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Part I

Mechanics of the cytoskeleton

13





Chapter 2

Cytoskeletal anisotropy

controls geometry and

forces of adherent cells

This chapter is the result of a collaboration with Wim Pomp, Hayri E. Balcıoǧlu, Hedde
van Hoorn, Erik H.J. Danen, and Thomas Schmidt, who performed the experiments and
analyzed the experimental data. The chapter is reprinted with permission, copyright
2018 by the American Physical Society. The chapter is published as:

Wim Pomp∗, Koen Schakenraad∗, Hayri E. Balcıoǧlu, Hedde van Hoorn, Erik H.J. Danen,
Roeland M.H. Merks, Thomas Schmidt, and Luca Giomi, ‘Cytoskeletal Anisotropy Con-
trols Geometry and Forces of Adherent Cells’, Physical Review Letters 121, 178101
(2018)

Abstract

We investigate the geometrical and mechanical properties of adherent cells char-
acterized by a highly anisotropic actin cytoskeleton. Using a combination of the-
oretical work and experiments on micropillar arrays, we demonstrate that the
shape of the cell edge is accurately described by elliptical arcs, whose eccentri-
city expresses the degree of anisotropy of the internal cell stresses. This results in
a spatially varying tension along the cell edge, that signi�cantly a�ects the trac-
tion forces exerted by the cell on the substrate. Our work highlights the strong
interplay between cell mechanics and geometry and paves the way toward the
reconstruction of cellular forces from geometrical data.

∗These authors contributed equally to this work
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CHAPTER 2. CYTOSKELETAL ANISOTROPY CONTROLS GEOMETRY AND FORCES OF ADHERENT
CELLS

2.1 Introduction

Cells, from simple prokaryotes to the more complex eukaryotes, are capable of aston-
ishing mechanical functionalities. They can repair wounded tissues by locally contract-
ing the extracellular matrix [159], move in a �uid or on a substrate [160], and generate
enough force to split themselves in two while remaining alive [161]. Conversely, cell
behavior and fate crucially depend on mechanical cues from outside the cell [162–166].
Examples include rigidity-dependent stem cell di�erentiation [28, 30], protein expres-
sion regulated by internal stresses [167], mechanical cell-cell communication [168] and
durotaxis [132, 169]. In all these biomechanical processes, cells rely on their shape [64,
170, 171] to gauge the mechanical properties of their microenvironment [172] and direct
the traction forces exerted on their surroundings.

In recent years, experiments on adhesive surfaces have contributed to explore such
mechanical complexity in a controlled setting [48]. Immediately after coming into con-
tact with such a surface, many animal cells spread and develop transmembrane adhesion
receptors. This induces the actin cytoskeleton to reorganize into cross-linked networks
and bundles (i.e., stress �bers [46, 47]), whereas adhesion becomes limited to a number of
sites, distributed mainly along the cell contour (i.e., focal adhesions [54]). At this stage,
cells are essentially �at and assume a typical shape characterized by arcs which span
between the sites of adhesion, while forces are mainly contractile [48]. On timescales
much shorter than those required by a cell to change its shape (i.e., minutes), the cell can
be considered in mechanical equilibrium at any point of its interface. These observations
have opened the way to the use of theoretical concepts inspired by the physics of �uid
interfaces [48, 62–64], but limited to the case of cells with an isotropic cytoskeleton.

In this chapter, we overcome this limitation and explore the geometry and the me-
chanical properties of adherent cells characterized by a highly anisotropic actin cyto-
skeleton. Using a combination of theoretical modeling, spinning disk confocal micro-
scopy, and traction-force microscopy of living cells cultured on microfabricated elas-
tomeric pillar arrays [55–57], we demonstrate that both the shape of and the traction
forces exerted by adherent cells are determined by the anisotropy of their actin cyto-
skeleton. In particular, by comparing di�erent cell types [173], we demonstrate that the
cell contour consists of arcs of a unique ellipse, whose eccentricity expresses the degree
of anisotropy of the internal stresses.

