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Abstract
Physical activity is beneficial for health. It has been shown to improve brain function-
ing and cognition, reduce severity of mood disorders, as well as facilitate healthy sleep
and healthy aging. Sleep has been studied in healthy aged mice and absolute slow-wave-
activity levels (SWA, electroencephalogram power between 0.75-4.0 Hz) in non-rapid-
eye-movement sleep (NREM) were elevated, suggesting changes in brain connectivity.
To investigate whether physical activity can diminish this aging-induced effect, mice of
three age groups were provided with a running wheel (RW) for 1-3 months (6-months-
old, n=9; 18-months-old, n=9; 24-months-old, n=8) and were compared with control
sedentary mice (n=11, n=8 and n=9 respectively). Two weeks before the sleep-wake
recordings the running wheels were removed. The electroencephalogram (EEG) and
electromyogram were continuously recorded during undisturbed 24h baseline (BL) and
a sleep-deprivation was conducted during the first 6h of the second day. Increased wak-
ing and decreased NREM sleep was found in the young RW mice, compared to young
controls. These effects were not evident in the 18 and 24 months old mice. Unlike sleep
architecture, we found that SWA was altered throughout the whole age spectrum. No-
tably, SWA was increased with aging and attenuated with exercise, exhibiting the lowest
levels in the young RW mice. To utilize the cross-age revealing features of SWA, we
applied machine learning techniques and found that characteristic information regarding
age and exercise was enclosed in SWA. In addition, with cluster analysis, we could clas-
sify and accurately distinguish the different groups based solely on their SWA. Therefore,
our study comprises a three-fold contribution: a) effects of exercise on sleep are sustained
following two weeks after removal of the wheel, b) we show that EEG SWA can be used
as a physiological marker of brain age in the mouse, c) long-term voluntary regular age-
matched exercise leads to a younger phenotype.
Keywords: EEG, SWA, spectral analysis, running wheel, exercise, aging
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Introduction
Sleep is a vital physiological routine that has a critical function in promoting the health
of all living organisms. It is regulated by two processes, the circadian and homeostatic
process [1, 2]. The circadian process is controlled by the circadian pacemaker, which
is located in the suprachiasmatic nucleus and fluctuates with a cycle of approximately
24 hours, promoting wakefulness during the daily active phase and sleep during the rest
phase. The homeostatic process refers to the sleep drive that builds-up during wake-
fulness and is dissipated during sleep. In mammals, sleep homeostasis is thought to be
reflected in electroencephalographic slow-wave activity during non-rapid-eye-movement
(NREM) sleep [2].
In healthy aged humans, several sleep parameters deteriorate and the overall sleep qual-
ity is impaired [3, 4, 5]. To further elucidate this disruption, animal models have been
used to investigate sleep in the course of aging [6, 7, 8, 9, 10, 11, 12]. It was recently
demonstrated that slow-wave activity in the NREM sleep electroencephalogram (EEG
SWA) was substantially increased in aged, as compared to young mice. In addition to
the increased SWA levels, the overall morphology of the slow-waves was shown to be
changed, suggesting cortical brain alterations [11].
Sleep disorders, commonly encountered in aging, can be rectified with the use of phar-
macological remedies [13, 14]. Although pharmacology often comprises the first-order
treatment, lifestyle interventions such as exercise, have been proposed as a potential to
ameliorate sleep disturbances [15]. Regular physical activity is, generally, considered to
be beneficial for health [16]. Aerobic exercise, such as running, has been demonstrated
to have a role in brain function and cognition, in preventing and treating or reducing
severity of stress-related mood disorders, as well as in promoting healthy sleep cycles
and healthy aging [17, 18, 19]. The effect of regular physical activity in parameters such
as cognitive functioning and performance in elderly people, as well as aged animals, has
been thoroughly investigated and found positive [20, 21]. However, the long-term im-
pact of regular exercise on sleep and EEG SWA levels remains largely uncharted in the
course of aging.
Concretely, acute and chronic effects of exercise on sleep have been investigated in young
humans [22]. However, detailed studies in elderly humans are scarce and mainly demon-
strate a more moderate effect of regular exercise on sleep quality compared to young sub-
jects [23, 22, 24]. In rodent-based animal models, analogous findings are also limited.
Access to exercise equipment, such as running wheels, as an equivalent to treading mills
in humans, has shown beneficial effects on sleep in young mice [25], and young and
aged F344 rats [26].
In the current study, we investigated the effect of regular physical activity on sleep archi-
tecture and EEG SWA of male C57BL/6J mice of three different age groups (6, 18 and
24 months old). For this, a running wheel was introduced in the cage of the mice that
could be used voluntarily on a daily basis for 1-3 months. The wheels were permanently
removed two weeks prior to the sleep recordings, therefore, a sustained effect of physical
activity on sleep was profoundly studied. Based on our previous results, showing a lower
daily amplitude in sleep-wake distribution and an increase in SWA in NREM sleep in the
course of aging [11], we hypothesized a beneficial effect following long-term exercise
consisting of a sleep pattern amelioration and lower SWA in NREM sleep in these mice.



Chapter 6

142

Materials and Methods
Animals

Male C57BL/6JOlaHsd mice of three age groups (6, 18 and 24 months old, n=54) (Har-
lan, Horst, the Netherlands) were used for this study. They were partitioned into six
distinct groups. Three control groups in which mice were sedentary throughout their life
(n=11, 8, and 9 with increasing age respectively) and three running-wheel (RW) groups
where a running wheel was introduced in the cage (n=9, 9 and 8 with increasing age re-
spectively), for voluntary use in a daily basis in order for the mice to be exposed to a type
of aerobic exercise as preferred in human studies. Aerobic exercise, also characterized
as endurance activity or cardiovascular exercise, consists of a sustained period of rhyth-
mic movement of large muscles, in which pumping of oxygenated blood by the heart is
required so as oxygen is delivered to the muscles to generate energy. A beneficial effect
of specifically aerobic fitness training on brain function and cognition has been explored
[17]. In particular, for the 6 months old the access lasted for approximately a period of 1
month, and for the two aged groups for at least 3 months, prior to the sleep recordings.
Therefore, young mice had access to the running wheel from the age of 4-5 months,
while 18 and 24 months old mice had access to the running wheel from the age of 15
and 21 months respectively, prior to the sleep recordings (Fig. 1a). Throughout the text
we often refer to the running wheel activity as “exercise”. The mice were individually
housed under controlled conditions (12:12 h light:dark cycle; lights on at 10:00) with
food and water ad libitum in a temperature controlled room (∼ 21-22 °C). All animal
experiments were approved by the Animal Experiments Ethical Committee of the Leiden
University Medical Centre (the Netherlands) and were carried out in accordance with the
EU Directive 2010/63/EU on the protection of animals used for scientific purposes.

