have some role in the UPR network and ample feedbacks have been identified, these

interactions are expected to lead to complex dynamics. Tomechanistically understand these dynamics and

their role in cellular adversity, mathematical modeling is an indispensable tool to quantitatively understand

this complexity (Hartung et al., 2017; Kuijper et al., 2017). Ordinary differential equation (ODE) models are

well fit for this purpose because they take into account laws of biochemical reactions. Several dynamical

models of the UPR have already been built by various groups. Cho et al. (2013) utilized discrete dynamical

modeling to study a complex UPR network model, considering different biological processes to occur at

similar time scales. With respect to ODE models applied to the UPR, several studies focused on details

of UPR sub-modules, e.g., on the IRE1a branch (Pincus et al., 2010). Taking into account all three branches,

Erguler et al. (2013) proposed a comprehensive UPR model and highlighted potential emerging dynamics

due to feedback loops. A simpler three-branch model was derived using steady-state assumptions by Tru-

sina et al. (2008), which was subsequently used to study repeated exposure and the effect of different types

of stress during in silico simulations (Trusina and Tang, 2010). Interestingly, this work emphasized the po-

tential importance of BiP accumulation during primary exposure leading to protection against renewed ER

stress. Recently, Diedrichs et al. (2018) integrated gene expression data frommouse embryonic fibroblasts

into a UPR model and validated their model predictions with knockout experiments, which focused on the
2 iScience 23, 100860, February 21, 2020



feedback loop via CHOP-induced DNA damage-inducible protein 34 (GADD34) that leads to dephosphor-

ylation of eIF2a and a consequent increase in protein load.

To further increase our mechanistic understanding of regulation of UPR TF activity during adaptation, we

here present a new ODE model that we calibrate with a rich set of dynamic high-content imaging data.

These data are generated utilizing our established liver carcinoma HepG2 BAC-GFP reporter platform

(Wink et al., 2017, 2018; Poser et al., 2008). The usefulness of combining high-content imaging of HepG2

reporter cell lines with mathematical modeling has recently been demonstrated for the NFkB-mediated in-

flammatory stress pathway (Oppelt et al., 2018). Here, by applying high-content confocal imaging to

HepG2 BAC-GFP UPR reporters for CHOP, ATF4, pXBP1(S), and BiP, we were able to precisely follow

the activation dynamics of these UPR genes in response to a broad concentration range of tunicamycin,

a highly specific ER stress inducer. By fitting our dynamic model to the data, we dissected the contribution

from single branches to UPR regulation. Furthermore, model selection suggested that ATF6 has an impor-

tant role in shaping the CHOP dynamics during ER stress. Consistent with this, siRNA-mediated silencing of

ATF6 led to diminished CHOP induction during the acute phase, yet resulted in a prolonged induction of

CHOP. This suggests that ATF6 is an important regulator for cell fate decisions under chronic ER stress.
RESULTS

Image-Based Monitoring of UPR and Cellular Dynamics

To establish an ODE model that captures UPR network regulation and activation, experimental data are

required that quantify the dynamics of induction of crucial UPR genes with a dense time resolution. We

achieved such a resolution by combining our previously established liver carcinoma HepG2 BAC-GFP

UPR reporters (Wink et al., 2017, 2018) with high-content confocal microscopy. We used the compound tu-

nicamycin as an ER stress inducer, which inhibits N-glycosylation and therefore leads to the accumulation of

unfolded glycoproteins (Yoo et al., 2018). Tunicamycin specifically induces ER stress and is therefore an

excellent compound to create a UPR-specific ODE model.

We first examined whether our HepG2 UPR reporters for CHOP, ATF4, pXBP1(S), and BiP are representa-

tive for the behavior of wild-type (WT) HepG2 cells. To this purpose, we established the protein expression

of endogenous CHOP, ATF4, pXBP1(S), and BiP using western blotting in HepG2WT cells after tunicamycin

exposure for 4, 8, 16, and 24 h. Both treatment with 1 and 6 mM tunicamycin resulted in a clear induction of

UPR proteins (Figure 2A). However, BiP was already highly expressed at basal levels and therefore it was

unclear whether further induction occurred. A high tunicamycin concentration of 6 mM led to an earlier in-

duction of UPR proteins than a low concentration of 1 mM (Figure 2A).

Next, we assessed if all four HepG2 UPR reporters behaved similarly upon tunicamycin exposure as WT

cells. Applying a TempO-seq targeted transcriptomics approach to all five HepG2 (WT and reporter) cell

lines exposed to a broad concentration range of tunicamycin for 8 or 24 h revealed that DDIT3 (i.e., the

gene coding for the CHOP protein) expression across HepG2 wild-type and BAC-GFP cell lines followed

a similar dose response at both time points (Figure 2B). For other UPR-related genes, the different cell lines

also have a similar dose response behavior and are highly correlated in gene expression (Figure S1). As ex-

pected based on having at least one additional copy of the gene, HepG2 CHOP-GFP exhibited a slightly

higher DDIT3 expression at baseline compared with the other lines, but this did not influence the dose

response of DDIT3 itself (Figure 2B) or the expression of other UPR-related genes (Figure S1). Thus, all

HepG2 UPR reporter behave similarly with respect to UPR gene expression.

To generate dynamic protein expression data to which results from an ODE model can be compared, we

exposedHepG2 BAC-GFP UPR reporters for CHOP, ATF4, pXBP1(S), and BiP to a concentration range from

1 to 100 mMof tunicamycin and subsequently applied live imaging with confocal microscopy to capture the

GFP induction in single cells and total cell count every hour until 24 h of exposure (Figures 2C and 2D). The

dynamic pattern of CHOP-GFP expression exhibited a peak around 10–20 h (Figures 2C and 2D), which was

consistent with the CHOP expression in WT HepG2 cells observed with western blotting (Figure 2A).

Increasing concentrations of tunicamycin led to earlier maxima of CHOP expression levels (Figure 2C).

For all four reporters, a concentration-dependent increase in maximal GFP intensity occurred. However,

at the highest concentration (100 mM) of tunicamycin, the maximal GFP intensity was equal or lower

compared with that of 50 mM, which is indicative of cellular toxicity. Consistent with this interpretation,

the total number of cells dramatically decreased at 100 mM of tunicamycin (Figure 2E). At 50 mM of
iScience 23, 100860, February 21, 2020 3



C

A B

D E

Figure 2. Dynamic Measurements of Various UPR Components to Integrate with Modeling

(A) Western blot of CHOP, ATF4, pXBP1(S), and BiP protein at 4, 8, 16, and 24 h upon exposure to DMSO or tunicamycin (1

and 6 mM) in WT HepG2 cells. Tubulin was used as protein loading control.

(B) Log2 normalized counts of DDIT3 mRNA expression analyzed using TempO-seq transcriptomics at 8 or 24 h after

exposure with various concentrations of tunicamycin in HepG2 WT and UPR BAC-GFP reporter cell lines.

(C) Representative images of HepG2 UPR BAC-GFP reporter cell lines (CHOP, ATF4, pXBP1(S), and BiP) stained with

Hoechst for nuclei visualization. Images were obtained using confocal microscopy with a 203 objective at the indicated

time points after exposure to tunicamycin at 6 mM. Hoechst is represented in blue (upper rows) and GFP in green (lower

rows).

(D and E) Quantification of single-cell-based GFP intensity of the HepG2 UPR BAC-GFP reporter cell lines after min-max

normalization (D) and cell counts (E) after exposure to DMEM/DMSO or to a broad concentration range of tunicamycin

and imaged live every hour for 24 h after exposure using confocal microscopy. BiP-GFP intensity was quantified in the

cytoplasm; all other reporters were quantified in the nuclei.

Data in (B), (D), and (E) represent mean and standard error of the mean (SE) of three biological replicates.
tunicamycin, there was also a slower increase in cell count over time compared with lower concentrations.

Therefore, only concentrations below 50 mM of tunicamycin were taken along for the ODE-model develop-

ment since we here focus on the adaptive UPR signaling network. In summary, the gene expression as well

as protein expression levels of BAC-GFP HepG2 UPR reporter cell lines and WT HepG2 cells exhibited

similar baseline levels and dynamic patterns upon exposure to tunicamycin. Therefore, we concluded

that the BAC-GFP UPR cell lines were sufficiently representative for WT HepG2 cells to be used for subse-

quent dynamical modeling.
UPR Model with ATF6 Provides Excellent Fit to the Data

Because we had dynamic information on four BAC-GFP reporter cell lines, we initially constructed an ODE

model with four variables representing the protein expression level for these reporters as well as a variable
4 iScience 23, 100860, February 21, 2020
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Figure 3. Model Structure and Fit

(A) Schematic diagram of the modeled UPR pathway with both pharmacokinetics and signaling network.

(B) Model fits to the experimentally observed levels of pXBP1(S), ATF4, BiP, and CHOP upon tunicamycin exposure at five

concentrations. Dots present values for three replicates. Optimized fits from models with ATF6 branch (solid curves) or

without (dashed curves) are plotted.
for the amount of unfolded proteins in the cell (Figure 3A). This model was a modification of an earlier pub-

lished model by Trusina et al. (2008). We did not incorporate ATF6 explicitly, but it was considered to

behave similarly to IRE1a, i.e., these sensors were considered to be in quasi steady state (Trusina et al.,

2008). In addition, we modeled the downstream molecules ATF4 and CHOP. Finally, because the experi-

mentally observed dynamics of intensity of all UPR reporters exhibited a concentration-dependent delay

of activation for tunicamycin concentrations below 12 mM (Figure 2D), we incorporated this phenomenon

in a pharmacokinetic module preceding the signaling module. Specifically, we added a threshold in the

effective intra-cellular concentration of tunicamycin, i.e., we consider the UPR signaling to be triggered

only when a particular intra-cellular stress level is crossed, which leads to some delay of pathway activation

(see simulated pharmacokinetic profiles in Figure S2).

This initial model could roughly describe the reporter dynamics, yet this could not capture the consistently

observed dynamic peak in CHOP expression (Figure 3B, dashed line). Therefore, we also created a model

variant including the ATF6 branch explicitly (for which no BAC-GFP reporter cell line was available). The
iScience 23, 100860, February 21, 2020 5
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Figure 4. Model-Based Prediction of CHOP Transcription

(A) Illustration of the TFs contributing to CHOP transcription.