2.2 The model

We model adherent cells as two-dimensional contractile �lms [65, 66], and we focus
on the shape of the cell edge connecting two consecutive adhesion sites. Mechanical
equilibrium requires the di�erence between the internal and external stresses acting on
the cell edge to balance the contractile forces arising in the cortex:

dF cortex

ds
+ (Σ̂out − Σ̂in) ·N = 0 . (2.1)
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2.2. THE MODEL

Here Σ̂out and Σ̂in are the stress tensors outside and inside the cell and F cortex is the
stress resultant along the cell cortex. The latter is parametrized as a one-dimensional
curve spanned by the arc-length s and oriented along the inward pointing normal vec-
tor N . A successful approach, initially proposed by Bar-Ziv et al. in the context of cell
pearling [62] and later expanded by Bischofs et al. [63, 64], consists of modeling bulk
contractility in terms of an isotropic pressure Σ̂out− Σ̂in = σÎ , with Î the identity ma-
trix, and peripheral contractility as an interfacial tension of the formF cortex = λT , with
T a unit vector tangent to the cell edge. The quantities σ and λ are material constants
that embody the biomechanical activity of myosin motors in the actin cytoskeleton. This
competition between bulk and peripheral contractility along the cell boundary results
in the formation of arcs of constant curvature 1/R = σ/λ, through a mechanism ana-
logous to the Young-Laplace law for �uid interfaces. The shape of the cell boundary is
then approximated by a sequence of circular arcs, whose radius R might or might not
be uniform across the cell, depending on how the cortical tension λ varies from arc to
arc. The possibility of an elastic origin of the cortical tension was also explored in Ref.
[63] to account for an apparent correlation between the curvature and length L of the
cellular arcs. In this case λ = k(L − L0)/L0, with k an elastic constant and L0 a rest
length. Both models successfully describe the geometry of adherent cells in the presence
of strictly isotropic forces.

Yet, many cells, including the �broblastoids (GDβ1, GDβ3) and epithelioids (GEβ1,
GEβ3) [173] studied here [Figure 2.1a], develop directed forces by virtue of the strong
anisotropic cytoskeleton originating from the actin stress �bers [46, 47]. This scenario is,
evidently, beyond the scope of models based on isotropic contractility. Indeed, long cel-
lular arcs appear prominently non-circular, as indicated by the fact that their curvature
smoothly varies along the arc up to a factor ten [Figure 2.5a in the Appendix]. Further-
more, whereas the shape of the cell edge in Figure 2.1a can in principle be approximated
by circular arcs, a survey of a sample of 285 cells [Figure 2.5b in the Appendix] did not
allow conclusive statements about a possible correlation between the arc’s length and
curvature, required to justify the variance in λ [63, 64]. On the other hand, our data
show a signi�cant correlation between the radius of curvature of the cellular arcs and
their orientation with respect to the stress �bers [Figure 2.1b]. In particular, the radius
of curvature decreases as the stress �bers become more perpendicular to the cell cortex
[Figure 2.1c]. This correlation is intuitive as the bulk contractile stress focuses in the
direction of the stress �bers.

The anisotropy of the actin cytoskeleton can be incorporated into the mechanical
framework summarized by Eq. (2.1), by modeling the stress �bers as contractile force
dipoles. This collectively gives rise to a directed contractile bulk stress, such that Σ̂out−
Σ̂in = σÎ+αnn [102, 103, 174], withn = (cos θSF, sin θSF) the average direction of the
stress �bers [Figure 2.1b]. The quantity α > 0 represents the magnitude of the directed
contractile stresses and is proportional to the local degree of alignment between the
�bers. The higher the alignment, the larger α, whereas in the case of randomly oriented
�bersα = 0, thus recovering the isotropic case. The ratio between isotropic contractility
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CHAPTER 2. CYTOSKELETAL ANISOTROPY CONTROLS GEOMETRY AND FORCES OF ADHERENT
CELLS

Figure 2.1. (a) A cell with an anisotropic actin cytoskeleton (epithelioid GEβ3) with circles (white)
�tted to its edges (green). The end points of the arcs (cyan) are identi�ed based on the forces ex-
erted on the pillars, see Materials and Methods in Section 2.5. The actin cytoskeleton is visualized
with tetramethyl isothiocyanate rhodamine phalloidin (red). Scale bar is 10 µm. (b) The cell cortex
(red line) is spanned in segments between �xed adhesion sites (blue). (c) Arc radius as a function
of the sine of the angle θSF − φ, between the local orientation of the stress �bers and that of the
distance between the adhesion sites (data correspond to a sample of 285 cells and show the mean
± standard deviation).

