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Part II

Cell migration
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Chapter 5

Topotaxis of active

Brownian particles

This chapter is reprinted with permission, copyright 2020 by the American Physical
Society. The chapter is published as:

Koen Schakenraad, Linda Ravazzano, Niladri Sarkar, Joeri A.J. Wondergem, Roeland
M.H. Merks, and Luca Giomi, ‘Topotaxis of active Brownian particles’, Physical Review
E 101, 032602 (2020)

Abstract

Recent experimental studies have demonstrated that cellular motion can be di-
rected by topographical gradients, such as those resulting from spatial variations
in the features of a micropatterned substrate. This phenomenon, known as topo-
taxis, has been extensively studied for topographical gradients on the sub-cellular
scale, but can also emerge as a result of topographical gradients at length scales
larger than the cell. This large-scale topotaxis has recently been observed for
highly motile cells that persistently crawl within a spatially varying distribution
of cell-sized obstacles. In this chapter we introduce a toy model of large-scale
topotaxis based on active Brownian particles constrained to move in a lattice of
obstacles, with space-dependent lattice spacing. Using numerical simulations and
analytical arguments, we demonstrate that topographical gradients introduce a
spatial modulation of the particles’ persistence, leading to directed motion to-
ward regions of higher persistence. Our results demonstrate that persistent mo-
tion alone is su�cient to drive large-scale topotaxis and could serve as a starting
point for more detailed studies on self-propelled particles and cells.
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CHAPTER 5. TOPOTAXIS OF ACTIVE BROWNIAN PARTICLES

5.1 Introduction

Whether in vitro or in vivo, cellular motion is often biased by directional cues from the
cell’s micro-environment. Chemotaxis, i.e., the ability of cells to move in response to
chemical gradients, is the best known example of this functionality and plays a crucial
role in many aspects of biological organization in both prokaryotes and eukaryotes [127,
128]. Yet, it has become increasingly evident that, in addition to chemical cues, mechani-
cal cues may also play a fundamental role in dictating how cells explore the surrounding
space. Haptotaxis (i.e., directed motion driven by gradients in the local density of adhe-
sion sites) and durotaxis (i.e., directed motion driven by gradients in the sti�ness of the
surrounding extracellular matrix) are well studied examples of taxa driven by mechani-
cal cues [131, 132, 134].

In vivo, cells crawl through topographically intricate environments, such as the ex-
tracellular matrix, blood and lymphatic vessels, other cells, etc. Complex environments
like these can signi�cantly in�uence cellular migration strategies [248–255], and asym-
metries in the topographical properties of the environment can serve as a directional
cue for cell migration in a process called topotaxis. This term was used in early work
on directed cell migration as a synonym for the general term “taxis” [256], but was re-
cently rede�ned by Park et al. to describe directed motion of invasive melanoma cells
on substrates with a spatial gradient in the density of nanoscale posts [140]. In general,
the term “topotaxis” is suitable to describe any directional cue due to local anisotropy
in the topographical properties of the surrounding environment. For instance, adhesive
ratchets [137–139] and several types of anisotropic subcellular structures [137, 141, 142,
257, 258] have also been shown to lead to directed cell migration. In all of these examples,
cell motion is biased due to topographical cues at sub-cellular length scales. More re-
cently, Wondergem and coworkers demonstrated that topotaxis can also be achieved by
topographical cues at length scales larger than the cell itself [143]. They studied single,
highly motile, persistently migrating cells (i.e., cells performing amoeboid migration),
moving on a substrate in between cell-sized micropillars that act as obstacles and con-
sequently force the cells to move around them. If the obstacles’ density smoothly varies
across the substrate at length scales larger than the cell size, the cells perform large-scale
topotaxis: the topographical gradient serves as a directional cue for the cells to move to-
ward the regions of lower obstacle density.

Although the precise biophysical or biochemical principles behind this large-scale
topotaxis, as observed in Ref. [143], are presently unknown, its occurrence for cells per-
forming amoeboid migration suggests the possibility of cell-type-independent mech-
anisms that, separately from the cell’s mechanosensing machinery, provide a generic
route to the emergence of large-scale topotaxis. In this chapter we explore this hypo-
thesis. Inspired by the observations on persistently migrating cells by Wondergem et al.
[143], we study active Brownian particles (ABPs) constrained to move within a lattice of
obstacles. We demonstrate that large-scale topotaxis of ABPs can result solely from the
spatial modulation of persistence resulting from the interaction between the particles
and the obstacles.
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5.2. THE MODEL

ABPs represent a simple stochastic model for self-propelled particles, such as active
Janus particles [259], and for cell motility on �at substrates [116]. ABPs perform per-
sistent self-propelled motion in the direction of the particle orientation in combination
with rotational di�usion of this orientation. The motion of active particles has been
explored in several complex geometries, including convex [260, 261] and non-convex
[262] con�nements, mazes [263], walls of funnels [264], interactions with asymmetric
[265, 266] and chiral [267] passive objects, periodic [268] and random [269–272] obstacle
lattices, and porous topographies [273]. For a review, see Refs. [144, 145]. Because of the
non-equilibrium nature of active particles, local asymmetries in the environment can be
leveraged to create a drift; these particles have been demonstrated to perform chemotaxis
[155, 156], durotaxis [157], and phototaxis [158]. Furthermore, topographical cues, such
as those obtained in the presence of arrays of asymmetric posts [149, 150] and ratchets
consisting of asymmetric potentials [146–148] or asymmetric channels [151–154], have
been shown to produce a directional bias in the motion of active particles reminiscent
of those observed for cells.

