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Chapter 1

Introduction

Physics and biology have traditionally been completely separated �elds within the nat-
ural sciences. This started to change in the twentieth century, when state-of-the-art
optical and electronic imaging technologies were �rst used to obtain a better under-
standing of biology at the scale of single molecules. The most well-known example is
probably the discovery of the double-helix structure of DNA, using X-ray radiation, by
Watson and Crick in 1953 [1] (see Figure 1.1a). Other examples include �uorescence mi-
croscopy [2], optical tweezers [3], magnetic tweezers [4], atomic force microscopy [5],
and combinations of these methods [6]. Around the same time, physics and biology also
started to get entangled at a theoretical level due to the introduction of mathematics in
biology. Whereas the language of mathematics has always played a crucial role in phys-
ics since Sir Isaac Newton published his Principia in the seventeenth century, biology has
traditionally been a purely experimental science. In the twentieth century this changed
with the emergence of mathematical biology, a �eld that theoretically studies biological
systems using mathematical tools. Applications of mathematical biology include pattern
formation [7], population dynamics [8], and physical models of cells and tissues [9, 10].

More recently, physics and (mathematical) biology got further entangled when
people started to realize that both �elds could pro�t from closer collaborations. On
the one hand, the enormous complexity of biological systems serves as an inspiration
for both engineering and fundamental physics. From an engineering perspective, the
ingenuity of biological materials serves as an inspiration for designing new man-made
materials, with applications in robotics [11] and tissue engineering [12]. In fundamental
physics, new theories are required to describe biological systems. Living entities, such
as cells or entire organisms, actively consume energy to move, exert forces on their en-
vironment, and perform various other tasks. The challenge of understanding the physics
of these living systems inspired the emergence of new areas of physics and mathemat-
ics, such as non-equilibrium statistical mechanics [13], pattern formation [7], and active
matter [14].

On the other hand, insights from physics have greatly helped in getting a better un-
derstanding of experimental and mathematical biology at various scales. On the smallest
length scales, the mechanical properties of DNA molecules have been elucidated both
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CHAPTER 1. INTRODUCTION

Figure 1.1. Examples of the interplay between physics and biology. (a) The double-helix structure
of DNA was discovered by Watson and Crick using X-ray radiation. (b) Physical techniques and
theories have helped to eludicate the mechanical propertiees of DNA. In this illustration, a DNA
molecule is attached to two beads (blue) and stretched by moving two optical tweezers (red) apart.
(c) Groups of living entities, such as a �ock of birds, have inspired the �eld of active matter, a �eld
in physics that studies matter that can actively consume energy to move and exert forces. Figure
(a) was reprinted from Ref. [1] with permission from Springer Nature, copyright 1953. Figure
(b) was printed with permission from Iddo Heller. Figure (c) was adapted from Ref. [15] with
permission from Annual Reviews, copyright 2014.

experimentally, using stretching and twisting experiments [16–18] (see Figure 1.1b), and
theoretically, using statistical mechanics [19]. On much larger length scales, mathemat-
ical models have shown that mechanical interactions are crucial in, for instance, the
formation of new blood vessels [20, 21] and embryonic development [22–24]. On even
larger length scales, insights from active matter have helped to understand the collec-
tive behaviour of animal groups, such as schools of �sh or �ocks of birds [25–27] (Figure
1.1c).

At intermediate biological scales, between those of single molecules and those of
entire organisms, we �nd cells, the basic biological units that make up all life. It is at
this intermediate length scale of a single cell that the importance of physics in biology
has become most apparent in the past decades. A good example is given by the seminal
experiment by Engler et al. [28]. In this experiment the authors studied di�erentiation of
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1.1. THE CYTOSKELETON

stem cells, a process in which stem cells specialize by becoming, for instance, nerve cells,
muscle cells, or bone cells. Although stem cell di�erentiation is traditionally believed to
be triggered chemically by the detection of signaling molecules [29], Engler et al. showed
that this process is also a�ected by the mechanical properties of the cell’s environment.
In particular, they showed that cells lying on a soft surface (mimicking the brain) have
a large probability of di�erentiating into nerve cells, whereas those on top of surfaces
of intermediate sti�ness (mimicking muscles) di�erentiate most likely into muscle cells
and those on sti� surfaces (mimicking bone) di�erentiate into bone cells. Other research
has shown that the in�uence of physics on stem cell di�erentiation is not limited to
the rigidity of the underlying surface, as stem cell di�erentiation is also a�ected by,
for instance, the internal structure of the underlying surface [30], the spreading area
[31] and the shape [32, 33] of the cell itself, and the geometry of and the mechanical
tension in the cell’s internal cytoskeleton [32, 33]. These results by no means disprove
the importance of biochemistry in cell biology, but they clearly demonstrate the need to
understand cell biology from the perspective of physics as well.

The interplay between physics, mathematics, and biology in the emerging �eld of
cell mechanics ranges much further than stem cell di�erentiation alone. For instance,
the shape of cells plays a role in cell division, growth, death, nuclear deformation, and
gene expression [34–37], and the migration of cells strongly depends on the mechanical
properties of their environment [38]. From a biomedical perspective, mechanical inter-
actions between cells and their environment play an important role in processes such as
wound healing [39] and in diseases such as asthma [40] and cancer [41, 42]. In partic-
ular, several studies have shown that the mechanical properties of cancer cells change
when they become metastatic [43–45], demonstrating that a fundamental understanding
of cell mechanics is required for successful future cancer treatments and other biomed-
ical applications. In this thesis we take a step back from these biological and biomedical
applications, and focus on expanding the fundamental understanding of cell mechanics.

1.1 The cytoskeleton

In Part I of this thesis we study how the cell’s cytoskeleton a�ects, and is a�ected by,
the cell shape and how it in�uences the forces that cells exert on their surroundings.
The cytoskeleton is a complex network of �laments and proteins inside the cell with
many di�erent functionalities [29]. It gives the cell structural integrity, determines the
positions of organelles inside the cell, directs intracellular transport, splits a dividing
cell into two, and allows the cell to regulate its shape and motion. Loosely speaking, the
cytoskeleton is for a cell what the combination of muscles and bones is for the human
body. The cytoskeleton of most animal cells consists of three di�erent types of �laments.
Microtubules are hollow cylindrical structures made from the polymer tubulin, making
them the most rigid �laments. They are responsible for the internal structure of the cell,
determine the positions of several organelles, organize intracellular transport of mate-
rials, and form the mitotic spindle that accurately divides the genetic material between
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CHAPTER 1. INTRODUCTION

two daughter cells during cell division. Intermediate �laments are a family of �laments
that bend easily, making them much less rigid than microtubules. Networks of cross-
linked intermediate �laments provide the cell with mechanical stability [29]. The third
type of cytoskeletal �laments are actin �laments, also called micro�laments, which play
an important role in the generation of cellular forces and in cell migration. In this thesis
we focus on the role of actin in cell mechanics.