Behavioral Activity recordings

The voluntary RW animals were individually housed in cages with a running wheel, to
record their behavioral activity pattern. The number of wheel revolutions was digitized
in 1 min bins with a computerized recording system (Clocklab; Actimetrics). Behavioral
activity was plotted in actograms, and the circadian period, the amount of wheel running
per 24-h, as well as the strength of the circadian rhythm, defined as the difference be-
tween the 95% confidence limit and the peak in the periodogram, was calculated with
F-periodogram analysis, as described previously [27, 28], using the Clocklab analysis
software (Actimetrics, Wilmette, IL). Control animals, without a wheel, were housed
individually in similar cages, for the same duration.

Surgeries

On the day of the surgery, the running wheel was permanently removed from the cages
of the animals. Before the surgeries, 6, 18 and 24 month old RW mice weighed on
average 24.4, 36.9 and 38.5g respectively and 6, 18 and 24 month old control mice 30.7,
33.5, 32.7 g respectively. Under deep anesthesia (Ketamine 100 mg/kg; Xylazine 10
mg/kg; Atropine 1 mg/kg) EEG recording screws and electromyogram (EMG) electrodes
(Plastics One) were implanted as described previously [29, 11]. One EEG electrode
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was placed over the right hemisphere (2 mm lateral to the midline of the skull, 2 mm
posterior to bregma) above the somatosensory cortex and the other was placed above the
cerebellum (midline, 2 mm caudal to the lambda) as a reference. EMG electrodes were
placed on the neck muscle. The wire branches of all electrodes were set in a plastic
pedestal (Plastics One, Roanoke, VA) fixed to the skull with dental cement. The mice
were allowed to recover for 7-10 days.

EEG recordings

The EEG and EMG were recorded with a portable recording system (PS 1 system, In-
stitute of Pharmacology and Toxicology, Zurich, Switzerland) as previously described
[11, 29, 30]. Before each recording, a calibration signal was recorded on the EEG and
EMG channels. Both signals were amplified, conditioned by analogue filters and sam-
pled at 512 Hz. The signals were filtered through a digital finite impulse response filter
and stored with a resolution of 128 Hz. EEG spectra were computed for 4-s epochs. To
record the EEG and EMG, animals were placed into experimental chambers and con-
nected through a flexible cable and a counterbalanced swivel system to the recording
setup. Conditions in the experimental chamber were similar to the home cage, without
running wheel availability. Before starting the experiment, the animals were allowed
to adjust to the experimental conditions for a week. Subsequently, a baseline (BL) day
was recorded, starting at lights on. At the start of the second day, six hours of sleep-
deprivation (SD) were conducted by gentle handling [11, 29, 31]. During that period,
every time the animals appeared drowsy, or the EEG exhibited slow waves, the animals
were mildly disturbed by noise, movement of bedding, or introducing new nesting ma-
terial or food into the cage. EEG and EMG were recorded continuously during SD and,
subsequently, for 18 hours to investigate sleep characteristics after SD. The time between
the day of the surgery and the BL sleep recordings was approximately 2 weeks. All
animals contributed once to the sleep recordings and no animals were double used.

Data analysis and statistics

Three vigilance states (Waking, NREM sleep and REM sleep) were scored offline in 4s
epochs by visual inspection of the EEG and EMG signals as well as EEG power in the
slow-wave range, as described previously [11, 29, 31]. For each epoch, the EEG power
in the delta (0.75-4.0 Hz) and theta band (6.25-9.0 Hz) and the integrated EMG value
were graphically displayed on a PC monitor to enable scoring of the different vigilance
states (waking, NREM sleep and REM sleep). The vigilance states were expressed as a
percentage of artifact-free recording time. Epochs with artifacts were excluded from the
subsequent data analysis of the power spectra, but vigilance states could always be deter-
mined. Spectral analysis was performed using a fast Fourier transform (FFT; 0.5-25 Hz).
Analysis of variance (ANOVA) with factors ‘exercise’ or ‘strength’ was performed to de-
tect differences in daily running wheel activity amount and strength of the 24-h rhythm
respectively across the age groups. Three-way ANOVA with factors ‘treatment’, ‘time
of day’, ‘day’ for 2-h vigilance states and EEG SWA and two-way ANOVA with factors
‘treatment’ and ‘Light-dark’ for 12-h vigilance states and ‘treatment’ and ‘frequency bin’
for EEG spectra was applied to test the differences between the groups and experimental
conditions. One-way ANOVA factor ‘group’ was applied to detect differences across six
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groups in EEG SWA in 12h BL light period. Additionally, to test whether SD induced
alterations in EEG SWA, for each group separately a two-way ANOVA was performed
with factors ‘time of day’ and ‘day’. When appropriate, paired and unpaired post hoc
Bonferroni-corrected student’s t-tests were applied to determine the effects of exercise
(treatment) or SD.

Profiling and classifying slow-wave activity

We performed additional statistical analysis on the SWA data. First, we used a supervised
learning approach to examine if the SWA data contained sufficient information to cor-
rectly classify the different groups based on their age and the availability of the running
wheel. Next, an unsupervised learning approach was taken to identify, in an unbiased
fashion, clusters from the data. The distances between the central points of the identified
clusters (centroids) show the similarity of the SWA between clusters; a larger distance
signifies a larger difference in SWA. For our analysis, we used SWA values, averaged
over 1-h intervals, obtained during the 12h BL light period, resulting in a 12-dimensional
signal for every mouse. Matlab was used for the following analysis (The MathWorks,
Inc., Natick, MA).