In this chapter we study large-scale topotaxis of active Brownian particles, which
we from here on simply refer to as “topotaxis”. The chapter is organized as follows:
in Section 5.2 we present our model for ABPs and their interaction with obstacles. In
Section 5.3.1 we show that, in the presence of a gradient in the obstacle density, ABPs
drift, on average, in the direction of lower density. The speed of this net drift, here
referred to as topotactic velocity, increases as a function of both the density gradient
and the persistence length of the ABPs. In Section 5.3.2 (numerically) and Section 5.3.3
(analytically) we study ABPs in regular obstacle lattices and demonstrate that the origin
of large-scale topotaxis of active particles can be found in the altered persistence length
of the particles in the presence of obstacles.

5.2 The model

Our model of ABPs consists of disks of radius Rp self-propelling at constant speed v0

along the unit vector p = (cos θ, sin θ) and subject to rotational white noise. The dy-
namics of the particles is governed by the following overdamped equations:

dr

dt
= v0p + µF , (5.1a)

dθ

dt
=
√

2Dr ξ , (5.1b)

where r = r(t) is the position of the particle, t is time, and µ is a mobility coe�cient.
The force F = F (r) embodies the interactions between the particles and the obstacles.
ξ = ξ(t) is a random variable with zero mean, i.e., 〈ξ(t)〉 = 0, and time-correlation
〈ξ(t)ξ(t′)〉 = δ(t− t′). The extent of rotational di�usion is quanti�ed by the rotational
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CHAPTER 5. TOPOTAXIS OF ACTIVE BROWNIAN PARTICLES

di�usion coe�cient Dr , whereas translational di�usion is neglected under the assump-
tion of large Péclet number: Pe � 1. Overall, this set-up provides a reasonable toy
model for highly motile cells such as those used in experimental studies of large-scale
topotaxis [117, 143, 274]. For a study on the in�uence of the Péclet number on the motion
of ABPs around obstacles, see, for example, Ref. [268, 270].

In free space, (i.e., F = 0), ABPs described by Eqs. (5.1) perform a persistent random
walk (PRW) with mean displacement 〈∆r(t)〉 = 0 and mean squared displacement:

〈
|∆r(t)|2

〉
= 2v2

0τ
2
p

(
t

τp
+ e−t/τp − 1

)
, (5.2)

where ∆r(t) = r(t)−r(0) and 〈· · · 〉 represents an average over ξ (see, e.g., Ref. [145]).
The constant τp = 1/Dr , commonly referred to as persistence time, quanti�es the typ-
ical timescale over which a particle tends to move along the same direction. Thus, over
timescales shorter than the persistence time, t� τp, ABPs move ballistically with speed
v0:
〈
|∆r(t)|2

〉
≈ (v0t)

2, while over timescales larger than the persistence time, t� τp,
ABPs di�use, i.e.,

〈
|∆r(t)|2

〉
= 4Dt, with D = v2

0τp/2 the di�usion coe�cient. From
τp, one can de�ne a persistence length, lp = v0τp, as the typical distance travelled by a
particle before losing memory of its previous orientation. Consistently, the autocorrela-
tion function of the velocity v = dr/dt (v = v0p in free space) is given by:

〈v(t+ ∆t) · v(t)〉 = v2
0e−∆t/τp . (5.3)

Our ABPs roam within a two-dimensional array of circular obstacles of radius Ro.
Following Refs. [261, 262], the interactions between particles and obstacles are modeled
via a force of the form:

F =

{
− v0µ (p ·N)N if |∆ro| ≤ R ,

0 otherwise ,
(5.4)

where N is a unit vector normal to the obstacle surface, |∆ro| is the distance between
the obstacle center and the particle center, and the e�ective obstacle radiusR is the sum
of the obstacle and the particle radii: R = Ro + Rp. Eq. (5.4) describes a friction-
less hard wall force that cancels the velocity component normal to the obstacle surface
whenever the particle would penetrate the obstacle, and vanishes otherwise. Therefore,
the obstacle force F is either repulsive or zero, but never attractive. We stress that the
wall force does not in�uence the particle orientation p. Thus, a particle slides along an
obstacle until either the obstacle wall becomes tangential to p or rotational di�usion
causes the particle to rotate away. This is consistent with experimental observations on
self-propelled colloids [260] as well as various types of cells [275, 276]. For details of the
numerical implementation of Eqs. (5.1) and (5.4), see Section 5.5.1 in the Appendix. In
the following sections, we measure time in units of the persistence time, i.e., t̃ = t/τp,
and length in units of the e�ective obstacle radius, i.e., ˜̀= `/R.
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5.3. RESULTS

5.3 Results

The motion of ABPs in di�erent lattices of obstacles is visualized in Figure 5.1. Each
panel shows 20 simulated trajectories with persistence length l̃p = 5. Figures 5.1a,b
show regular square lattices with dimensionless center-to-center obstacle spacings of
d̃ = 2.5 and d̃ = 4 respectively. In Figure 5.1, the obstacles are graphically represented
as disks of radiusR and the ABPs as point particles. To avoid biasing the statistics of the
particle trajectories, ABPs start at a random location inside the unit cell of the regular
square lattice (Figure 5.1c) at t̃ = 0 with random orientation. All trajectories are shown
for a total time of t̃ = 3. Comparing the spreading of the active particles in Figure 5.1a
with that in Figure 5.1b, we observe that the more dense the obstacle lattice is, the more
it hinders the di�usion of the active particles. We will quantify this later.