Actin �laments consist of two strands of polymers of the protein actin which are he-
lically twisted around each other. Actin �laments have a diameter of 5-9 nm, and their
bending rigidity is between those of microtubules and intermediate �laments, with a
persistence length of about 10 µm. Actin �laments, in collaboration with many cross-
linking proteins, self-organize into many di�erent structures inside the cell. In the cell
cortex, the layer just beneath the cell membrane, they support the membrane and regu-
late the shape and movement of the cell boundary. In cells under tension, this cortical
actin can be highly contractile, minimizing the length of the cell boundary. During cell
division, cortical actin forms a contractile ring that splits the cell into two. Actin in the
cell cortex is also responsible for �lopodia and lamellipodia, thin and wide protrusions
of the cell membrane, respectively, that are crucial during cell migration [29]. In the cell
interior, away from the edge, actin �laments form gel-like branched networks as well as
linear bundles called stress �bers [46, 47]. A crucial property of actin �laments is that they
are polar, meaning that their head (called barbed end) is di�erent from their tail (called
pointed end). This polarization allows motor proteins called myosin to move along actin
�laments, always toward the barbed end, by consuming energy using ATP hydrolysis.
In bundles of oppositely aligned �laments present in stress �bers and the actin cortex,
this property allows myosin motors, that bind simultaneously to two opposite �laments,
to exert forces in opposite directions on these �laments, thereby contracting the actin
bundle.

1.1.1 Adherent cells

In Part I of this thesis we investigate individual cells that adhere to an adhesive sur-
face, which we refer to as the substrate. These adhesive surfaces lack the realism of
the complex three-dimensional environment of cells in vivo, but they are an excellent
platform for exploring the key mechanisms in cell mechanics in a controlled and repro-
ducible setting [48]. For instance, the response of cells to the mechanical properties of
their environment can be studied by varying the substrate sti�ness. This sti�ness does
not only a�ect stem cell di�erentiation, as we discussed above, but it also has promi-
nent consequences for the shape and actin cytoskeleton of the cell. On soft substrates,
cells have a round shape, a small spreading area, and an isotropic actin cytoskeleton. On
sti�er substrates, the cell’s aspect ratio [49] and spreading area [49–52] increase, and
stress �bers are formed [51, 53]. Consequently, cells adhering to sti� surfaces obtain
an essentially �at, two-dimensional shape. They adhere to the substrate using adhesion
receptors called focal adhesions [54], large protein complexes in the cell membrane that
mechanically connect intracellular actin bundles with the outside world, in this case the
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1.1. THE CYTOSKELETON

Actin
Cell edge
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Adhesion sites
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Figure 1.2. Cells on top of an array of sti� microfabricated pillars. (a) Scanning electron mi-
croscopy image of micropillars. The micropillars have a 2 µm diameter and a height of 6.9 µm.
Scalebar corresponds to 2 µm. (b) A cell (3T3 �broblast) on top of a two-dimensional array of mi-
cropillars. The arrows indicate the orientations and magnitudes of the forces that the cell exerts
on the micropillars. Scalebar is 10 µm and the arrow in the bottom left corresponds to a force of
20 nN. (c) A cell (epithelioid GEβ3) adhering to a micropillar array assumes a concave (i.e., curved
inwards) shape. The cell boundary (green) consists of cellular arcs that connect two sites of strong
adhesion to the substrate (cyan circles). The actin in the cell is visualized in red using tetramethyl
isothiocyanate rhodamine phalloidin. Scalebar is 10 µm. Figures (a) and (b) were adapted from
Ref. [55]. Copyright (2014) American Chemical Society.

substrate. Because these focal adhesions keep them in place, cells on sti� substrates are
under considerable mechanical tension and the cytoskeleton generates mainly contrac-
tile forces due to contraction of actin bundles [48].

The adhesive surfaces that are used in experimental studies on adherent cells can be
divided into two main types. One of these types is a microfabricated elastomeric pillar
array [55–57], shown in Figure 1.2a. This substrate consists of a lattice of pillars with a
diameter in the µm range, whose tops are coated with �bronectin, a protein which is also
present in the natural environment of cells and to which focal adhesions can bind. Cells
deposited on a sti� micropillar array lie on top of a bed of micropillars and adhere to a
limited number of them, mainly distributed along the cell boundary. At these adhesion
sites, the cell exerts forces on the substrate, often referred to as traction forces, which can
be measured by observing the de�ections of the micropillars [55–57] (see Figure 1.2b).
Due to the contractility of the actin cytoskeleton, adherent cells on sti� micropillar ar-
rays assume a typical concave (i.e., curved inwards) shape, with the cell boundary con-
sisting of cellular arcs connecting two consecutive adhesion sites (see, for example, the
cell in Figure 1.2c). Micropatterned substrates are an often used alternative to micropillar
arrays. These are �at surfaces coated with a speci�c pattern of �bronectin [58]. Although
less straightforward than on micropillar arrays, traction forces can be measured on mi-
cropatterned substrates using a technique called traction force microscopy [59–61]. The
big advantage of micropatterned substrates, with respect to micropillar arrays, is that
the well-de�ned shape of the adhesive part of the surface ensures predictable and repro-
ducible cell shapes, facilitating an easier comparison between experimental �ndings and
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CHAPTER 1. INTRODUCTION

Site of adhesion

Cell boundary

Figure 1.3. Models for cell shape used in this thesis. (a) In a contour model, the shape of a cell
is modelled by describing the location of the one-dimensional cell boundary. The cell boundary
adheres to the underlying substrate at sites of adhesion, indicated by the blue circles. Contour
models are used in Chapters 2 and 3 of this thesis. (b) In the Cellular Potts Model, space is repre-
sented by a discrete lattice of pixels and the cell is represented by the collection of pixels that are
labelled with the number 1. The Cellular Potts Model is used in Chapter 4 of this thesis. Figure (b)
was reprinted from Ref. [69] with permission from Elsevier.

the predictions of mathematical models.
Mathematical models complement experimental approaches because they can help to

interpret experimental �ndings and often raise questions that inspire new experiments.
Several types of these mathematical models have been proposed to study the shape of
adherent cells and the traction forces they exert on the substrate [48]. The simplest type
of model is a two-dimensional contour model [62–67], in which the shape of a cell is fully
described by the location of the one-dimensional cell boundary (see Figure 1.3a). Each
contour model predicts this location based on a particular choice of intracellular forces.
For cells adhering to a small number of discrete adhesion sites, such as cells on micropil-
lar arrays, the cell boundary is a collection of cellular arcs that connect two adjacent
adhesion sites. The simplest contour model is the Simple Tension Model (STM), �rst
proposed by Bar-Ziv et al. [62] and later expanded by Bischofs et al. [63, 64]. This model
assumes that the locations of the adhesion sites are �xed and known, and calculates
the resulting shape of a cellular arc by considering the competition between contractile
forces in the cell bulk, which model the contractility of the internal actin cytoskeleton,
and contractile forces in the cell contour, which model the contractility of the actin cor-
tex. The STM predicts that cellular arcs are curved inwards and have a circular shape,
and succesfully describes cellular shape and traction forces observed in experiments of
several cell types on adhesive surfaces [63, 64]. The STM was extended in more advanced
contour models by inclusion of other intracellular forces, such as bending elasticity of
the cell membrane [65, 68] or an elastic contribution to the contractility of the actin
cortex [63, 64].