σ and directed contractility αmeasures the degree of anisotropy of the bulk stress. With
this stress tensor the force balance [Eq. (2.1)] becomes

dλ

ds
T + (λκ+ σ)N + α(n ·N)n = 0 , (2.2)

where we use dT /ds = κN , with κ the curvature of the cell edge. This implies that,
in the presence of an anisotropic cytoskeleton, the cortical tension λ is no longer con-
stant along the cell cortex, as long as the directed stress has a non-vanishing tangential
component (i.e., n · T 6= 0). As shown by Kassianidou et al. [175], isolated stress �bers
can also exert localized contractile forces on the cell contour, leading to kinks and piece-
wise constant curvature. Consistent with our experiments, here we consider the case
in which the density of the stress �bers is su�ciently high and uniform to approximate
their mechanical e�ect in terms of a continuous anisotropic stress.
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2.3. RESULTS AND DISCUSSION

2.3 Results and discussion

In the following, we introduce a number of simpli�cations that make the problem analyt-
ically tractable. As the orientation of the stress �bers varies only slightly along a single
cellular arc [Figure 2.2a, and Figures 2.7 and 2.8 in the Appendix], we assume θSF to be
constant along each arc, but di�erent, in general, from arc to arc. Furthermore, as all
the arcs share the same bulk, we assume the bulk stresses σ and α uniform throughout
the cell. Under these assumptions a general solution of Eq. (2.2) can be readily obtained.
Taking T = (cosϕ, sinϕ), N = (− sinϕ, cosϕ), with ϕ the orientation of the tangent
vector T with respect to an axis perpendicular to the stress �bers [Figure 2.2a], and
tanϕ = dy/dx, with (x, y) the position of the cell contour, yields:

σ2

γλ2
min

[(x− xc) sin θSF − (y − yc) cos θSF]
2

+
σ2

λ2
min

[(x− xc) cos θSF + (y − yc) sin θSF]
2

= 1 , (2.3)

where γ = σ/(σ + α) and λmin is an integration constant related with cortical tension
and whose physical interpretation will become clear later. Eq. (2.3) describes an ellipse
of semiaxes a =

√
γ λmin/σ and b = λmin/σ, centered at the point (xc, yc) and whose

major axis is parallel to the stress �bers, hence tilted by an angle θSF with respect to the
x axis (Figure 2.2). The dimensionless quantity γ highlights the anisotropy of the forces
acting on the cell contour. Thus, γ = 0 corresponds to the case in which the directed
forces outweigh the isotropic ones, whereas γ = 1 re�ects the purely isotropic case.
Further details can be found in Section 2.6.1 in the Appendix and in Chapter 3.

The key prediction of our model is illustrated in Figure 2.2b, where we have �tted
the contour of the same cell shown in Figure 2.1a with ellipses. More examples are
shown in Figures 2.7 and 2.8 in the Appendix. Whereas large variations in the circles’
radii were required in Figure 2.1a, a unique ellipse (γ = 0.52, λmin/σ = 13.4µm)
faithfully describes all the arcs in the cell. The directions of the major axes were �xed
to be parallel to the local orientations of the stress �bers in the �t. To test the accuracy
of this latter choice, we �tted unconstrained and independent ellipses to all cellular arcs
in our database. The distribution of the di�erence between the orientation θellipse of the
major axis of the �tted ellipse and the measured orientation θSF of the stress �bers is
shown in Figure 2.2c. The distribution peaks at 0◦ and has a width of 36◦, demonstrating
that the orientation of the ellipses is parallel, on average, to the local orientation of the
stress �bers as predicted by our model.

Eq. (2.2) further allows to analytically calculate the cortical tension λ. Namely,

λ(ϕ) = λmin

√
1 + tan2 ϕ

1 + γ tan2 ϕ
. (2.4)

The function λ attains its minimum value at the point along the cellular arc whereϕ = 0
and λ(0) = λmin, see also Figure 2.6 in the Appendix. Here, the cortical tension has no
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Figure 2.2. (a) Schematic representation of our model for θSF = π/2. All cellular arcs are part of
a unique ellipse of aspect ratio a/b =

√
γ. The cell exerts forces F 0 and F 1 on the adhesion sites

(blue) with magnitude λ(ϕ0) and λ(ϕ1). (b) An epithelioid cell (GEβ3; same cell as in Figure 2.1a)
with a unique ellipse (yellow) �tted to its edges (green). The end points of the arcs (cyan) are
identi�ed based on the forces exerted on the pillars, see Materials and Methods in Section 2.5.
The �tted values of the ellipses’ major and minor axes are, respectively, 13.38 ± 0.04µm and
9.65± 0.02µm. The major axes (yellow lines) are parallel to the stress �bers. Their orientations
are found to be, in counterclockwise order from the nearly vertical ellipse in the bottom right
corner, θSF = 93± 4◦, 28± 5◦, 110± 2◦, 139± 6◦, 127± 3◦, 125± 2◦, 133± 2◦, 130± 3◦

with respect to the horizontal axis of the image. Scalebar is 10 µm. (c) Histogram of θellipse− θSF,
with θellipse the orientation of the major axis of the �tted ellipse and θSF the measured orientation
of the stress �bers. The mean of this distribution is 0◦ and the standard deviation is 36◦.