(B–D) Simulations of the contributions of pXBP1(S), ATF4, and pATF6(N) to the CHOP production rate after exposure to tunicamycin concentrations of 1 (B), 4

(C) and 6mM (D), respectively.

(E) Model prediction of CHOP levels within the first 24 h (solid line) and between 24 and 34 h (dashed line). Simulations were conducted with various strengths

of exposure (between 30% and 130% of the reference value) shown as shaded areas.

(F) Image-based experimental observation of CHOP for 34 h represented as the mean G SE of three biological replicates.
model with all three UPR branches contains 47 parameters, whereas the model without ATF6 has 39 param-

eters (for equations see Transparent Methods). After fitting of both models to the experimental data (for

parameter estimates see Table S1, for their estimated standard errors see Figure S3, and for their sensitivity

see Figure S4), visual comparison of the twomodel variants showed that only the model with ATF6 was able

to describe the CHOP peak (Figure 3B, solid line). This visual impression was confirmed by application of a

likelihood-ratio-based approach to compare the models with the data (DG = 119 and 271 for the full and

ATF6-free models, respectively; p < 0.001), and by calculation of the information criteria AIC and BIC (Pa-

witan, 2001) for the two competitive models (AIC full model: 23119 + 2347 = 332; AIC ATF6-free model:

23271 + 2339 = 620; BIC full model: 23119 + ln(440) 47 = 524.08; BIC ATF6-free model: 23271 + ln(440)

39 = 779.38). The above results thus suggest that the ATF6 branch plays an important role in shaping the

early CHOP dynamics, and we continued with the calibrated model including ATF6 for further exploration

and validation.

Model Correctly Predicts CHOP Dynamics beyond 24 Hours

The transcription of CHOP can be induced by binding of UPR TFs, i.e., ATF4, pXBP1(S), and pATF6(N), at

the AARE and ERSE promoter motifs (Figure 4A [Takayanagi et al., 2013; Oyadomari andMori, 2004]). How-

ever, previous work has suggested that induction of CHOP is predominantly regulated by ATF4 and

pATF6(N), and to a minimal extent by pXBP1(S) (Diedrichs et al., 2018; Wu et al., 2007; Ma et al., 2002). Hav-

ing the parameterized full UPR model in place allowed us to explore both the speed of activation of the

three sensors and the contribution of each of the three downstream TFs to CHOP induction at different

time points. With respect to the speed of activation of the sensors, ATF6 is the sensor responding most

quickly, followed by IRE1a and finally PERK (Figure S5). With respect to the contribution of the downstream

TFs to CHOP transcription, we investigated this by separating the mathematical term representing the

CHOP production rate into the individual TF contributions forming this term. This analysis showed that

the ATF6 branch shapes the early dynamics of CHOP production, whereas ATF4 dominates the CHOP pro-

duction at late time points (Figures 4B–4D). This explains why ATF4 is typically considered the primary TF

responsible for CHOP production (Scheuner et al., 2001; Harding et al., 2000), yet our analysis suggests that

pATF6(N) also has an important contribution to CHOP production at early time points. This happens

because pATF6(N)-mediated CHOP transcription starts and ends relatively abruptly owing to the high co-

operativity (n = 46.32 in the best fit) in the Hill function describing pATF6(N) activity. Once pATF6(N) drops

below the Hill threshold KA2C (which equals 0.717 in the best fit), the effect of the still relatively high

pATF6(N) levels on CHOP transcription quickly becomes negligible. Note that such a high cooperativity

is required to explain the exact height of the CHOP peak (Figures S6–S8). Furthermore, our analysis

confirmed the minimal role of pXBP1(S) in CHOP transcription, which is due to low pXBP1(s) levels rather

than to low TF activity of the present pXBP1(s) (Figure S9).
6 iScience 23, 100860, February 21, 2020
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Figure 5. Perturbation of UPR with siRNA Knockdowns Are Consistent with Model Predictions

(A) Log2 fold changes of mRNA expression of different siRNA-mediated gene knockdowns relative to siRNA mock negative control in HepG2 WT cells

exposed to 6 mM of tunicamycin for 16 h, determined using TempO-seq transcriptomics. Knockdown efficiencies of siRNAs are depicted in gray numbers.

Data represent the mean G SE of three biological replicates.

(B) Representative confocal microscopy images obtained with 203 objective of HepG2 CHOP-GFP reporter cells exposed to 6 mM of tunicamycin for 16 h

after CHOP, ATF6, or Mock siRNA. To visualize the nuclei, cells were stained with Hoechst (upper rows), and CHOP-GFP is represented in green (lower rows).

(C) Model simulation of ATF4 and CHOP (black curves) compared with quantified GFP data after exposure to 6 mM of tunicamycin for different siRNA-

mediated knockdown conditions (blue line and error bars representing mean G SE of three biological replicates). Simulations with varied knockdown

efficiency (black dashed: 20% less, red dashed: 20% more) are also plotted.
Given the model prediction that the ATF4-driven CHOP production rate remains relatively high around

24 h, we simulated the model for a duration longer than the 24 h on which the parameterization was based.

Beyond 24 h the CHOP level was predicted to stay around the same level for tunicamycin concentrations of

1 and 6 mM (Figure 4E) rather than quickly returning to baseline level. Our simulations predicted that this

was due to a gradual increase of the intra-cellular stress levels, which saturated after �20 h and did not yet

decrease (Figure S2). The sustained high ATF4 level is attributed to its upstreammolecules PERK and eIF2a

that tightly follow the dynamics of the intra-cellular stressor and of unfolded protein (Figure S9). To validate

this model prediction, we performed imaging experiments of a duration beyond 24 h, which showed that

indeed CHOP-GFP levels in HepG2 cells remained at a relatively high level up to 34 h (Figure 4F). Thus,

although the model was based on 24-h measurements, it correctly predicted sustained CHOP levels

beyond 24 h.

Knockdown Experiments Confirm Role of ATF6 in CHOP Dynamics

We next challenged our model further by evaluating the effect of perturbing single UPR-related genes,

including ATF6, on activation of other UPR components using siRNA-mediated silencing. To confirm suc-

cess of knockdown by siRNA and to quantify its efficiency, we first measured the expression ofDDIT3,ATF4,

and ATF6 after knockdown of these separate genes for 3 days and subsequent exposure to 6 mM tunica-

mycin for 16 h. TempO-seq transcriptomics experiments showed that expression of these genes was

indeed significantly decreased by siRNA-mediated silencing upon exposure to tunicamycin (Figure 5A).

To study the effect of perturbation of UPR-related genes on CHOP and ATF4 induction dynamics during
iScience 23, 100860, February 21, 2020 7



ER stress, we then measured CHOP-GFP and ATF4-GFP in HepG2 BAC reporters using confocal imaging

for 24 h after 6 mM tunicamycin exposure when no gene (Mock), DDIT3, ATF4, or ATF6 was silenced using

siRNA (Figure 5B and blue lines in Figure 5C). Knockdown of DDIT3 and ATF4 led to reduced levels of,

respectively, CHOP-GFP and ATF4-GFP, confirming the success of the knockdowns also at protein level.

We then compared the experimental measurements upon knockdown with model predictions incorpo-

rating the knockdown efficiencies that we measured for the different genes (Figure 5C).

ATF4 and ATF6 knockdown both affected the CHOP-GFP dynamics, yet its effect was qualitatively

different. ATF4 knockdown led to a decrease in CHOP induction, yet a clear peak remained present in

the CHOP dynamics around 16 h post tunicamycin exposure, indicating that ATF4 is not responsible for

that peak (Figure 5C). Similarly, ATF6 knockdown led to a reduced CHOP induction specifically in the initial

phase. However, after 16 h of exposure, CHOP levels did not decline again and CHOP levels at 24 h were

slightly higher when ATF6 was silenced than for the Mock control. Our model offers an explanation for

these observations: First, the lowered activity of pATF6(N) due to ATF6 knockdown implies that the

CHOP transcription rate contributed by pATF6(N) does not exceed the required threshold and that

CHOP transcription fully depends on XBP1(S) and ATF4 activity. Second, the reduced pATF6(N) upon

knockdown also lowers BiP expression, thus leading to an increased amount of unfolded proteins,

XBP1(S) and ATF4, which in turn slightly increases CHOP expression around 24 h compared with a setting

without knockdown (Figure S10). Thus, ATF6 affects the CHOP dynamics especially in the initial phase and

also slightly in the later phase as was predicted by our model. Altogether, the experimentally observed al-

terations in ATF4 and CHOP induction could be accurately predicted with our model and this analysis

confirmed the model prediction that ATF6 shapes CHOP dynamics. As ATF6 shapes the dynamic pattern

of pro-apoptotic CHOP, i.e., initially increases CHOP but later decreases it owing to initial BiP-mediated

folding of unfolded proteins, we speculate that early ATF6 activity may in fact protect cells under chronic

ER stress. This is consistent with experimental findings in ATF6 knockout mice in which cell death increased

upon exposure to tunicamycin after 18 h (Wu et al., 2007).
ATF6 Activation Peaks Early as Predicted by Modeling

Since our model predicts that the peak in CHOP dynamics that follows tunicamycin exposure is due to early

ATF6 activity, we evaluated the mRNA expression and activation dynamics of endogenous ATF6 in HepG2

WT cells by TempO-seq transcriptomics and western blot. ATF6 mRNA expression increased by 2-fold at

10 mMof tunicamycin at 8 and 24 h, but not at 1 mM (Figure 6A), suggestingminor upregulation of ATF6 only

at high concentrations. At protein level, exposure to 6 mM of tunicamycin clearly led to the expected inhi-

bition of N-glycosylation, which became visible by the appearance of a low western blot band representing

unglycosylated, uncleaved ATF6 (ATF6UG) and a decrease of the high band representing glycosylated

ATF6 (ATF6G) starting from 4 h of exposure (Figure 6B; quantification in Figure 6C, first two panels). Expo-

sure to a lower concentration of 1 mM tunicamycin also increased the formation of ATF6UG, yet it was only

apparent at late time points (Figure S11).