An alternative to contour models is given by whole-cell models [48], which explicitly
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1.1. THE CYTOSKELETON

de�ne the two-dimensional shape of the cell by modeling the cell interior. An example
is given by cable network models [70, 71], which describe the actin cytoskeleton as a
network of cables that pull on the cell edge. When these cables are contracting due to
myosin activity [72], this model reproduces the circular arcs predicted by contour models
[62–64]. Many whole-cell models are rooted in continuum mechanics and describe the
cytoskeleton as a continuous medium rather than by explicitly modeling its discrete
constituents. In these models, the cytoskeleton can be represented as an elastic [68,
73] or viscoelastic medium [74], or by more sophisticated models that include several
biomechanical and biochemical aspects [75–79]. The Cellular Potts Model (CPM), on the
other hand, is a computational model that discretizes space and represents a cell as a
collection of lattice sites on an often two-dimensional lattice (see Figure 1.3b). During a
CPM simulation, lattice sites can be added to or subtracted from the cell, allowing it to
grow, shrink, change shape, and move. This dynamics is governed by a Hamiltonian, an
energy functional which describes the various intracellular and intercellular forces in the
model. The Cellular Potts Model was developed in 1992 by Glazier and Graner to describe
the demixing of two types of cells [80, 81]. Later, the CPM has been extended with
many biomechanical and biochemical aspects to describe a wide range of multicellular
processes [9], such as embryonic development [22, 23], tumor growth [82], and blood
vessel formation [20, 21]. More recently, the Cellular Potts Model has been employed to
model the shape of single cells. For instance, Vianay et al. used the CPM to successfully
predict a variety of shapes for cells on a dotlike micropattern [83], whereas Albert and
Schwarz developed a CPM based on the Simple Tension Model to describe the shape and
traction forces of cells adhering to continuous micropatterns of arbitrary shape [69, 84].

1.1.2 Liquid crystals

Most mathematical models on shape and traction forces of adherent cells, including
many models discussed above, are isotropic, meaning that the cytoskeleton in those mod-
els contracts in all directions equally. However, many cells on sti� adhesive substrates
develop actin stress �bers [51, 53], which are often oriented parallel to other stress �bers
in their vicinity (see Figure 1.4a). Therefore, the cytoskeleton of these cells is anisotropic
and experimental studies have demonstrated that both cell shape [85–88] and traction
forces [89, 90] are strongly a�ected by this cytoskeletal anisotropy. In Part I of this
thesis, we develop anisotropic models for the actin cytoskeleton employing the theory
of nematic liquid crystals [91]. Liquid crystals are materials whose smallest constituents
are anisotropic particles, giving them mechanical and optical properties intermediate
between those of simple liquids and those of solid crystals. Liquid crystals have many
applications [92], but are best known for the technological development of the Liquid
Crystal Display (LCD) [93]. Nematic liquid crystals consist of elongated particles that,
like in liquids, have no long-range positional order and can freely �ow. However, due
to their anisotropy, the particles align with one another, giving them long-range direc-
tional order as is the case in solid crystals [94], see Figure 1.4b. An extensive continuum
mechanics framework has been developed to describe the physics of nematic liquid crys-
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CHAPTER 1. INTRODUCTION

Figure 1.4. The anisotropy of the actin cytoskeleton can be modeled by using the theory of
nematic liquid crystals. (a) An adherent cell (3T3 �broblast) with visualized actin stress �bers.
The stress �bers are oriented parallel to other stress �bers in their vicinity, making the actin
cytoskeleton anisotropic. (b) Nematic liquid crystals consist of elongated particles that have long-
range directional order but no long-range positional order. Their anisotropic nature makes them
perfectly suitable for modeling the actin cytoskeleton. Figure (a) is reprinted from Ref. [112] with
permission from AAAS, and Figure (b) was adapted from Ref. [113].

tals [91], including the interactions with con�ning boundaries [95] and the emergence
of topological defects [96], locations where the particle orientation is ill-de�ned. This
theoretical framework has been applied to a variety of systems, ranging from polymer
solutions [97] and droplets of elongated colloidal particles [98] to rod-like viruses [99]
and the mitotic spindle [100]. More recently, liquid crystal theory has been extended to
describe active nematic liquid crystals [101], which consist of anisotropic particles that
actively exert forces by consuming energy. These active constituents collectively give
rise to an active bulk stress [102, 103], and lead to new phenomena such as active turbu-
lence [104, 105] and complex dynamics of topological defects [106]. The active nature of
this theory makes it a natural framework to describe various biological systems such as
collections of swimming microorganisms [102], mixtures of cytoskeletal �laments and
molecular motor proteins [107, 108], growing bacterial colonies [109], and con�uent cell
layers [110, 111].

1.2 Cell migration

In Part II of this thesis we shift our focus from the shape of non-motile cells to the
process of cell migration, which is essential for many biological processes. For instance,
neutrophils, a type of white blood cell, move to locations of infections where they at-
tack hostile invaders such as bacteria. Fibroblasts migrate toward damaged tissue where
they play a crucial role in wound healing. Cell migration also plays a crucial role in
cancer metastasis, a process in which cancer cells leave a primary tumor and migrate
to a distant organ to form a secondary tumor. Some animal cells, such as sperm cells,
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1.2. CELL MIGRATION

achieve migration by swimming through a �uid using a �agellum, a tail that is used for
propulsion. However, most animal cells migrate by crawling over a surface rather than
by swimming. Although the detailed mechanisms of the crawling process are di�erent
for each cell type, the general idea behind the mechanism is the same for most of them.
First, the leading edge of the cell moves forward because actin polymerization in the cell
cortex, in the form of �lopodia, lamellipodia, or pseudopodia, pushes the cell membrane
forward. Then, the cell forms adhesions to the surface at this leading edge and, �nally,
contractile forces in the cytoskeleton pull the rest of the cell along [29]. Various math-
ematical models have been proposed to describe this process [114, 115]. These models
vary both in numerical techniques and in the biological phenomena they describe. A
relatively simple approach uses Langevin equations to model the stochastic dynamics
of the cell position based on experimental data [116, 117]. More complex models expli-
citly model individual focal adhesions and stress �bers [118, 119], or describe cell shape
and the dynamics of the actin cytoskeleton using phase-�eld models [120, 121], hydro-
dynamic models [122, 123], or Cellular Potts Models [124, 125].