contribution from the directed stress (i.e., n · T = 0), thus λmin represents the minimal
tension withstood by the cortical actin. Although the latter could, in principle, be arc-
dependent, for instance in the presence of substantial variations in the actin densities
[63], here we approximate λmin as a constant. Thus σ, α and λmin represent the material
parameters of our model.

Eqs. (2.3) and (2.4) are combined to predict the traction force exerted by the cell at a
speci�c adhesion site by adding the cortical tension λT along the two cellular arcs join-
ing at the adhesion site. We emphasize that this analysis yields information on cellular
forces solely based on the analysis of cell shape. For example, the direction of the trac-
tion forces is calculated without additional �tting parameters. We compare the result
with the direction of the traction force measured with a micropillar array technology
[55–57]. An example is shown in Figure 2.3a for one of the adhesion sites of the cell
in Figure 2.2b; more examples are shown in Figures 2.7 and 2.8 in the Appendix. The
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Figure 2.3. (a) Enlargement of one adhesion site of the cell in the previous �gures. Actin is shown
in red, the cell edge in green, and the tops of the micropillars in blue. The lines represent the �tted
circle (white) and ellipse (yellow). The arrows correspond to the measured forces (green) and the
predicted directions (but not magnitudes) of the forces in the presence of isotropic (α = 0, white
arrow) and anisotropic (α 6= 0, yellow arrow) contractile stresses. Scale bar is 2 µm. (b) Histogram
(shown as a probability density) of θforce − θshape for isotropic (black) and anisotropic (orange)
contractile stresses. Both the distributions are centered around 0◦, the standard deviations are 60◦

and 40◦ for the isotropic and anisotropic models, respectively.

arrows mark the direction of the measured traction force (green) and that calculated by
approximating the cell shape with ellipses (yellow). As a comparison, Figure 2.3a also
shows a prediction based on circles from the isotropic model (white) [63, 64].

In Figure 2.3b, we show the distribution of the di�erence θforce− θshape between the
measured orientation of the traction forces and that calculated from our model, across
the entire cell population. The predicted distribution is centered at 0◦ and has a width
of 40◦. As a comparison, we also plot the result for the isotropic model, which displays
a larger standard deviation of about 60◦. This shows that not only cell shape, but also
adhesion forces are profoundly a�ected by the anisotropy of the cytoskeleton.

Finally, our model allows us to obtain quantitative information on the relative mag-
nitude of isotropic and anisotropic stresses. In Tables 2.1 and 2.2 (Appendix) we report a
survey of the material parameters over a sample of 285 cells. Despite the large variability
among the cell population, the directed stress α is consistently larger than the isotropic
stress σ, re�ecting the high anisotropy of the adherent cell types used here.

Table 2.1. Survey of the average material parameters in a sample of 285 �broblastoid and epithe-
lioid cells.

γ λmin (nN) σ (nN/µm) α (nN/µm)
0.33± 0.20 7.6± 5.6 0.87± 0.70 1.7± 1.7

21



CHAPTER 2. CYTOSKELETAL ANISOTROPY CONTROLS GEOMETRY AND FORCES OF ADHERENT
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2.4 Conclusion

In conclusion, we have investigated the geometrical and mechanical properties of adher-
ent cells characterized by an anisotropic actin cytoskeleton, by combining experiments
on micropillar arrays with simple mechanical modeling. We have predicted and tested
that the shape of the cell edge consists of arcs that are described by a unique ellipse,
whose major axis is parallel to the orientation of the stress �bers. The model allowed
us to obtain quantitative information on the values of the isotropic and anisotropic con-
tractility of cells. In the future, we plan to use our model in combination with experi-
ments on micropatterns (see, e.g., Refs. [58, 176]), where cellular shape can be controlled,
thus allowing higher reproducibility of the results and more systematic statistical ana-
lysis of the data.