The relation between ATF6G and ATF6UG, which changes during tunicamycin exposure, is illustrated in Fig-

ure 6D, i.e., both forms can degrade, but only ATF6G can lead to pATF6(N). The amount of total uncleaved

ATF6 (i.e., ATF6UG + ATF6G) decreased at early time points (6 h, p = 0.016; 8 h, p = 0.070) compared with

DMSO control but restored later on (Figure 6C third panel). Since levels of endogenous cleaved ATF6 in

HepG2 cells were difficult to capture using western blot, we assessed ATF6 cleavage from the difference

in total uncleaved ATF6 levels. Considering the ATF6 production and degradation rates to remain roughly

unchanged at early time points in tunicamycin and DMSO conditions, the decreased amount of total un-

cleaved ATF6 at those time points can be attributed to ATF6 cleavage. Therefore, we used the difference

in total uncleaved ATF6 between the first measured time point and subsequent time points as a measure

for ATF6 cleavage (Figure 6C, panel 4). The level of pATF6(N), as estimated through this approach, peaked

at 6 h post tunicamycin exposure (p = 0.044), which is consistent with the dynamics of predicted free ATF6

and pATF6(N) in our computational model (Figure 6E).

In conclusion, the activation dynamics of ATF6 were early and concentration dependent as predicted by

our model. Together, our combination of experimental and computational modeling work shows that

ATF6 is activated early after tunicamycin exposure and that this causes an early rise in CHOP expression.

The CHOP expression subsequently drops to a lower level yet remains relatively high owing to ongoing

presence of stress, keeping ATF4 expression at elevated levels.
8 iScience 23, 100860, February 21, 2020
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Figure 6. Matching ATF6 Dynamics in Experiment and Model

(A) ATF6 mRNA expression after 8 or 24 h of exposure to a broad concentration range of tunicamycin in HepG2 WT cells

using TempO-seq, represented as the mean of log2FC G SE of three biological replicates.

(B) Western blot of uncleaved ATF6 (G, glycosylated, UG, unglycosylated) measured in HepG2 WT cells at 2, 4, 6, 8, 16, or

24 h after exposure to tunicamycin (6 mM) or DMSO. As protein loading control, tubulin protein expression was assessed.

(C) Quantified protein expression of the indicated ATF6 forms from three biological replicates after protein loading

correction using tubulin (symbols and shaded area represents mean G SE with the significance levels represented as

**padj < 0.05, ***padj < 0.01). Cleaved ATF6 was estimated based on the difference between total uncleaved ATF6 at 4, 6,

and 8 h versus the 2-h time point.

(D) Diagram of relation between different ATF6 forms during tunicamycin treatment, where ATF6G and ATF6UG represent

glycosylated and unglycosylated forms, respectively.

(E) Model-predicted dynamics of free ATF6 and the downstream pATF6(N) upon exposure of tunicamycin at 1 and 6 mM.
DISCUSSION

The basis of our work consisted of dynamic measurements detailing the induction of UPR regulators in

HepG2 reporter cell lines during tunicamycin-induced ER stress. We exploited these data to establish a

computational model representing the essential mechanisms shaping the UPR and fitted the model using

24-h reporter dynamics. The strength of our approach was that we exploited a large amount of high-con-

tent imaging data to obtain a quantitative understanding of UPR regulation. This combination of modeling

and experiments helped to unravel the role of different molecules in the UPR dynamics. Specifically, the

model predicted that the ATF6 branch was required to explain the observed UPR dynamics and this pre-

diction was verified by knockdown experiments, prolonged experimental time courses, and additional

western blot measurements.

Some of the previously published UPRmodeling work focused on theoretical understanding of network dy-

namics in different scenarios (Trusina et al., 2008; Erguler et al., 2013). Specifically, in the extensive model of

Erguler et al. (2013), it was shown that the network could exhibit different kinds of structural behavior de-

pending on the parameter settings. For example, for some parameter conditions oscillations occur,

showing that the network is in principle capable of generating such behavior. However, our combined

modeling and experimental analysis demonstrates that at least for HepG2 cells exposed to tunicamycin

such oscillations do not occur. Owing to the complexity of the model by Erguler et al. (2013) precluding
iScience 23, 100860, February 21, 2020 9



calibration to a dataset that was limited in terms of number of monitored variables, we instead chose to

extend the model by Trusina et al. (2008) with CHOP and ATF6, rendering a new model with similar UPR

TF activity that could be calibrated to our imaging data. A combination of experimental and computational

work similar to ours has been recently reported by Diedrichs et al. (2018), where model predictions were

based on qPCR and western blot experiments. Key differences with our approach include the choice of

test compound and the balance of model complexity and measurements. With respect to the employed

compounds, Diedrichs et al. (2018) exposed MEFs to thapsigargin, a SERCA inhibitor disturbing calcium

homeostasis, whereas we used tunicamycin, which inhibits N-glycosylation within the ER. The downside

of using exposure to thapsigargin is that it not only leads to a strong UPR induction but also induces oxida-

tive stress, at least in HepG2 cells (Wink et al., 2017). With respect to model complexity and the amount of

experimental data, time-lapse imaging data has a major advantage that it easily delivers many data points

at the single-cell level within specific sub-cellular compartments, i.e., we have more than 400 datapoints

measured from four BAC-GFP reporters at five concentrations and at more than 20 time points.

Besides capturing the dynamics of UPR-related molecules, our quantitative modeling approach suggests that

ATF6 is responsible for the early peak of CHOP. Both our knockdown experiments and ATF6 measurements

using western blotting at different time points are consistent with this hypothesis. Specifically, the decrease

in total uncleaved ATF6 strongly suggested that cleavage of ATF6 peaked at early time points (around 6 h).

These findings are also consistentwith those of Yoshida et al. (2001), who reported a similar patternwith an over-

shoot in the nuclear active ATF6 fragment after tunicamycin treatment in HeLa cells. To verify the observed acti-

vation dynamics of ATF6 and to capture high-resolution activation dynamics at sub-cellular localization, future

imaging-based dynamic readout of ATF6 and its fragments would be highly valuable. Based on such data, the

part of our model describing ATF6 could also be extended and better parameterized.

The parameters in our mechanistic model have a biological interpretation, and their estimates thus provide

quantitative insight into UPR regulation. First, the degradation rate of the protein CHOP (rC) was estimated

to be 5-fold larger than that of BiP (rB), i.e., a similar difference as found by Rutkowski et al. (2006). Given the

protective role of BiP through protein folding and the pro-apoptotic role of CHOP, this suggests that the

distinct degradation rates represents one mechanism that explains initial adaptation to ER stress, followed

by a switch toward adversity during prolonged ER stress. Second, the parameters KBP, KBI, and KBA shape

the response sensitivity among the three UPR branches PERK, IRE1a, and ATF6, with the latter being the

quickest (Figure S5). Interestingly, we showed that ATF6(N) transcriptional activity with respect to CHOP

is also switched off early and abruptly owing to the high predicted cooperativity of this response (Figure 4).

In response toER stress, cells have several coping strategies to eliminate the accumulation ofmisfoldedproteins

by activating the three UPR branches. However, in case ER stress becomes too severe or chronic, apoptotic

signaling pathways will be activated and cells will switch from adaptive to pro-apoptotic signaling. In this switch,

CHOP plays an important role through various mechanisms (Urra et al., 2013; Uzi et al., 2013; Ji et al., 2005) and

therefore regulators of CHOP can affect the sensitivity of cells to ER stress. Here, we found that ATF6 has such a

crucial role in the dynamics of CHOP induction, where perturbation of ATF6 led to absence of the initial CHOP

peak yet led to slightly increased CHOP levels at a later stage. Our findings are consistent with earlier work in

which ATF6-knockout MEFs had lower CHOP levels until 12 h of exposure to thapsigargin, whereas at later time

points CHOP levels were higher compared withWT (Diedrichs et al., 2018). Given the importance of ATF6 in the

regulationofCHOPactivationdynamics as well as cytoprotective proteins such asBiP (Vitale et al., 2019), ATF6 is

also expected to play a role in the switch between adaptive to cellular adversity, especially in realistic scenarios

with repeated exposure to chemicals. Indeed, it has been reported that ATF6 plays a role in the protection

against chronic ER stress using ATF6 knockout mice and repeated exposures (Wu et al., 2007).

In conclusion, by combining high-throughput confocal imaging and ODE modeling, we captured the dy-

namics and role of individual components within the UPR, particularly pinpointing the importance of

ATF6 in CHOP activation dynamics. Since the UPR plays an important role in both drug-induced toxicity

as well as the development of drug resistance in cancer, improved insight in UPR signaling dynamics in rela-

tion to cell fate is important.
Limitations of the Study

Using a combined experimental and computational modeling study of UPR signaling, we showed that

ATF6 has an important role in shaping the dynamic pattern of CHOP activity, thus likely affecting cell
10 iScience 23, 100860, February 21, 2020



fate decisions under ER stress. However, we neither mathematically described the relation between UPR

activity and cell fate, nor did we investigate experimentally whether cell fate decisions are indeed affected

by ATF6. Moreover, our findings are based on a single cell line and only on in vitro observations, hence the

response may be different in in vivo scenarios. Finally, we do not know whether our observations hold for

other UPR-invoking compounds and whether our model is able to describe UPR dynamics for such com-

pounds, including their potential adversity.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.

DATA AND CODE AVAILABILITY

We put the python script to simulate the developed computational model as the Supplemental

Information.

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.isci.2020.100860.

ACKNOWLEDGMENTS

This work has received funding from the ZonMW InnoSysTox program under grant agreement No 40-

42600-98-14016 (to J.B.B. and B.v.d.W.) and from the European Union’s Horizon 2020 research and innova-

tion programme under grant agreement No 681002 (EU-ToxRisk; to J.B.B. and B.v.d.W.).

AUTHOR CONTRIBUTIONS

H.Y., M.N., B.v.d.W., and J.B.B. designed the research; H.Y. and M.N. performed the research; H.Y. and

M.N. analyzed data; and H.Y., M.N., B.v.d.W., and J.B.B. wrote the paper.

DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: August 16, 2019

Revised: December 9, 2019

Accepted: January 16, 2020

Published: February 21, 2020
REFERENCES

Ameri, K., and Harris, A.L. (2008). Activating
transcription factor 4. Int. J. Biochem. Cell Biol.
40, 14–21.

Braakman, I., and Hebert, D.N. (2013). Protein
folding in the endoplasmic reticulum. Cold
Spring Harbor Perspect. Biol. 5, a013201.

Calfon, M., Zeng, H., Urano, F., Till, J.H.,
Hubbard, S.R., Harding, H.P., Clark, S.G., and
Ron, D. (2002). IRE1 couples endoplasmic
reticulum load to secretory capacity by
processing the XBP-1 mrna. Nature 415, 92.