Supervised learning approach

We examined whether the data convey information about the age and the exercise of the
mice using the generic perceived information metric [32, 33]. To acquire this metric
we used profiling techniques (supervised statistical machine learning) that originate from
signal processing [36] and have been successfully used for classification purposes in the
context of EEG brain activity [37]. Subsequently, we tested whether this available infor-
mation could be concretely used in order to find the previously unknown age and exercise
level of a mouse. The effectiveness of this classification stage was quantified using the
stage’s success rate metric.
Throughout this section, capital letters denote random variables, small case letters denote
their instances and calligraphic letters denote sets. Bold font denotes vectors and matri-
ces. The slow wave activity is denoted as random variable S over alphabet S = IR12

and a particular SWA signal as s. Similarly, we describe age with random variable A
over A = {6, 18, 24} months and exercise with random variable E over E = {yes, no}.
We, also, define the age/exercise class with random variable C = (A,E) over all possi-
ble age/exercise pairs C, e.g. the 6-month-old mice that exercise are described by class
c = (6, yes).
We grouped together the SWA signals of all mice that belong to a certain age/exercise
class c, referring to it as the dataset D with respect to class c, or Dc for short. The
grouping process was repeated for all c ∈ C. Our supervised approach required separate
datasets for profiling and testing, thus we partitioned Dc to Dc

p and Dc
t , denoting the pro-

file subset and the test subset respectively.
The profiling step of the classification technique uses the profiling dataset Dc

p to estimate
a probabilistic model that describes the behavior of class c. Specifically, we assumed
that for a given age/exercise class c, SWA follows a multivariate normal distribution, i.e.
Pr[S = s|C = c] ∼ N (µc,Σc). We used Dc

p to estimate the mean µc and the covariance
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matrix Σc of the distribution, resulting in the probabilistic model P̂ rmodel[S = s|C = c],
also known as the template of c. Note that prior to parameter estimation, we performed
dimensionality reduction on Dc

p via principal component analysis (PCA) on the SWA
signals in order to extract most of the available information, while preventing the model
training process from becoming too data intensive.
The test step of the classification technique uses the SWA signals of test dataset Dc

t .
Computing the perceived information (PI) metric requires approximating the true and
unknown distribution Prtrue[S = s|C = c], which can be sampled from Dc

t . Computing
the success rate metric requires comparing all signals in Dc

t against all class templates
and finding the best-matching one.

Perceived Information

The Perceived Information (PI) can quantify the amount of information that the SWA S
contains about the class C, taking into account the divergence between the real and the
estimated models. Rephrasing, PI(S;C) shows how much the class entropy H(C) is
reduced, when information about SWA becomes available under imperfect modeling. A
positive value of PI(S;C) indicates a sound SWA model that should lead to the success-
ful classification of a mouse with unknown age/exercise. Note that the computation of
PI requires the estimated model P̂ rmodel[C = c|S = s], as well as the true distribution
Prtrue[S = s|C = c] of SWA, which is unknown and can only be sampled directly from
the test dataset. Thus, the PI takes into account the model assumption and estimation
errors that are introduced by the multivariate normal assumption and the respective pa-
rameter estimation [33]. If the true and the estimated distribution are very close, then
the PI metric is equivalent to classic mutual information. The PI metric was computed as
follows:

PI(S;C) = H(C)−H(C|S) = H(C)+
∑
c∈C

Pr[c]
∑
s∈Dc

t

Prtrue[s|c]∗log2(P̂ rmodel[c|s])ds

P̂ rmodel[c|s] =
P̂ rmodel[s|c]∑

c∗∈C P̂ rmodel[s|c∗]
, using the Bayes’ rule and P̂ rmodel[s|c] is estimated from Dc

p

Prtrue[s|c] =
1

nc
t

, where nc
t is the number of signals in test dataset Dc

t , i.e. it is sampled from Dc
t

To verify that our SWA classification procedure is accurate, we made use the cross-
validation technique [34], which estimates how well our profiled model performs in
practice. In particular, we we applied a ‘leave-one-out’ strategy, which is justified by
the limited number of samples available in our experiments. The cross-validation was
performed as follows:

1. The dataset D is split to |D| non-overlapping sets D(i), i = 1, . . . , |D|, each con-
taining a single SWA signal that originates from a single mouse.

2. For certain index i we defined a test set Dt = D(i) and profile set Dp =
⋃

j �=i D(j).
Thus, we selected a single SWA signal denoted by index i for testing and used the
rest for profiling. The set Dp was further partitioned to the corresponding class
profile sets Dc

p, c = 1, . . . , |C|.
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3. For the given partitioning of (step 2), we computed PI(S;C), where P̂ rmodel[s|c]
was estimated from Dc

p and Prtrue[s|c] was sampled from Dt.

4. Steps 2 and 3 were repeated for all possible partitions of D to profile and test
datasets which in the case of ‘leave-one- out’ strategy is |D| partitions. The PI
estimates for every partition of step 2 were averaged and their variance showed the
accuracy of the results.

We completed the perceived information approach by computing a confidence inter-
val for the PI estimates. Specifically, we used a 10% bootstrap confidence interval [34]
where we resampled 100 out of all the computed PI values (step 4), sorted them and set
the confidence interval endpoints at the 5% and 95% percentiles.

Success Rate

The success rate metric quantified how successful our profiled model (template) was in
recognizing the age/exercise class of mice that were not part of the profiling group (Dc

p,
thus expressing the classification’s accuracy as a percentage). We employed the success
rate metric to confirm that a positive PI also leads to a correct classification. For every
class c ∈ C, we partitioned again Dc to profile and test datasets Dc

p,Dc
t , this time using

a 50-50 ratio, instead of the ‘leave-one-out’ strategy. We split the dataset (Dc) in two
roughly equal subsets, in order to show that even fairly small profiling sets (just 50%
of Dc) can provide accurate classification and high success rate. The profile datasets
Dc

p, c ∈ C were used to estimate |C| SWA templates P̂ rmodel[S|c]. Consequently, SWA
signals from all test datasets Dc

t , c ∈ C were compared with the templates using the
maximum likelihood principle to find the class c that is the best match. Thus, for all
classes c ∈ C and corresponding signals s ∈ Dc

t , we computed argmaxcP̂ rmodel[s|c].
Matching a signal from set Dc

t with any template other than the template of c, constituted
misclassification, that was reflected on the success rate.

Unsupervised Learning Approach

Note that the class labels assigned to mice, i.e., age, exercise, are closely coupled with
our experimental design and hypotheses; we implicitly assumed 6 distinct mouse groups
and tried to distinguish between them. However, this artificial separation into groups may
not be in accordance with the information present in the dataset, e.g., certain groups may
present strong similarities. To investigate this, we expanded our analysis with unsuper-
vised learning approaches that take out all the assumptions of the researcher and provide
an unbiased look at the data. In other words, this approach can find the most reasonable
clustering in the data without using prior labeling and gauge the similarities between dif-
ferent clusters.
In order to estimate the optimal number of clusters in the SWA data, we used the ‘Gap’
statistic approach [35]. In this method, each cluster has a central point, named the cen-
troid, and k-means clustering was used to compute the distances between the centroids
of the clusters that were formed. The distance between the centroids is an indication of
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the similarity of the SWA characteristic features between the clusters.
To be precise, a number (k) of observations was randomly chosen as being prototypes for
the clusters. Then, using the Euclidean distance function, the SWA patterns for all ex-
periments (after PCA-based dimensionality reduction, from twelve to three dimensions)
were appointed to the cluster where the distance function was minimal. Subsequently,
the centroid was calculated for each cluster. Then individual samples were reappointed
to another cluster and the centroids were re-calculated. The procedure was repeated 1000
times to reach convergent behavior.
The Gap statistic approach uses first the result of k-means algorithm to compute the
within-cluster sum of square around the cluster means. Second, this is compared to a
reference distribution that is sampled from the dataset, which in turn leads to a score
Gap[k]. Gap[k] score computation is used in order to evaluate the optimal number of
clusters The k-means algorithm and the Gap[k] score computation are repeated for k = 1
until 6 clusters and the number of clusters k that optimizes the score is chosen.