To study topotaxis, we de�ne an irregular square lattice comprising a linear gradient
of the obstacle spacing in the positive x−direction. The latter is quanti�ed in terms of a
dimensionless parameter r representing the rate at which the obstacle spacing increases
as x increases. Thus r = 0 corresponds to a regular square lattice, whereas large r
values correspond to rapidly increasing obstacle spacing. Figure 5.1d shows this lattice
for r = 0.07 with 20 particle trajectories, starting in the origin at t̃ = 0 with a random
orientation, plotted for a simulation time of t̃ = 5, where d̃ = 5 represents the obstacle
spacing in the center of the gradient region. The gradient region has a �nite width (not
visible in Figure 5.1d) and is �anked by regular square lattices to the left, with lattice
spacing d̃min = 2.1, and to the right, with lattice spacing d̃max = 2d̃ − d̃min. The
minimal and maximal obstacle-to-obstacle distances (d̃min and d̃max, respectively) do
not depend on the steepness of the gradient, and consequently the width of the gradient
region decreases for steeper gradients (larger r). For a detailed description of both the
regular and gradient lattices as well as an image of the gradient lattice including the
regular lattices on the left and right, see Section 5.5.2 in the Appendix.

5.3.1 The emergence of topotaxis

To quantify topotaxis, we measure the average x and y coordinates, 〈x̃〉 and 〈ỹ〉, as a
function of time for 106 particles. The results are given for �ve values of the dimension-
less density gradient r in Figure 5.2a and Figure 5.6a (Section 5.5.3 in the Appendix) for
x and y respectively. The emergence of topotaxis is clear from Figure 5.2a: the active
particles move, on average, in the positive x−direction, hence in the direction of lower
obstacle density. As expected by the symmetry of the lattice, there is no net motion
in the y direction independently of the value of r (Figure 5.6a, Section 5.5.3 in the Ap-
pendix). To further quantify topotaxis, we de�ne the topotactic velocity as the average
velocity in the positive x direction in a time interval ∆t, vtop = 〈∆x〉 /∆t, and evaluate
it between t̃ = 0 and t̃ = 30. Figures 5.2a and 5.2b show that ṽtop is approximatively
constant in time and proportional to the density gradient r.

Next, we investigate the e�ect of the intrinsic motion of the ABPs on topotaxis. This
intrinsic motion is characterized by the persistence length lp = v0τp, which uniquely
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CHAPTER 5. TOPOTAXIS OF ACTIVE BROWNIAN PARTICLES

Figure 5.1. Simulated trajectories of 20 active Brownian particles (ABPs) with persistence length
l̃p = v0τp/R = 5 in di�erent lattices of obstacles. The obstacles are graphically represented as
disks of radiusR and the ABPs as point particles. (a,b) ABPs in regular square lattices of obstacles
with center-to-center obstacle spacings d̃ = d/R = 2.5 and d̃ = 4 respectively. The particles
start at t̃ = 0 at a random location in the unit cell of the lattice and are simulated for a total time
of t̃ = 3. (c) The unit cell of the regular square lattice showing the starting points (crosses) of the
20 trajectories in (b). (d) ABPs in a lattice with a linear gradient in obstacle spacing, quanti�ed by
a dimensionless parameter r = 0.07 (see Section 5.5.2 in the Appendix), and d̃ = 5 at the center
of the gradient region. The particles start at t̃ = 0 in the origin and are simulated for a total time
of t̃ = 5.

determines the statistics of the particle trajectory in free space. Namely, if two types of
ABPs have di�erent v0 and τp, but the same lp, their trajectories have the same statistical
properties, even though faster particles move along these trajectories in a shorter time.
Figure 5.2c shows 〈x̃〉 as a function of time for �ve values of l̃p. The speed of topotaxis
is again approximately constant in time and increases with l̃p (Figure 5.2d). This trend
partly results from the fact that increasing the persistence length corresponds either to
an increment in v0 or τp, both resulting into an increase of ṽ0. However, Figure 5.2d
shows that ṽtop increases faster than linear as a function of l̃p, suggesting an additional
e�ect caused by the obstacle lattice. As we will see in Section 5.3.2, this e�ect is caused
by the fact that the lattice hinders ABPs with large persistence lengths more than ABPs
with smaller persistence lengths. Finally, we note that there is no net motion in the y
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5.3. RESULTS