2.5 Materials and methods

2.5.1 Cell culture and �uorescent labeling

Epithelioid GE11 and �broblastoid GD25 cells [173] expressing either α5β1 or αvβ3
(GDβ1, GDβ3, GEβ1 and GEβ3) have been cultured as described before [172]. GDβ1,
GDβ3, GEβ1 and GEβ3 are approximately equally represented among the 285 cells in
the data presented here. Cells have cultured in medium (DMEM; Dulbecco’s Modi�ed
Eagle’s Medium, Invitrogen/Fisher Scienti�c) supplemented with 10% fetal bovine serum
(HyClone, Etten-Leur, The Netherlands), 25 U/ml penicillin and 25 µg/ml streptomycin
(Invitrogen/Fisher Scienti�c cat. # 15070-063). Cells were �xed in 4% formaldehyde and
then permeabilised with 0.1% Triton-X and 0.5% BSA in PBS. Tetramethylrhodamine
(TRITC)-Phalloidin (Fisher Emergo B.V. cat. # A12380, Thermo Fisher) was subsequently
used to stain F-actin.

2.5.2 Micropillar arrays

Micropillar arrays were made out of a soft elastomeric material (PDMS) using a negative
silicon wafer as a mask as described before [55, 57]. Brie�y, the 2 µm diameter micropil-
lars are arranged in a hexagonal pattern with a 4 µm center-to-center distance. The
micropillars have a height of 6.9 µm, resulting in a sti�ness of 16.2 nN/µm. The pillar
tops were �uorescently labelled using an Alexa 405-�bronectin conjugate (Alexa Fluor®,
Invitrogen/Fisher Scienti�c, Breda, The Netherlands; Fibronectin cat. #1141, Sigma Ald-
rich, Zwijndrecht, The Netherlands). Pillar de�ections were determined with ∼30 nm
precision using a speci�cally designed Matlab script resulting in a ∼0.5 nN precision in
force [55].
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2.5. MATERIALS AND METHODS

2.5.3 Imaging

High-resolution imaging was performed on an in-house constructed spinning disk
confocal microscope based on an Axiovert200 microscope body with a Zeiss Plan-
Apochromat 100× 1.4NA objective (Zeiss, Sliedrecht, The Netherlands) and a CSU-X1
spinning disk unit (CSU-X1, Yokogawa, Amersfoort, The Netherlands). Imaging was
done using an emCCD camera (iXon 897, Andor, Belfast, UK). Alexa405 and TRITC were
exited using 405 nm (Crystalaser, Reno, NV) and 561 nm (Cobolt, Stockholm, Sweden)
lasers, respectively. This results in a resolution of approximately 150 nm and 200 nm
respectively, enough to distinguish separate stress �bers which are typically separated
by about 1.5 µm.

2.5.4 Image analysis

All image analysis and ellipse �tting are performed using Matlab®, except the deter-
mination of the stress �ber orientation, for which ImageJ with the OrientationJ plugin
[177] was used. The micropillar array allows measuring forces that the cell exerts on the
substrate. We selected the pillars used for the force calculations and the geometrical �t
shown in Figures 2.7 and 2.8 according to the following criteria. 1) They are within 10
pixels (1.38 µm) from the edge of the cell. 2) They are subject to a force that is at least
3 times larger than the average force on all the pillars or the tangent vector along the
cell contour rotates by an angle equal or larger than 30◦ at the location of that pillar.
3) The distance between two pillars delimiting the same ellipse is larger than 50 pixels
(6.9µm). Figure 2.9 shows examples of the pillars identi�ed with these criteria for the
six cells displayed in Figures 2.7 and 2.8.

2.5.5 Ellipse �tting

Ellipses are �tted, using Matlab, to the part of the cell edge delimited by two consecutive
pillars, provided the pillars satisfy the three criteria listed in Section 2.5.4. Each ellipse
is described by �ve parameters: the two coordinates of the center, the two semi-axes
and the orientation of the ellipse’s longitudinal direction. In �tting ellipses to cellular
arcs, the orientation of the longitudinal direction of a given ellipse is constrained to be
equal to the local orientation of stress �bers along that cellular arc, consistent with our
predictions [Eq. (2.3)]. This local stress �ber orientation is measured from the channel
with TRITC-Phalloidin (Actin) using the OrientationJ plugin for ImageJ [177]. The av-
erage orientation per cell edge segment is calculated over all pixels between 15 and 50
pixels (2.07µm and 6.9µm) away from the corresponding cell edge and whose coher-
ency is larger than 0.15. See also Section 2.5.7. Then, each cellular arc is �tted separately
to obtain the coordinates of the center and the lengths of the two semi-axes of the el-
lipse, and the resulting lengths are averaged over the N ellipses in the cell that meet the
criteria listed above. The resulting numbers serve as initial parameters for a global �t,
which simultaneously �ts N cellular arcs to a unique ellipse. This global �t then �nds
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optimal values for the coordinates of the center of each ellipse, and for the length of the
two semi-axes of the unique ellipse, by minimizing the distance between �tted ellipses
and the cellular arcs using χ2. All reported ellipse parameters are obtained using this
global �t. Ellipses whose χ2 is greater than 10 were discarded, which occurs in case of
membrane ru�ing and other out-of-equilibrium events.