Results
Running Wheel: behavioral data

Examples of 28 days running wheel activity from a 6-month, an 18-month and a 24-
month old mouse are shown in Fig. 1b. Young mice showed significantly increased
average daily running wheel activity compared to aged mice (6 months old: 27746 ±
1974 counts/24h, 18 months old: 5190 ± 2521 counts/24h, 24-months old: 6458 ±
1884 counts/24h) [One-way ANOVA, factor ‘exercise’, F(2,23)=34.91; p<0.0001, post
hoc Bonferroni tests: p<0.0001]. Additionally, aging reduced significantly the strength
of the 24-h rhythm (6 months old: 0.47 ± 0.02, 18 months old: 0.16 ± 0.05, 24-months
old: 0.22 ± 0.05) [one-way ANOVA, factor ‘strength’, F(2,23)=16; p<0.0001, post hoc
Bonferroni tests: p<0.001].
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Figure 6.1: a. Schematic overview of the experimental design. Mice were provided with a run-
ning wheel in their cage for long-term daily voluntary use of approximately 1 month (young
group) and 3 months (18 and 24 months old groups) prior to the sleep recordings. (RW: run-
ning wheel; Sleep rec: sleep recordings) b. Representative double-plotted actograms of 28 days
running wheel activity from a 6-month, an 18-month and a 24-month old mouse. Young mice
showed an increased average daily running wheel activity as compared to aged mice (6 months
old: 27746 ± 1974 counts/24h, 18 months old: 5190 ± 2521 counts/24h, 24-months old: 6458 ±
1884 counts/24h) (post-hoc t-tests with Bonferroni multiple comparisons correction, p<0.05 after
significant ANOVA, main effect ‘exercise’).

Sleep architecture

During undisturbed BL, young mice that had access to the running wheel prior to the
sleep recordings, showed increased waking and decreased NREM sleep in the first 6-h of
the dark period, as compared to age-matched controls (Fig. 2) (post-hoc two-tailed un-
paired t-tests between groups with Bonferroni multiple comparisons correction following
significant interaction and main effects ‘treatment’, ‘time of day’ and ‘day’) (statistical
analysis can be found in Table 1). The latter was also evident after SD. No effects were
found in REM sleep. A more moderate effect of regular activity was evident in the older
mice, that was reflected in a reduction in BL REM sleep at the end of the dark period
in the 18 months old mice and during the light period in the 24 months old mice (Ta-
ble 1). SD did not result in additional vigilance state alterations in the young group.
This was also the case for the 24 months old mice (Table 1). In the 18 months old mice
that had the running wheel, the ANOVA showed a stronger increase in NREM sleep and
decrease in waking, compared to age-matched controls, however these effects did not
survive post-hoc multiple comparisons correction (Table 1). Compared to BL, the pe-
riod after SD was associated with increased NREM sleep and REM sleep and reduced
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waking in all six groups (paired t-tests with Bonferroni multiple comparisons correction,
p<0.05 after aforementioned significant ANOVAs reported in table 1). Young 6-month
old mice were more awake during the dark period and had less NREM sleep compared
to older mice (Table 2). In addition, young exercising mice were even more awake and
had less NREM sleep compared to young control mice (Table 1) [post-hoc unpaired t-
tests between groups in specific light-dark periods: p≤0.05]. The amount of REM sleep
gradually decreased in the BL light period as a function of aging in the groups provided
with a running wheel, where the 24 months old mice that had access to a wheel had the
lowest amount of REM sleep in the BL light period among all groups (Table 1) [post-hoc
unpaired t-tests between groups in specific light-dark periods: p≤0.05].

EEG power density

The absolute EEG power density spectrum was computed for the three vigilance states
in all groups (Fig. 3). The most pronounced differences in the waking and NREM sleep
spectra were found in the young mice, where previous access to a running wheel de-
creased absolute EEG power density values in the slow frequencies (1-5 Hz) in waking
and NREM sleep (post-hoc two-tailed unpaired t-tests between groups with Bonferroni
multiple comparisons correction following significant interaction and main effects ‘treat-
ment’ and ‘frequency bin’) (Table 1). Similar decreases in the slow wave range, albeit
less robust, were found in the 18 months old mice in waking and NREM sleep and in 24
months old mice in NREM sleep (Table 1). Notably, groups previously provided with a
wheel demonstrated decreases in absolute power density values in the slow EEG frequen-
cies during REM sleep (0.5-5.5 Hz), albeit not always surviving the multiple comparisons
correction. Theta activity (7-8 Hz) was increased in the young exercising animals, but
decreased in the older age groups who had a wheel, compared to age matched controls
(Table 1).
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Table 6.1: Statistical analysis: two or three-way analysis of variance (ANOVA) was conducted to
test the effect of exercise (treatment) and sleep deprivation (see text for more details). Asterisks
following reported p values indicate significance (* p<0.05).

Table 1. Statistical Analysis
Figure/Table Vigilance state Two- or three-way

ANOVA Interaction
factors

Main factors

Figure 2
(Young mice)

Waking ‘treatment*day*time of
day’ F(11,432)=0.769
p=0.671 with ‘treat-
ment*time of day’
p<0.0001*

‘treatment’ p<0.0001*
‘day’ p<0.0001* ‘time
of day’ p<0.0001*

NREM sleep ‘treatment*day*time of
day’ F(11,432)=0.782
p=0.658 with ‘treat-
ment*time of day’
p<0.0001*

‘treatment’ p<0.0001*
‘day’ p<0.0001* ‘time
of day’ p<0.0001*

REM sleep ‘treatment*day*time of
day’ F(11,432)=0.527
p=0.885 with ‘treat-
ment*time of day’
p=0.032*

‘treatment’ p=0.056
‘day’ p<0.0001* ‘time
of day’ p<0.0001*

Figure 2 (18
months old
mice)