Figure 5.2. The emergence of topotaxis in density gradient lattices. (a) 〈x̃〉 = 〈x〉 /R as a
function of time t̃ = t/τp for several values of the density gradient r, with d̃ = d/R = 5 and
l̃p = v0τp/R = 5. (b) Topotactic velocity, de�ned in the main text, in the x direction as a function
of the density gradient r based on the data in (a). (c) 〈x̃〉 = 〈x〉 /R as a function of time t̃ = t/τp
for several values of the persistence length l̃p = v0τp/R, with d̃ = d/R = 5 and r = 0.07. (d)
Topotactic velocity in the x direction as a function of the persistence length l̃p based on the data
in (c). Data in (a) and (c) represent averages over 106 particles. Error bars in (b) and (d) are given
by the standard error of 〈x〉 (t)/(R t) at t = 30 τp.

direction irrespective of the persistence length, as expected by symmetry (Figure 5.6b,
Section 5.5.3 in the Appendix).

5.3.2 The physical origin of topotaxis

The observed occurrence of topotaxis of ABPs is intuitive, as particles migrate in the
direction where there is more available space. However, the mechanism by which ABPs
are guided toward the less crowded regions is not obvious from the results in Section
5.3.1. To gain more insight into the physical origin of topotaxis, we investigate how
particle motility depends on the local obstacle spacing. In doing so, we take inspiration
from recent works [135, 157, 277] that have shown, in the context of durotaxis, that per-
sistent random walkers, moving in a spatial gradient of a position-dependent persistence
length, show an average drift toward the region with larger persistence. As is the case
in our system (Section 5.3.1), this e�ect is stronger in the presence of larger gradients
[135, 157]. In order to understand whether or not such a space-dependent persistence
might explain the observed topotactic motion, we study and characterize the motion of
ABPs in regular square lattices. To do so, we measure the mean squared displacement
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CHAPTER 5. TOPOTAXIS OF ACTIVE BROWNIAN PARTICLES

Figure 5.3. Regular square lattices of obstacles modify the e�ective parameters of the persis-
tent random walk. (a) Dimensionless mean squared displacement

〈
|∆r̃|2

〉
=
〈
|∆r|2

〉
/R2 as

a function of dimensionless time t̃ = t/τp for l̃p = v0τp/R = 10 in free space (d → ∞,
black line) and in the presence of square lattices with obstacle spacings d̃ = d/R = 2.5
(blue) and d̃ = 4 (red). The e�ective di�usion coe�cient Deff is obtained from a linear �t
to the long-time (t > τp) regime of the log-log data. (b) Dimensionless velocity autocorrela-
tion function 〈ṽ(t+ ∆t) · ṽ(t)〉 = 〈v(t+ ∆t) · v(t)〉 τ2

p/R
2 as a function of ∆t̃ = ∆t/τp for

l̃p = v0τp/R = 10 in free space (d → ∞) and in the presence of square lattices with obstacle
spacings d̃ = 2.5 and d̃ = 4. The e�ective velocity veff and e�ective persistence time τeff are
obtained from a exponential �t to the autocorrelation function. MSD and VACF data represent
averages over 104 particles.

(MSD)
〈
|∆r(t)|2

〉
as a function of time and the velocity autocorrelation function (VACF)

〈v(t+ ∆t) · v(t)〉 as a function of the time interval ∆t for 104 particles for various lat-
tice spacings d̃ and persistence lengths l̃p.

Figure 5.3a shows a log-log plot of the MSD for l̃p = 10. The curve with d̃ → ∞
(black) represents the theoretical MSD in free space [Eq. (5.2)] and exhibits the well-
known crossover from the ballistic regime (slope equal to 2) to the di�usive regime (slope
equal to 1) around t̃ = 1 (t = τp). The hindrance of the obstacles is evident from the data
obtained in regular lattices with d̃ = 4 (red curve) and d̃ = 2.5 (blue curve), as the MSD
is smaller than the MSD in free space at all times (see also the inset). Moreover, the MSD
is smaller for the smaller lattice spacing, as we already observed qualitatively in Figures
5.1a,b. The hindrance also manifests itself in the short-time (t < τp) regime, where the
slope of the red and blue curves is slightly smaller than that of the black curve. When
not interacting with obstacles, individual ABPs still move ballistically, but interactions
with obstacles prevent them from moving along straight lines. As the particles start at
random locations within the unit cell (Figure 5.1c), each particle interacts with obstacles
at di�erent times, causing the MSD to show slightly sub-ballistic behavior.

The slope of the curves at timescales larger than the persistence time, on the other
hand, is independent of the presence of obstacles and equal to 1 (see inset). In other
words, even though the motion of the ABPs is hindered by the obstacles at all time-
scales, the long-time motion remains di�usive, as was also observed for ABPs in random
obstacle lattices of low density [270]. Fitting the MSD at long times allows one to de�ne
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5.3. RESULTS

an e�ective di�usion coe�cient Deff , namely:〈
|∆r(t)|2

〉
−−−→
t�τp

4Defft. (5.5)

