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Chapter 3

Mechanical interplay

between cell shape and

actin cytoskeleton

organization

The experimental data presented in this chapter was kindly provided by Wim Pomp,
Erik H.J. Danen, and Thomas Schmidt. The chapter is available on arXiv as:

Koen Schakenraad, Jeremy Ernst, Wim Pomp, Erik H.J. Danen, Roeland M.H. Merks,
Thomas Schmidt, and Luca Giomi, ‘Mechanical interplay between cell shape and actin
cytoskeleton organization’, arXiv:1905.09805

Abstract

We investigate the mechanical interplay between the spatial organization of the
actin cytoskeleton and the shape of animal cells adhering on micropillar arrays.
Using a combination of analytical work, computer simulations and in vitro ex-
periments, we demonstrate that the orientation of the stress �bers strongly in-
�uences the geometry of the cell edge. In the presence of a uniformly aligned
cytoskeleton, the cell edge can be well approximated by elliptical arcs, whose ec-
centricity re�ects the degree of anisotropy of the cell’s internal stresses. Upon
modeling the actin cytoskeleton as a nematic liquid crystal, we further show that
the geometry of the cell edge feeds back on the organization of the stress �bers by
altering the length scale at which these are con�ned. This feedback mechanism
is controlled by a dimensionless number, the anchoring number, representing
the relative weight of surface-anchoring and bulk-aligning torques. Our model
allows to predict both cellular shape and the internal structure of the actin cyto-
skeleton and is in good quantitative agreement with experiments on �broblastoid
(GDβ1,GDβ3) and epithelioid (GEβ1, GEβ3) cells.
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CHAPTER 3. MECHANICAL INTERPLAY BETWEEN CELL SHAPE AND ACTIN CYTOSKELETON
ORGANIZATION

3.1 Introduction

Mechanical cues play a vital role in many cellular processes, such as durotaxis [132,
169], cell-cell communication [168], stress-regulated protein expression [167] or rigidity-
dependent stem cell di�erentiation [28, 30]. Whereas mechanical forces can directly
activate biochemical signaling pathways, via the mechanotransduction machinery [178],
their e�ect is often mediated by the cortical cytoskeleton, which, in turn, a�ects and can
be a�ected by the geometry of the cell envelope.

By adjusting their shape, cells can sense the mechanical properties of their microen-
vironment and regulate traction forces [64, 170, 171], with prominent consequences on
bio-mechanical processes such as cell division, di�erentiation, growth, death, nuclear
deformation and gene expression [32–37]. On the other hand, the cellular shape itself
depends on the mechanical properties of the environment. Experiments on adherent
cells have shown that the sti�ness of the substrate strongly a�ects cell morphology [49,
50] and triggers the formation of stress �bers [51, 53]. The cell spreading area increases
with the substrate sti�ness for several cell types, including cardiac myocytes [49], myo-
blasts [50], endothelial cells and �broblasts [51], and mesenchymal stem cells [52].

In Chapter 2 we have investigated the shape and traction forces of concave cells,
adhering to a limited number of discrete adhesion sites and characterized by a highly
anisotropic actin cytoskeleton. Using a contour model of cellular adhesion [48, 62–64,
67], we demonstrated that the edge of these cells can be accurately approximated by a
collection of elliptical arcs obtained from a unique ellipse, whose eccentricity depends
on the degree of anisotropy of the contractile stresses arising from the actin cytoskele-
ton. Furthermore, our model quantitatively predicts how the anisotropy of the actin
cytoskeleton determines the magnitudes and directions of traction forces. Both predic-
tions were tested in experiments on highly anisotropic �broblastoid and epithelioid cells
[173] supported by sti� microfabricated elastomeric pillar arrays [55–57], �nding good
quantitative agreement.

Whereas these �ndings shed light on how cytoskeletal anisotropy controls the geo-
metry and forces of adherent cells, they raise questions on how anisotropy emerges from
the three-fold interplay between isotropic and directed stresses arising within the cyto-
skeleton, the shape of the cell envelope and the geometrical constraints introduced by
focal adhesions. It is well known that the orientation of the stress �bers in elongated
cells strongly correlates with the polarization direction of the cell [85–88]. Consistently,
our results indicate that, in highly anisotropic cells, stress �bers align with each other
and with the cell’s longitudinal direction (see, e.g., Figures 3.1A and 2.10). However,
the physical origin of these alignment mechanisms is less clear and inevitably leads to
a chicken-and-egg causality dilemma: do the stress �bers align along the cell’s axis or
does the cell elongate in the direction of the stress �bers?

The biophysical literature is not scarce of cellular processes that might possibly con-
tribute to alignment of stress �bers with each other and with the cell edge. Mechan-
ical feedback between the cell and the extracellular matrix or substrate, for instance,
has been shown to play an important role in the orientation and alignment of stress
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3.1. INTRODUCTION

�bers [52, 76, 179–181]. Molecular motors have also been demonstrated to produce an
aligning e�ect on cytoskeletal �laments, both in mesenchymal stem cells [182] and in
puri�ed cytoskeletal extracts [183], where the observation is further corroborated by
agent-based simulations [184]. A similar mechanism has been theoretically proposed
for microtubules-kinesin mixtures [185]. Studies in microchambers demonstrated that
steric interactions can also drive alignment of actin �laments with each other and with
the microchamber walls [186–188]. Theoretical studies have highlighted the importance
of the stress �bers’ assembly and dissociation dynamics [75, 76], the dynamics of focal
adhesion complexes [136, 189], or both [77, 79]. Also the geometry of actin nucleation
sites has been shown to a�ect the growth direction of actin �laments, thus promot-
ing alignment [190, 191]. Finally, mechanical coupling between the actin cytoskeleton
and the plasma membrane has been theoretically shown to lead to �ber alignment, as
bending moments arising in the membrane result into torques that reduce the amount
of splay within the �laments [192]. Despite such a wealth of possible mechanisms, it
is presently unclear which one or which combination is ultimately responsible for the
observed alignment of stress �bers between each other and with the cell’s longitudinal
direction. Analogously, it is unclear to what extent these mechanisms are sensitive to
the speci�c mechanical and topographic properties of the environment, although some
mechanisms rely on speci�c environmental conditions that are evidently absent in cer-
tain circumstances (e.g., the mechanical feedback between the cell and the substrate dis-
cussed in Refs. [76, 136, 180, 193] relies on deformations of the substrate and is unlikely
to play an important role in experiments performed on sti� micro-pillar arrays).

In this chapter we investigate the interplay between the anisotropy of the actin cy-
toskeleton and the shape of cells adhering to sti� microfabricated elastomeric pillar ar-
rays [55–57]. Rather than pinpointing a speci�c alignment mechanism, among those re-
viewed above, we focus on the interplay between cell shape and the spatial organization
of the actin cytoskeleton. This is achieved by means of a phenomenological treatment of
the stress �ber orientation based on the continuum description of nematic liquid crys-
tals, coupled with the contour model of the cell edge that we developed in Chapter 2.
The chapter is organized as follows: in Section 3.2 we introduce our contour model for
cells with anisotropic cytoskeleton. We �rst review the key theoretical results, already
reported in Chapter 2, followed by an in-depth and previously unreported analysis of
the model. In Section 3.3 we further generalize this approach by studying the mechan-
ical interplay between the shape of the cell, described by our contour model, and the
orientation of the actin cytoskeleton, modeled as a nematic liquid crystal con�ned by
the cell edge, and we compare our results to experimental data on highly anisotropic
cells. In both sections we assume that the coordinates of the adhesion sites along the
cell contour are constant in time and known. A theoretical description of the dynamics
of these adhesion sites, as a result of focal adhesion dynamics, is beyond the scope of
this study and can be found, for example, in Refs. [136, 189].
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CHAPTER 3. MECHANICAL INTERPLAY BETWEEN CELL SHAPE AND ACTIN CYTOSKELETON
ORGANIZATION
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Figure 3.1. (A) A �broblastoid cell with an anisotropic actin cytoskeleton cultured on a sti�
microfabricated elastomeric pillar array. The color scale indicates the measured orientation of the
actin stress �bers. (B) Schematic representation of a contour model for the cell in (A). The cell
contour consists of a collection of concave cellular arcs (red lines) that connect pairs of adhesion
sites (blue dots). These arcs are parameterized as curves spanned counterclockwise around the
cell by the arc length s, and are entirely described via the tangent unit vector T = (cos θ, sin θ)
and the normal vector N = (− sin θ, cos θ), with θ the turning angle. The unit vector n =
(cos θSF, sin θSF) describes the local orientation θSF of the stress �bers.

3.2 Equilibrium con�guration of the cell contour

Many animal cells spread out after coming into contact with a sti� adhesive surface.
They develop transmembrane adhesion receptors at a limited number of adhesion sites
that lie mainly along the cell contour (i.e., focal adhesions [54]). These cells are then
essentially �at and assume a typical concave shape characterized by arcs which span
between the sites of adhesion, while forces are mainly contractile [48]. This makes it
possible to describe adherent cells as two-dimensional contractile �lms, whose shape is
unambiguously identi�ed by the position r = (x, y) of the cell contour [62–67, 194].
Figure 3.1B illustrates a schematic representation of the cell (�broblastoid) in Figure
3.1A, where the cell contour consists of a collection of curves, referred to as “cellular
arcs”, that connect two consecutive adhesion sites. These arcs are parameterized by the
arc length s as curves spanned counterclockwise around the cell, oriented along the
tangent unit vector T = ∂sr = (cos θ, sin θ), with θ = θ(s) the turning angle of the
arc with respect to the horizontal axis of the frame of reference. The normal vector
N = ∂sr

⊥ = (− sin θ, cos θ), with r⊥ = (−y, x), is directed toward the interior of the
cell. The equation describing the shape of a cellular arc is obtained upon balancing all
the conservative and dissipative forces experienced by the cell contour. These are:

ξt∂tr = ∂sF cortex + (Σ̂out − Σ̂in) ·N , (3.1)

where t is time and ξt is a (translational) drag coe�cient measuring the resistance,
arising from cell-substrate interactions, against motion of the cell contour. Σ̂out and
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3.2. EQUILIBRIUM CONFIGURATION OF THE CELL CONTOUR

Σ̂in are the stress tensors on the two sides of the cell boundary and F cortex is the stress
resultant along the cell contour [48, 63–65, 67, 194]. We assume the substrate to be ri-
gid and the adhesion sites, lying along the cell contour, to be stationary. For theoretical
models of cell adhesion on compliant substrates, see, e.g., Refs. [64, 65, 67]. The tem-
poral evolution of the cell contour is then dictated by a competition between internal
and external bulk stresses acting on the cell boundary and the tension arising within the
cell cortex. The former give rise to a contractile (i.e., inward-directed) force on the cell
contour and tend to decrease the cell area. By contrast, cortical tension decreases the cell
perimeter, thus resulting in an extensile (i.e., outward-directed) force, as a consequence
of the cell concavity. As the planar contour represents the two-dimensional projection of
the full three-dimensional body of the cell, changes in the area a�ect neither the density
of the cytoplasm nor the internal pressure. Finally, we assume the dynamics of the cell
contour to be overdamped.