Both in vivo and in experiments on surfaces, the direction of cellular migration can
be biased by so-called directional cues, asymmetries in the surroundings of the cell that
stimulate the cell to move in a speci�c direction. The most well-known directional cue is
chemotaxis, the ability of cells to sense and respond to local gradients in the concentra-
tion of certain chemicals. Both prokaryotic cells (such as bacteria) [126] and eukaryotic
cells (such as animal cells) [127] can perform chemotaxis, which can be positive (i.e., mo-
tion toward large concentrations) or negative (i.e., motion toward small concentrations).
Chemotaxis has been extensively studied, both experimentally [128] and theoretically
[129, 130], and plays a crucial role in many processes in the human body, such as in
the above-mentioned migration of neutrophils toward sites of infection [29]. However,
similar to what we discussed earlier for stem cell di�erentiation, it has become increas-
ingly clear in the last decades that cell migration is not solely dictated by biochemistry.
Instead, many mechanical cues have been found that play an important role in dictating
the direction of cell migration. The most well-known examples of these are haptotaxis,
the migration of cells from small to large densities of adhesion sites, and durotaxis, the
migration of cells from soft to rigid mechanical environments [131–136].

In Chapter 5 we study a recently discovered mechanical cue called topotaxis, the di-
rected migration of cells due to asymmetries in the local topographical properties of the
environment. Several kinds of topographically anisotropic substrates have been shown
to direct cell migration, including surfaces with asymmetric adhesive patterns [137–139],
substrates with spatial gradients in the density of micropillars [140, 141], and substrates
with tilted micropillars [137, 142]. In all of these examples, cell motion is biased due
to topographical cues at sub-cellular length scales. These small-scale directional cues
cause an anisotropic response of the cytoskeleton, thereby biasing the direction of mi-
gration. Wondergem and coworkers demonstrated, however, that topotaxis can also be
achieved by topographical cues at length scales larger than the cell itself [143]. They
studied highly motile cells, moving on a substrate that contains cell-sized obstacles that
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CHAPTER 1. INTRODUCTION

force the cells to move around them, and showed that cells migrate from regions of
large obstacle densities to regions of low obstacle densities. In Chapter 5 we zoom out
from the cell’s internal structure and cytoskeleton, which we studied in Part I. Inspired
by the experiments on cells by Wondergem et al. [143], we study topotaxis of active
Brownian particles (ABPs), a simple model for structureless self-propelled particles that
is extensively studied in the �eld of active matter [144, 145]. Despite their simplicity,
directed motion of ABPs has been demonstrated using asymmetric periodic potentials
[146–148], arrays of asymmetric obstacles [149, 150], and asymmetric channels [151–
154]. ABPs have even been demonstrated to perform chemotaxis [155, 156], durotaxis
[157], and phototaxis [158], making them an excellent model system for identifying the
basic physical principles behind directed cell migration.

1.3 Outline of the thesis

In this thesis we investigate the role of anisotropy in cell mechanics. The thesis is or-
ganized as follows. In Part I we combine analytical calculations, computer simulations
and in vitro experiments to study cells adhering to sti� adhesive substrates. We investi-
gate the mechanical interplay between the shape of these cells, the orientation of their
actin stress �bers, and the traction forces that they exert on the underlying substrate. In
Chapter 2 we develop a theory for the shape of cells adhering to adhesive micropillar
arrays. We extend previous isotropic contour models of cellular adhesion by explicitly
introducing the directed contractile forces generated by actin stress �bers. Given the ori-
entations of stress �bers in adherent cells, we predict cell shape as well as the directions
of cellular traction forces, and we compare these predictions to experimental observa-
tions on epithelioid and �broblastoid cells. We demonstrate that the arcs of cells with an
anisotropic cytoskeleton are well described by segments of an ellipse. The aspect ratio
of this ellipse is dictated by the degree of anisotropy of the internal cell stresses, and the
orientation of the ellipse is dictated by the orientations of the stress �bers. Our work
shows that cells can control the anisotropy of their shape by regulating the anisotropy
of their cytoskeleton.

In Chapter 3 we reverse this question, and ask how the shape of a cell in�uences the
orientations of its stress �bers. We study the interplay between cell shape and stress �ber
orientation by combining the model for cell shape, developed in Chapter 2, with a model
for the cytoskeleton based on liquid crystal theory. We perform numerical simulations
that predict both cell shape and the orientations of stress �bers, and again compare our
results to experimental observations on epithelioid and �broblastoid cells adhering to a
micropillar array. We �nd that stress �ber orientation is determined by a competition
between alignment with the cell edge and alignment with one another in the bulk of the
cell. Our work highlights the importance of the boundary conditions, imposed by cell
shape, in understanding the internal structure of the actin cytoskeleton.

In Chapter 4 we study the interplay between cell shape, stress �ber orientation and
traction forces on sti� micropatterned surfaces. To be able to model cells with continu-
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ous adhesion with the substrate, rather than through a limited number of adhesion sites
on top of micropillars, we implement the concepts developed in Chapters 2 and 3 into
the Cellular Potts Model (CPM). As was the case for pre-existing contour models, pre-
vious CPM implementations model the contractility of the cytoskeleton using isotropic
forces. In Chapter 4, we introduce the anisotropic contractility of the cytoskeleton in
the Cellular Potts Model, and validate our model by comparing our numerical results on
stress �ber distributions and traction forces to previously reported experimental data.
Our numerical results show that traction forces are strongly biased by the local stress
�ber orientation, and reproduce previously reported anisotropic traction force distribu-
tions. Our �ndings demonstrate that an anisotropic model for the actin cytoskeleton is
required for accurately predicting cellular traction forces.

In Part II of this thesis we study cell migration on a substrate that contains cell-sized
obstacles. We zoom out from the internal structure of the cell, which we studied in Part
I, and investigate the motion of active Brownian particles (ABPs) in Chapter 5. Using a
combination of numerical simulations and analytical arguments, we study the motion of
ABPs in obstacle lattices of both constant and non-constant densities, and demonstrate
the emergence of topotaxis of active Brownian particles. This �nding demonstrates that
persistent migration of cells is su�cient to obtain topotaxis, even in the absence of any
more complex mechanical or biochemical mechanisms.