Figure 5.3b shows the velocity autocorrelation function (VACF) on a semilogarithmic
plot as a function of the time interval ∆t̃ = ∆t/τp for l̃p = 10. The d→∞ curve again
represents the theoretical curve in free space and shows exponential decay [Eq. (5.3)].
Interestingly, in the presence of increasing obstacle densities, hence for smaller lattice
spacings d̃, the velocity autocorrelation decreases but remains, to good approximation,
exponential. From this numerical evidence, we conclude that the average motion of
ABPs in a two-dimensional square lattice can be described as a persistent random walk
with an e�ective velocity veff and an e�ective persistence time τeff [270],

〈v(t+ ∆t) · v(t)〉 = v2
eff e−∆t/τeff . (5.6)

Figure 5.4 shows Deff , τeff and veff , normalized by their free space values, as a function
of the obstacle spacing d̃ for three values of the free space persistence length l̃p. Starting
with the e�ective di�usion coe�cient (Figure 5.4a), we observe that, for every value of
the persistence length, the e�ective di�usion coe�cient Deff increases as a function of
d̃ until it approaches the free space di�usion coe�cient D for large d̃. This is consistent
with what we observed in Figures 5.1a,b and 5.3: ABPs on low density lattices spread out
more than ABPs on high density lattices. Moreover, the e�ective di�usion coe�cient
deviates more from its free space value for large l̃p than it does for small l̃p. This is
intuitive because more persistent particles tend to move longer along the same direction
and therefore are hindered more in their motion by the obstacle lattice.

The e�ective persistence time τeff (Figure 5.4b) and the e�ective velocity veff (Figure
5.4c), both extracted from the velocity autocorrelation function [Eq. (5.6)], show a similar
trend: they increase as a function of d̃ until they approach their free space values at high
d̃, and they deviate more from their free space values for large l̃p than they do for small
l̃p. These data show that the obstacles cause the ABPs, on average, to move slower and
change their direction of motion more quickly. We emphasize that it is the velocity v that
turns more quickly, not the particle orientation p, which is una�ected by the obstacles as
we discussed in Section 5.2. The decreased e�ective velocity, with respect to free space, is
intuitive given the interactions between particles and obstacles [Eq. (5.4)], which slow
down the ABPs. The decreased e�ective persistence time, on the other hand, is less
obvious as one could imagine the periodic obstacle lattice to guide ABPs along straight
lines, as reported in Refs. [268, 278]. Apparently, this potential guiding mechanism is
outcompeted in our system by the fact that encounters of ABPs with individual obstacles
at shorter timescales cause them to change their direction of motion more quickly than
in free space. In Section 5.3.3 we will study these short-timescale interactions in greater
detail.

Combining the e�ective persistence time (Figure 5.4b) and the e�ective velocity (Fig-
ure 5.4c) gives the e�ective persistence length leff = veffτeff and the e�ective di�usion
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CHAPTER 5. TOPOTAXIS OF ACTIVE BROWNIAN PARTICLES

Figure 5.4. E�ective parameters of the persistent random walk in regular lattices of obstacles.
(a) Normalized e�ective di�usion coe�cient Deff/D, obtained from the mean squared displace-
ment [Eq. (5.5)], as a function of the normalized obstacle spacing d̃ = d/R for three values of
the normalized persistence length l̃p = v0τp/R. Inset shows Deff for l̃p = 5 obtained via the
mean squared displacement (MSD) and via the velocity autocorrelation function (VACF), using
Deff = v2

effτeff/2. (b) Normalized e�ective persistence time τeff/τp, (c) normalized e�ective velo-
city veff/v0, both obtained from the velocity autocorrelation function [Eq. (5.6)], and (d) normal-
ized e�ective persistence length leff/lp = veffτeff/(v0τp) as functions of the normalized obstacle
spacing d̃ = d/R for three values of the normalized persistence length l̃p = v0τp/R. Data points
represent the average of 10 independent measurements from MSD or VACF data (Figure 5.3). The
error bars show the corresponding standard deviations.

coe�cient Deff = v2
effτeff/2. The inset of Figure 5.4a shows the e�ective di�usion coef-

�cient for l̃p = 5, calculated both by using the e�ective persistence time and e�ective
velocity from the velocity autocorrelation function (VACF) and by a direct measure-
ment from the mean squared displacement (MSD). The excellent agreement between
Deff measured at short and long timescales (using the VACF and MSD respectively) is
another indication that the motion of the ABPs in regular square obstacle lattices can
indeed be considered to be an e�ective persistent random walk.

The e�ective persistence length leff = veffτeff is plotted in Figure 5.4d. As antici-
pated, the e�ective persistence length increases with increasing lattice spacing d̃, con-
sistent with �ndings of ABPs in random obstacle lattices [270] and a model of persist-
ently moving cells in a tissue of stationary cells [125]. This e�ect increases with the free
space persistence length, as the motion of less persistent particles is randomized before
they can reach an obstacle. Furthermore, the di�erence between data with l̃p = 5 and
l̃p = 10 is negligible, indicating that the free space persistence length l̃p a�ects particle
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5.3. RESULTS

motion only when it is comparable with the lattice spacing.
These observations, combined with those in Refs. [135, 157, 277] which demonstrate

a net �ux of persistent random walkers toward regions of larger persistence, ultimately
explain the origin of topotaxis in our system. ABPs migrate, on average, toward re-
gions of higher persistence, hence to regions of lower obstacle density. Moreover, the
dependence of the e�ective persistence length leff on the free space persistence length
l̃p (Figure 5.4d) justi�es the superlinear increase of the topotactic velocity ṽtop as a func-
tion of l̃p (Figure 5.2d). In addition to the normal speed-up due to the higher persistence,
more persistent particles experience a larger gradient in persistence.