Waking ‘treatment*day*time of
day’ F(11,360)=0.898
p=0.542

‘treatment’ p=0.026*
‘day’ p<0.0001* ‘time
of day’ p<0.0001*

NREM sleep ‘treatment*day*time of
day’ F(11,360)=0.821
p=0.619

‘treatment’ p=0.003*
‘day’ p<0.0001* ‘time
of day’ p<0.0001*

REM sleep ‘treatment*day*time of
day’ F(11,360)=0.565
p=0.857

‘treatment’ p=0.032 *
‘day’ p<0.0001* ‘time
of day’ p<0.0001*

Figure 2 (24
months old
mice)

Waking ‘treatment*day*time of
day’ F(11,354)=1.722
p=0.067

‘treatment’ p=0.825
‘day’ p<0.0001* ‘time
of day’ p<0.0001*

NREM sleep ‘treatment*day*time of
day’ F(11,354)=2.041
p=0.024 *

‘treatment’ p=0.726
‘day’ p<0.0001* ‘time
of day’ p<0.0001*

REM sleep ‘treatment*day*time of
day’ F(11,354)=0.741
p=0.699 with ‘treat-
ment*time of day’
p=0.008* and ‘treat-
ment*day’ p=0.005*

‘treatment’ p=0.02*
‘day’ p<0.0001* ‘time
of day’ p<0.0001*

Table 2
(Young mice)

Waking ‘treatment*Light-
Dark’ F(5,96)=4.773
p=0.001*

‘treatment’ p=0.008*
‘Light-Dark’
p<0.0001*

NREM sleep ‘treatment*Light-Dark’
F(5,96)=4.1 p=0.002*

‘treatment’ p=0.002
* ‘Light-Dark’
p<0.0001*
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Table 2 (24
months old
mice)

REM sleep ‘treatment*Light-Dark’
F(5,96)=3.8 p=0.004*

‘treatment’ p=0.007*
‘Light-Dark’
p<0.0001*

Figure 3
(Young mice)

Waking ‘treatment*frequency
bin’ F(29,540)=8.23
p<0.0001*

‘treatment’ p<0.0001*
‘frequency bin’
p<0.0001*

NREM sleep ‘treatment*frequency
bin’ F(29,540)=9.778
p<0.0001*

‘treatment’ p<0.0001*
‘frequency bin’
p<0.0001*

REM sleep ‘treatment*frequency
bin’ F(29,540)=3.949
p<0.0001*

‘treatment’ p=0.0061*
‘frequency bin’
p<0.0001*

Figure 3 (18
months old
mice)

Waking ‘treatment*frequency
bin’ F(29,450)=2.42
p<0.0001*

‘treatment’ p<0.0001*
‘frequency bin’
p<0.0001*

NREM sleep ‘treatment*frequency
bin’ F(29,450)=1.173
p=0.248

‘treatment’ p<0.0001*
‘frequency bin’
p<0.0001*

REM sleep ‘treatment*frequency
bin’ F(29,450)=1.79
p=0.008*

‘treatment’ p<0.0001*
‘frequency bin’
p<0.0001*

Figure 3 (24
months old
mice)

NREM sleep ‘treatment*frequency
bin’ F(29,450)=1.014
p=0.448

‘treatment’ p<0.0001*
‘frequency bin’
p<0.0001*

REM sleep ‘treatment*frequency
bin’ F(29,450)=1.109
p=0.32

‘treatment’ p<0.0001*
‘frequency bin’
p<0.0001*

Figure 4 (all
groups)

Slow-wave ac-
tivity (SWA) in
NREM sleep

‘treatment*time
of day*day’
F(40,988)=0.03 p>0.99

‘treatment’ p<0.0001*
‘time of day’ p=0.124
‘day’ p=0.377

Figure 4
(Young con-
trol mice)

Slow-wave ac-
tivity (SWA) in
NREM sleep

‘time of day*day’
F(8,89)=11.05
p<0.0001*

‘day’ p=0.05 ‘time of
day’ p=0.93

Figure 4
(Young RW
mice)

Slow-wave ac-
tivity (SWA) in
NREM sleep

‘time of day*day’
F(8,62)=7.443
p<0.0001*

‘day’ p=0.26 ‘time of
day’ p=0.15

Figure 4 (18
months old
control mice)

Slow-wave ac-
tivity (SWA) in
NREM sleep

‘time of day*day’
F(8,63)=5.48
p<0.0001*

‘day’ p<0.0001* ‘time
of day’ p=0.9995

Figure 4 (18
months old
RW mice)

Slow-wave ac-
tivity (SWA) in
NREM sleep

‘time of day*day’
F(8,72)=14.65
p<0.0001*

‘day’ p=0.275 ‘time of
day’ p=0.69

Figure 4 (24
months old
control mice)

Slow-wave ac-
tivity (SWA) in
NREM sleep

‘time of day*day’
F(8,66)=9.46
p<0.0001*

‘day’ p<0.0001* ‘time
of day’ p=0.9988

Figure 4 (24
months old
RW mice)

Slow-wave ac-
tivity (SWA) in
NREM sleep

‘time of day*day’
F(8,63)=5.35
p<0.0001*

‘day’ p=0.82 ‘time of
day’ p>0.999
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Figure 6.2: Time course of vigilance states, for 24-h baseline (BL), 6-h sleep deprivation (SD,
hatched bar) and 18-h recovery for 6, 18 and 24 months old control and running-wheel (RW) mice
(left, middle and right panels respectively). Curves connect 2-h mean values (± SEM) of Waking,
NREM and REM sleep. The black and white bars above each graph indicate the light-dark cycle.
Asterisks at the top of each graph represent significant differences between control and wheel
access groups across the 48-h period and bars at the bottom of each graph significant differences
between recovery and BL day for each age and condition (post-hoc unpaired and paired t-tests
with Bonferroni multiple comparisons correction, p<0.05 after significant ANOVAs, main effects
‘treatment’, ‘time of day’, ‘day’).
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Figure 6.3: Absolute electroencephalographic (EEG) power density in Waking, NREM and REM
sleep for 6, 18 and 24 months old control and running-wheel (RW) mice (left, middle and right
panels respectively). Asterisks indicate significant differences between the control and wheel
access groups (post-hoc unpaired t-tests with Bonferroni multiple comparisons correction, p<0.05
after significant ANOVA, main effects ‘treatment’, ‘frequency bin’).