Finally, in Chapter 6 we summarize the most important �ndings of the research
presented in this thesis. We discuss the implications of our results on the �eld of cell
mechanics and suggest the most promising directions for future research.
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Chapter 2

Cytoskeletal anisotropy

controls geometry and

forces of adherent cells

This chapter is the result of a collaboration with Wim Pomp, Hayri E. Balcıoǧlu, Hedde
van Hoorn, Erik H.J. Danen, and Thomas Schmidt, who performed the experiments and
analyzed the experimental data. The chapter is reprinted with permission, copyright
2018 by the American Physical Society. The chapter is published as:

Wim Pomp∗, Koen Schakenraad∗, Hayri E. Balcıoǧlu, Hedde van Hoorn, Erik H.J. Danen,
Roeland M.H. Merks, Thomas Schmidt, and Luca Giomi, ‘Cytoskeletal Anisotropy Con-
trols Geometry and Forces of Adherent Cells’, Physical Review Letters 121, 178101
(2018)

Abstract

We investigate the geometrical and mechanical properties of adherent cells char-
acterized by a highly anisotropic actin cytoskeleton. Using a combination of the-
oretical work and experiments on micropillar arrays, we demonstrate that the
shape of the cell edge is accurately described by elliptical arcs, whose eccentri-
city expresses the degree of anisotropy of the internal cell stresses. This results in
a spatially varying tension along the cell edge, that signi�cantly a�ects the trac-
tion forces exerted by the cell on the substrate. Our work highlights the strong
interplay between cell mechanics and geometry and paves the way toward the
reconstruction of cellular forces from geometrical data.

∗These authors contributed equally to this work
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CHAPTER 2. CYTOSKELETAL ANISOTROPY CONTROLS GEOMETRY AND FORCES OF ADHERENT
CELLS

2.1 Introduction

Cells, from simple prokaryotes to the more complex eukaryotes, are capable of aston-
ishing mechanical functionalities. They can repair wounded tissues by locally contract-
ing the extracellular matrix [159], move in a �uid or on a substrate [160], and generate
enough force to split themselves in two while remaining alive [161]. Conversely, cell
behavior and fate crucially depend on mechanical cues from outside the cell [162–166].
Examples include rigidity-dependent stem cell di�erentiation [28, 30], protein expres-
sion regulated by internal stresses [167], mechanical cell-cell communication [168] and
durotaxis [132, 169]. In all these biomechanical processes, cells rely on their shape [64,
170, 171] to gauge the mechanical properties of their microenvironment [172] and direct
the traction forces exerted on their surroundings.

In recent years, experiments on adhesive surfaces have contributed to explore such
mechanical complexity in a controlled setting [48]. Immediately after coming into con-
tact with such a surface, many animal cells spread and develop transmembrane adhesion
receptors. This induces the actin cytoskeleton to reorganize into cross-linked networks
and bundles (i.e., stress �bers [46, 47]), whereas adhesion becomes limited to a number of
sites, distributed mainly along the cell contour (i.e., focal adhesions [54]). At this stage,
cells are essentially �at and assume a typical shape characterized by arcs which span
between the sites of adhesion, while forces are mainly contractile [48]. On timescales
much shorter than those required by a cell to change its shape (i.e., minutes), the cell can
be considered in mechanical equilibrium at any point of its interface. These observations
have opened the way to the use of theoretical concepts inspired by the physics of �uid
interfaces [48, 62–64], but limited to the case of cells with an isotropic cytoskeleton.

In this chapter, we overcome this limitation and explore the geometry and the me-
chanical properties of adherent cells characterized by a highly anisotropic actin cyto-
skeleton. Using a combination of theoretical modeling, spinning disk confocal micro-
scopy, and traction-force microscopy of living cells cultured on microfabricated elas-
tomeric pillar arrays [55–57], we demonstrate that both the shape of and the traction
forces exerted by adherent cells are determined by the anisotropy of their actin cyto-
skeleton. In particular, by comparing di�erent cell types [173], we demonstrate that the
cell contour consists of arcs of a unique ellipse, whose eccentricity expresses the degree
of anisotropy of the internal stresses.

2.2 The model

We model adherent cells as two-dimensional contractile �lms [65, 66], and we focus
on the shape of the cell edge connecting two consecutive adhesion sites. Mechanical
equilibrium requires the di�erence between the internal and external stresses acting on
the cell edge to balance the contractile forces arising in the cortex:

dF cortex

ds
+ (Σ̂out − Σ̂in) ·N = 0 . (2.1)
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Here Σ̂out and Σ̂in are the stress tensors outside and inside the cell and F cortex is the
stress resultant along the cell cortex. The latter is parametrized as a one-dimensional
curve spanned by the arc-length s and oriented along the inward pointing normal vec-
tor N . A successful approach, initially proposed by Bar-Ziv et al. in the context of cell
pearling [62] and later expanded by Bischofs et al. [63, 64], consists of modeling bulk
contractility in terms of an isotropic pressure Σ̂out− Σ̂in = σÎ , with Î the identity ma-
trix, and peripheral contractility as an interfacial tension of the formF cortex = λT , with
T a unit vector tangent to the cell edge. The quantities σ and λ are material constants
that embody the biomechanical activity of myosin motors in the actin cytoskeleton. This
competition between bulk and peripheral contractility along the cell boundary results
in the formation of arcs of constant curvature 1/R = σ/λ, through a mechanism ana-
logous to the Young-Laplace law for �uid interfaces. The shape of the cell boundary is
then approximated by a sequence of circular arcs, whose radius R might or might not
be uniform across the cell, depending on how the cortical tension λ varies from arc to
arc. The possibility of an elastic origin of the cortical tension was also explored in Ref.
[63] to account for an apparent correlation between the curvature and length L of the
cellular arcs. In this case λ = k(L − L0)/L0, with k an elastic constant and L0 a rest
length. Both models successfully describe the geometry of adherent cells in the presence
of strictly isotropic forces.

Yet, many cells, including the �broblastoids (GDβ1, GDβ3) and epithelioids (GEβ1,
GEβ3) [173] studied here [Figure 2.1a], develop directed forces by virtue of the strong
anisotropic cytoskeleton originating from the actin stress �bers [46, 47]. This scenario is,
evidently, beyond the scope of models based on isotropic contractility. Indeed, long cel-
lular arcs appear prominently non-circular, as indicated by the fact that their curvature
smoothly varies along the arc up to a factor ten [Figure 2.5a in the Appendix]. Further-
more, whereas the shape of the cell edge in Figure 2.1a can in principle be approximated
by circular arcs, a survey of a sample of 285 cells [Figure 2.5b in the Appendix] did not
allow conclusive statements about a possible correlation between the arc’s length and
curvature, required to justify the variance in λ [63, 64]. On the other hand, our data
show a signi�cant correlation between the radius of curvature of the cellular arcs and
their orientation with respect to the stress �bers [Figure 2.1b]. In particular, the radius
of curvature decreases as the stress �bers become more perpendicular to the cell cortex
[Figure 2.1c]. This correlation is intuitive as the bulk contractile stress focuses in the
direction of the stress �bers.