2.5.6 Force analysis

For both isotropic and anisotropic cells, traction forces can be calculated by summing
the cortical tension F = λT of the two arcs meeting at a speci�c adhesion site. In the
anisotropic case, this is conveniently done by �rst rotating the ellipse in such a way the
minor and major axes are parallel to the x− and y−direction respectively. Then two
forces F 1 and F 0 are calculated by combining Eqs. (2.3) and (2.4) and de�ned in such a
way that they are pointing clockwise and counter-clockwise around the ellipse:

F 0

λmin
=

(
d

2b
sinφ+

ρ

b
cosφ

)
x̂ +

(
− 1

γ

d

2b
cosφ+

ρ

b
sinφ

)
ŷ , (2.5a)

F 1

λmin
=

(
d

2b
sinφ− ρ

b
cosφ

)
x̂ +

(
− 1

γ

d

2b
cosφ− ρ

b
sinφ

)
ŷ , (2.5b)

where d is the distance between the positions of both forces on the ellipse, b is the major
semi-axis of the ellipse and φ is the angle that the line through both points makes with
the x−axis (see Figure 2.4). The length scale ρ is de�ned as:

ρ =

√
b2
(

1 + tan2 φ

1 + γ tan2 φ

)
− 1

γ

(
d

2

)2

. (2.6)

Then, F 0 and F 1 are rotated back to the coordinate system of the image and summed
to give the force, scaled by λmin, acting on the cell edge on the location of a particular
intersection of two ellipses.

The magnitude of the traction forces is required for the calculation of the minimal
line tension λmin and the isotropic and directed stresses σ and α. We get this from the
micropillar array. A measured force usually is the sum of two forces exerted by two
di�erent cell edge segments. Therefore, we �rst decompose the traction force into two
forces pointing along tangents to the two cell edge segments adjacent to the position
of the force. Then, per cell, we take any combination of two clockwise and counter-
clockwise forces and calculate:

λmin =

√
F 2

1xF
2
0y − F 2

0xF
2
1y

F 2
0y − F 2

1y

, σ =
|F 0 − F 1|

d

F0x + F1x

F0y − F1y
, α = σ

(
1

γ
− 1

)
.

(2.7)
Here F 0 and F 1 are de�ned in the coordinate system where the x− and y−axes are the
minor and major axes of the ellipse. Furthermore, Fnx and Fny are the components of
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2.6. APPENDIX

F n in the x and y-directions respectively. To calculate values for these quantities, we
average all the di�erent tensions and stresses we get for all possible combinations in all
cells, taking the errors on these values into account as weights while averaging.

2.5.7 Orientational analysis of the stress �bers

The local orientation of the stress �bers and their degree of alignment (see, also, Figure
2.10 in the Appendix) have been calculated using the ImageJ plugin OrientationJ [177].
The local alignment has been calculated through the following procedure. Let I(x0, y0)
be the intensity of the image at the point (x0, y0) and Iu = u · ∇I , the projection on
the gradient of I along the arbitrary u direction. The amount of anisotropy of the image
can be quanti�ed by introducing the extrema of the squared norm of Iu, namely:

Λmax = max
u
‖Iu‖2 , Λmin = min

u
‖Iu‖2 , (2.8)

where ‖ · · · ‖ =
∫
w(x, y)dxdy (· · · ) represents the norm of a weighted average with

w(x, y) a Gaussian with a standard deviation of �ve pixels (0.69µm) centered at (x0, y0).
The amount of anisotropy is then naturally quanti�ed in terms of the coherence para-
meter:

C =
Λmax − Λmin

Λmax + Λmin
. (2.9)

In case of isotropic distributions, Λmax = Λmin and C = 0. On the other hand, in case
of strongly aligned stress �bers Λmax � Λmin and C ≈ 1. From the right column of
Figure 2.10, we see that the stress �bers are highly aligned in the periphery of the cell,
consistent with our theoretical model.