The stress tensor can be modeled upon taking into account isotropic and directed
stresses. The latter are constructed by treating the stress �bers as contractile force di-
poles, whose average orientation θSF is parallel to the unit vector n = (cos θSF, sin θSF)
(see Figure 3.1B). This gives rise to an overall contractile bulk stress of the form [102,
103]:

Σ̂out − Σ̂in = σÎ + αnn , (3.2)
where Î is the identity matrix, σ > 0 embodies the magnitude of all isotropic stresses
(passive and active) experienced by the cell edge and α > 0 is the magnitude of the
directed contractile stresses and is proportional to the local degree of alignment between
the stress �bers, in such a way thatα is maximal for perfectly aligned �bers, and vanishes
if these are randomly oriented. In Section 3.3 we will explicitly account for the local
orientational order of the stress �bers using the language of nematic liquid crystals.
Furthermore, since Î = nn + n⊥n⊥, the nematic director n and its normal n⊥ =
(− sin θSF, cos θSF) correspond to the principal stress directions, whereas σmax = σ+α
and σmin = σ are, respectively, the maximal and minimal principal stresses. The degree
of anisotropy of the bulk stress is thus determined by the ratio between the isotropic
contractility σ and the directed contractility α. Finally, the tension within the cell cortex
is modeled as F cortex = λT , where the line tension λ embodies the contractile forces
arising from myosin activity in the cell cortex. This quantity varies, in general, along an
arc and can be expressed as a function of the arc length s. In the presence of anisotropic
bulk stresses, in particular, λ(s) cannot be constant, as we will see in Section 3.2.1. The
force balance condition, Eq. (3.1), becomes then

ξt∂tr = ∂s(λT ) + σN + α(n ·N)n . (3.3)

In this section we describe the position of the cell boundary under the assumption
that the timescale required for the equilibration of the forces in Eq. (3.3) is much shorter
than the typical timescale of cell migration on the substrate (i.e., minutes). Under this
assumption, ∂tr = 0 and Eq. (3.3) can be cast in the form:

0 = (∂sλ)T + (λκ+ σ)N + α(n ·N)n , (3.4)
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CHAPTER 3. MECHANICAL INTERPLAY BETWEEN CELL SHAPE AND ACTIN CYTOSKELETON
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where we have used ∂sT = κN , with κ = ∂sθ the curvature of the cell edge. In the
following, we review (Section 3.2.1) and extend (Sections 3.2.2, 3.2.3 and 3.2.4) the results
reported in Chapter 2 about the geometry and mechanics of anisotropic cells adhering
to micropillar arrays.

3.2.1 Equilibrium cell shape and line tension

In this section we review the results previously reported in Chapter 2. A derivation of
the main equations can be found in Section 3.6.1 in the Appendix.

For α = 0, Eq. (3.4) describes the special case of a cell endowed with a purely
isotropic cytoskeleton [62–64]. Force balance requires λ to be constant along a single
cellular arc (i.e., ∂sλ = 0), whereas the bulk and cortical tension compromise along an
arc of constant curvature, i.e., κ = −σ/λ, with the negative sign of κ indicating that the
arcs are curved inwards. The cell edge is then described by a sequence of circular arcs,
whose radius R = 1/|κ| = λ/σ depends on the local cortical tension λ of the arc. This
model successfully describes the shape of adherent cells in the presence of strictly iso-
tropic forces. However, as we showed in Chapter 2, isotropic models are not suited for
describing cells whose anisotropic cytoskeleton develops strong directed forces originat-
ing from actin stress �bers [46, 47]. In the presence of an anisotropic cytoskeleton, α > 0
and the cell contour is no longer subject to purely normal forces. As a consequence, the
cortical tension λ varies along a given cellular arc to balance the tangential component
of the contractile forces arising from the actin cytoskeleton. In order to highlight the
physical mechanisms described, in this case, by Eq. (3.4), we introduce a number of sim-
pli�cations that make the problem analytically tractable. These will be lifted in Section
3.3, where we will consider the most general scenario. First, because the orientation of
the stress �bers typically varies only slightly along a single arc, we assume the orienta-
tion of the stress �bers, θSF, to be constant along a single cellular arc, but di�erent from
arc to arc. Furthermore, without loss of generality, we orient the reference frame such
that the stress �bers are parallel to the y−axis. Thus, θSF = π/2 and n = ŷ. Then,
solving Eq. (3.4) with respect to λ yields:

λ(θ) = λmin

√
1 + tan2 θ

1 + γ tan2 θ
, (3.5)

where the constant γ = σ/(σ + α) quanti�es the anisotropy of the bulk contractile
stress. The quantity λmin represents the minimal cortical tension attained along each
cellular arc, where the stress �bers are perpendicular to the cell contour (i.e., θ = 0).
By contrast, the actin cortex exerts maximal tension when the stress �bers are parallel
to the cell contour, i.e., λmax = λ(π/2) = λmin/

√
γ. We note that these variations

in line tension along a single arc do not necessarily have to be regulated by the cell.
Instead, they could simply be a result of passive mechanical forces in a way very similar
to the space-dependent tension in a simple cable hanging under gravity. Although the
minimal line tension λmin could, in principle, be arc-dependent, for example if the cell
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3.2. EQUILIBRIUM CONFIGURATION OF THE CELL CONTOUR

Isotropic stress

Directed stress

Figure 3.2. Schematic representation of a cellular arc, described by Eq. (3.6), for n =
(cos θSF, sin θSF) = ŷ, hence θSF = π/2. A force balance between isotropic stress, directed
stress and line tension results in the description of each cell edge segment (red curve) as part of
an ellipse of aspect ratio a/b =

√
γ and with major semi-axis b = λmin/σ. The cell exerts forces

F 0 and F 1 on the adhesion sites (blue). The vector d = d(cosφ, sinφ) describes the relative
position of the two adhesion sites, d⊥ = d(− sinφ, cosφ) is a vector perpendicular to d, and θ is
the turning angle of the cellular arc. The coordinates of the ellipse center (xc, yc) and the angular
coordinates of the adhesion sites along the ellipse ψ0 and ψ1 are given in Section 2.5.7.

cortex displays substantial variations in the myosin densities [63], here we approximate
λmin as a constant. This approximation is motivated by the fact that our previous in
vitro observations of anisotropic epithelioid and �broblastoid cells did not identify a
correlation between the arc length and curvature (see Figure 2.6b), which, on the other
hand, is expected if λmin was to vary signi�cantly from arc to arc [63]. Hence, α, σ and
λmin represent the independent material parameters of our model.

The shape of a cellular arc is given by a segment of an ellipse, which is given by:

σ2

λ2
min

[(x− xc) cos θSF + (y − yc) sin θSF]
2

+
σ2

γλ2
min

[−(x− xc) sin θSF + (y − yc) cos θSF]
2

= 1 . (3.6)

The longitudinal direction of the ellipse is always parallel to the stress �bers, hence tilted
by an angle θSF with respect to the x−axis, as illustrated in Figure 3.2 for n = ŷ. The
direct relation between the contractile forces arising from the cytoskeleton and the shape
of the cell is highlighted by the dimensionless parameter γ = σ/(σ + α): on the one
hand, γ de�nes the anisotropy of the contractile bulk stress, on the other hand it dictates
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the anisotropy of the cell shape. This, in turn, does not depend on the positions of the
adhesion sites, which instead a�ect the traction forces experienced by the substrate (see
Section 3.2.3). Both these properties arise from the fact that, in our model, cellular arcs
have no preferred length, and are consistent with experimental observations on �bro-
blastoids and epithelioids (see Chapter 2). The coordinates of the center of the ellipse
(xc, yc) and the angular coordinates of the adhesion sites along the ellipse, ψ0 and ψ1

in Figure 3.2, can be calculated using standard algebraic manipulation and are given in
Section 2.5.7.

Figure 3.3 shows an example of a �broblastoid cell with ellipses �tted to its arcs.
Because ellipse �tting is very sensitive to noise on the cell shape, only the longer arcs
are considered here (see Section 2.5). We stress that, as long as the contractile stresses
arising from the actin cytoskeleton are roughly uniform across the cell (i.e., α, σ and
λmin are constant), all cellular arcs of su�cient length are approximated by a unique
ellipse (see Figure 3.3). The parameters that describe this ellipse are, in general, di�erent
for each individual cell. A survey of these parameters over a sample of 285 �broblastoid
and epithelioid cells yielded γ = 0.33 ± 0.20, λmin = 7.6 ± 5.6 nN, σ = 0.87 ±
0.70 nN/µm, and α = 1.7 ± 1.7 nN/µm (see Chapter 2). Evidently, the variance in
the parameter values is in part due to the natural variations across the cell population,
and in part to possible statistical �uctuations in the experiments. Further insight about
the distribution of material parameters can be obtained in the future by combining our
model with experiments of cells adhering to micropatterned substrates, which impose
reproducible cell shapes [58]. Finally, we note that some of the smaller cellular arcs,
such as those in the bottom left corner of Figure 3.3, cannot be approximated by the
same ellipse as the longer arcs. This may be due to local �uctuations in the density and
orientation of stress �bers at the small scale or to other e�ects that are not captured by
our model. For a description of the selection of the �tted arcs and of the endpoints of
the arcs, see Section 2.5. For more experimental data on the elliptical �ts, see Figure 2.8.