Carrara, M., Prischi, F., Nowak, P.R., Kopp, M.C.,
and Ali, M.M. (2015). Noncanonical binding of BiP
ATPase domain to Ire1 and Perk is dissociated by
unfolded protein CH1 to initiate ER stress
signaling. Elife 4, e03522.

Chen, X., Shen, J., and Prywes, R. (2002). The
lumenal domain of ATF6 senses ER stress and
causes translocation of ATF6 from the ER to the
Golgi. J. Biol. Chem. 277, 13045–13052.
Chevet, E., Hetz, C., and Samali, A. (2015).
Endoplasmic reticulum stress–activated cell
reprogramming in oncogenesis. Cancer Discov.
5, 586–597.

Cho, H., Wu, M., Zhang, L., Thompson, R., Nath,
A., and Chan, C. (2013). Signaling dynamics of
palmitate-induced ER stress responses mediated
by atf4 in hepg2 cells. BMC Syst. Biol. 7, 9.

Diedrichs, D.R., Gomez, J.A., Huang, C.S.,
Rutkowski, D.T., and Curtu, R. (2018). A data-
entrained computational model for testing the
regulatory logic of the vertebrate unfolded
protein response. Mol. Biol. Cell 29, 1502–1517.

Erguler, K., Pieri, M., and Deltas, C. (2013). A
mathematical model of the unfolded protein
stress response reveals the decision mechanism
for recovery, adaptation and apoptosis. BMC
Syst. Biol. 7, 16.

Fredriksson, L., Wink, S., Herpers, B., Benedetti,
G., Hadi, M., Bont, H.d., Groothuis, G., Luijten,
M., Danen, E., Graauw, M.d., et al. (2014). Drug-
induced endoplasmic reticulum and oxidative
stress responses independently sensitize toward
tnfa-mediated hepatotoxicity. Toxicol. Sci. 140,
144–159.

Han, J., Back, S.H., Hur, J., Lin, Y.H., Gildersleeve,
R., Shan, J., Yuan, C.L., Krokowski, D., Wang, S.,
Hatzoglou, M., et al. (2013). ER-stress-induced
transcriptional regulation increases protein
synthesis leading to cell death. Nat. Cell Biol. 15,
481.

Harding, H.P., Novoa, I., Zhang, Y., Zeng, H., Wek,
R., Schapira, M., and Ron, D. (2000). Regulated
translation initiation controls stress-induced gene
expression in mammalian cells. Mol. Cell 6, 1099–
1108.

Harding, H.P., Zhang, Y., and Ron, D. (1999).
Protein translation and folding are coupled by an
endoplasmic-reticulum-resident kinase. Nature
397, 271.

Hartung, T., FitzGerald, R.E., Jennings, P.,
Mirams, G.R., Peitsch, M.C., Rostami-Hodjegan,
A., Shah, I., Wilks, M.F., and Sturla, S.J. (2017).
iScience 23, 100860, February 21, 2020 11

https://doi.org/10.1016/j.isci.2020.100860
http://refhub.elsevier.com/S2589-0042(20)30043-2/sref1
http://refhub.elsevier.com/S2589-0042(20)30043-2/sref1
http://refhub.elsevier.com/S2589-0042(20)30043-2/sref1
http://refhub.elsevier.com/S2589-0042(20)30043-2/sref2
http://refhub.elsevier.com/S2589-0042(20)30043-2/sref2
http://refhub.elsevier.com/S2589-0042(20)30043-2/sref2
http://refhub.elsevier.com/S2589-0042(20)30043-2/sref3
http://refhub.elsevier.com/S2589-0042(20)30043-2/sref3
http://refhub.elsevier.com/S2589-0042(20)30043-2/sref3
http://refhub.elsevier.com/S2589-0042(20)30043-2/sref3
http://refhub.elsevier.com/S2589-0042(20)30043-2/sref3
http://refhub.elsevier.com/S2589-0042(20)30043-2/sref4
http://refhub.elsevier.com/S2589-0042(20)30043-2/sref4
http://refhub.elsevier.com/S2589-0042(20)30043-2/sref4
http://refhub.elsevier.com/S2589-0042(20)30043-2/sref4
http://refhub.elsevier.com/S2589-0042(20)30043-2/sref4
http://refhub.elsevier.com/S2589-0042(20)30043-2/sref5
http://refhub.elsevier.com/S2589-0042(20)30043-2/sref5
http://refhub.elsevier.com/S2589-0042(20)30043-2/sref5
http://refhub.elsevier.com/S2589-0042(20)30043-2/sref5
http://refhub.elsevier.com/S2589-0042(20)30043-2/sref6
http://refhub.elsevier.com/S2589-0042(20)30043-2/sref6
http://refhub.elsevier.com/S2589-0042(20)30043-2/sref6
http://refhub.elsevier.com/S2589-0042(20)30043-2/sref6
http://refhub.elsevier.com/S2589-0042(20)30043-2/sref7
http://refhub.elsevier.com/S2589-0042(20)30043-2/sref7
http://refhub.elsevier.com/S2589-0042(20)30043-2/sref7
http://refhub.elsevier.com/S2589-0042(20)30043-2/sref7
http://refhub.elsevier.com/S2589-0042(20)30043-2/sref8
http://refhub.elsevier.com/S2589-0042(20)30043-2/sref8
http://refhub.elsevier.com/S2589-0042(20)30043-2/sref8
http://refhub.elsevier.com/S2589-0042(20)30043-2/sref8
http://refhub.elsevier.com/S2589-0042(20)30043-2/sref8
http://refhub.elsevier.com/S2589-0042(20)30043-2/sref9
http://refhub.elsevier.com/S2589-0042(20)30043-2/sref9
http://refhub.elsevier.com/S2589-0042(20)30043-2/sref9
http://refhub.elsevier.com/S2589-0042(20)30043-2/sref9
http://refhub.elsevier.com/S2589-0042(20)30043-2/sref9
http://refhub.elsevier.com/S2589-0042(20)30043-2/sref10
http://refhub.elsevier.com/S2589-0042(20)30043-2/sref10
http://refhub.elsevier.com/S2589-0042(20)30043-2/sref10
http://refhub.elsevier.com/S2589-0042(20)30043-2/sref10
http://refhub.elsevier.com/S2589-0042(20)30043-2/sref10
http://refhub.elsevier.com/S2589-0042(20)30043-2/sref10
http://refhub.elsevier.com/S2589-0042(20)30043-2/sref10
http://refhub.elsevier.com/S2589-0042(20)30043-2/sref11
http://refhub.elsevier.com/S2589-0042(20)30043-2/sref11
http://refhub.elsevier.com/S2589-0042(20)30043-2/sref11
http://refhub.elsevier.com/S2589-0042(20)30043-2/sref11
http://refhub.elsevier.com/S2589-0042(20)30043-2/sref11
http://refhub.elsevier.com/S2589-0042(20)30043-2/sref11
http://refhub.elsevier.com/S2589-0042(20)30043-2/sref12
http://refhub.elsevier.com/S2589-0042(20)30043-2/sref12
http://refhub.elsevier.com/S2589-0042(20)30043-2/sref12
http://refhub.elsevier.com/S2589-0042(20)30043-2/sref12
http://refhub.elsevier.com/S2589-0042(20)30043-2/sref12
http://refhub.elsevier.com/S2589-0042(20)30043-2/sref13
http://refhub.elsevier.com/S2589-0042(20)30043-2/sref13
http://refhub.elsevier.com/S2589-0042(20)30043-2/sref13
http://refhub.elsevier.com/S2589-0042(20)30043-2/sref13
http://refhub.elsevier.com/S2589-0042(20)30043-2/sref14
http://refhub.elsevier.com/S2589-0042(20)30043-2/sref14
http://refhub.elsevier.com/S2589-0042(20)30043-2/sref14


Systems toxicology: real world applications and
opportunities. Chem. Res. Toxicol. 30, 870–882.

Hetz, C., and Papa, F.R. (2017). The unfolded
protein response and cell fate control. Mol. Cell
169, 169–181.

Ji, C., Mehrian-Shai, R., Chan, C., Hsu, Y.H., and
Kaplowitz, N. (2005). Role of CHOP in hepatic
apoptosis in the murine model of intragastric
ethanol feeding. Alcohol. Clin. Exp. Res. 29,
1496–1503.

Kuijper, I.A., Yang, H., Van De Water, B., and
Beltman, J.B. (2017). Unraveling cellular pathways
contributing to drug-induced liver injury by
dynamical modeling. Expert Opin. Drug Metab.
Toxicol. 13, 5–17.

Lee, A.H., Iwakoshi, N.N., and Glimcher, L.H.
(2003). XBP-1 regulates a subset of endoplasmic
reticulum resident chaperone genes in the
unfolded protein response. Mol. Cell Biol. 23,
7448–7459.

Lu, P.D., Harding, H.P., and Ron, D. (2004).
Translation reinitiation at alternative open
reading frames regulates gene expression in an
integrated stress response. J. Cell Biol. 167,
27–33.

Ma, Y., Brewer, J.W., Diehl, J.A., and Hendershot,
L.M. (2002). Two distinct stress signaling
pathways converge upon the CHOP promoter
during the mammalian unfolded protein
response. J. Mol. Biol. 318, 1351–1365.

Marciniak, S.J., Yun, C.Y., Oyadomari, S., Novoa,
I., Zhang, Y., Jungreis, R., Nagata, K., Harding,
H.P., and Ron, D. (2004). CHOP induces death by
promoting protein synthesis and oxidation in the
stressed endoplasmic reticulum. Genes Dev. 18,
3066–3077.

Oda, Y., Okada, T., Yoshida, H., Kaufman, R.J.,
Nagata, K., and Mori, K. (2006). Derlin-2 and
Derlin-3 are regulated by the mammalian
unfolded protein response and are required for
ER-associated degradation. J. Cell Biol. 172,
383–393.

Oikawa, D., Kimata, Y., Kohno, K., and Iwawaki, T.
(2009). Activation of mammalian IRE1a upon ER
stress depends on dissociation of BiP rather than
on direct interaction with unfolded proteins. Exp.
Cell Res. 315, 2496–2504.