2.6 Appendix

2.6.1 Angular coordinates of the adhesion sites

As we explained in Section 2.3, the ratios b = λmin/σ between the peripheral and bulk
contractility and γ = σ/(σ+α) between isotropic and directed stresses set, respectively,
the major semi-axis and the aspect ratio a/b =

√
γ of the ellipse approximating the shape

of the cellular arcs, whereas the orientation of the ellipse is determined by the direction
of the stress �bers. These quantities uniquely identify the shape and the orientation of
the ellipse, but not which portion of the ellipse corresponds to a given cellular arc. In
order for this to be uniquely determined, one needs to specify the relative position d =
d(cosφ, sinφ) of the adhesion sites (Figure 2.4a), where the stress �bers are assumed,
without loss of generality, parallel to the y−axis.

Then, using Eq. (2.3) with θSF = π/2, one can straightforwardly calculate the co-
ordinates of the center of the ellipse in the reference frame centered at the �rst adhesion
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Figure 2.4. Angular coordinates of the adhesion sites. (a) Schematic illustration of a cellular arc
and the approximating ellipse. The angular coordinates ψ0 and ψ1 are measured with respect to
the negative and positive x−direction respectively. Thus, in the displayed con�guration ψ0 > 0
andψ1 < 0. The ellipse major semi-axis is set by the ratio between peripheral and bulk contractile
stresses, i.e., b = λmin/σ. (b) Angular coordinates ψ0 (dotted line) and ψ1 (solid line) as a function
of the rescaled distance between the adhesion sites, i.e., d/b, for various choices of the tilt angle
φ and σ = α (hence γ = 1/2). (c), (d) and (e) Examples of speci�c con�gurations for various
choices of d and φ.

site (P0 in Figure 2.4a), namely:

xc =
d

2
cosφ− γρ sinφ , (2.10a)

yc =
d

2
sinφ+ ρ cosφ , (2.10b)

with the distance ρ de�ned in Eq. (2.6). From Eqs. (2.10), standard algebraic manipula-
tions allow us to express the angular coordinate ψ of the adhesion sites in the frame of
the ellipse (Figure 2.4a), namely:
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tanψ0 =
d sinφ+ 2ρ cosφ

d cosφ− 2γρ sinφ
, (2.11a)

tanψ1 =
d sinφ− 2ρ cosφ

d cosφ+ 2γρ sinφ
. (2.11b)

Illustrations of the possible con�gurations described by Eqs. (2.11) are shown in Figures
2.4b-e. When ρ becomes imaginary, the two adhesion sites are as far apart as possible
along the ellipse. This sets the position of the extremum of the curves displayed in Figure
2.4b.

2.6.2 Material parameters for di�erent cell types

Section 2.3 gives the material parameters γ, λmin, σ and α for a set of 285 cells. These
cells, in fact, come from a pool of two di�erent cell types. The GE11 cells used exhibit
an epithelioid morphology whereas the GD25 cells exhibit a �broblastoid morphology.
Both cell types are de�cient of the �bronectin receptor integrin β1. In both cell types
then either α5β1 was reexpressed, or αvβ3 was expressed. These cells are designated
GEβ1, GEβ3, GDβ1 and GDβ3. The di�ering cell and integrin types result in a di�erent
cell-substrate coupling leading to di�erent material parameters for each cell and integrin
expression type. It is outside the scope of this chapter to examine these di�erences in
detail, therefore initially only the average of each parameter over all 285 cells is given.
For completeness, we give the same parameters per cell type in Table 2.2. As can be
expected [172], cells expressing β1 exert higher traction forces than cells expressing β3,
which is re�ected in a lower λmin for the latter.

Table 2.2. Survey of the average material parameters per cell type in a sample of 285 �broblastoid
and epithelioid cells. Shown are the mean and standard deviation. Whereas γ does not vary
signi�cantly, there is some variance observed in especially λmin, which appears larger for cells
expressing β-integrin.