3.2.2 Curvature

One of the most striking consequences of the elliptical shape of the cellular arcs is that
the local curvature is no longer constant, consistent with experimental observations on
epithelioid and �broblastoid cells in Figure 2.6a. This can be calculated from Eq. (3.6) in
the form:

κ = − 1

γb

(
1 + γ tan2 θ

1 + tan2 θ

) 3
2

, (3.7)

with b = λmin/σ the major semi-axis of the ellipse and with the negative sign indicating
that the arcs are curved inwards. A cellular arc thus attains its maximal (minimal) abso-
lute curvature where θ = 0 (θ = π/2) and the stress �bers are parallel (perpendicular)
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3.2. EQUILIBRIUM CONFIGURATION OF THE CELL CONTOUR

Figure 3.3. A �broblastoid cell with an anisotropic actin cytoskeleton on a microfabricated elas-
tomeric pillar array (same cell as in Figure 3.1A), with a unique ellipse (white) �tted to its arcs of
su�cient length (see Section 2.5). The actin, cell edge, and micropillar tops are in the red, green,
and blue channels respectively. The endpoints of the arcs (cyan) are identi�ed based on the forces
that the cell exerts on the pillars (Section 2.5). Scale bar is 10 µm.

to the arc tangent vector, namely

κmin = κ
(
θ =

π

2

)
= −
√
γ

b
, (3.8a)

κmax = κ (θ = 0) = − 1

γb
. (3.8b)

Consistent with experimental evidence, the radius of curvature of arcs perpendicular to
stress �bers is smaller than the radius of curvature of arcs parallel to the stress �ber
direction. Thus, regions of the cell edge having higher and lower local curvature corres-
pond to di�erent portions of the same ellipse, depending on the relative orientation of
the local tangent vector and the stress �bers. For a more detailed comparison between
theory and experiment, see Chapter 2.

3.2.3 Traction forces

With the expressions for shape of the cellular arcs [Eq. (3.6)] and cortical tension [Eq.
(3.5)] in hand, we now calculate the traction forces exerted by the cell via the focal
adhesions positioned at the end-points of a given cellular arc (Figure 3.2). Calling these
F 0 and F 1 and recalling that the cell edge is oriented counter-clockwise, we have F 0 =
−λ(θ0)T (θ0) and F 1 = λ(θ1)T (θ1), where θ0 and θ1 are the turning angles at the end-
points of the arc. For practical applications, it is often convenient to express the position

41



CHAPTER 3. MECHANICAL INTERPLAY BETWEEN CELL SHAPE AND ACTIN CYTOSKELETON
ORGANIZATION

of the adhesion sites in terms of their relative distance d = d(cosφ, sinφ) (Figure 3.2).
This yields

F 0 = λmin

[
−

(
d

2b
sinφ+

ρ

b
cosφ

)
n⊥+

(
− 1

γ

d

2b
cosφ+

ρ

b
sinφ

)
n

]
, (3.9a)

F 1 = λmin

[
−

(
d

2b
sinφ− ρ

b
cosφ

)
n⊥+

(
− 1

γ

d

2b
cosφ− ρ

b
sinφ

)
n

]
, (3.9b)

where the length scale ρ is de�ned as

ρ =

√
b2
(

1 + tan2 φ

1 + γ tan2 φ

)
− 1

γ

(
d

2

)2

. (3.10)

The total traction force exerted by the cell can be calculated by summing the two forces
associated with the arcs joining at a given adhesion site, while taking into account that
the the orientation n of the stress �bers is generally di�erent from arc to arc.

Another interesting quantity is obtained by adding the forces F 0 and F 1 from the
same arc. Although these two forces act on two di�erent adhesion sites, their sum rep-
resents the total net force that a single cellular arc exerts on the substrate. This is given
by

F 0 + F 1 = −dσ sinφn⊥ − d(σ + α) cosφn ,

= −
(
σÎ + αnn

)
· d⊥ , (3.11)

where d⊥ = d(− sinφ, cosφ) (Figure 3.2). Eq. (3.11) presents the force resulting from
the integrated contractile bulk stress [see Eq. (3.1)], which is independent of the line
tension λmin but scales linearly with the distance between adhesions. This implies that
the total traction increases with the cell size, consistent with earlier contour models [64,
65] and various experimental observations [195–197]. Because the cell size is expected
to be larger on sti�er substrates, as these stretch only slightly in response to the cell
contraction, the total amount of traction also increases with substrate sti�ness.

3.2.4 Mechanical invariants

We conclude this section by highlighting two mechanical invariants, local quantities
that are constant along a cellular arc, thus showing the intimate relation between the
geometry of the cell and the mechanical forces it exerts on the environment. From Eqs.
(3.9) we �nd

F 2
⊥ + γF 2

‖ = const., (3.12)
where F‖ and F⊥ are the components of the force, parallel and perpendicular to n, at
any point along a same cellular arc. Furthermore, by inspection of Eqs. (3.7) and (3.5)
we observe that

λ3κ = −λ2
min(α+ σ) = const . (3.13)
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3.3. INTERPLAY BETWEEN ORIENTATION OF THE CYTOSKELETON AND CELLULAR SHAPE

From this, we �nd that the normal component of the cortical force, λκ [see Eq. (3.4)], is
then given by

λκ = −
(
λmin

λ

)2

(α+ σ) . (3.14)

This relation is an analog of the Young-Laplace law for our anisotropic system. In the
isotropic limit, α = 0 and λmin = λ, thus we recover the standard force-balance ex-
pression λκ = −σ. Eq. (3.14) shows that the normal force λκ decreases with increasing
line tension λ, because an increase in line tension is accompanied by an even stronger
decrease in the curvature κ.

3.3 Interplay between orientation of the cytoskeleton

and cellular shape

In this section we generalize our approach by allowing the orientation of the stress �bers
to vary along individual cellular arcs. This is achieved by combining the contour model
for the cell shape, reviewed in Section 3.2, with a continuous phenomenological model
of the actin cytoskeleton, rooted into the hydrodynamics of nematic liquid crystals [91].
This setting can account for the mechanical feedback between the orientation of the
stress �bers and the concave cellular shape and allows us to predict both these features
starting from the positions of the adhesion sites along the cell edge alone. Although ex-
perimental studies have shown the biophysical importance of substrate adhesions in the
cell interior [56, 198, 199], here we only describe a limited number of discrete adhesion
sites at the cell periphery, where the largest traction stresses are found [200–202]. A
treatment of the dynamics of focal adhesions is beyond the scope of this chapter and can
be found elsewhere, e.g., in Refs. [136, 189].

As mentioned in Section 3.1, experimental observations, by us (Chapter 2) and others
[85–88], have indicated that stress �bers tend to align with each other and with the cell’s
longitudinal direction. As we discussed, several cellular processes might contribute to
these alignment mechanisms, such as mechanical cell-matrix feedback [52, 76, 179–181],
motor-mediated alignment [182–185], steric interactions [186–188], stress �ber forma-
tion and dissociation [75–77, 79], focal adhesion dynamics [77, 79, 136, 189], the geo-
metry of actin nucleation sites [190, 191], or membrane-mediated alignment [192], but it
is presently unclear which combination of mechanisms is ultimately responsible for the
orientational correlation observed in experiments. Our phenomenological description
of the actin cytoskeleton allows us to focus on the interplay between cellular shape and
the orientation of the stress �bers, without the loss of generality that would inevitably
result from selecting a speci�c alignment mechanism among those listed above.

This phenomenological description necessitates a number of simplifying assump-
tions that can be addressed in future work. First, we again assume the typical timescale
associated with the equilibration of the forces (hence the reorientation of the actin �la-
ments) to be much shorter than that associated with cell motility (see also Section 3.2.1).
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Consequently, experiments on migrating cells [203] or cells subject to cyclic mechanical
loading [204, 205] are outside of the scope of the present chapter. Moreover, our model
does not take into account dynamical e�ects, such as actin �lament turnover and the
viscoelasticity of stress �bers [206, 207]. Additionally, as we did with in Section 3.2, we
restrict our model to e�ectively two-dimensional cells. This is not unreasonable, as cells
adhering to a sti� surface have a largely �at shape [48], but it does imply that our model
cannot capture three-dimensional stress �ber structures around the nucleus, such as the
actin cap [208], or distinguish between the orientations of apical and basal stress �bers
[209]. Third, we do not model signaling pathways, thus our approach cannot account for
variations of myosin activity (thus contractile stress) in response to the substrate sti�-
ness and other mechanical cues, but, as already discussed in Section 3.2, it can describe
the modulation of traction forces originating from the mechanical coupling between the
cell and the substrate [195–198] (see Section 3.2.3). Fourth, our model describes the over-
all cell-scale structure of the actin cytoskeleton and does not include local e�ects such
as the interactions of individual stress �bers with focal adhesions in the cell interior [56,
198, 199]. Finally, we assume a uniform density of actin. Therefore our model does not
account for local density variations that have been found experimentally on several cell
types, where stress �bers occur most prominently along concave cell edges [176, 196,
210, 211].

3.3.1 Model of the actin cytoskeleton

The actin cytoskeleton is modeled as a nematic liquid crystal con�ned within the cellu-
lar contour. This is conveniently represented in terms of the two-dimensional nematic
tensor (see, e.g., Ref. [91]):

Qij = S

(
ninj −

1

2
δij

)
, (3.15)

where δij is the Kronecker delta and S =

√
2 tr Q̂

2
is the so called nematic order para-

meter, measuring the amount of local nematic order. Here, 0 ≤ S ≤ 1, where S = 1
represents perfect nematic order and S = 0 represents randomly oriented stress �bers.
In the standard {x̂, ŷ} Cartesian basis, Eq. (3.15) yields

Q̂ =

[
Qxx Qxy
Qxy −Qxx

]
=
S

2

[
cos 2θSF sin 2θSF

sin 2θSF − cos 2θSF

]
. (3.16)

The preferred orientation of stress �bers within the cell is captured by the Landau-de
Gennes free-energy Fcyto [91]:

Fcyto =
1

2
K

∫
dA

[
|∇Q̂|2 +

1

δ2
tr Q̂

2
(tr Q̂

2
− 1)

]
+

1

2
W

∮
ds tr

[
(Q̂− Q̂0)2

]
. (3.17)
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The �rst integral in Eq. (3.17) corresponds to a standard mean-�eld free-energy, favor-
ing perfect nematic order (i.e., S = 1), while penalizing gradients in the orientation of
the stress �bers and their local alignment. For simplicity, we neglect the dependence on
the nematic order parameter on the density of actin (here assumed to be uniform). The
quantity K is known as Frank’s elastic constant and, in this context, expresses the sti�-
ness of the actin cytoskeleton with respect to both splay and bending deformations, on a
scale larger than that of the individual actin �laments. The length scale δ sets the size of
the boundary layer in regions where the order parameter drops to zero to compensate a
strong distortion of the nematic director n, such as in proximity of topological defects.
Hence, δ measures the typical size of regions where stress �bers are randomly oriented.