Oppelt, A., Kaschek, D., Huppelschoten, S.,
Sison-Young, R., Zhang, F., Buck-Wiese, M.,
Herrmann, F., Malkusch, S., Krüger, C.L., Meub,
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Figure S1: Transcriptomic profiling of HepG2 UPR BAC-GFP reporters, related to
Figure 2. A: Distribution of log2 fold changes (compared to DMSO solvent control) of UPR-
related genes across the indicated concentration range of tunicamycin for each HepG2 cell line
(WT, CHOP-GFP, ATF4-GFP, pXBP1(S)-GFP and BiP-GFP) at 8 and 24h exposure time. B:
Pearson correlation matrix of different HepG2 cell lines based on either all genes (top panel) or
UPR-related genes (lower panel). Correlations are the mean of correlations between cell lines at
each concentration of tunicamycin. C: Heatmap of log2 normalized counts of UPR-related genes
(selection based on upper quantile of log2 fold changes of all UPR-related genes at 10 µM) for
each HepG2 cell line exposed to the indicated concentration range of tunicamycin either for 8 or
24h. Hierarchical clustering of genes based on euclidean distance.
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A

B

Figure S2: Modeled pharmacokinetics of tunicamycin exposure, related to Figure 2
and 3. A: effective intra-cellular concentration of tunicamycin Sc over time, B: exposure-related
stressor Si (unfolded proteins due to tunicamycin) which acts as input to the UPR signaling
network.
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Figure S3: Standard errors of model parameter estimates, related to Figure 3. The
standard errors were approximated via a Hessian-based approach and are presented in log10 scale.
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Figure S4: Parameter sensitivity analysis of CHOP expression, related to Figure 3.
In the sensitivity analysis, we considered the sensitivity of CHOP expression at 16 hours after
exposure to 6µM of tunicamycin. Parameters positively affecting CHOP are shown in black, while
parameters negatively affecting CHOP are shown in red.
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Figure S5: Predicted dynamics of the three UPR sensors upon tunicamycin exposure,
related to Figure 4. Plot of the dynamics of the sensors IRE1α (blue), PERK (green), and
ATF6 (red), after normalization to their maximally obtained value during the studies time period.
Black squares indicate the moment at which sensor activity is half-maximal.
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Figure S6: Effect of n on CHOP upon exposure to 6 µM of tunicamycin, related to
Figure 4. Heat-map showing the temporal response of CHOP for a range of n values. The black
solid line indicates the time point of maximal CHOP activity within the simulated time period.
The black dashed line indicates the best fit value (n = 46.32).
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Figure S7: Sensitivity of the CHOP response to the Hill coefficient describing the
relation with pATF6(N), related to Figure 4. For three values of n (including the estimated
value of n = 46.32), we plot the pATF6(N) response over time (upper left panel), the relation
between CHOP transcription and pATF6(N) level (upper right panel), the CHOP transcription
rate due to pATF6(N) over time (lower left panel) and CHOP dynamics (lower right panel).
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Figure S8: Details of inner model states with respect to the CHOP response at different
tunicamycin concentrations, related to Figure 4. For two tunicamycin concentrations, we
plot the pATF6(N) response over time (upper left panel), the relation between CHOP transcription
and pATF6(N) level (upper right panel), the CHOP transcription rate due to pATF6(N) over time
(lower left panel) and CHOP dynamics (lower right panel).
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Figure S9: Simulation of inner model states, related to Figure 3 and 4. Dynamics of
modeled UPR network components are shown upon exposure to tunicamycin at 1µM (black) and
6µM (red). Note that free ATF6 stands for activated ATF6 sensor, i.e., free uncleaved ATF6.
Among the three branches, ATF4 tightly follows the dynamics of eIF2αp and unfolded proteins.
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Figure S10: Simulation of inner model states upon ATF6 knockdown, related to Figure
3 and 5. Dynamics of modeled UPR network components upon exposure to 6µM tunicamycin,
either with (red) or without (black) siATF6 treatment. Note that siATF6 results in lower BiP
levels, which reduces the folding capacity. Hence, there are more unfolded proteins, which induces
more ATF4 and pXBP1(S), in the long run leading to slightly higher CHOP levels compared to a
setting without siATF6.
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Figure S11: Quantification of ATF6 forms after treatment of 1 µM tunicamycin, related
to Figure 6. A: Western blot of uncleaved ATF6 (G = glycosylated, UG = unglycosylated)
measured in HepG2 WT cells at 2, 4, 6, 8, 16 or 24 hours after exposure to tunicamycin (1
µM). Tubulin protein expression was used as protein loading control. B: Quantified protein
expression of ATF6 forms from three biological replicates after protein loading correction using
tubulin (symbols and shaded area represent mean ± SD). Cleaved ATF6 was estimated based on
the difference between total uncleaved ATF6 at 4, 6, or 8h and the total ATF6 at 2h.
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Table S1: Model parameters, their units, their estimated values (± 95% confi-
dence interval) and the boundary values used during the estimation procedure,
related to Figure 3, 4, 5 and 6. For the rationale behind the choice of boundary
values see the section on parameter ranges.

Parameter unit description estimated θ1 estimated θ2± 95% CI lower boundary upper boundary

Et - general translation rate (from mRNA to unfolded protein) 2.21e+00 2.00e+00 ± 8.45e-08 1.0 200.0

E2 au effective exposure at 2 µM 1.16e+00 1.22e+00 ± 1.80-e07 1.0 20.0

E4 au effective exposure at 4 µM 1.55e+00 1.67e+00± 3.10e-04 1.0 20.0

E6 au effective exposure at 6 µM 1.88e+00 2.07e+00 ± 7.45e-08 1.0 20.0

E12 au effective exposure at 12 µM 2.11e+00 2.48e+00± 3.62e-08 1.0 20.0

δ au/hr BiP-mediated folding rate 1.84e+01 1.96e+01 ± 3.70e-08 0.10 200.0

Pt - total amount of PERK 1.87e+01 8.36e+00 ± 3.12e-08 1.0 2.0e5

KBU au Michaelis-Menten constant for dissociation of BiP and unfolded proteins 1.24e+07 1.24e+07 ± 3.07e-08 1e3 1e10

β1 au/hr IRE1α-dependent formation rate of XBP1 4.90e+00 2.75e+00 ± 3.90e-08 1.0e-8 2.0e8

β2 au/hr PERK-dependent ATF4 formation rate 1.52e+01 4.35e+00 ± 2.67e-08 1.0e-8 2.0e8

β3 au/hr ATF6-dependent ATF6f formation rate - 1.18e+04 ± 3.08e-08 1.0e-8 2.0e8

KIU au Michaelis-Menten constant for dissociation of IRE1α and unfolded pro-
teins

9.57e+06 9.56e+06 ± 2.75e-08 1e1 1e10

KPU au Michaelis-Menten constant for dissociation of PERK and unfolded pro-
teins

1.35e+06 1.35e+06 ± 3.42e-08 1e1 1e10

KAU au Michaelis-Menten constant for dissociation of ATF6 and unfolded pro-
teins

- 1.08e+09 ± 2.71e-08 1e1 1e10

rU 1/hr degradation rate of unfolded proteins 4.07e-02 2.02e-08 ± 4.95e-08 1.0e-8 2.0e3

rX 1/hr degradation rate of XBP1 5.16e-01 2.34e-01± 3.29e-08 1.0e-8 2.0e3

rA4
1/hr degradation rate of ATF4 4.95e+00 6.26e+00± 3.68e-08 1.0e-8 2.0e3

rB 1/hr degradation rate of BiP 2.58e-01 1.52e-01± 3.14e-08 1.0e-8 2.0e3

rC 1/hr degradation rate of CHOP 9.95e-01 2.83e-0± 3.92e-08 1.0e-8 2.0e3

rA6
1/hr degradation rate of ATF6f - 1.05e-0± 4.96e-08 1.0e-8 2.0e3

γ1 au/hr basal BiP transcription rate 1.13e+00 6.25e-01± 3.26e-08 0 2e2

γ2 au/hr basal CHOP transcription rate 3.29e-01 2.96e-01± 3.68e-08 0 2e2

α1 1/hr XBP1-mediated BiP transcription rate 8.14e+04 8.14e+0± 2.68e-08 0 1e6

α2 1/hr ATF4-mediated BiP transcription rate 2.97e+03 2.60e+02± 4.43e-08 0 1e6

α3 1/hr XBP1-mediated CHOP transcription rate 3.15e+02 3.17e+01± 3.26e-08 0 1e6

α4 1/hr ATF4-mediated CHOP transcription rate 2.86e+02 2.88e+01± 3.94e-08 0 1e6

α5 1/hr ATF6f-mediated BiP transcription rate - 5.09e+04± 4.08e-08 0 1e6

α6 au/hr ATF6f-mediated CHOP transcription rate - 1.39e+01± 3.87e-08 0 1e6

KBP au Michaelis-Menten constant for dissociation of BiP and PERK 5.03e+07 5.03e+07± 1.56e-02 0 1e9

KBI au Michaelis-Menten constant for dissociation of BiP and IRE1α 8.81e+02 1.92e+03± 3.27e-08 0 1e9

KBA au Michaelis-Menten constant for dissociation of BiP and ATF6 - 7.81e+01± 3.45e-08 0 1e9

b0 au/hr basal production rate of ATF4 2.91e-06 2.41e-06± 4.00e-08 0 2e2

es au/hr factor scaling the effective intra-cellular concentration to unfolded pro-
teins

1.31e+05 1.31e+05± 6.88e-08 1e-3 2e7

ss au/hr net production rate of unfolded proteins independent of translation at-
tenuation and exposure

-1.870 -2.00 ± 8.01e-08 -20.0 2e3

τ1 1/hr time constant describing initial increase in stressor 2.47e-01 2.26e-01± 3.87e-08 1e-15 5.0

τ2 1/hr time constant describing stressor decay 8.90e-03 8.45e-15± 1.01e-23 1e-15 5.0

θth au threshold for stressor levels that activate signaling 7.37e-01 7.75e-01 ± 5.29e-08 0.0 1.0