The anisotropy of the actin cytoskeleton can be incorporated into the mechanical
framework summarized by Eq. (2.1), by modeling the stress �bers as contractile force
dipoles. This collectively gives rise to a directed contractile bulk stress, such that Σ̂out−
Σ̂in = σÎ+αnn [102, 103, 174], withn = (cos θSF, sin θSF) the average direction of the
stress �bers [Figure 2.1b]. The quantity α > 0 represents the magnitude of the directed
contractile stresses and is proportional to the local degree of alignment between the
�bers. The higher the alignment, the larger α, whereas in the case of randomly oriented
�bersα = 0, thus recovering the isotropic case. The ratio between isotropic contractility
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Figure 2.1. (a) A cell with an anisotropic actin cytoskeleton (epithelioid GEβ3) with circles (white)
�tted to its edges (green). The end points of the arcs (cyan) are identi�ed based on the forces ex-
erted on the pillars, see Materials and Methods in Section 2.5. The actin cytoskeleton is visualized
with tetramethyl isothiocyanate rhodamine phalloidin (red). Scale bar is 10 µm. (b) The cell cortex
(red line) is spanned in segments between �xed adhesion sites (blue). (c) Arc radius as a function
of the sine of the angle θSF − φ, between the local orientation of the stress �bers and that of the
distance between the adhesion sites (data correspond to a sample of 285 cells and show the mean
± standard deviation).

σ and directed contractility αmeasures the degree of anisotropy of the bulk stress. With
this stress tensor the force balance [Eq. (2.1)] becomes

dλ

ds
T + (λκ+ σ)N + α(n ·N)n = 0 , (2.2)

where we use dT /ds = κN , with κ the curvature of the cell edge. This implies that,
in the presence of an anisotropic cytoskeleton, the cortical tension λ is no longer con-
stant along the cell cortex, as long as the directed stress has a non-vanishing tangential
component (i.e., n · T 6= 0). As shown by Kassianidou et al. [175], isolated stress �bers
can also exert localized contractile forces on the cell contour, leading to kinks and piece-
wise constant curvature. Consistent with our experiments, here we consider the case
in which the density of the stress �bers is su�ciently high and uniform to approximate
their mechanical e�ect in terms of a continuous anisotropic stress.
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2.3 Results and discussion

In the following, we introduce a number of simpli�cations that make the problem analyt-
ically tractable. As the orientation of the stress �bers varies only slightly along a single
cellular arc [Figure 2.2a, and Figures 2.7 and 2.8 in the Appendix], we assume θSF to be
constant along each arc, but di�erent, in general, from arc to arc. Furthermore, as all
the arcs share the same bulk, we assume the bulk stresses σ and α uniform throughout
the cell. Under these assumptions a general solution of Eq. (2.2) can be readily obtained.
Taking T = (cosϕ, sinϕ), N = (− sinϕ, cosϕ), with ϕ the orientation of the tangent
vector T with respect to an axis perpendicular to the stress �bers [Figure 2.2a], and
tanϕ = dy/dx, with (x, y) the position of the cell contour, yields:

σ2

γλ2
min

[(x− xc) sin θSF − (y − yc) cos θSF]
2

+
σ2

λ2
min

[(x− xc) cos θSF + (y − yc) sin θSF]
2

= 1 , (2.3)

where γ = σ/(σ + α) and λmin is an integration constant related with cortical tension
and whose physical interpretation will become clear later. Eq. (2.3) describes an ellipse
of semiaxes a =

√
γ λmin/σ and b = λmin/σ, centered at the point (xc, yc) and whose

major axis is parallel to the stress �bers, hence tilted by an angle θSF with respect to the
x axis (Figure 2.2). The dimensionless quantity γ highlights the anisotropy of the forces
acting on the cell contour. Thus, γ = 0 corresponds to the case in which the directed
forces outweigh the isotropic ones, whereas γ = 1 re�ects the purely isotropic case.
Further details can be found in Section 2.6.1 in the Appendix and in Chapter 3.

The key prediction of our model is illustrated in Figure 2.2b, where we have �tted
the contour of the same cell shown in Figure 2.1a with ellipses. More examples are
shown in Figures 2.7 and 2.8 in the Appendix. Whereas large variations in the circles’
radii were required in Figure 2.1a, a unique ellipse (γ = 0.52, λmin/σ = 13.4µm)
faithfully describes all the arcs in the cell. The directions of the major axes were �xed
to be parallel to the local orientations of the stress �bers in the �t. To test the accuracy
of this latter choice, we �tted unconstrained and independent ellipses to all cellular arcs
in our database. The distribution of the di�erence between the orientation θellipse of the
major axis of the �tted ellipse and the measured orientation θSF of the stress �bers is
shown in Figure 2.2c. The distribution peaks at 0◦ and has a width of 36◦, demonstrating
that the orientation of the ellipses is parallel, on average, to the local orientation of the
stress �bers as predicted by our model.

Eq. (2.2) further allows to analytically calculate the cortical tension λ. Namely,

λ(ϕ) = λmin

√
1 + tan2 ϕ

1 + γ tan2 ϕ
. (2.4)

The function λ attains its minimum value at the point along the cellular arc whereϕ = 0
and λ(0) = λmin, see also Figure 2.6 in the Appendix. Here, the cortical tension has no
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Figure 2.2. (a) Schematic representation of our model for θSF = π/2. All cellular arcs are part of
a unique ellipse of aspect ratio a/b =

√
γ. The cell exerts forces F 0 and F 1 on the adhesion sites

(blue) with magnitude λ(ϕ0) and λ(ϕ1). (b) An epithelioid cell (GEβ3; same cell as in Figure 2.1a)
with a unique ellipse (yellow) �tted to its edges (green). The end points of the arcs (cyan) are
identi�ed based on the forces exerted on the pillars, see Materials and Methods in Section 2.5.
The �tted values of the ellipses’ major and minor axes are, respectively, 13.38 ± 0.04µm and
9.65± 0.02µm. The major axes (yellow lines) are parallel to the stress �bers. Their orientations
are found to be, in counterclockwise order from the nearly vertical ellipse in the bottom right
corner, θSF = 93± 4◦, 28± 5◦, 110± 2◦, 139± 6◦, 127± 3◦, 125± 2◦, 133± 2◦, 130± 3◦

with respect to the horizontal axis of the image. Scalebar is 10 µm. (c) Histogram of θellipse− θSF,
with θellipse the orientation of the major axis of the �tted ellipse and θSF the measured orientation
of the stress �bers. The mean of this distribution is 0◦ and the standard deviation is 36◦.

contribution from the directed stress (i.e., n · T = 0), thus λmin represents the minimal
tension withstood by the cortical actin. Although the latter could, in principle, be arc-
dependent, for instance in the presence of substantial variations in the actin densities
[63], here we approximate λmin as a constant. Thus σ, α and λmin represent the material
parameters of our model.