The second integral, which is extended over the cell contour, is the Nobili-Durand
anchoring energy [95] and determines the orientation of the stress �bers along the edge
of the cell, with the tensor Q̂0 representing their preferential orientation. Experimental
evidence form our (Figures 3.3 and 2.10) and other’s work (e.g., Refs. [85–88]), suggests
that, in highly anisotropic cells, peripheral stress �bers are preferentially parallel to the
cell edge. The same trend is recovered in experiments with puri�ed actin bundles con-
�ned in microchambers [186, 187]. In the language of Landau-de Gennes theory, this
e�ect can be straightforwardly reproduced by setting

Q0,ij = S0

(
TiTj −

1

2
δij

)
, (3.18)

withT the tangent unit vector of the cell edge. Along concave edges the local orientation
of stress �bers tends to be well de�ned [176, 210], so we further assume a large nematic
order along the contour: S0 = 1. The phenomenological constant W > 0 measures
the strength of this parallel anchoring, hence it is a measure for the preference of stress
�bers to align parallel to the cell boundary. Although stress �ber formation is a�ected by
the pre-existing cytoskeletal tension [51, 53], here we treat our bulk parameters K , W ,
and δ independently from α0, σ, and λmin which model the tension at the cell boundary.

In order to generate stationary con�gurations of the actin cytoskeleton, we numer-
ically integrate the following overdamped equation:

∂tQij = − 1

ξr

δFcyto

δQij
, (3.19)

where ξr is a rotational drag coe�cient, controlling the relaxation rate of the system,
but without a�ecting the steady-state con�gurations. Eq. (3.19) is numerically integrated
with Neumann boundary conditions:

KN · ∇Qij − 2W (Qij −Q0,ij) = 0 . (3.20)

This guarantees the steady-state con�gurations to be energy-minimizing, but without
imposing a speci�c non-physical orientation of the stress �bers along the contour of the
cell.
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3.3.2 The dynamics of the cell contour

The relaxational dynamics of the cell contour are governed, in our model, by Eq. (3.3),
which is now lifted from the assumption that the orientation n of the stress �bers is
uniform along individual cellular arcs. Furthermore, the contractile stress given by Eq.
(3.2) can now be generalized as:

Σ̂out − Σ̂in = σÎ + α0Snn

=

(
σ +

1

2
α0S

)
Î + α0Q̂ , (3.21)

with α0 a constant independent on the local order parameter. Comparing Eqs. (3.2)
and (3.21) yields α = α0S, thus the formalism introduced in this section allows us to
explicitly account for the e�ect of the local orientational order of the stress �bers on the
amount of contractile stress that they exert.

Next, we decompose Eq. (3.3) along the normal and tangent directions of the cell
contour. Since the cells considered here are pinned at the adhesion sites, which we
again assume to be rigid, and the density of actin along the cell contour is assumed to
be constant, tangential motion is suppressed, i.e., T · ∂tr = 0. Together with Eq. (3.21)
this yields:

0 = ∂sλ + α0 T · Q̂ ·N , (3.22a)

ξtN · ∂tr = λκ+ σ +
1

2
α0S + α0 N · Q̂ ·N . (3.22b)

Eq. (3.22a) describes then the relaxation of tension λwithin the cell edge, given its shape,
whereas Eq. (3.22b) describes the relaxation of the cellular shape itself. The variations
in the cortical tension might result from a regulation of the myosin activity or simply
form a passive response of the cortical actin to the tangential stresses.

Integrating Eq. (3.22a) then yields the cortical tension along an arc:

λ(s) = λ(0)− α0

∫ s

0

ds′ T · Q̂ ·N , (3.23)

where Q̂ = Q̂(s) varies, in general, along an individual cellular arc. The integration
constant λ(0), which represents the cortical tension at one of the adhesion sites, is re-
lated to the minimal tension λmin withstood by the cortical actin which we used, in
Section 3.2, as material parameter of the problem. In practice, we �rst calculate λ over
an entire arc using a arbitrary guess for λ(0). Then, we apply a uniform shift in such a
way that the minimal λ value coincides with λmin.

Combining the dynamics of the cell contour and that of the cell bulk, we obtain the
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following coupled di�erential equations:

∂tr =
1

ξt

[
λκ+ σ +

1

2
α0S + α0 N · Q̂ ·N

]
N , (3.24a)

∂tQ̂ =
K

ξr

[
∇2Q̂− 2

δ2
(S2 − 1)Q̂

]
. (3.24b)

These are complemented by the condition that r is �xed in a number of speci�c adhe-
sion sites, the boundary condition given by Eq. (3.20) for the nematic tensor Q̂ and the
requirement that mins λ(s) = λmin on each arc.

3.4 Numerical results

Eqs. (3.24) are numerically solved using a �nite di�erence integration scheme with mov-
ing boundary. As we detail in Section 3.6.2 in the Appendix, the time-integration is per-
formed iteratively using the forward Euler algorithm by alternating updates of the cell
contour and of the bulk nematic tensor. This process is iterated until both the cell shape
and the orientation reach a steady state.

To highlight the physical meaning of our numerical results, we introduce two di-
mensionless numbers, namely the contractility number, Co, and the anchoring number,
An. Co is de�ned as the ratio between the typical distance between two adhesion sites
d and the major semi-axis of the ellipse approximating the corresponding cellular arc
(b = λmin/σ, see Section 3.2.1):

Co =
σd

λmin
, (3.25)

and provides a dimensionless measure of the cell contraction (thus of the cell average
curvature). The anchoring number, on the other hand, is de�ned as the ratio between
a typical length scale R in which the internal cell structure is con�ned (not necessarily
equal to the distance d) and the length scale K/W , which sets the size of the boundary
layer where Q̂ crosses over from its bulk con�guration to Q̂0:

An =
WR

K
. (3.26)

This number expresses the ratio between the anchoring energy, which scales as WR
[i.e., last term in Eq. (3.17)], and the bulk energy, which scales as K , thus independ-
ently on cell size [i.e., �rst term in Eq. (3.17)]. Hence, An represents the competition
between boundary alignment (with strengthW ) and bulk alignment (strengthK) within
the length scale of the cell R. For An � 1, bulk elasticity dominates over boundary
anchoring and the orientation of the stress �bers in the bulk propagates into the bound-
ary, resulting into a uniform orientation throughout the cell and large deviations from
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parallel anchoring in proximity of the edge. Conversely, for An� 1, boundary anchor-
ing dominates bulk elasticity and the orientation of the stress �bers along the cell edge
propagates into the bulk, leading to non-uniform alignment in the interior of the cell.

To get insight on the e�ect of the combinations of these dimensionless parameters
on the spatial organization of the cell, we �rst consider the simple case in which the
adhesion sites are located at the corners of squares and rectangles (Section 3.4.1). In
Section 3.4.2 we consider more realistic adhesion geometries and compare our numerical
results with experimental observations on highly anisotropic cells adhering to a small
number of discrete adhesions.

3.4.1 Rectangular cells

Figure 3.4 shows the possible con�gurations of a model cell whose adhesion sites are
located at the vertices of a square, obtained upon varying An and Co, while keeping
γ = σ/(σ + α0) constant. Figure 3.10 in the Appendix shows the e�ect of varying
the ratio between σ and α0 for this model cell. The thick black line represents the cell
boundary, the black lines in the interior of the cells represent the orientation �eld n of
the stress �bers and the background color indicates the local nematic order parameter
S, or equivalently, the magnitude of the maximal principal stress σmax = σ + α0S.

As expected, for lowCo values (left column), cells with largeAn exhibit better parallel
anchoring than cells with small An values, but lower nematic order parameter S in the
cell interior (spatial average of S decreases from 1.0 at the bottom left to 0.80 at the
top left, see Figure 3.4). Interestingly, the alignment of stress �bers with the walls in
the con�guration with large An value (top left) resembles the con�gurations found by
Deshpande et al. [75, 76], who speci�cally accounted for the assembly and dissociation
dynamics of the stress �bers. More strikingly, the structure reported in the top left of
Figure 3.4 appears very similar to those found in experiments of dense suspensions of
pure actin in cell-sized square microchambers [186, 187], simulations of hard rods in
quasi-2D con�nement [186], and results based on Frank elasticity [212], even though
these systems are very di�erent from living cells. As is the case in our simulations, in
these studies the tendency of the �laments to align along the square edges competes
with that of aligning along the diagonal.

For large Co values (right column of Figure 3.4), the cell deviates from the square
shape. Interestingly, although the contractile stresses (σ and α0) do not directly a�ect
the con�guration of the cytoskeleton, they do it indirectly by in�uencing the shape of
the cell. This results into an intricate interplay between shape and orientation, con-
trolled by the numbers An and Co. In particular, for constant Co, i.e., for �xed stress
�ber contractility, increasing An leads to higher tangential alignment of the stress �bers
with the cell edge, thus increasing An decreases the contractile force experienced by the
cell edge, which is proportional to (n ·N)2 [Eq. (3.24a)]. Conversely, for constant An,
increasing Co leads to a more concave cell shape which forces the stress �bers to bend
more. Consequently, the average order parameter in the cell decreases with increasing
Co (see Figure 3.4).
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Figure 3.4. Con�gurations of cells whose adhesion sites are located at the vertices of a square. The
thick black line represents the cell boundary, the black lines in the interior of the cells represent
the orientation �eld n = (cos θSF, sin θSF) of the stress �bers and the background color indicates
the local nematic order parameterS. The spatial averages of the order parameterS are given, from
left to right, by: 0.80; 0.80; 0.77 (top row), 0.94; 0.92; 0.92 (middle row), and 1.0; 1.0; 1.0 (bottom
row). The vertical axis corresponds to the anchoring numberAn = WR/K and the horizontal axis
to the contractility number Co = σd/λmin. The cells shown correspond to values of An = 0, 1, 10
and Co = 0, 0.125, 0.25, where we take both d and R equal to the length of the square side. The
ratios σ/(σ + α0) = 1/9, λmin∆t/(ξtR

2) = 2.8 · 10−6, and K∆t/(ξrR
2) = 2.8 · 10−6, and

the parameters δ = 0.15R, Narc = 20, and ∆x = R/19 are the same for all cells. The number of
iterations is 5.5 · 105. For de�nitions of ∆t, ∆x, and Narc, see Section 3.6.2 in the Appendix.