Absolute NREM and REM sleep SWA

To investigate whether the increase in SWA observed in aging could be diminished by
the daily use of a running wheel, we computed the time course of absolute NREM sleep
SWA in all groups (Fig. 4). We found that EEG SWA in NREM sleep increased as a
function of aging, and decreased with the use of the running wheel throughout the 48-h
of recordings (Table 1) with interesting differences along the first 12-h of the light pe-
riod where SWA is more pronounced in NREM sleep [One-way ANOVA, factor ‘group’,
F(5,66)=90.17; p<0.0001; post-hoc Bonferroni tests: p<0.05]. Notably, NREM sleep
SWA levels of young control mice did not differ from the 18 months old and 24 months
old RW mice (post hoc Bonferroni tests: p=0.062 and p=0.999 respectively). The two
aged control groups and the two aged RW groups differed significantly (post hoc Bonfer-
roni tests: p=0.045 and p=0.018 respectively). For clarity, we also plot the 24-h average
BL EEG SWA in NREM sleep values and 12-h average BL light period REM sleep SWA
values next to the EEG SWA in NREM sleep time course. The decrease in absolute SWA
in NREM sleep levels in the RW groups, compared to age-matched controls, was the
largest in the 24-months old mice (60.44 µV2/0.5Hz), followed by the young mice (47
µV2/0.5Hz) and smallest in the 18-months old mice (24.8 µV2/0.5Hz). In all age groups
the decrease was found to be significant [F(2,33)=82.68; p<0.0001; post-hoc Bonferroni
tests: p<0.0001]. SD induced alterations in SWA in all groups, particularly an increase
was evident in the first 2-6 h of the recovery period (Table 1).
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Table 6.2: Mean values (±SEM) in hours of Waking, NREM and REM sleep for 12-h light (L1)
and dark (D1) of the baseline (BL) day. Black asterisks indicate significant difference between
the group and all the others, and gray asterisk between the same age group (* p≤0.05).

Table 2. 12-h Vigilance states
Per h Waking NREMs REMs
Light-Dark L1 D1 L1 D1 L1 D1
Young RW 3.85 (0.21) 8.92 (0.18)

*
6.81 (0.2) 2.78 (0.2) * 1.34 (0.05) 0.3 (0.02)

Young C 3.8 (0.33) 7.62 (0.25) 6.92 (0.23) 4.01 (0.22) 1.28 (0.09) 0.37 (0.04)
18m RW 3.96 (0.27) 7.02 (0.36) 6.79 (0.3) 4.65 (0.35) 1.25 (0.07) 0.34 (0.03)
18m C 4.23 (0.2) 7.08 (0.38) 6.46 (0.23) 4.41 (0.36) 1.31 (0.07) 0.52 (0.05)
24m RW 4.02 (0.15) 6.9 (0.4) 7.03 (0.17) 4.7 (0.35) 0.95 (0.03)

*
0.39 (0.07)

24m C 3.87 (0.22) 6.96 (0.33) 6.87 (0.19) 4.64 (0.31) 1.26 (0.06)
*

0.39 (0.04)

Figure 6.4: Time course of absolute electroencephalographic (EEG) power for the slow-wave ac-
tivity range (SWA, 0.5-4 Hz) in non-rapid-eye movement (NREM) sleep for 24-h baseline (BL),
6-h sleep deprivation (SD, hatched bar) and 18-h recovery for control and running-wheel (RW)
mice (left), 24-h baseline (BL) EEG SWA data in NREM sleep (middle) and 12-h BL EEG SWA
in REM sleep (right). EEG SWA in NREM increased as a function of aging, and decreased with
the use of a running wheel. Bars at the bottom of each graph significant differences between
recovery and BL day for each age and condition (post-hoc Bonferroni multiple comparisons cor-
rection t-tests, p<0.05 after significant ANOVA, main effects ‘group’, ‘treatment’, ‘time of day’,
‘day’).
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Table 6.3: Coordinates of the centroids
Table 3

x y z
Young C -290.4239343 -351.278 278.2895
Young RW -258.3819842 -188.679 131.1928
18m C -480.2993301 -500.791 166.7696
18m RW -439.3514277 -214.311 326.1029
24m C -636.4445877 -261.612 322.952
24m RW -221.3199115 -384.299 412.169

Table 6.4: Euclidian distances between the centroids. Euclidian distances based on the (X, Y, Z
coordinates) values in table 3.

Table 4
Young C Young RW 18m C 18m RW 24m C 24m RW

Young C 0.00 221.59 266.16 207.91 360.23 154.24
Young RW 221.59 0.00 384.61 267.20 430.14 344.37
18m C 266.16 384.61 0.00 330.36 325.55 375.32
18m RW 207.91 267.20 330.36 0.00 202.71 289.55
24m C 360.23 430.14 325.55 202.71 0.00 441.97
24m RW 154.24 344.37 375.32 289.55 441.97 0.00

Profiling and classifying slow-wave activity (SWA)

Supervised learning approach
A positive PI was obtained with PI=2.585>0 confirming that SWA in NREM sleep en-
closes information about age and exercise levels of the mice. Additionally, we could
correctly classify mice that were not in the profiling groups (DC

p ) to the corresponding
age and exercise group, confirming that the available information can be used to detect
previously unknown details of the exercise and age of a mouse. We also computed the
success rate of our classification technique which was found to be 100%. This means that
we could accurately distinguish between the six groups and assign mice to the appropri-
ate groups, according to their SWA levels, with maximum success rate. By performing
dimensionality reduction with PCA we could plot the six different classes in a three di-
mension (3-D) figure (Fig. 5).
Unsupervised learning approach
In order to detect similarity in SWA data between the different classes, we used Gap
statistic clustering to find the optimal number of clusters from the SWA data. The opti-
mal number of clusters was found to be six, indicating that it is equal to the number of
classes. The centroids found for each cluster are plotted in Fig. 5 and the coordinates are
given in Table 3. The distance between the clusters, as determined by the x, y, z coordi-
nates of their centroids is an indication of similarity in SWA characteristics of the clusters
(Table 4). Closer distances to the centroid of the young exercising mice were obtained for
young control as well as 18 and 24 months old groups that had a wheel (Euclidean dis-
tance: ‖D‖2=222,267,344 respectively). Larger distances were found for the 18 and 24
months old control groups (Euclidean distance: ‖D‖2=385 and 430 respectively) (Table
4).
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Figure 6.5: X-,y-,z- coordinates of the optimal number of clusters after PCA dimensionality re-
duction. Scatter plots represent the six experimental groups together with the central points (cen-
troids) (see text for more details).