5.3.3 Fokker-Planck equation for regular lattices

As we explained in Section 5.3.2, topotaxis in our model of ABPs crucially relies on
the fact that, even when trapped in an array of obstacles, ABPs still behave as persis-
tent random walkers. The physical origin of this behavior is, however, less clear from
the numerical simulations. In this section, we rationalize this observation using some
simple analytical arguments. The probability distribution function P = P (r, θ, t) of the
position and orientation of an ABP, whose dynamics is governed by Eqs. (5.1), evolves
in time based on the following Fokker-Planck equation:

∂P

∂t
= −v0p · ∇P − µ∇ · (PF ) +DR

∂2P

∂θ2
, (5.7)

subject, at all times, to the normalization constraint:∫
dr dθ P (r, θ, t) = 1 , (5.8)

with dr = dx dy. Eq. (5.7) cannot be solved exactly, but useful insights can be obtained
by calculating the rate of change of the mean squared displacement

〈
|∆r|2

〉
. Here we

assume r(0) = 0, which yields |∆r|2 = |r|2 = x2 + y2, and

∂
〈
|r|2
〉

∂t
=

∫
dr dθ |r|2 ∂P (r, θ, t)

∂t
(5.9)

Upon substituting Eq. (5.7) in Eq. (5.9) and integrating by parts, we obtain:

∂〈|r|2〉
∂t

= 2v0〈r · p〉+ 2µ〈r · F 〉. (5.10)

Analogously, the term 〈r · p〉 evolves accordingly to:

∂〈r · p〉
∂t

= v0 −DR〈r · p〉+ µ〈p · F 〉 . (5.11)
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In free space (F = 0), Eqs. (5.10) and (5.11) can be solved exactly, using the boundary
condition r(t = 0) = 0, to �nd:

〈r · p〉F=0 =
v0

DR

(
1− e−DRt

)
, (5.12)

and the mean squared displacement 〈|r|2〉 given by Eq. (5.2). A generic nonzero F
compromises the closure of the equations, thus making the problem intractable with
exact methods. Nevertheless, it is possible to use some simplifying assumptions to obtain
intuitive results about Deff and τeff (Figure 5.4) at short (t � 1/Dr = τp) and long
(t� 1/Dr = τp) timescales.

At short timescales, we can assume a particle to be still relatively close to its initial
position r(0) = 0. Thus one can expand the force in Eq. (5.11) at the linear order in r,
i.e., F (r) ≈ F (0) +∇F (0) · r. Evidently, such an expansion is ill-de�ned for discon-
tinuous forces such as that given by Eq. (5.4). However, one can imagine to smoothen the
force (for instance using a truncated Fourier expansion), without altering the qualitative
picture. By the symmetry of the obstacle lattice, F (0) = 0, ∂yFx(0) = ∂xFy(0) = 0,
and the constant ∂xFx(0) = ∂yFy(0) < 0, as the horizontal (vertical) component of
the force experienced by a particle moving in the positive x−direction (y−direction),
becomes more negative as the particle moves away from the origin. Using this approx-
imation, the short-time motion is analogous to that of ABPs con�ned by a harmonic trap
[279–282]. The approximation allows us to write

〈p · F 〉|t�τp =
∂Fx
∂x

(0) 〈r · p〉 , (5.13)

and by inserting Eq. (5.13) into Eq. (5.11) we �nd:

∂〈r · p〉
∂t

∣∣∣∣
t�τp

= v0 −
(
Dr − µ

∂Fx
∂x

(0)

)
〈r · p〉 . (5.14)

Solving Eq. (5.14) yields:

〈r · p〉
∣∣∣
t�τp

=
v0

Dr,eff

(
1− e−Dr,eff t

)
, (5.15)

with Dr,eff = Dr − µ ∂xFx(0) > Dr . By comparing Eq. (5.15) with its free space
equivalent [Eq. (5.12)], we identify Dr,eff as an increased e�ective rotational di�usion
coe�cient. This implies a decreased e�ective persistence time, consistent with the data
in Figure 5.4b. The above analysis shows that, to �rst order, the observed decrease in ef-
fective persistence time simply results from the short-time interactions, within a unit cell
of the lattice, that cause the particles to change their direction of motion more quickly.
Finally, substituting Eq. (5.15) in Eq. (5.10) and taking again the �rst order Taylor ex-
pansion for F allows one to solve Eq. (5.10) exactly. Expanding this exact solution at
the second order in time yields:

〈|r|2〉
∣∣
t�τp

= v2
0t

2 , (5.16)
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which is the standard ballistic regime of the mean squared displacement. Hence, the
decreased e�ective velocity observed in Figure 5.4c originates from interactions with
obstacles at larger timescales (t ∼ τp, see also Figure 5.3b).