Finally, we note that all con�gurations in Figure 3.4 display a broken rotational
and/or chiral symmetry. For An = 0 the stress �bers are uniformly oriented, but any
direction is equally likely. For non-zero An, the stress �bers tend to align along either
of the diagonals (with the same probability) to reduce the amount of distortion. Upon
increasing Co, chirality emerges in the cytoskeleton and in the cell contour (see, e.g., the
cell in the middle of the right column in Figure 3.4). In light of the recent interest in
chiral symmetry breaking in single cells [213] and in multicellular environments [214],
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we �nd it particularly interesting that chiral symmetry breaking can originate from the
natural interplay between the orientation of the stress �bers and the shape of the cell.

To conclude this section, we focus on four-sided cells whose adhesion sites are lo-
cated at the vertices of a rectangle and explore the e�ect of the cell aspect ratio (i.e.,
height/width). Figure 3.5 displays three con�gurations having �xed maximal width and
aspect ratio varying from 1 to 2. Figure 3.11 in the Appendix shows the e�ect of increas-
ing the aspect ratio while keeping instead the area of the rectangle �xed. Upon increasing
the cell aspect ratio, the mean orientation of the stress �bers switches from the diagonal
(aspect ratio 1) to longitudinal (aspect ratio 2), along with an increase in the order para-
meter in the cell bulk, as can be seen in Figure 3.5 by the slightly more red-shifted cell
interior (spatial average of S increases from 0.92 to 0.96). This behavior originates from
the competition between bulk and boundary e�ects. Whereas the bulk energy favors
longitudinal alignment, as this reduces the amount of bending of the nematic director,
the anchoring energy favors alignment along all four edges alike, thus favoring highly
bent con�gurations at the expense of the bulk elastic energy. When the aspect ratio in-
creases, the bending energy of the bulk in the diagonal con�guration increases, whereas
the longitudinal state only pays the anchoring energy at the short edges, hence inde-
pendently on the aspect ratio. Therefore, elongating the cell causes the stress �bers to
transition from tangential to longitudinal alignment, with a consequent increase of the
nematic order parameter. Interestingly, similar observations were made in experiments
on pure actin �laments in cell-sized microchambers [186, 187]. More importantly, the
longitudinal orientation of the stress �bers in cells of aspect ratio 2 is consistent with
several experimental studies of cells adhering on adhesive stripes and elongated adhe-
sive micropatterns [87–89, 196, 211]. Figures 3.12 and 3.13 in the Appendix show the
e�ect of the anchoring number An, the contractility number Co, and the ratio between
σ and α0 on a cell with aspect ratio 2.

3.4.2 Cells on micropillar arrays

In order to validate our model experimentally, we compare our numerical results with
experiments on �broblastoid and epithelioid cells [173] plated on sti� micropillar arrays
[55–57]. The cells are imaged using spinning disk confocal microscopy (see, e.g., Figure
3.6A) and the images are then processed in order to detect the orientation of the stress
�bers. Upon coarse-graining the local gradients of the image intensity, we reconstruct
both the nematic director n (black lines, representing the orientation of the stress �bers)
and order parameterS (background color, representing the degree of alignment), as visu-
alized in Figure 3.6B. Because of this coarse-graining, which takes place on a length scale
comparable to the radius of the micropillars (∼ 1µm) (see Section 2.5), local variations
in orientations and densities of stress �bers are smoothened out and the in�uence of in-
dividual micropillars under the cell interior, as visible in Figure 3.6A, is no longer visible
in Figure 3.6B. Regions in the cell with low actin expression, that do not show a clear
structural orientation, have a low order parameter S. Hence, in the experimental data,
a low S value might result from either a low local density of stress �bers, or from a
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Figure 3.5. E�ect of the aspect ratio of the cell, ranging from 1 to 2, on cytoskeletal organiza-
tion for cells whose four adhesion sites are located at the vertices of a rectangle. The thick black
line represents the cell boundary, the black lines in the interior of the cells represent the orienta-
tion �eld n = (cos θSF, sin θSF) of the stress �bers and the background color indicates the local
nematic order parameter S. The spatial averages of the order parameter S are given, from left to
right, by: 0.92; 0.95; 0.96. The simulations shown are performed with An = WR/K = 1 where
R is equal to the short side of the rectangle, and Co = σd/λmin equal to 0.125, 0.1875, and 0.25
respectively, where d is equal to the long side of the rectangle. The ratios σ/(σ + α0) = 1/9,
λmin∆t/(ξtR

2) = 2.8 · 10−6, and K∆t/(ξrR
2) = 2.8 · 10−6, and the parameters δ = 0.15R

and ∆x = R/19 are the same for all cells. Narc = 20, 30, 40 from left to right and the number of
iterations is 5.5 · 105. For de�nitions of ∆t, ∆x, and Narc, see Section 3.6.2 in the Appendix.

high density of randomly oriented stress �bers. See Section 3.6.3 for more detail on the
construction of the nematic director and order parameter from experimental data.

Consistent with our results on rectangular cells (Figure 3.5), the stress �bers align
parallel to the cell’s longitudinal direction and perpendicularly to the cell’s shorter edges.
Furthermore, the nematic order parameter is close to unity in proximity of the cell con-
tour, indicating strong orientational order near the cell edge, but drops in the interior.
This behavior is in part originating from the lower density of stress �bers around the
center of mass of the cell, and in part from the presence of ±1/2 nematic disclinations
away from the cell edge. These topological defects naturally arise from the tangential
orientation along the boundary. Albeit not uniform throughout the whole cell contour,
thus not su�cient to impose hard topological constraints on the con�guration of the
director in the bulk (i.e., Poincaré-Hopf theorem), this forces a non-zero winding of the
stress �bers, which in turn is accommodated via the formation of one or more disclin-
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ations. As a consequence of the concave shape of the cell boundary, these defects have
most commonly strength −1/2. The average order parameter in the cell is S = 0.54.

To compare our theoretical and experimental results, we extract the locations of the
adhesion sites from the experimental data by selecting micropillars that are close to the
cell edge and experience a signi�cant force (for details, see Section 2.5), and use them
as input parameters for the simulations. In Figures 3.6C-E we show results of simula-
tions of the cell in Figures 3.6A,B for increasing An values, thus decreasing magnitude
of the length scale K/W . Here, we take the length scale R = 23.6 µm to be the square
root of the cell area and we use constant values for the ratios λmin/σ = 14.7 µm and
σ/(σ+α0) = 0.40 as found by an analysis of the elliptical shape of this cell (see Chapter
2). Figure 3.6C shows the results of a simulation where bulk alignment dominates over
boundary alignment (An = 0.33,K/W = 71µm), resulting in an approximately uniform
cytoskeleton oriented along the cell’s longitudinal direction. The nematic order para-
meter is also approximatively uniform and close to unity (spatial average of the order
parameter is S = 0.85). For larger An values (Figure 3.6D, An = 1.7 andK/W = 14µm),
anchoring e�ects become more prominent, resulting in distortions of the bulk nematic
director, a lower nematic order parameter (spatial average S = 0.60), and the emer-
gence of a −1/2 disclination in the bottom left side of the cell. Upon further increasing
An (Figure 3.6E, An = 8.0 and K/W = 2.9 µm), the −1/2 topological defect moves to-
ward the interior, as a consequence of the increased nematic order along the boundary.
This results in a decrease in nematic order parameter in the bulk of the cell, consistent
with our experimental data. The spatial average is S = 0.56, close to the experimental
average of S = 0.54.

A qualitative comparison between our in vitro (Figure 3.6B) and in silico cells (Figure
3.6E) highlights a number of striking similarities, such as the overall structure of the
nematic director, the large value of the order parameter along the cell edge and in the
thin neck at the bottom-right of the cell and the occurrence of a−1/2 disclination on the
bottom-left side. The main di�erence is the order parameter away from the cell edges,
which is lower in the experimental data than in the numerical prediction. The lower
order parameter also results in an additional −1/2 disclination at the top-left of the cell
in Figure 3.6B which is absent in Figure 3.6E. We hypothesize that this discrepancy is
caused by a lower actin density in the cell interior, as observed before in many other
experimental studies [176, 196, 210, 211]. As a consequence of the actin depletion, the
nematic order parameter can decrease, and potentially vanish, in a way that cannot be
described by our model, where the density of the actin �bers is, by contrast, assumed to
be uniform across the cell.