KA2C au ATF6f level at which ATF6f-dependent CHOP transcription is half-
maximal

- 7.17e-01± 3.32e-08 1e-8 1e4

n - cooperativity in ATF6f-dependent CHOP transcription Hill kinetics - 4.63e+01± 2.86e-08 1e-2 1.0e2

eXBP1 au GFP scaling factor for XBP1 reporters 5.64 6.60± 2.94e-02 1.0e-7 1.0e2

eATF4 au GFP scaling factor for ATF4 reporters 2.28e-01 1.23e+00± 2.58e-02 1.0e-7 1.0e2

eBIP au GFP scaling factor for BiP reporters 1.13e-05 3.68e-06± 4.12e-02 1.0e-7 1.0e2

eCHOP au GFP scaling factor for CHOP reporters 1.45e-02 7.75e-03± 3.60e-02 1.0e-7 1.0e2

sXBP1 au GFP offset for XBP1 reporters 5.20e-04 5.65e-04 ± 3.55e-01 -1.0e2 1.0e2

sATF4 au GFP offset for ATF4 reporters 3.54e-02 4.19e-02± 1.90e-01 -1.0e2 1.0e2

sBIP au GFP offset for BiP reporters 1.09e-01 7.81e-02± 2.61e-01 -1.0e2 1.0e2

sCHOP au GFP offset for CHOP reporters -7.10e-04 -3.89e-03 ± 2.26e-01 -1.0e2 1.0e2
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Transparent Methods

Experimental details

Cell culture

HepG2 human hepatocellular carcinoma cells were purchased at American Type Culture Collec-
tion (ATCC, Wesel, Germany). To capture the induction of key proteins of the UPR, CHOP,
ATF4, BiP and pXBP1(S) were GFP-tagged using a bacterial artificial chromosome (BAC) re-
combineering approach (Poser et al., 2008; Wink et al., 2014; Hendriks et al., 2011; Wink et al.,
2017; Hiemstra et al., 2016). Hereby, stable HepG2 GFP-BAC reporter cell lines were established
expressing protein-GFP fusions under control of the endogenous promoter for each gene. HepG2
cells were cultured in Dulbecco’s Modified Eagle Medium (DMEM) containing 10% (v/v) fetal
bovine serum (FBS), 25 U/mL penicillin and 25 µg/mL streptomycin at 37◦C and 5% CO2, and
were used until passage 20. Cells were plated using a density of 70.000 to 140.000 cells/cm2 when
grown for 3 to 5 days.

Chemicals and antibodies

Tunicamycin was purchased at Sigma (Zwijndrecht, The Netherlands) which was dissolved in
dimethylsulfoxide (DMSO) from BioSolve (Valkenswaard, The Netherlands) and stored at -20◦C
until usage. The maximum solvent end concentration of DMSO was at most 0.2% (v/v) to min-
imize the effect of the solvent itself. For western blotting, antibodies were used against CHOP,
ATF4, pXBP1(S) and ATF6 from Cell Signaling (Bioké, Leiden, The Netherlands), BiP from BD
Biosciences (Vianen, The Netherlands) at a dilution of 1:1000, and Tubulin from Sigma (Zwijn-
drecht, The Netherlands) at a dilution of 1:5000.

RNA interference

siRNA-mediated transient silencing of genes of interest in HepG2 cells was done using a reverse
transfection approach. Prior to transfection, siGENOME SMARTpool siRNAs from Dharmacon
(Eindhoven, the Netherlands) were mixed with INTERFERin from PolyPlus (Leusden, the Nether-
lands) for 10 minutes to allow for complex formation. Hereafter, siRNA mix, resulting in a 50
nM siRNA and 0.3% INTERFERin end concentration, together with cells at a density of 78.000
cells/cm2 were added to each well. As control, mock (only INTERFERin) and siRNA scram-
bled non-targeting control was employed. At 24 hours post-transfection, medium was refreshed.
siRNA-silenced cells were evaluated at 72 hours post transfection or exposed to compounds to
assess the effect of the knockdown on drug-induced ER stress response activation.

Confocal Microscopy

Cells were plated in SCREENSTAR 96 wells or µClear 384 wells plates from Greiner Bio-One
(Alphen aan den Rijn, The Netherlands) at the earlier mentioned cell densities. Prior to confocal
microscopy imaging, cells were stained with 100 ng/mL Hoechst33342 for a minimum of 30 minutes
to allow for nuclei visualization and cell tracking. To measure the induction of BAC-GFP intensity,
cells were imaged live using an automated Nikon TiE2000 confocal microscope (Nikon, Amsterdam,
The Netherlands) including an automated xy-stage, Perfect Focus System and lasers at wavelength
408, 488, 561 and 647nm. Cells were kept at 37◦C and 5% CO2 humidified atmosphere during
imaging.

Image Analysis

Segmentation and quantification of the GFP intensity was done using CellProfiler version 2.1.1
(Broad Institute Cambridge, USA) using analysis modules described previously (Wink et al.,
2014; Niemeijer et al., 2018). In brief, nuclear segmentation based on Hoechst signal was done
using an in-house constructed watershed masking algorithm (Di et al., 2012). The propagation
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segmentation method based on GFP signal was used for cytoplasm segmentation. GFP intensity
was measured in the nucleus as well as in the cytoplasm. For subsequent analysis, Rstudio version
1.0.153 (Boston, USA) was used. For alignment of the data acquired around discrete time points
(1,2,..., 24 hours), we employed cubic interpolation of the GFP intensity such that standard
deviations can be estimated from the individual replicates, which are integrated into the cost
function for parameter estimation (see Supplementary text about single-cell data analysis for
details).

TempO-seq transcriptomics

To assess mRNA levels, cells were seeded in 96 wells plates from Corning (Amsterdam, The
Netherlands) using a density of 156.000 cells/cm2. After compound exposure the following day,
cells were washed with 1x PBS and lysed using 50 µL per well in 1x BNN lysis buffer from
BioSpyder (Carlsbad, USA). After a 15 minute incubation period at room temperature, lysates
were frozen at -80◦C. As internal control, 0.05 µg/µL Universal Human RNA Reference (MAQC)
in 1x BNN lysis buffer was used. Lysates were sent to and analyzed by BioSpyder Technologies
Inc. (Carlsbad, USA) using the TempO-seq technology (Yeakley et al., 2017) of a targeted gene
set consisting of the S1500+ gene list (Mav et al., 2018). In brief, a pair of detector oligos
hybridized to its specific target mRNA leading to oligo pair ligation. This was followed by PCR
amplification of ligated pairs of oligos incorporating also a sample-barcode and adaptors, which
was subsequently sequenced. Alignment of raw reads was done using the TempO-seqR package
(BioSpyder Technologies Inc., Carlsbad, USA). Read counts were normalized using the DESeq2
R package (Love et al., 2014) and log2 transformed. UPR-related genes were defined by selecting
target genes of transcription factors ATF4, ATF6, pXBP1(S) and DDIT3 that were based on
DoRothEA (Discriminant Regulon Expression Analysis) v2 (Garcia-Alonso et al., 2018) using
confidence level A to D and that were present in the S1500+ geneset.

Western blot analysis

For western blot analysis, samples were collected after two wash steps with ice-cold 1x PBS by
adding 1x sample buffer supplemented with 10% v/v β-mercaptoethanol and stored at -20◦C.
Prior to loading, samples were heat-denatured at 95◦C for 10 minutes. Proteins were separated
on SDS-page gels using 120 volt and transferred to polyvinylidene difluoride (PVDF) membranes
at 100 volt for 2 hours. After blocking using 5% ELK, membranes were stained with primary and
secondary HRP- or Cy5-conjugated antibodies diluted in 1% bovine serum albumin (BSA) in tris-
buffered saline (TBS)-0.05%Tween20. Thereafter, Enhanced Chemiluminescent (ECL) western
blotting substrate from Thermo Scientific (Bleiswijk, The Netherlands) enabled to visualize the
HRP-conjugated antibody staining using the Amersham Imager 600 from GE Healthcare (Eind-
hoven, The Netherlands). Protein expression was quantified using ImageJ version 1.51h (National
Institutes of Health, USA) and normalized to tubulin protein expression.

Statistics

Confocal microscopy data from three biological replicates is represented as the mean± SE. TempO-
seq gene expression data was represented either as log2 normalized counts ± SE or as log2 fold
changes with standard error calculated using the DESeq2 R package (Love et al., 2014). Signifi-
cance was determined with the Wald test and Benjamini Hochberg correction using the DESeq2
R package (Love et al., 2014). Significance for TempO-seq gene expression data was determined
at three threshold levels (*padj < 0.05, **padj < 0.01, ***padj < 0.001). Western blot data for
ATF6 quantification originated from three biological replicates and were represented as the mean
± SE. Here, significance levels were calculated using unpaired Student’s t test with Benjamini
Hochberg multiple testing correction, represented as *padj < 0.1, **padj < 0.05, ***padj < 0.01.
Processing and visualization of all data was done using Rstudio version 1.0.153 (Boston, USA) in
combination with R 3.4.1 and the following R packages: ggplot2 (Wickham, 2010), RColorBrewer
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(Neuwirth, 2014), data.table (Dowle et al., 2018), dplyr (Wickham et al., 2011), tidyr (Wickham,
2017), reshape2 (Zhang, 2016), scales, stats and splines.

Computational modeling

UPR model construction and simulation

We built a dynamic model of the UPR signaling network with six state variables: unfolded protein
(U), pXBP1(S) (X), ATF4 (A4), ATF6 fragment(A6), BiP (B), and CHOP (C). These states
represent concentrations of molecules per cell and their dynamics are mathematically described
by a set of ordinary differential equations. The equations obey kinetics of biochemical reactions
including mass-action, Michaelis-Menten or Hill kinetics. We simplified the model in a similar way
as (Trusina et al., 2008; Diedrichs et al., 2018) with quasi-steady state assumptions for association
or dissociation of complexes and modulation effects. Furthermore, we took multiple conservation
terms into account in order to reduce the number of state variables. We extended the available
model of (Trusina et al., 2008) by incorporating ATF4 and CHOP. Furthermore, because ATF6
is proteolytically processed but this is not the case in the XBP1 branch (Ye et al., 2000), we
considered the possibility that ATF6 and XBP1 need to be assigned different parameters (e.g., their
degradation rates) to allow these branches to respond differently. To take the pharmacokinetics
of the exposure into account, we modeled the intra-cellular concentration of tunicamycin as a
function with two exponents, which represents the analytical solution to a linear system for two
compartments (i.e., the medium in which cells reside and intra-cellular spaces).