In the long timescale (t � 1/Dr = τp) the particles reach a di�usive steady state,
thus ∂t〈r · p〉 = 0. Hence, solving Eq. (5.11) for 〈r · p〉 and substituting in Eq. (5.10)
yields:

∂〈|r|2〉
∂t

∣∣∣∣
t�τp

=
2v2

0

Dr

(
1 +

µ

v0
〈p · F 〉+

µDr

v2
0

〈r · F 〉
)
, (5.17)

As the long time behavior is di�usive, the expression on the right-hand side of Eq. (5.17)
is constant and equal to 4Deff . Now, according to Eq. (5.4), µ(p · F ) = 0 if |∆ro| > R,
and µ(p · F ) = −v0(p · N)2 otherwise. Thus, 〈p · F 〉 < 0. This term shows that
di�usion is slowed down because the obstacle force F always slows down the particles
(but never accelerates them). Moreover, for more dense obstacle lattices, particles in-
teract with obstacles more often, which explains the observed dependence of Deff on
the obstacle spacing in Figure 5.4a. Analogously, since particles move in an open space
and, on average, away from the center, 〈r · F 〉 < 0 (i.e., the repulsion forces due to the
obstacles are directed more often toward the origin than toward in�nity, further slowing
down di�usion). ThusDeff < D, consistent with our numerical simulations (Figures 5.3
and 5.4a).

5.4 Discussion and conclusions

In this chapter we investigated topotaxis, i.e., directed motion driven by topographical
gradients, in a toy model of ABPs constrained to move within a two-dimensional array
of obstacles of smoothly varying density. We found that ABPs migrate preferentially
toward regions of lower density with a velocity that increases with the gradient in the
lattice spacing and with the particles’ persistence length. In our model, the origin of
topotaxis crucially relies on the fact that, even when moving in a lattice of obstacles,
ABPs still behave as persistent random walkers, but with renormalized transport coe�-
cients: τeff and veff . As these depend on the topography of the substrate, here quanti�ed
in terms of lattice spacing, topographical gradients result into spatially varying persis-
tence in the motion of the particles, which in turn drives directed motion toward regions
of larger persistence [135, 157, 277]. We note that the motion we report here, just like
the durotactic motion described in Refs. [135, 157], is perhaps better described as a
“kinesis” than as a “taxis”, because the underlying mechanism of transport is a nondi-
rectional change in behavior induced by a purely positional cue. This is in contrast to
the true directional bias underlying, for instance, chemotaxis of E. coli [126] which leads
to signi�cantly more e�cient transport [277].

Several questions remain open to future investigation. For instance, how is the pic-
ture a�ected by translational di�usion? Is topotaxis robust against competing direc-
tional cues, such as chemotaxis [143]? How sensitive is the performance of topotaxis
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with respect to the obstacles’ shape [149, 150, 260], the type of motion (e.g., persistent
random walk, run-and-tumble, Lévy walk, etc. [260, 263, 273, 283–285]), and the details
of particle-obstacle interactions [149, 271, 286–288]? Another interesting setting of the
problem could be obtained by considering random arrangements of obstacles, where,
unlike in the lattices studied here, particles can be trapped into convex-shaped features
that can signi�cantly alter their motion [270, 273].

Finally, although here we demonstrated that topotaxis can be solely driven by the
interplay between topographical gradients and persistent random motion, whether this
is su�cient to explain large-scale topotaxis of cells remains an open problem. A quan-
titative comparison between our numerical data and experiments on highly motile cells
[143] shows, in fact, discrepancies that could be ascribed to the enormously more com-
plex interactions between cells and their environment. Speci�cally, the topotactic velo-
city in our simulations is of the order of 1% of the intrinsic particle speed (Figure 5.2),
whereas in the experiments on cells this ratio is approximately 5%, provided that the
obstacles are not spaced further apart than the cell size [143]. In order to better under-
stand this surprising e�ciency, the large-scale topotactic response of several types of
persistently and individually moving cells, such as amoeba [289], invasive (amoeboid)
cancer cells [290, 291], or leukocytes [292], could be compared. On the theoretical side,
we are currently addressing the problem using more biologically-realistic models of cell
motility based on the Cellular Potts Model [124, 125] (see also Chapter 6), which allow
explicitly taking into account e�ects such as the resistance of cells against deformations,
adhesion between cells and obstacles, and more realistic cell-obstacle interactions.

5.5 Appendix

5.5.1 Numerical methods

We numerically generate particle trajectories that perform a persistent random walk
by discretizing the equations of motion as follows [157]: a particle starts at position
r0 at t = 0, after which the particle is moved by a distance v0∆t in a random initial
direction −π < θ1 < π, such that the new position is r1 = r0 + v0∆t p(θ1). For all
subsequent time steps, the angle at time stepn, θn, is updated by adding a small deviation
angle to the angle of the previous time step, θn = θn−1 + δθ. Here, −π < δθ < π is
extracted randomly from a Gaussian distribution with mean 0 and varianceσ2 = 2∆t/τp
using the Box-Muller transform. The new position of the particle, rn, is then found by
rn = rn−1 + v0∆t p(θn), with rn−1 the position at the previous time step.