In order to make this comparison quantitative and infer the value of the phenomen-
ological parameters introduced in this section, we have further analyzed the residual
function

∆2 =
1

N

N∑
i=1

1

2
tr
[
(Q̂sim,i − Q̂exp,i)

2
]
, (3.27)
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Figure 3.6. Validation of our model to experimental data. (A) Optical micrograph (TRITC-
Phalloidin) of a �broblastoid cell (same cell as in Figures 3.1 and 3.3). The adhesions (cyan circles)
are determined by selecting micropillars that are close to the cell edge and experience a signi�cant
force (Section 2.5). (B) Experimental data of cell shape and coarse-grained cytoskeletal structure
of this cell. The white line represents the cell boundary, black lines in the interior of the cells
represent the orientation �eld n = (cos θSF, sin θSF) of the stress �bers and the background
color indicates the local nematic order parameter S. The spatial average of the order parameter
is S = 0.54. (C-E) Con�gurations obtained from a numerical solution of Eqs. (3.24) using the ad-
hesion sites of the experimental data (cyan circles) as input, and with various anchoring number
(An) values. This is calculated from Eq. (3.26), with R = 23.6 µm the square root of the cell area.
The corresponding values of the length scale K/W are 71 µm (C), 14 µm (D), and 2.9 µm (E)
respectively. The spatial averages of the order parameter S are given by: 0.85 (C), 0.60 (D), and
0.56 (E) respectively. The values for λmin/σ = 14.7 µm and σ/(σ+ α0) = 0.40 are found by an
analysis of the elliptical shape of this cell (see Chapter 2). The ratios λmin∆t/ξt = 1.2 ·10−3µm2

and K∆t/ξr = 1.2 · 10−3µm2, and the parameters δ = 11 µm, Narc = 20, and ∆x = 1.1 µm
are the same for �gures (C-E). The number of iterations is 2.1 · 106. For de�nitions of ∆t, ∆x,
and Narc, see Section 3.6.2 in the Appendix.
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Figure 3.7. Residual function ∆2, de�ned in Eq. (3.27), as a function of the anchoring number
An [Eq. (3.26) with R = 23.6 µm] for the cell displayed in Figure 3.6. The error bars display the
standard deviation obtained using jackknife resampling. For large An values the residual �attens,
indicating that the actual value ofAn becomes unimportant once the anchoring torques (with mag-
nitude W ), which determine the tangential alignment of the stress �bers in the cell’s periphery,
outcompete the bulk elastic torques (with magnitude K). The minimum (∆2 = 0.027) is found
for An = 8.0.

expressing the departure of the predicted con�gurations of the nematic tensor, Q̂sim,
from the experimental ones, Q̂exp. The index i identi�es a pixel in the cell and N is the
total number of pixels common to both numerical and experimental con�gurations. By
construction, ∆2 captures both di�erences in the nematic director n and in the order
parameter S [see Eq. (3.15)], and 0 ≤ ∆2 ≤ 1, with 0 representing perfect agreement.
Figure 3.7 shows a plot of ∆2 versus the anchoring number An for the cell shown in
Figure 3.6. Consistent with the previous qualitative comparison, the agreement is best
at large An values, indicating a substantial preference of the stress �bers for parallel
anchoring along the cell edge. For the cell in Figure 3.6, ∆2 is minimized for An = 8.0
(∆2 = 0.027), corresponding to a boundary layer K/W = 2.9 µm. The corresponding
numerically calculated con�guration is shown in Figure 3.6E. However, the �attening of
∆2 for large An values implies that the actual value of An becomes unimportant once the
anchoring torques (with magnitudeW ), which determine the tangential alignment of the
stress �bers in the cell’s periphery, outcompete the bulk elastic torques (with magnitude
K). Therefore, we conclude that the cell illustrated in Figure 3.6 is best described by
An & 5, corresponding to a boundary layer K/W . 5µm. The corresponding value of
∆2 = 0.027 indicates good quantitative agreement between the experimental (Figure
3.6B) and simulated (Figure 3.6E) data, despite the di�erence in order parameter away
from the cell edges. This quantitative agreement indicates that, although oversimpli�ed
in comparison with the complexity of living cells, our model satisfactorily describes
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the stationary con�guration of both the nematic order parameter and the stress �bers
orientation.

The same analysis presented above has been repeated for �ve other cells (Figure 3.8).
The �rst column shows the raw experimental data, the second column shows the coarse-
grained experimental data, and the third column shows the simulations. For these we
used the values of λmin/σ and σ/(σ + α0) obtained from a previous analysis of the
cell morphology (see Chapter 2) and the An values found by a numerical minimization
of ∆2 (see Figure 3.14 in the Appendix). Also for these cells ∆2 �attens for large An
values, and we estimate An & 3 and K/W . 7 µm. The minima of ∆2 are given,
from top to bottom, by 0.016, 0.058, 0.057, 0.034, and 0.037. This indicates reasonable
quantitative agreement between experiment and simulation for all cells, even though
the agreement is signi�cantly better for the cell in Figure 3.8F than for those in Figures
3.8G and 3.8H. Similar to the cell in Figure 3.6, we observe that the main discrepancies are
the order parameter in the cell interior, which is smaller in the experimental data than
in the numerical results, and a number of topological defects in this low nematic order
region of the experimental data that are absent in the numerical data. The cell in Figure
3.8F shows good agreement between the average order parameter in the experimental
(S = 0.54) and numerical (S = 0.52) data, but for the other cells the average order
parameter is overestimated by the simulations. We again attribute this discrepancy to
actin density variations in the experiments that are not captured by the theory. On the
other hand, we note that the overall structure of the stress �ber orientation, including
the emergence of a number of−1/2 topological defects (see, e.g., Figures 3.8F and 3.8K),
is captured well by our approach.
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Figure 3.8. Comparison of experimental data on �ve anisotropic cells with the results of computer
simulations. (A-E) Optical micrographs (TRITC-Phalloidin) of epithelioid (A,B,E) and �broblastoid
(C,D) cells on a microfabricated elastomeric pillar array. The adhesions (cyan circles) are deter-
mined by selecting micropillars that are close to the cell edge and experience a signi�cant force
(Section 2.5). (F-J) Experimental data of cell shape and coarse-grained cytoskeletal structure on a
square lattice of these cells. The white line represents the cell boundary, the black lines in the in-
terior of the cells represent the orientation �eld n = (cos θSF, sin θSF) of the stress �bers and the
background color indicates the local nematic order parameter S. The spatial averages of the order
parameter S are given, from top to bottom, by: 0.54; 0.44; 0.45; 0.46; 0.37. (K-O) Simulations
with the adhesion sites of the experimental data as input. The spatial averages of the order para-
meter S are given, from top to bottom, by: 0.52; 0.68; 0.61; 0.59; 0.53. The values for λmin/σ =
12.6; 15.7; 18.0; 10.8; 13.4µm and σ/(σ+α0) = 0.75; 0.25; 0.46; 0.95; 0.52 are found by an ana-
lysis of the elliptical shape of these cells (see Chapter 2). The values of An = 4.4; 4.1; 19; 4.6; 4.7,
whereR = 17.3; 24.4; 39.9; 24.9; 25.3µm is de�ned as the square root of the cell area, are deter-
mined by minimizing ∆2, with the minima given by ∆2 = 0.016; 0.058; 0.057; 0.034; 0.037.
These An values correspond to K/W = 3.9; 5.9; 2.1; 5.4; 5.4 µm. The ratios λmin∆t/ξt =
1.2 · 10−3µm2 and K∆t/ξr = 1.2 · 10−3µm2, and the parameters δ = 11 µm, Narc = 20,
and ∆x = 1.1 µm are the same for all cells. The number of iterations is 2.1 · 106. For de�nitions
of ∆t, ∆x, and Narc, see Section 3.6.2 in the Appendix.
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3.5 Discussion and conclusions

In this chapter we investigated the spatial organization of cells adhering on a rigid sub-
strate at a discrete number of points. Our approach is based on a contour model for
the cell shape [48, 62–64, 67] coupled with a continuous phenomenological model for
the actin cytoskeleton, inspired by the physics of nematic liquid crystals [91]. This ap-
proach can be carried out at various levels of complexity, o�ering progressively insight-
ful results. Assuming that the orientation of the stress �bers is uniform along individual
cellular arcs (but varies from arc to arc), it is possible to achieve a complete analytical
description of the geometry of the cell, in which all arcs are approximated by di�erent
portions of a unique ellipse. The eccentricity of this ellipse depends on the ratio between
the isotropic and directed stresses arising in the actin cytoskeleton, and the orientation
of the major axis of this ellipse is parallel to the stress �bers. This parallel alignment
highlights the ability of cells to employ their actin cytoskeleton to regulate their shape.
The method further allows to analytically calculate the traction forces exerted by the
cell on the adhesion sites and compare them with traction force microscopy data.

Lifting the assumption that the stress �bers are uniformly oriented along individual
cellular arcs allows one to describe the mechanical interplay between cellular shape and
the con�guration of the actin cytoskeleton. Using numerical simulations and inputs
from experiments on �broblastoid and epithelioid cells plated on sti� micropillar arrays,
we identi�ed a feedback mechanism rooted in the competition between the tendency
of stress �bers to align uniformly in the bulk of the cell, but tangentially with respect
to the cell edge. Our approach enables us to predict both the shape of the cell and the
orientation of the stress �bers and can account for the emergence of topological defects
and other distinctive morphological features. The predicted stress �ber orientations are
in good agreement with the experimental data and further o�er an indirect way to es-
timate quantities that are generally precluded to direct measurement, such as the cell’s
internal stresses and the orientational sti�ness of the actin cytoskeleton. The main dis-
crepancy between our predictions and the experimental data is the overestimation of the
nematic order parameter in the cell interior, which should be addressed in future work
by explicitely accounting for actin density variations.

The success of this relatively simple approach is remarkable given the enormous
complexity of the cytoskeleton and the many physical, chemical, and biological mech-
anisms associated with stress �ber dynamics and alignment [52, 75–77, 79, 136, 179–192].
Yet, the agreement between our theoretical and experimental results suggests that, on
the scale of the whole cell, the myriad of complex mechanisms that govern the dynamics
of the stress �bers in adherent cells can be e�ectively described in terms of simple en-
tropic mechanisms, as those at the heart of the physics of liquid crystals. Moreover, this
quantitative agreement further establishes the fact that the dynamics and alignment of
stress �bers in cells cannot be understood from dynamics at the sub-cellular scale alone,
and highlights the crucial role of the boundary conditions inferred by cellular shape [176,
210].

In addition, our analysis demonstrates that chiral symmetry breaking can originate
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from the natural interplay between the orientation of the stress �bers and the shape of
the cell. A more detailed investigation of this mechanism is beyond the scope of this
study, but will represent a challenge in the near future with the goal of shedding light
on the fascinating examples of chiral symmetry breaking observed both in single cells
[213] and tissues [214].