The set of ODEs is mathematically represented as

ẋ(t) = f(x(t),u(t), θ), (1)

where x(t) stands for the six state variables of the dynamic system, u(t) is the input function, and
θ contains the system parameters. The dynamics of the UPR state variables are described by:

U̇ = f1(x),

Ẋ = f2(x),

Ȧ4 = f3(x),

Ȧ6 = f4(x),

Ḃ = f5(x),

Ċ = f6(x),

(2)

with initial condition
x0 = (U0, X0, A4,0, A6,0, B0, C0). (3)

In the following the right hand sides of equations (2) are provided for each state. Our modeling
work follows (Trusina et al., 2008) assuming a quasi steady-state for sensors which can bind to
BiP or to unfolded proteins. In addition, we incorporated the ATF6 branch and the downstream
molecules ATF4 and CHOP (Trusina et al., 2008). This allows to integrate all experimental data
obtained from our GFP reporter cell lines, i.e., pXBP1(S), ATF4, BiP and CHOP.

We subsequently describe all equations for the system states, starting with the unfolded protein
U :

f1(x) =
Et

1 + Pact
+ ss + Si − δ Bf − rU U , (4)

where Et denotes the base rate of translation, i.e., the formation of peptides or unfolded proteins
from mRNA which can be modulated by translation attenuation. Si represents the rate of pro-
duction of unfolded proteins due to the exposure-related stressor, which is described explicitly as
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a function of time (see below). The parameter ss represents a net folding/unfolding rate that is
independent of BiP and of translation. Instead, it includes both the folding activity of chaperones
other than BiP and unfolding activity of existing proteins. Because it represents a net effect, ss
can have a positive or negative value, depending on which process prevails. Unfolded proteins
are removed by degradation, which occurs at rate rU , or by their folding following binding to the
chaperone BiP, which occurs at rate δ. The latter process depends on the amount of free form of
BiP, which is given by

Bf =
U

U +KBU
B , (5)

where KBU is the amount of unfolded proteins for which half of the BiP molecules is present in
free form. Inhibition of translation is modeled by modification of the Et term, where Pact denotes
the active form of PERK and is given by

Pact = Pt (U/KPU )/(1 +Bf/KBP + U/KPU ) , (6)

where Pt is the effective/net amount of PERK, and KPU and KBP are Michaelis-Menten param-
eters describing the affinity of the complexes PERK:UP and BiP:UP, respectively.

The amount of spliced XBP1 is described by:

f2(x) = β1 Iact − rX X . (7)

Here, β1 represents the XBP1 splicing rate, which depends on the amount of active IRE1α. The
latter is represented by Iact and is given by:

Iact = (U/KIU )/(1 +Bf/KBI + U/KIU ) , (8)

where KIU and KBI are Michaelis-Menten parameters describing the affinity of the complexes
IRE1α:UP and BiP:IRE1α, respectively. Spliced XBP1 is degraded at rate rX .

The amount of ATF4 is described by:

f3(x) = b0 + β2 eIF2αp − rA4
A4, (9)

where rA4 denotes the degradation rate of ATF4, b0 indicates its basal production rate, and
β2 is the additional production rate of ATF4 due to eIF2αp, where eIF2αp is the fraction of
phosphorylated eIF2α that obeys:

eIF2αp = 1− eIF2αup = 1−
(

1 +
Pt U

KPU +Bf KPU/KBP + U

)−1

, (10)

where eIF2αup denotes the fraction of unphosphorylated eIF2α. Note that the total amount of
eIF2α (phosphorylated and unphosphorylated) is considered to be conserved.

The amount of pATF6(N) is described by:

f4(x) = β3A6,act − rA6
A6, (11)

where A6,act is the activated sensor (i.e., the free form of ATF6, which is not the same as
pATF6(N)), which obeys

A6,act = (U/KAU )/(1 +Bf/KBA + U/KAU ) . (12)

As before, KAU and KBA are Michaelis–Menten parameters representing the affinity of the com-
plexes ATF6:UP and BiP:ATF6, respectively.

The amount of BiP is described by:

f5(x) = γ1 + α1X + α2A4 + α5A6 − rB B , (13)
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where γ1 is the basal production rate of BiP, rB is the degradation rate of BiP, and α1, α2, α5

represent the additional BiP production rate due to activity of pXBP1(S), ATF4 and pATF6(N),
respectively.

The amount of CHOP is described by:

f6(x) = γ2 + α3X + α4A4 + α6A6,hill − rC C, (14)

where γ2 is the basal production rate of CHOP, rC is the degradation rate of CHOP, and α3,
α4, α6 represent the additional CHOP production rate due to activity of pXBP1(S), ATF4 and
pATF6(N), respectively. A6,hill describes the contribution of pATF6(N) to the CHOP transcrip-
tion rate with a Hill function:

A6,hill =
An6

An6 +Kn
A2C

, (15)

where n and KA2C are the exponent and threshold in the Hill-function. Note that because there is
not a clear peak in the dynamics of pXBP1(S) or ATF4 shown in Fig. 2D in the main text, a Hill
function with an exponent larger than one is not needed to describe the effect of pXBP1(S) and
ATF4 on CHOP (i.e., the fitting performance is not improved). Hence, for the sake of simplicity,
we only used a Hill function for pATF6(N).

In addition to the six state variables, the exposure-related stressor Si is a dynamic variable
whose kinetics do not depend on the other system states. The intra-cellular concentration of the
applied compound (Sc) is described explicitly with the following pharmacokinetics (see the sup-
plementary subsection “Describing cellular exposure with a two-compartment model” for details
about its derivation):

Sc = Ei

(
e(−τ2t) − e(−τ1t)

)
H(t). (16)

Here Ei represents the effective intra-cellular concentration of the applied compound, with the
subscript i denoting the applied concentration in µM. For 1 µM, we set E1 = 1; for the other
four concentrations we assign four free parameters that are estimated (see Table S1). H() stands
for the Heaviside function. We consider the stressor to affect the signaling network only when
a threshold θth is crossed. We describe this by the above discussed Si, i.e., the effective rate at
which unfolded proteins are formed due to the stressor:

Si = es (Sc − θth)H(Sc − θth), (17)

where es scales the effective intra-cellular concentration of tunicamycin to unfolded proteins. At
equilibrium, the total production rate of unfolded proteins is Et

1+Pact
+ ss.

For each GFP-reporter cell line, we introduce scaling and offset parameters denoted as eGFP
and sGFP , respectively. Those two parameters transform the state in the ODE to the observable.
For example, for ATF4 we formulated the observable Ao4 as

Ao4 = eatf4A4 + satf4. (18)

Hence, to map the concentrations of the proteins to the GFP intensities, we introduce eight
parameters for the four UPR cell lines: exbp1, sxbp1, eatf4, echop, sxbp1, satf4, sbip, and schop.

All model simulations were conducted in python 2.7.14.

Model calibration and model selection

We fitted our models to the quantified dynamics of reporter cell lines, using the maximum likeli-
hood approach to estimate parameters. Given the nonlinear nature of the model, multiple local
optima of parameters could exist in the likelihood landscape. To find the global optimum, we
employed a Monte Carlo method with multiple starting values. We generated a set of Ns = 1000
starting values {θs} in Θ using Latin hypercube sampling (McKay et al., 2000). We listed the
employed boundaries of the parameters in Table S1. For each starting value, we use the Trust-
Region-Reflective-Newton method to obtain the local minimum θf (Coleman & Li, 1996). For a
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robust and efficient estimation, we incorporate the sensitivity equation (Raue et al., 2013) and a
steady state constraint (Rosenblatt et al., 2016) into our local optimization. After applying this

local optimization for all starting values, we take the estimate θ̂ = θf with the minimal negative
log-likelihood. Numerical optimization relied on the python package scipy. To quantify the un-
certainty of parameter estimates, we applied a Hessian-based approach to explore the likelihood
around the estimates. We quantified this as a 95% confidence interval of the estimates (Raue et
al., 2009) (see details in the Supplement “Covariance matrix of estimates” and confidence inter-
vals of the estimates in Table S1). Moreover, we performed a sensitivity analysis of the impact of
single parameters on the CHOP level based on the maximum likelihood estimate, i.e., the most
plausible set of parameters based on the measurements (see details in the Supplement “sensitivity
analysis”).

Plausible models are expected to give a good fit to observations with a relatively small value
of the negative-log likelihood at θ̂. We performed a likelihood-ratio-based test to evaluate the
goodness of fit to the measurements, as for example applied in (Garćıa-Pérez & Alcalá-Quintana,
2015a,b) aiming to get insight into processes underlying temporal-order and simultaneity judg-
ments by observers. Specifically, Garćıa-Pérez & Alcalá-Quintana (2015a) focused on a likelihood-
ratio based approach to check goodness of fit and Garćıa-Pérez & Alcalá-Quintana (2015b) further
incorporated the likelihood ratio into a Bayesian test when computing the ratio of two posterior
distributions in order to derive a closed-form psychometric function about simultaneity judgments.
In general, the test can be used to compare two models by the ratio of their likelihoods, denoted by
4G, and a p value is computed from a χ2 distribution. In our case, we used this approach to eval-
uate whether the data are more compatible with separate incorporation of the ATF6 branch (with
estimates θ2) rather than with lumping ATF6 and XBP1 into a single branch (with estimates θ1).

Modeling of knockdown conditions

We simulated the calibrated model by incorporating single knockdown perturbations with siRNA
treatments. We focused on the knockdowns with siDDIT3 and siATF4, and siATF6, setting the
knockdown efficiencies at the values estimated by the analysis of the TempO-seq data. To account
for variability of knockdown efficiencies over experiments and over time from different assays, we
varied the knockdown efficiency by 20% more or less than the reference value and simulated the
model accordingly.

Here we describe how we model knockdown experiments by siRNA treatments. The dynamics
of the mRNA can be described by the following differential equation:

τm
d

dt
[mRNA] = λm + tf(t)− dm [mRNA] , (19)

where [mRNA] represents the amount of mRNA of interest, τm is the time constant of the mRNA,
tf(t) is mRNA production rate due to TF activity, λm denotes the basal production rate, and dm
is the degradation rate of the mRNA. We consider knockdown of a gene of interest to increase
the mRNA degradation rate compared to the control case. To study how this affects the protein
dynamics over time, we first write the equation for the protein:

τp
d

dt
[protein] = λp[mRNA]− dp [protein] , (20)

where [protein] represents the amount of protein of interest, τp is the time constant of the protein
and dp is the degradation rate of the protein.