Discussion
In this study, we show that long-lasting voluntary physical activity in mice, correspond-
ing to regular exercise in humans, alters EEG SWA throughout the whole age spectrum.
EEG SWA is implicated in sleep homeostasis and constitutes an important parameter that
merits observation. Analytically, our experimental data demonstrate that EEG SWA de-
creased with exercise and increased with aging. The young mice that were provided with
a running wheel had the lowest SWA levels, whereas the oldest sedentary mice had the
highest. Notably, the effect of long-term voluntary exercise was sustained for almost two
weeks after removal of the running wheel. With regards to sleep architecture, the exer-
cise effect was particularly pronounced in young mice, yet appeared to be attenuated in
the older mice. Interestingly, our data show that introduction of moderate exercise even
later in life leads concretely to a younger brain phenotype; this is mainly reflected in
the NREM sleep EEG SWA. Due to the prominent and expository nature of EEG SWA,
we conducted additional analysis using information-theoretic and machine-learning ap-
proaches. These methods were able to extract information for age and previous oppor-
tunity of physical activity of the mice, and, with cluster analysis, we could classify and
accurately distinguish the different groups based solely on their EEG SWA. Thus, our
conclusions are three-fold, first, effects of exercise on sleep persist following two weeks
after removal of the wheel, second, we suggest that EEG SWA can be used as a physio-
logical marker of brain age in the mouse and, third, we show that exercise can lead to a
younger brain phenotype.

NREM sleep EEG SWA: physiological marker of brain age

SWA increases in the course of aging in mice, likely denoting alterations in brain con-
nectivity in the cortex [11]. In the current study, we introduced a running wheel for
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daily voluntary use and found that this condition diminishes the age-related increase in
EEG SWA towards levels similar to young mice. The data show that EEG SWA in mice
increases in the course of aging, regardless of wheel availability, and it decreases in all
groups with voluntary exercise. Aged mice that were provided with a wheel and young
control mice share very similar SWA characteristics, suggesting that the use of a running
wheel alters EEG SWA towards a younger phenotype.
Since distinct characteristic SWA patterns were evident for each group, we conducted
additional statistical analysis on EEG SWA data in order to investigate whether SWA
can predict the age and previous opportunity of physical activity of the mice. We were
able to distinguish groups and successfully predict the age and exercise condition, on
the basis of their EEG SWA, with maximum success rate (100%). With cluster analysis
based on the Gap statistic approach, we found that the optimal number of clusters was
six, and the clusters coincided with the different experimental groups. This indicates that
the characteristic features, that can be found in the SWA, by these clustering methods, are
sufficiently different to distinguish meaningful groups from the SWA data. The distance
between the clusters, as determined by their centroids, is an indication of similarity in
SWA characteristics of the clusters.
Physical activity is thought to be beneficial for general health and, additionally in pro-
moting healthy sleep cycles and healthy aging [17, 18, 19, 21], hence, we can consider
the young RW mice to be the healthy control group. Therefore, we computed and com-
pared the distances based on the x-, y- and z- coordinates between the young RW group
and young, 18, 24 months control and 18 and 24 months RW groups (these are indicated
in Table 4). We found that young control mice had the closest distance, whereas aged
control mice revealed the largest one. Interestingly, aged RW mice were closer to the
young RW mice as compared to aged controls. However, still these distances were larger
than the distance between young RW mice and young controls. In addition, as a poten-
tial health indicator, we can consider the distance of the other clusters’ centroid to the
centroid of the young RW mice, as a marker of a “brain age”. In other words, we know
the chronological age of the mice (18 or 24 months old), and in addition their biological
“brain age” which is reduced with physical activity by 30% in 18 months old mice and
20% in 24 months old mice (Fig. 6). In this figure, the distance of the other clusters’
centroid to the centroid of the young RW mice, reported earlier in Table 4, is plotted as a
1-D data representation indicating a putative biological “brain age”. Thus, our data show
that a long-term effect of exercise prevails in the homeostatic component of sleep, i.e.
EEG SWA. This modulation is sustained for at least two weeks after exercise has ended.
Therefore, we can affirm that the NREM sleep EEG SWA is a physiological marker of
brain age in the mouse.
Recent studies demonstrated that SWA in NREM sleep was increased in the course of
aging both in the local as well as in the global level [11, 12], however, local cortical neu-
ral dynamics and local sleep homeostatic mechanisms, could remain largely unaffected,
indicating that protective or compensatory mechanisms may exist to maintain neuronal
function stable across the life span [12]. Our study suggests that global dynamics asso-
ciated with age-induced alterations are mainly affected through regular physical activity
leading to a potential ‘younger phenotype’.
In addition to a potential ameliorated brain function and/or brain age marker that we
propose, SWA may reflect a generally improved physiology due to physical activity.
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Since regular exercise can prevent or delay diseases developed throughout life [16],
SWA may be a “health marker” of the exercise effect in the course of aging, not only
brain-specified but also body-specified. Although, in the present experiment we mainly
analyzed a marker of brain activity and can only speculate about bodily health, gener-
ally the notion exists that a healthy body likely implies a healthy brain and vice versa,
however the pathways in which this may occur remain unknown. In addition thus to a
younger brain phenotype, a younger body phenotype may emerge owing to body-brain
interactions. Nevertheless, a beneficial effect of exercise is supported by our data dis-
playing consistent results in the whole age spectrum regarding the brain and overall body
health.
In contrast to mice, human EEG SWA generally tends to decrease in the course of ag-
ing. Following acute, as well as long-term exercise, SWA levels and slow-wave-sleep
increased in old humans, reaching levels closer to younger subjects [15, 38, 39, 40]. In
old rats, analogously, 8-weeks of daily aerobic exercise led to altered sleep EEG charac-
teristics that reached again levels closer to younger rats. Notably some of the effects were
persisting for two weeks after the end of exercise [26]. Our data corroborate this shift
towards a younger phenotype due to exercise, i.e. EEG SWA shows an attenuated pattern
in aged RW mice. We conjecture that, irrespective of the direction of the SWA change
across species, physical activity makes SWA mimic younger patterns. Still, detailed EEG
analysis including also SWA levels, that could reveal important insights regarding corti-
cal brain characteristics [41, 42, 43], remains limited across human and animal research
and we encourage further studies to solidify this conjecture.
Modest exercise is likely to be beneficial at all life stages, however, it has been proposed
that early intervention might be important for a plethora of physiological features, such
as cognitive health maintenance and improvement in the course of aging [17, 44]. Our
data show that interventions even later in life can also have positive effects on brain ac-
tivity, such as on SWA levels. This was the case even when the amount of sleep did not
change significantly in the aged mice. In elderly humans, the positive effects of physical
exercise intervention later in life are evident for periods of weeks to months [45]. For
example, it was recently demonstrated that one-year aerobic exercise improved markers
of brain function in healthy older adults [21]. Thus, even in the case of later interven-
tion, advantageous effects regarding brain function and consequently overall health are
apparent, as shown in our study concerning the aged mice.