In the future, we plan to use our model to investigate the mechanics of cells adher-
ing to micropatterned substrates that impose reproducible cell shapes [58], with special
emphasis to the interplay between cytoskeletal anisotropy and the geometry of the ad-
hesive patches. These systems are not new to theoretical research, but previous studies
have focused on either the cytoskeleton [77] or on cell shape [69], rather than on their
interaction. This will enable us to more rigorously compare our model predictions with
existing experimental data on stress �ber orientation in various adhesive geometries [33,
43, 176, 210, 211], including convex shapes such as circles or stadium-shapes [196, 213,
215], see Chapter 4. Additionally, we will extend our model for the cytoskeleton (Section
3.3.1) to account for variations of myosin activity, which will allow us to study the in-
crease of cytoskeletal tension with substrate sti�ness [198] or substrate area [195–197],
as well as the interactions of stress �bers with micropillars in the cell interior [56, 198,
199]. Furthermore, our framework could be extended to study the role of cytoskeletal
anisotropy in cell motility, for instance by taking into account the dynamics of focal ad-
hesions [136, 189], biochemical pathways in the actin cytoskeleton [124], actin �lament
turnover and the viscoelasticity of stress �bers [206, 207], or cellular protrusions and
retractions [216]. Finally, our approach could be extended to computational frameworks
such as vertex models, Cellular Potts Models (see Chapter 4), or phase �eld models [84],
and could provide a starting point for exploring the role of anisotropy in multicellular
environments such as tissues [111, 217–223].

3.6 Appendix

3.6.1 Derivation of Eqs. (3.5) and (3.6)
In this section, we show how Eqs. (3.5) and (3.6) in Section 3.2.1 follow from Eq. (3.4).
Without loss of generality, we orient the reference frame such that the stress �bers are
parallel to the y−axis. Thus, θSF = π/2 and n = ŷ (see Figure 3.2). Since we assume α,
σ and n to be constant along an arc, Eq. (3.4) can be expressed as a total derivative and
integrated directly. This yields

λT + (σÎ + αnn) · r⊥ = C1 , (3.28)

where C1 = (C1x, C1y) is an integration constant. Decomposing Eq. (3.28) into x− and
y−directions yields

λ cos θ = C1x + σy (3.29a)
λ sin θ = C1y − (α+ σ)x . (3.29b)
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Next, taking the ratio of Eqs. (3.29), using tan θ = dy/dx and integrating, we obtain
a general solution for the shape of the cellular arc subject to a non-vanishing isotropic
stress (i.e., σ 6= 0), namely

1

γ
(x− xc)2 + (y − yc)2 = C2 , (3.30)

where C2 is another integration constant and we have set

xc =
C1y

σ + α
, yc = −C1x

σ
, γ =

σ

σ + α
.

Eq. (3.30) describes an ellipse centered at (xc, yc) and whose minor and major semi-axis
are a =

√
γC2 and b =

√
C2. Using again Eqs. (3.29), we further obtain an expression

for the line tension λ as a function of x and y:

λ2 = σ2(y − yc)2 + (σ + α)2(x− xc)2 . (3.31)

Using Eqs. (3.29) and (3.30), this can be also expressed as a function of the turning angle
θ, namely

λ2

σ2
= C2

1 + tan2 θ

1 + γ tan2 θ
. (3.32)

This expression highlights the physical meaning of the integration constant C2. The
right-hand side of Eq. (3.32) attains its minimal value (C2) where θ = 0, hence when the
tangent vector is perpendicular to the stress �bers (i.e., n ·T = 0). Thus C2 = λ2

min/σ
2,

where λmin is the minimal tension withstood by the cortical actin. SubstitutingC2 in Eq.
(3.32) then yields Eq. (3.5). The maximum value of the line tension is found at θ = π/2,
where the stress �bers are parallel to the arc, and is given by λmax = λmin/

√
γ.

Substituting C2 in Eq. (3.30) yields an implicit representation of the plane curve
approximating individual cellular arcs, namely

σ2

γλ2
min

(x− xc)2 +
σ2

λ2
min

(y − yc)2 = 1 . (3.33)

This equation describes an ellipse centered at the point (xc, yc) and oriented along the
y−direction, whose minor and major semi-axes are a = λmin

√
γ/σ and b = λmin/σ

respectively (Figure 3.2). For arbitrary stress �ber orientation θSF, Eq. (3.33) can be
straightforwardly generalized to �nd Eq. (3.6).

3.6.2 Numerical methods

Integration scheme Here we describe step by step the integration scheme that we
use to generate the results shown in Figures 3.4-3.8.

1) Initialization.
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1a) De�ne the positions of the adhesion sites. In Figures 3.4 and 3.5 these are the four
corners of a square or rectangle. For the comparison to experimental data (Figures 3.6-
3.8), the locations of the adhesion sites are directly determined from the experiments by
detecting the pillars along the cell contour that are subject to the largest traction forces
(see Section 2.5). These adhesion sites are �xed during the simulation.

1b) De�ne the initial cell boundary, consisting of cellular arcs that connect adjacent
adhesion sites. Cellular arcs are parameterized in terms of a discrete number of vertices
connected by straight edges in a chain-like manner. The initial cellular arcs are straight
lines connecting two adhesion sites. Hence, at t = 0 the cell boundary is an irregular
polygon.

1c) De�ne the initial cell bulk, which represents the cytoskeleton, as the region en-
closed by the initial cell boundary. The bulk is discretized as a regularly spaced two-
dimensional square lattice with Q̂ de�ned at every lattice point. Each lattice point ini-
tially obtains random values for the orientation −π/2 ≤ θSF ≤ π/2 and the nematic
order parameter 0 ≤ S ≤ 1, from which Q̂ is calculated using Eq. (3.16). Evidently,
the initial con�guration bears no resemblance to a real cell, but it reduces the risk of a
possible bias in the �nal con�guration.

2) Cell con�guration updates. Perform the following steps for a prede�ned number
of iterations, which is chosen such that both the cell edge and the cell bulk reach a
steady-state con�guration.

2a) Update the cell boundary for a single time step ∆t by discretizing Eqs. (3.23) and
(3.24a). For details, see below.

2b) Update the cell bulk. First, the bulk is rede�ned as the region enclosed by the
updated cell boundary (step 2a). In case of inclusion of a new lattice point that was
previously located outside the cell, the associated Qxx and Qxy values are generated by
averaging over the nearest neighbours (horizontally and vertically, not diagonally) that
were inside the cell during the previous time step. In case of removal of a lattice point,
the data at that lattice point are discarded. Then, Q̂ is updated at every lattice point for
a single time step ∆t by discretizing Eq. (3.24b). For details, see below.

3) The �nal con�gurations are plotted in Figures 3.4-3.6 and 3.8. The cytoskeleton
has been visualized with Mathematica Version 11.3 (Wolfram Research, Champaign, IL)
using the line integral convolution tool. When using this tool we de�ne S = 1 outside
the cell, while θSF is not de�ned outside the cell. In some cases this can lead to small
artefacts in the visualisation near the cell edge.

Cell contour update In order to update the position of the cell contour, we �rst cal-
culate the line tension λ by discretizing Eq. (3.23) as follows:

λk = λ0 − α0

k∑
n=1

∆sn T n ·
〈
Q̂n

〉
·Nn , k = 1, 2 . . . Narc , (3.34)

where λ0 is the line tension at the adhesion site at s = 0 (position r0) and λk is the line
tension at vertex k (position rk). Narc is the total number of vertices in which cellular
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arcs are discretized, and λNarc represents the line tension at the other adhesion site.
Furthermore, ∆sn = |rn − rn−1|, T n = (rn − rn−1)/∆sn, Nn = T⊥n and〈

Q̂n

〉
=

Q̂n + Q̂n−1

2
, (3.35)

with Q̂n and Q̂n−1 the nematic tensor at the vertices n and n− 1. These are set equal
to Q̂ at the closest bulk lattice point inside the cell among the four points, delimiting
the unit cell of the bulk lattice, containing the edge vertices n and n− 1 respectively. If
none of these is inside the cell, we setQxx,n = Qxy,n = 0. The quantity λ0 is calculated
in such a way that the minimal λ value along an arc equates the input parameter λmin,
representing the minimal tension withstood by the cortical actin.

Next, the position of the vertices rk , k = 0, 1 . . . Narc is updated upon integrating
Eq. (3.24a) using the forward Euler method with time step ∆t. The curvature and normal
vector at vertex k, κk and Nk , are found by constructing a circle with radius R through
vertices k − 1, k, and k + 1. The vector from vertex k to the center of the circle is then
equated to±RNk , with the sign such that Nk is an inward pointing normal vector, and
κk = ±1/R, with a negative sign for a concave shape and a positive sign for a convex
shape. Along each arc, r0 and rNarc represent the positions of the adhesion sites and
are kept �xed during simulations.

Cell bulk update Eq. (3.24b) is numerically solved at each lattice point inside the cell
via a �nite-di�erence scheme. Time integration is performed using the forward Euler
method with time step ∆t, whereas spatial derivatives are calculated using the centered
di�erence approximation. In order to calculate derivatives at lattice points located in
proximity of the edge, we use the boundary conditions, speci�ed in Eq. (3.20), to express
the values of Qxx and Qxy in a number of ghost points located outside the cell. This is
conveniently done upon identifying three possible scenarios, illustrated in Figure 3.9. 1)
There is a single ghost point on the x− or y−axis (Figure 3.9A). 2) There are two ghost
points, one on each axis (Figure 3.9B). 3) There are two ghost points on the same axis
and possibly a third one on the other axis (Figure 3.9C). In the following, we explain how
to address each of these cases.

1) Using the centered di�erence approximation for the �rst derivative yields the
following expression of the nematic tensor at a ghost point located at (x ± ∆x, y) or
(x, y ±∆y), with ∆x = ∆y the lattice spacing:

Qij(x±∆x, y) = Qij(x∓∆x, y)± 2∆x ∂xQij(x, y) , (3.36a)
Qij(x, y ±∆y) = Qij(x, y ∓∆y)± 2∆y ∂yQij(x, y) . (3.36b)

The derivative with respect to x in Eq. (3.36a) can be calculated from Eq. (3.20), upon
taking N = ±x̂, where the plus (minus) sign correspond to a ghost point located on
the left (right) of the central edge point. Thus N · ∇Qij = ±∂xQij . Analogously, the
derivative with respect to y in Eq. (3.36b), is approximated as N · ∇Qij = ±∂yQij ,
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B

Internal grid point

A C

Ghost point Central grid point

Figure 3.9. Schematic overview of the three geometrical situations described in Section 3.6.2. (A)
There is a single ghostpoint on the x− or y−axis. (B) There are two ghost points, one on each
axis. (C) There are two ghost points on the same axis and possibly a third one on the other axis.

where the plus (minus) sign corresponds to a ghost point located below (above) the
central edge point. Combining this with Eq. (3.20), yields:

Qij(x±∆x, y) = Qij(x∓∆x, y)− 4∆x
W

K
[Qij(x, y)−Q0,ij(x, y)] , (3.37a)

Qij(x, y ±∆y) = Qij(x, y ∓∆y)− 4∆y
W

K
[Qij(x, y)−Q0,ij(x, y)] . (3.37b)

The tensor Q0,ij is evaluated via Eq. (3.18) using the local orientation of the cell edge.
2) If a given lattice point is linked to ghost points in both thex− and y−directions, we

evaluate equation (3.37) for both directions independently as explained in the previous
paragraph.