If the update step moves the particle into an obstacle, however, the particle-obstacle
force [Eq. (5.4)] is triggered. In that case, the normal component of the attempted dis-
placement is subtracted, and the actual displacement is given by the tangential compo-
nent of the attempted displacement, rn = rn−1 + v0∆t

(
p(θn) · T

)
T , with T the

tangent unit vector of the obstacle surface at the point of the surface closest to rn−1.
This procedure is implied by Euler integration of Eq. (5.1a) with the force F described by
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Figure 5.5. Snapshot of the gradient lattice as described in Section 5.5.2. The gradient region
is characterized by r = 0.15 and d̃ = d/R = 5. The obstacles are graphically represented as
disks of radius R. The lattice spacing varies from d̃min = 2.1 to d̃max = 7.9 over the x range
[xmin, xmax] = [−19, 19]. The gradient region is �anked by a regular square lattice with d̃ = d̃min

on the left (x < xmin) and by a regular square lattice with d̃ = d̃max on the right (x > xmax).
Only the �rst two columns of both (in�nitely large) regular lattices are shown.

Eq. (5.4). We choose the time step ∆t such that it is much smaller than the persistence
time, ∆t � τp, and such that every displacement is much smaller than the obstacle
radius, v0∆t� R. In all reported simulations we have used ∆t = 0.01τp.

5.5.2 Obstacle lattices

We de�ne a regular square lattice of obstacles with the coordinates of the centers of the
obstacles given by

x(n,m) = nd+
d

2
(5.18a)

y(n,m) = md+
d

2
(5.18b)

where n,m ∈ Z are the obstacle numbers and d is the distance between the centers of
two neighboring obstacles. The term d/2 is added to make sure that the origin of the
coordinate system is in the middle of four obstacles. An illustration of this lattice is given
in Figures 5.1a,b.
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We de�ne an irregular square lattice with a linear gradient of the obstacle spacing in
the positive x direction. The gradient region has a �nite width, is centered in the origin,
and is �anked by regular square lattices to the left and to the right. The coordinates of
the centers of the obstacles in the gradient region are given by

x(n,m) =
d

1− e−r
(ern − 1) +

d

2
(5.19a)

y(n,m) = d(m+
1

2
)ern (5.19b)

where n,m ∈ Z are again the obstacle numbers, d is the distance between the centers
of obstacles with (n,m) = (0, 0) and (n,m) = (−1, 0) (i.e., the lattice spacing in the
origin), and r is a dimensionless number that quanti�es the gradient in the obstacle
spacing.

Eq. (5.19) represents an obstacle lattice where the lattice spacing depends exponen-
tially on the horizontal obstacle number n, such that x(n,m) − x(n − 1,m) = dern

and y(n,m) − y(n,m − 1) = dern. This exponential gradient in the obstacle spacing,
as a function of the obstacle number n, leads to a linear gradient in the obstacle spa-
cing as a function of the horizontal coordinate x. This can be seen by calculating the
di�erence in obstacle distance between two adjacent pairs of obstacles, divided by the
distance between those two pairs,(

x(n+ 1)− x(n)
)
−
(
x(n)− x(n− 1)

)
x(n)− x(n− 1)

= er − 1, (5.20)

which is independent of n, as required for a linear gradient. In the limit of r → 0, Eqs.
(5.19) reduce to the regular square lattice given in Eqs. (5.18).

The gradient lattice is cut o� on the left side at xmin < 0, where the vertical distance
between two neighboring obstacles, y(n,m) − y(n,m − 1), would otherwise become
smaller than a minimal distance dmin = 2.1R. At the �rst column of obstacles for
which this is the case, the vertical coordinates [Eq. (5.19b)] are replaced by y(n,m) =
mdmin + dmin/2. To the left of this transition column (x < xmin), a regular obstacle
lattice with spacing dmin is placed such that the transition column is part of this regular
lattice.

On the right side the gradient lattice is cut o� at xmax = −xmin. To the right of this
cut-o� (x > xmax), a regular obstacle lattice with spacing dmax = 2d − dmin is placed
such that the horizontal distance between the rightmost column of the gradient lattice
and the leftmost column of the regular lattice is equal to dmax. Thus, the gradient lattice
connects two regular square lattices of lattice spacings dmin and dmax. The width of the
gradient region, 2xmax, then depends on the gradient parameter r. For an illustration of
the gradient lattice for r = 0.15 and d̃ = d/R = 5, see Figure 5.5.
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Figure 5.6. There is no average drift in the y direction in density gradient lattices. (a) 〈ỹ〉 =
〈y〉 /R as a function of time t̃ = t/τp for �ve values of the density gradient r, with d̃ = d/R = 5
and l̃p = v0τp/R = 5. (b) 〈ỹ〉 = 〈y〉 /R as a function of time t̃ = t/τp for �ve values of the
persistence length l̃p = v0τp/R, with d̃ = d/R = 5 and r = 0.07.

5.5.3 Average motion in y

We plot 〈ỹ〉 (t̃) of 106 particles moving in a density gradient lattice with d̃ = 5, starting
in the origin with a random orientation, for several values of the dimensionless density
gradient r in Figure 5.6a, and for several values of the persistence length l̃p in Figure
5.6b. As expected, there is no average drift in the y direction. The �uctuations in 〈y〉 are
of the order of 10% of the e�ective radius R.
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