Cell type number of cells γ λmin (nN) σ (nN/µm) α (nN/µm)
GEβ1 59 0.32± 0.14 9.8± 6.9 1.4± 1.0 2.6± 2.2
GEβ3 112 0.31± 0.19 5.5± 3.4 0.62± 0.41 1.3± 1.1
GDβ1 56 0.38± 0.26 10.6± 9.4 0.92± 0.78 1.5± 1.7
GDβ3 58 0.34± 0.25 7.9± 6.0 1.0± 0.8 2.0± 2.2

All 285 0.33± 0.20 7.6± 5.6 0.87± 0.70 1.7± 1.7
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2.6.3 Supporting �gures
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Figure 2.5. (a) Curvature versus arc-length for a speci�c cell (inset). The blue, red, cyan, yellow
and black arcs are evidently non-circular as indicated by the smooth curvature variation. Because
any smooth plane curve can be locally approximated by a circle of radiusR = 1/κ, longer arcs are
more likely to exhibit appreciable curvature variations. The large curvature variation of the yellow
arc is instead caused by the fact that the arc is roughly perpendicular to the stress �bers, hence it
experiences the largest anisotropy in the force distribution. (b) Average radius of curvature of a
cellular arc versus the distance between the end-points of the arc (i.e., adhesion sites). The radius
of curvature is obtained by �tting cellular arcs with circles (see Figures 2.1 and 2.7). The data
points correspond to a sample of 285 cells and do not allow conclusive statements about a possible
correlation between the arc’s length and curvature.

Figure 2.6. Normalized cortical tension λ/λmin, calculated as expressed by Eq. (2.4), versus
the turning angle ϕ (see Figure 2.2) for θSF = π/2 and various γ values. Upon increasing the
anisotropy (decreasing γ), the cortical tension becomes progressively less uniform across the arc.
The isotropic limit is recovered when γ = 1 and λ = λmin along the entire cellular arc. Maximal
tension is attained when ϕ = π/2 and the tangent vector T is parallel to the stress �bers.
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Figure 2.7. Six examples of cells with circles �tted to the cell edges. The actin, cell edge and
micropillar tops are in the red, green and blue channels respectively. Circles (white) are �tted
to the edge of the cells. The arrows correspond to the measured forces (green) and predicted
directions (but not magnitudes) of the forces in the presence of isotropic (α = 0, white arrow) and
anisotropic (α 6= 0, yellow arrow) contractile stresses. The length of the green arrows indicates
the magnitude of the force. Green arrows originate from the center of the micropillar, while yellow
and white arrows originate from the intersections of ellipses and circles respectively, therefore,
arrows do not necessarily originate from the same point. Yellow and white arrows are only plotted
for adhesion sites under an intersection of ellipses or circles respectively. Panels (a) to (c) show
epithelioid cells and (d) to (f) show �broblastoid cells.
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Figure 2.8. Six examples of cells (same as in Figure 2.7) with ellipses �tted to the cell edges. The
actin, cell edge and micropillar tops are in the red, green and blue channels respectively. Ellipses
(yellow, including the major axis) are �tted to the edge of the cells. The arrows correspond to the
measured forces (green) and predicted directions (but not magnitudes) of the forces in the presence
of isotropic (α = 0, white arrow) and anisotropic (α 6= 0, yellow arrow) contractile stresses. The
length of the green arrows indicates the magnitude of the force. Green arrows originate from the
center of the micropillar, while yellow and white arrows originate from the intersections of ellipses
and circles respectively, therefore, arrows do not necessarily originate from the same point. Yellow
and white arrows are only plotted for adhesion sites under an intersection of ellipses or circles
respectively. Panels (a) to (c) show epithelioid cells and (d) to (f) show �broblastoid cells. Fit values
for the ellipses in panels (a) to (f) respectively: γ: 0.52; 0.25; 0.75; 0.40; 0.95; 0.46, λmin/σ (µm):
13.4; 15.7; 12.6; 14.7; 10.8; 18.0.
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Figure 2.9. Six examples of cells (same as in Figures 2.7 and 2.8) with all the traction forces
measured along the contour explicitly indicated. The actin, cell edge and micropillar tops are
in the red, green and blue channels respectively. The length of the green arrows indicates the
magnitude of the force and the pillars used for the geometrical �ts, illustrated in Figures 2.7 and
2.8, are highlighted. Panels (a) to (c) show epithelioid cells and (d) to (f) show �broblastoid cells.
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Figure 2.10. Orientational analysis of the stress �bers. On the left column, optical micrographs
of the six example cells displayed in Figures 2.7, 2.8 and 2.9. On the center column, color survey
of the stress �bers orientation. On the right column, density plot of the orientational coherence
of the stress �bers, computed via OrientationJ [177]. Along the cell periphery, stress �bers are
highly aligned and the calculated coherence is close to one (see Section 2.5.7).
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