3) If a given lattice point is linked to two ghost points in either the x− or y−direction,
we employ a forward or backward �nite di�erence approximation for the �rst spatial
derivative of Qij to evaluate Qij at the ghost points. This yields:

Qij(x±∆x, y) = Qij(x, y)− 2∆x
W

K
[Qij(x, y)−Q0,ij(x, y)] , (3.38a)

Qij(x, y ±∆y) = Qij(x, y)− 2∆y
W

K
[Qij(x, y)−Q0,ij(x, y)] . (3.38b)

Finally, if the given lattice point is also linked to a ghost point on the other axis, this is
evaluated independently using Eq. (3.37).

3.6.3 Estimate of the nematic order parameter via OrientationJ

In this section, we demonstrate how the nematic director and order parameter can be
estimated from experimental data. First, the locations of the cell interior and the cell
edge were found by applying a low-pass �lter on the images using Matlab. The in-
terior of the cell was then sampled by overlaying a square lattice of 512 × 512 pixels

62



3.6. APPENDIX

(1 pixel = 0.138× 0.138 µm2) on the microscope �eld-of-view (Figures 3.6A and 3.8A-
E). For all pixels that are inside the cell, the nematic tensor was calculated using ImageJ
with the OrientationJ plugin [177] in the following way. Given the intensity I(x0, y0)
of the image (channel with TRITC-Phalloidin) at the point (x0, y0), we de�ned the sym-
metric 2 × 2 matrix Ĵ = 〈∇I∇I〉, where 〈· · · 〉 =

∫
w(x, y)dx dy (· · · ) represents

a weighted average with w(x, y) a Gaussian with a standard deviation of �ve pixels
(0.69 µm) centered at (x0, y0). The Ĵ matrix can be expressed as:

Ĵ = (Λmin − Λmax)

(
eminemin −

1

2
Î

)
+

Λmax + Λmin

2
Î , (3.39)

where Λmax and Λmin are the largest and smallest eigenvalues of Ĵ , emin the eigenvector
corresponding to Λmin, and Î the two-dimensional identity matrix. The Ĵ matrix was
then used to estimate the average stress �ber direction u:

〈∇I∇I〉
〈|∇I|2〉

= Î − 〈uu〉 . (3.40)

Here, the quantity Î−〈uu〉 re�ects that the largest gradients in intensity are perpendicu-
lar to the orientation of the stress �bers and 〈|∇I|2〉 = tr Ĵ = Λmax +Λmin. Combining
Eqs. (3.39) and (3.40), we obtain〈

uu− 1

2
Î

〉
=

Λmax − Λmin

Λmax + Λmin

(
eminemin −

1

2
Î

)
. (3.41)

Comparing this with the de�nition of the nematic tensor:

Q̂ =

〈
uu− 1

2
Î

〉
= S

(
nn− 1

2
Î

)
, (3.42)

we found the nematic order parameter S and the nematic director n at each pixel:

S =
Λmax − Λmin

Λmax + Λmin
, n = (cos θSF, sin θSF) = emin . (3.43)

We note that the order parameter is identical to the coherence parameter de�ned in
Chapter 2: S = C . If a pixel has zero actin expression, I(x0, y0) = 0, and consequently
S = 0.

The data were further coarse-grained in blocks of 8 × 8 pixels corresponding to
regions of size 1.104 × 1.104µm2 in real space. This results in a new 64 × 64 lattice.
The value of the nematic tensor in the new coarse-grained pixels was obtained from
an average over those of the original 8 × 8 pixels located inside the cell. In turn, the
coarse-grained pixels were considered inside the cell if more than half of the original
pixels were inside the cell.
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3.6.4 Supporting �gures
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Figure 3.10. Con�gurations of cells whose adhesion sites are located at the vertices of a square.
The thick black line represents the cell boundary, the black lines in the interior of the cells rep-
resent the orientation �eld n = (cos θSF, sin θSF) of the stress �bers and the background color
indicates the local nematic order parameter S. The spatial averages of the order parameter S
are given, from left to right, by: 0.74; 0.76; 0.80 (top row), 0.90; 0.91; 0.92 (middle row), and
1.0; 1.0; 1.0 (bottom row). On the vertical axis the anchoring number An = WR/K is varied
(An = 0, 1, 10, with R the length of the square side) and on the horizontal axis the ratio between
the isotropic bulk stress σ and the directed bulk stress α0 ((σd/λmin = 1, α0d/λmin = 0),
(σd/λmin = 0.5, α0d/λmin = 1), and (σd/λmin = 0, α0d/λmin = 2), while λmin is con-
stant, and with d equal to the square side. The ratios λmin∆t/(ξtR

2) = 2.8 · 10−6 and
K∆t/(ξrR

2) = 2.8 · 10−6, and the parameters δ = 0.15R, Narc = 20, and ∆x = R/19
are the same for all cells. The number of iterations is 5.5 · 105.
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Aspect Ratio
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Figure 3.11. E�ect of the aspect ratio of the cell, ranging from 1 to 4, on cytoskeletal organization
for cells whose four adhesion sites are located at the vertices of rectangles with the same area
A. The thick black line represents the cell boundary, the black lines in the interior of the cells
represent the orientation �eld n = (cos θSF, sin θSF) of the stress �bers and the background
color indicates the local nematic order parameter S. The spatial averages of the order parameter
S are given, from left to right, by: 0.92; 0.95; 0.96. The simulations shown are performed with
An = WR/K equal to 1, 0.67, and 0.5 respectively, where R is equal to the short side of the
rectangle, and Co = σd/λmin equal to 0.125, 0.1875, and 0.25 respectively, where d is equal to
the long side of the rectangle. The ratios σ/(σ + α0) = 1/9, λmin∆t/(ξtA) = 2.8 · 10−6, and
K∆t/(ξrA) = 2.8 · 10−6, and the parameters δ = 0.15R and ∆x = R/19 are the same for all
cells. Narc = 20, 30, 40 from left to right and the number of iterations is 5.5 · 105.
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Figure 3.12. Con�gurations of cells whose adhesion sites are located at the vertices of a rectangle
of aspect ratio 2. The thick black line represents the cell boundary, the black lines in the interior
of the cells represent the orientation �eld n = (cos θSF, sin θSF) of the stress �bers and the
background color indicates the local nematic order parameter S. The spatial averages of the order
parameter S are given, from left to right, by: 0.88; 0.86; 0.87 (top row), 0.97; 0.96; 0.96 (middle
row), and 1.0; 1.0; 1.0 (bottom row). The vertical axis corresponds to the anchoring number An =
WR/K and the horizontal axis to the contractility number Co = σd/λmin. The cells shown
correspond to values ofAn = 0, 1, 10 andCo = 0, 0.25, 0.50, withR the short side of the rectangle
and d the long side of the rectangle. The ratios σ/(σ+α0) = 1/9, λmin∆t/(ξtR

2) = 2.8 · 10−6,
and K∆t/(ξrR

2) = 2.8 · 10−6, and the parameters δ = 0.15R, Narc = 40, and ∆x = R/19 are
the same for all cells. The number of iterations is 5.5 · 105.
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3.6. APPENDIX
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Figure 3.13. Con�gurations of cells whose adhesion sites are located at the vertices of a rectangle
of aspect ratio 2. The thick black line represents the cell boundary, the black lines in the interior
of the cells represent the orientation �eld n = (cos θSF, sin θSF) of the stress �bers and the
background color indicates the local nematic order parameter S. The spatial averages of the order
parameter S are given, from left to right, by: 0.84; 0.85; 0.87 (top row), 0.94; 0.96; 0.96 (middle
row), and 1.0; 1.0; 1.0 (bottom row). On the vertical axis the anchoring number An = WR/K is
varied (An = 0, 1, 10, with R the short side of the rectangle) and on the horizontal axis the ratio
between the isotropic bulk stress σ and the directed bulk stress α0 ((σd/λmin = 1, α0d/λmin =
0), (σd/λmin = 0.5, α0d/λmin = 1), and (σd/λmin = 0, α0d/λmin = 2), whileλmin is constant,
and with d equal to the long side of the rectangle. The ratios λmin∆t/(ξtR

2) = 2.8 · 10−6 and
K∆t/(ξrR

2) = 2.8 · 10−6, and the parameters δ = 0.15R, Narc = 40, and ∆x = R/19 are the
same for all cells. The number of iterations is 5.5 · 105.
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CHAPTER 3. MECHANICAL INTERPLAY BETWEEN CELL SHAPE AND ACTIN CYTOSKELETON
ORGANIZATION
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Figure 3.14. Residual function ∆2, de�ned in Eq. (3.27), as a function of the anchoring
number An [Eq. (3.26)] for the cells displayed in Figures 3.8A-E, which correspond to the
magenta, red, blue, grey, and purple data respectively. The minima are given by ∆2 =
0.016; 0.058; 0.057; 0.034; 0.037 for the cells displayed in Figures 8A-E, at values of An =
4.4; 4.1; 19; 4.6; 4.7, where R = 17.3; 24.4; 39.9; 24.9; 25.3 µm is de�ned as the square root of
the cell area. These An values correspond toK/W = 3.9; 5.9; 2.1; 5.4; 5.4µm. Error bars display
the standard deviation obtained using jackknife resampling. For large An values the residual �at-
tens for all cells, indicating that the actual value of An becomes unimportant once the anchoring
torques (with magnitude W ), which determine the tangential alignment of the stress �bers in the
cell’s periphery, outcompete the bulk elastic torques (with magnitude K).
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