Eqs. (2.3) and (2.4) are combined to predict the traction force exerted by the cell at a
speci�c adhesion site by adding the cortical tension λT along the two cellular arcs join-
ing at the adhesion site. We emphasize that this analysis yields information on cellular
forces solely based on the analysis of cell shape. For example, the direction of the trac-
tion forces is calculated without additional �tting parameters. We compare the result
with the direction of the traction force measured with a micropillar array technology
[55–57]. An example is shown in Figure 2.3a for one of the adhesion sites of the cell
in Figure 2.2b; more examples are shown in Figures 2.7 and 2.8 in the Appendix. The
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Figure 2.3. (a) Enlargement of one adhesion site of the cell in the previous �gures. Actin is shown
in red, the cell edge in green, and the tops of the micropillars in blue. The lines represent the �tted
circle (white) and ellipse (yellow). The arrows correspond to the measured forces (green) and the
predicted directions (but not magnitudes) of the forces in the presence of isotropic (α = 0, white
arrow) and anisotropic (α 6= 0, yellow arrow) contractile stresses. Scale bar is 2 µm. (b) Histogram
(shown as a probability density) of θforce − θshape for isotropic (black) and anisotropic (orange)
contractile stresses. Both the distributions are centered around 0◦, the standard deviations are 60◦

and 40◦ for the isotropic and anisotropic models, respectively.

arrows mark the direction of the measured traction force (green) and that calculated by
approximating the cell shape with ellipses (yellow). As a comparison, Figure 2.3a also
shows a prediction based on circles from the isotropic model (white) [63, 64].

In Figure 2.3b, we show the distribution of the di�erence θforce− θshape between the
measured orientation of the traction forces and that calculated from our model, across
the entire cell population. The predicted distribution is centered at 0◦ and has a width
of 40◦. As a comparison, we also plot the result for the isotropic model, which displays
a larger standard deviation of about 60◦. This shows that not only cell shape, but also
adhesion forces are profoundly a�ected by the anisotropy of the cytoskeleton.

Finally, our model allows us to obtain quantitative information on the relative mag-
nitude of isotropic and anisotropic stresses. In Tables 2.1 and 2.2 (Appendix) we report a
survey of the material parameters over a sample of 285 cells. Despite the large variability
among the cell population, the directed stress α is consistently larger than the isotropic
stress σ, re�ecting the high anisotropy of the adherent cell types used here.

Table 2.1. Survey of the average material parameters in a sample of 285 �broblastoid and epithe-
lioid cells.

γ λmin (nN) σ (nN/µm) α (nN/µm)
0.33± 0.20 7.6± 5.6 0.87± 0.70 1.7± 1.7
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2.4 Conclusion

In conclusion, we have investigated the geometrical and mechanical properties of adher-
ent cells characterized by an anisotropic actin cytoskeleton, by combining experiments
on micropillar arrays with simple mechanical modeling. We have predicted and tested
that the shape of the cell edge consists of arcs that are described by a unique ellipse,
whose major axis is parallel to the orientation of the stress �bers. The model allowed
us to obtain quantitative information on the values of the isotropic and anisotropic con-
tractility of cells. In the future, we plan to use our model in combination with experi-
ments on micropatterns (see, e.g., Refs. [58, 176]), where cellular shape can be controlled,
thus allowing higher reproducibility of the results and more systematic statistical ana-
lysis of the data.

2.5 Materials and methods

2.5.1 Cell culture and �uorescent labeling

Epithelioid GE11 and �broblastoid GD25 cells [173] expressing either α5β1 or αvβ3
(GDβ1, GDβ3, GEβ1 and GEβ3) have been cultured as described before [172]. GDβ1,
GDβ3, GEβ1 and GEβ3 are approximately equally represented among the 285 cells in
the data presented here. Cells have cultured in medium (DMEM; Dulbecco’s Modi�ed
Eagle’s Medium, Invitrogen/Fisher Scienti�c) supplemented with 10% fetal bovine serum
(HyClone, Etten-Leur, The Netherlands), 25 U/ml penicillin and 25 µg/ml streptomycin
(Invitrogen/Fisher Scienti�c cat. # 15070-063). Cells were �xed in 4% formaldehyde and
then permeabilised with 0.1% Triton-X and 0.5% BSA in PBS. Tetramethylrhodamine
(TRITC)-Phalloidin (Fisher Emergo B.V. cat. # A12380, Thermo Fisher) was subsequently
used to stain F-actin.

2.5.2 Micropillar arrays

Micropillar arrays were made out of a soft elastomeric material (PDMS) using a negative
silicon wafer as a mask as described before [55, 57]. Brie�y, the 2 µm diameter micropil-
lars are arranged in a hexagonal pattern with a 4 µm center-to-center distance. The
micropillars have a height of 6.9 µm, resulting in a sti�ness of 16.2 nN/µm. The pillar
tops were �uorescently labelled using an Alexa 405-�bronectin conjugate (Alexa Fluor®,
Invitrogen/Fisher Scienti�c, Breda, The Netherlands; Fibronectin cat. #1141, Sigma Ald-
rich, Zwijndrecht, The Netherlands). Pillar de�ections were determined with ∼30 nm
precision using a speci�cally designed Matlab script resulting in a ∼0.5 nN precision in
force [55].
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2.5.3 Imaging

High-resolution imaging was performed on an in-house constructed spinning disk
confocal microscope based on an Axiovert200 microscope body with a Zeiss Plan-
Apochromat 100× 1.4NA objective (Zeiss, Sliedrecht, The Netherlands) and a CSU-X1
spinning disk unit (CSU-X1, Yokogawa, Amersfoort, The Netherlands). Imaging was
done using an emCCD camera (iXon 897, Andor, Belfast, UK). Alexa405 and TRITC were
exited using 405 nm (Crystalaser, Reno, NV) and 561 nm (Cobolt, Stockholm, Sweden)
lasers, respectively. This results in a resolution of approximately 150 nm and 200 nm
respectively, enough to distinguish separate stress �bers which are typically separated
by about 1.5 µm.

2.5.4 Image analysis

All image analysis and ellipse �tting are performed using Matlab®, except the deter-
mination of the stress �ber orientation, for which ImageJ with the OrientationJ plugin
[177] was used. The micropillar array allows measuring forces that the cell exerts on the
substrate. We selected the pillars used for the force calculations and the geometrical �t
shown in Figures 2.7 and 2.8 according to the following criteria. 1) They are within 10
pixels (1.38 µm) from the edge of the cell. 2) They are subject to a force that is at least
3 times larger than the average force on all the pillars or the tangent vector along the
cell contour rotates by an angle equal or larger than 30◦ at the location of that pillar.
3) The distance between two pillars delimiting the same ellipse is larger than 50 pixels
(6.9µm). Figure 2.9 shows examples of the pillars identi�ed with these criteria for the
six cells displayed in Figures 2.7 and 2.8.