Considering transcription to be much faster than (post-)translational processes, i.e. τm � τp,

the mRNA will be at equilibrium, i.e., [mRNA](t) = λm+tf(t)
dm

.
Substitution of this relation into the translation step in (20) gives

τp
d

dt
[protein] = λp

λm
dm

+ λp
tf(t)

dm
− dp [protein]. (21)
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Lumping λm
dm

into λ∗p and λp
λm
dm

into µ∗
p results in:

τp
d

dt
[protein] = µ∗

p + λ∗ptf− dp [protein]. (22)

In this equation, µ∗
p and λ∗p incorporate the effects of the increased mRNA degradation upon

knockdown. Thus, these parameters are expected to decrease when cells are pre-treated with

siRNA knockdowns. We define the knockdown efficiency eKD as 1 − [mRNA]KD
[mRNA] , which equals

1− dm
dm,KD

, where dm,KD is the mRNA degradation rate upon knockdown. Then we obtain dm,KD =
dm

1−eKD , which propagates into the parameters for protein formation as µ∗
p,KD = (1− eKD)µ∗

p and
λ∗p,KD = (1− eKD)λ∗p. In conclusion, the knockdowns can be simulated by decreasing the protein
production rates with a multiplier based on the measured knockdown efficiency.

For ATF4, ATF6 and CHOP, for which we obtained knockdown efficiencies, we thus perturbed
the production rates as follows: For siATF4, we set β2 = (1 − eKD)β̂2 and b0 = (1 − eKD)b̂0,

where β̂2 and b̂0 are the estimated values in the absence of knockdown. For siATF6, we set
β3 = (1 − eKD)β̂3, where β̂3 is the estimated value in the absence of knockdown. For siDDIT3,
we set γ2 = (1− eKD)γ̂2, α3 = (1− eKD)α̂3, α4 = (1− eKD)α̂4, and α6 = (1− eKD)α̂6, where γ̂2,
α̂3, α̂4, and α̂6 are the estimated values in the absence of knockdown.
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Supplementary Details

Analysis of single-cell data

For the analysis of single-cell imaging data, we applied the following steps: First, for each of
three biological replicates (each consisting of two pooled technical replicates), we calculated the
geometric mean (denoted by I) based on GFP measurements for thousands of cells per image
well at all time points and for all treatment conditions. Second, from this analysis we obtained
the minimum (denoted by Imin) and maximum (denoted by Imax) of these geometric means with
respect to all conditions and time points (separately for every cell line in every plate). We then
applied min-max normalization to obtain the normalized intensity (denoted by IN ) each time
point according to:

IN =
I − Imin

Imax − Imin
. (23)

Third, we interpolated the normalized means to the time points from 1h to 22h as described in
the main text (note that some treatment conditions only had data before 23h). Finally, we took
the arithmetic mean and standard deviation of the interpolated data for the biological replicates,
which we used for further model fitting purposes.

Describing cellular exposure with a two-compartment model

To describe the exposure of cells to the chemical tunicamycin, we introduce a two-compartment
model describing the concentrations of the chemical in the medium ([C1]) and in the cells ([C2]):{

d[C1]
dt = [D]δ(t)− τ1[C1] ,

d[C2]
dt = τ1[C1]− τ2[C2] .

(24)

Here, τ1 is the cellular absorption rate from the medium, τ2 is the degradation rate of the chemical
within cells and [D] and δ(t) are the applied exposure and unit pulse input functions, respectively.
To obtain the solution of the above set of ODEs, one can take a convolution: In general, for
g(t) =

∫
f(τ)h(t − τ)dτ , g(t) is the output function, f(t) is the input function and h(t) is the

transfer function of the linear system, which can be derived by Laplace transformation. In our
case, the transfer functions for [C1] and [C2] are exp(−τ1t)H(t) and exp(−τ2t)H(t), respectively.
For [C1](t) we then obtain the solution [C1](t) = [D] exp(−τ1t)H(t). Furthermore, for [C2](t) we
obtain:

[C2](t) = [D] exp(−τ2t)
(
exp(−(τ2 − τ1)t)(τ2 − τ1)−1 − (τ2 − τ1)−1

)
. (25)

This simplifies to:

[C2](t) = (τ2 − τ1)−1τ1[D](exp(−τ1t)− exp(−τ2t)). (26)

To avoid structural non-identifiability issues, we absorb the term τ1(τ2− τ1)−1 into the parameter
es that scales the stressor (see Eq. (17) in main text), leaving us with:

[C2](t) = [D](exp(−τ1t)− exp(−τ2t))H(t). (27)

Activation of the three UPR sensors

Our calibrated model can be used to provide insight into the activation speed of the three UPR
branches. We therefore quantified the moment at which the active forms of the sensors (active
IRE1α, active PERK, and free ATF6) reach their half-maximal value, taking 1 µM of tunicamycin
as a representative case (Fig. S5).
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Effect of Hill coefficient on CHOP transcription

Because the estimated value of the Hill coefficient in the relation between A6,hill and A6 (Eq. (15)
in main text) is very high (n = 46.32), this implies a switch-like response of CHOP transcription
with increasing pATF6(N), questioning the suitability of a lower n value. In the model, the sigmoid
dependency of CHOP expression on pATF6(N) levels is complemented by linear dependencies on
XBP1 (with parameter α3) and on ATF4 (with parameter α4) (Eq. (14) in main text). In
order to understand the effect of the Hill exponent n on CHOP regulation, we varied n over a
wide range (from 0 to 200) while keeping the other model parameters the same and plotted the
predicted CHOP response in a two-dimensional heat-map with time on the horizontal axis and
n on the vertical axis (Fig. S6). This analysis shows that an increase of the exponent beyond
the calibrated value (n = 46.32) still has a clearly noticeable effect on the dynamics of CHOP.
Consistent with sensitivity of the CHOP response to n, high values of n lead to a more pronounced
peak in CHOP levels and an even more step-like response of CHOP transcription with pATF6(N)
concentration and with time compared to low values of n (Figs. S7 and S8). As a side note,
because CHOP in our model does not provide feedback to any of the other state variables, the
Hill coefficient n will not affect the pATF6(N) concentration itself. Thus, this analysis shows that
the value of the Hill exponent is important in determining the CHOP dynamics, especially around
the time of its peak.

Contribution of pXBP1(S) and ATF4 to CHOP production

According to the model calibration, the coefficients describing pXBP1(S)-mediated and ATF4-
mediated CHOP transcription respectively are α3 = 31.77 (pXBP1(S)), and α4 = 27.64 (ATF4),
suggesting approximately equal contribution of these two TFs. However, besides these coefficients,
the concentrations of ATF4 and pXBP1(S) themselves also have an important role in the contri-
bution of the TFs to CHOP transcription. Because the amount of pXBP1(S) is much lower than
ATF4 (Fig. S9), this concentration effect dominates when one considers the product terms α3X,
α4A and α6A6,h and the pXBP1(s) contribution to CHOP transcription is small (Fig. 4B-D).

Choice of parameter ranges

During model calibration, we did not restrict the allowed parameter ranges taking full biophysical
details into consideration because the units of the normalized intensities in our imaging data were
arbitrary, precluding determination of the unit of concentrations. Rather, we required all param-
eters (besides ss) to be positive and based our choices of parameter ranges on trial simulations
with Trusina et al.’s previously published model parameterization (Trusina et al., 2008). The
parameter ranges considered and the units of parameters are provided in Table S1. Note that
the high values for some of the Michaelis-Menten constants are due to the high levels of unfolded
proteins in our simulations (for which we have no measurements) and should be interpreted in a
relative rather than absolute manner.

Covariance matrix of estimates

In order to study the uncertainty of the estimated parameter values, we utilize the Jacobian matrix
(J) to approximate the Hessian matrix H:

H = JTJS(θ) . (28)

Here, the mean squared error S(θ) (i.e., the residual sum of squares divided by the number of
degrees of freedom) is given by

S(θ) =
RTR

nD − nθ
, (29)

where R is the vector containing the residuals between model prediction and data, nD = 440
denotes the number of data points and nθ = 47 denotes the number of free parameters in our
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model with ATF6 branch. The squares of the standard errors of the estimates are the diagonal
items in the co-variance matrix, expressed as the inverse matrix H−1. The standard errors of all
parameters are presented in Fig. S3. We multiplied these values by 1.98 to obtain confidence
intervals (CIs) (Raue et al., 2009) (shown together with the estimates in Table S1). Note that
although the amount of experimental measurements is large compared to the number of parameters
in our case, the CI for some parameters may be underestimated by the Hessian-based estimate.

Sensitivity analysis

We performed a sensitivity analysis to quantify the importance of the model parameters around
our maximum likelihood estimate. Because CHOP is an important determinant in downstream cell
fate and most of the signalling parameters are expected to indirectly affect the activity of CHOP
especially around the peak, we focus on CHOP activity at 16 hours after treatment with 6µM
of tunicamycin. Thus, we performed a local sensitivity analysis around the maximal likelihood
estimate θ̂ for the model with ATF6.

In the sensitivity analysis, we omitted parameters that should have no impact on CHOP
in conditions of 6µM tunicamycin treatment. Specifically, these are the effective tunicamycin
concentrations of 2, 4, 12 µM, i.e. E2, E4 and E12. Moreover, we omitted the three pairs of
the scaling coefficients (eXBP1, eATF4, and eBIP ) and offsets (sXBP1, sATF4, and sBIP ) for the
non-CHOP reporter cell lines. We varied each of the remaining parameters by both increasing
and decreasing them by a small value (δθ) from its optimum. Subsequently, we quantified the
sensitivity using the following equation:

∆C

∆θi
=
C(θ + δθ)− C(θ − δθ)

2 δθ
, (30)

where for different parameters, we used different δθ. For τ2 and rU , we chose a value just above the
machine precision (3e-16); for other parameters, we set δθ to 1e-6×θ̂, i.e., based on the maximum
likelihood estimate. As the sensitivity can be negative or positive and the absolute value of
sensitivities has a broad range, we plotted the log10 of the absolute values of the calculated
sensitivities, with the colour indicating positive or negative sensitivity (Fig. S4). The most
straightforward parameters having a positive impact on CHOP are the scaling parameters eC and
sC , and parameters representing direct inputs like E6 and es. As expected, parameters with a
negative impact typically arise from those promoting degradation of CHOP, like rC .
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