Figure 6.6: Suggested relative brain age of mice represented as the distances between the clusters’
centroids of young running-wheel (RW) mice (set as 0, YoungRW) and the other groups. The one-
dimension (1-D) values are computed using the Euclidean distances from Table 4 based on the
3-D values reported in Table 3 for young, 18 and 24 months old control and 18 and 24 months
RW mice. Hidden brain age is revealed in 18 and 24 months old mice, which is attenuated by 30
and 20% respectively, depicting a rejuvenating path following long-term physical activity.
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Wheel activity and behavior

Running wheel activity is depicted as an elective behavior, not only in the laboratory, but
also in the wild [46]. It has been associated with enhanced cognitive development across
the lifespan and, consequently, protection from age-related cognitive decline [21, 23].
The importance of voluntary wheel-running, where animals are allowed to determine
running time, speed, and distance, mimicking human choices, has been discussed earlier
[21]. In the current study, we find that with voluntary daily use of a running wheel, the
level of EEG SWA can be manipulated in all ages.
It has been suggested that the capacity to exercise is attenuated in the course of aging
[47, 48]. However, even low levels of physical activity, including regular daily activities,
affect cognitive variables and neuroplasticity as shown in older adult humans [19, 49].
Neurogenesis is known to continue throughout life, but, although its level is attenuated
considerably with age [50], physical activity increases cell proliferation rates even in
older animals [51]. In a similar way, the aged mice in our study run significantly less
compared to young ones; nevertheless, this is sufficient to alter sleep and EEG SWA,
indicating the importance of age-matched exercise. We suggest that EEG SWA reveals
a rejuvenating path in the aged mice, even with modest exercise levels, as evidenced
in the reduced distance between the clusters of the young and/or RW groups of mice
compared to aged controls. Previous studies showed that, an age-related deterioration of
scale invariance in behavioral rest-activity fluctuations exists, where blocking the running
wheel leads to a loss of scale invariance in both young and aged mice [52]. Similar
to detrended fluctuation analysis, a mathematical tool, being used to compute the scale
invariance, EEG SWA can be defined as a physiological tool to determine brain health in
the mouse.

Sustained effects of regular exercise on sleep architecture

The effect of running wheel availability on the sleep-wake cycle in the young mice per-
sisted for at least two weeks after removal of the wheel. It consisted of increased waking
and decreased NREM sleep, in the first part of the dark period, resembling the sleep
patterns in mice that were recorded concomitantly with the running wheel in their cages
[25, 53]. In the course of aging, this effect is diminished. In a similar way, biomarkers
of brain activity and neurogenesis, such as BDNF protein levels were shown to be al-
tered due to exercise in young (2 months), middle-aged (15 months) and old (24 months)
animals. However, only young animals maintained a significant increase above baseline
levels, after two or four weeks after the end of exposure to a running wheel [54, 55, 56],
comparable to the changes found in the sleep architecture results in our study, show-
ing that mainly young animals maintained significant sleep-wake alterations. Together,
the data suggest that in the course of aging the ability to maintain sleep architectural
effects induced by exercise is reduced. In an earlier study with forced exercise in rats
[26], sleep architecture was ameliorated after 1-h exercise for eight-weeks, an effect that
was sustained even two-weeks after the exercise had ended. In contrast, the mice in our
study were not forced but used the running wheel on a voluntary basis, which resulted
in moderate levels of total exercise. The voluntary nature may explain why there is an
improvement in sleep quality in the aged mice, when the wheel is available and used, and
also why this improvement cannot be sustained for very long when the wheel is removed.
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Waking and REM sleep EEG power density

The most pronounced effects of exercise on the EEG spectra in all the vigilance states
were found in the young mice. The waking spectra showed decreased power in the low
frequencies and increased power in the theta frequencies (around 9 Hz) which indicates
increased activity and alertness in this group [53, 57]. Interestingly, a decrease in REM
sleep slow-wave or delta power and low theta (approximately 0.5-5.5 Hz) and alterations
in frequencies between 7-8 Hz were found in all age groups that were housed with a
running wheel, compared to their age-matched controls. These EEG frequencies in REM
sleep have been associated with hippocampal functioning [58]. The hippocampus is an
active region during REM sleep and its function seems to benefit from exercise [39, 59].
Additionally, it has been associated with spatial navigation, particularly in “cognitive
map” creations [60, 61] and it is closely associated with the anterior cingulate cortex, a
cognitive specific area which is also active during REM sleep [59]. In the elderly, it was
demonstrated that exercise could lead to increased connectivity between the hippocam-
pus and the anterior cingulate cortex [62]. Furthermore, wheel running was shown to
increase neurogenesis in the hippocampus, and to increase neuronal spine density, synap-
tic plasticity, neurotrophin levels, and spatial memory function in mice [55, 56]. All these
changes may influence REM sleep EEG spectra. Notably, the neuronal effects were con-
sidered to be correlated to epigenetic changes in the hippocampus and cerebral cortex
and were shown to start within 3-h after wheel running and persist for 2 weeks [55].
Therefore, the consistent decrease of power density in the slow EEG frequencies dur-
ing REM sleep over all age groups may reflect neuronal changes generated by long-term
exercise. However, a difference was found between young and aged groups in frequen-
cies between 7-8 Hz, in which young mice provided with a wheel showed an increase,
whereas both aged groups showed a decrease, compared to age-matched controls. It was
demonstrated earlier that, despite the fact that the rate of production of new cells in the
dentate gyrus of the hippocampus was reduced in aged animals [50], a positive effect
of physical activity was apparent on memory performance, neurogenesis and apoptosis
[63]. Thus, it seems that the intensity of exercise in combination with the increased age
induces different changes in hippocampal brain connectivity evident in these spectra.

Concluding remarks

Here, we show that sleep-wake rhythms and brain EEG variables are improved and that
the level of the main sleep homeostatic component is significantly altered with moderate,
age-matched exercise. We suggest that SWA is a physiological marker of brain age in the
mouse, which emphasizes the importance of regular physical activity to promote and/or
maintain physical and mental health. Physical activity, sleep as well as general health,
declines in the course of aging. Daily exercise could attenuate the effects of sedentary
behaviors, especially in older adults, and it could be prescribed as a first-order “medica-
tion” for general body and brain health augmentation. Future research directions could
investigate human SWA patterns in order to extract age, exercise or other characteristics
and validate the translational aspect of our findings.
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