2.5.5 Ellipse �tting

Ellipses are �tted, using Matlab, to the part of the cell edge delimited by two consecutive
pillars, provided the pillars satisfy the three criteria listed in Section 2.5.4. Each ellipse
is described by �ve parameters: the two coordinates of the center, the two semi-axes
and the orientation of the ellipse’s longitudinal direction. In �tting ellipses to cellular
arcs, the orientation of the longitudinal direction of a given ellipse is constrained to be
equal to the local orientation of stress �bers along that cellular arc, consistent with our
predictions [Eq. (2.3)]. This local stress �ber orientation is measured from the channel
with TRITC-Phalloidin (Actin) using the OrientationJ plugin for ImageJ [177]. The av-
erage orientation per cell edge segment is calculated over all pixels between 15 and 50
pixels (2.07µm and 6.9µm) away from the corresponding cell edge and whose coher-
ency is larger than 0.15. See also Section 2.5.7. Then, each cellular arc is �tted separately
to obtain the coordinates of the center and the lengths of the two semi-axes of the el-
lipse, and the resulting lengths are averaged over the N ellipses in the cell that meet the
criteria listed above. The resulting numbers serve as initial parameters for a global �t,
which simultaneously �ts N cellular arcs to a unique ellipse. This global �t then �nds
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optimal values for the coordinates of the center of each ellipse, and for the length of the
two semi-axes of the unique ellipse, by minimizing the distance between �tted ellipses
and the cellular arcs using χ2. All reported ellipse parameters are obtained using this
global �t. Ellipses whose χ2 is greater than 10 were discarded, which occurs in case of
membrane ru�ing and other out-of-equilibrium events.

2.5.6 Force analysis

For both isotropic and anisotropic cells, traction forces can be calculated by summing
the cortical tension F = λT of the two arcs meeting at a speci�c adhesion site. In the
anisotropic case, this is conveniently done by �rst rotating the ellipse in such a way the
minor and major axes are parallel to the x− and y−direction respectively. Then two
forces F 1 and F 0 are calculated by combining Eqs. (2.3) and (2.4) and de�ned in such a
way that they are pointing clockwise and counter-clockwise around the ellipse:

F 0

λmin
=

(
d

2b
sinφ+

ρ

b
cosφ

)
x̂ +

(
− 1

γ

d

2b
cosφ+

ρ

b
sinφ

)
ŷ , (2.5a)

F 1

λmin
=

(
d

2b
sinφ− ρ

b
cosφ

)
x̂ +

(
− 1

γ

d

2b
cosφ− ρ

b
sinφ

)
ŷ , (2.5b)

where d is the distance between the positions of both forces on the ellipse, b is the major
semi-axis of the ellipse and φ is the angle that the line through both points makes with
the x−axis (see Figure 2.4). The length scale ρ is de�ned as:

ρ =

√
b2
(

1 + tan2 φ

1 + γ tan2 φ

)
− 1

γ

(
d

2

)2

. (2.6)

Then, F 0 and F 1 are rotated back to the coordinate system of the image and summed
to give the force, scaled by λmin, acting on the cell edge on the location of a particular
intersection of two ellipses.

The magnitude of the traction forces is required for the calculation of the minimal
line tension λmin and the isotropic and directed stresses σ and α. We get this from the
micropillar array. A measured force usually is the sum of two forces exerted by two
di�erent cell edge segments. Therefore, we �rst decompose the traction force into two
forces pointing along tangents to the two cell edge segments adjacent to the position
of the force. Then, per cell, we take any combination of two clockwise and counter-
clockwise forces and calculate:

λmin =

√
F 2

1xF
2
0y − F 2

0xF
2
1y

F 2
0y − F 2

1y

, σ =
|F 0 − F 1|

d

F0x + F1x

F0y − F1y
, α = σ

(
1

γ
− 1

)
.

(2.7)
Here F 0 and F 1 are de�ned in the coordinate system where the x− and y−axes are the
minor and major axes of the ellipse. Furthermore, Fnx and Fny are the components of
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F n in the x and y-directions respectively. To calculate values for these quantities, we
average all the di�erent tensions and stresses we get for all possible combinations in all
cells, taking the errors on these values into account as weights while averaging.

2.5.7 Orientational analysis of the stress �bers

The local orientation of the stress �bers and their degree of alignment (see, also, Figure
2.10 in the Appendix) have been calculated using the ImageJ plugin OrientationJ [177].
The local alignment has been calculated through the following procedure. Let I(x0, y0)
be the intensity of the image at the point (x0, y0) and Iu = u · ∇I , the projection on
the gradient of I along the arbitrary u direction. The amount of anisotropy of the image
can be quanti�ed by introducing the extrema of the squared norm of Iu, namely:

Λmax = max
u
‖Iu‖2 , Λmin = min

u
‖Iu‖2 , (2.8)

where ‖ · · · ‖ =
∫
w(x, y)dxdy (· · · ) represents the norm of a weighted average with

w(x, y) a Gaussian with a standard deviation of �ve pixels (0.69µm) centered at (x0, y0).
The amount of anisotropy is then naturally quanti�ed in terms of the coherence para-
meter:

C =
Λmax − Λmin

Λmax + Λmin
. (2.9)

In case of isotropic distributions, Λmax = Λmin and C = 0. On the other hand, in case
of strongly aligned stress �bers Λmax � Λmin and C ≈ 1. From the right column of
Figure 2.10, we see that the stress �bers are highly aligned in the periphery of the cell,
consistent with our theoretical model.

2.6 Appendix

2.6.1 Angular coordinates of the adhesion sites

As we explained in Section 2.3, the ratios b = λmin/σ between the peripheral and bulk
contractility and γ = σ/(σ+α) between isotropic and directed stresses set, respectively,
the major semi-axis and the aspect ratio a/b =

√
γ of the ellipse approximating the shape

of the cellular arcs, whereas the orientation of the ellipse is determined by the direction
of the stress �bers. These quantities uniquely identify the shape and the orientation of
the ellipse, but not which portion of the ellipse corresponds to a given cellular arc. In
order for this to be uniquely determined, one needs to specify the relative position d =
d(cosφ, sinφ) of the adhesion sites (Figure 2.4a), where the stress �bers are assumed,
without loss of generality, parallel to the y−axis.

Then, using Eq. (2.3) with θSF = π/2, one can straightforwardly calculate the co-
ordinates of the center of the ellipse in the reference frame centered at the �rst adhesion
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Figure 2.4. Angular coordinates of the adhesion sites. (a) Schematic illustration of a cellular arc
and the approximating ellipse. The angular coordinates ψ0 and ψ1 are measured with respect to
the negative and positive x−direction respectively. Thus, in the displayed con�guration ψ0 > 0
andψ1 < 0. The ellipse major semi-axis is set by the ratio between peripheral and bulk contractile
stresses, i.e., b = λmin/σ. (b) Angular coordinates ψ0 (dotted line) and ψ1 (solid line) as a function
of the rescaled distance between the adhesion sites, i.e., d/b, for various choices of the tilt angle
φ and σ = α (hence γ = 1/2). (c), (d) and (e) Examples of speci�c con�gurations for various
choices of d and φ.

site (P0 in Figure 2.4a), namely:

xc =
d

2
cosφ− γρ sinφ , (2.10a)

yc =
d

2
sinφ+ ρ cosφ , (2.10b)

with the distance ρ de�ned in Eq. (2.6). From Eqs. (2.10), standard algebraic manipula-
tions allow us to express the angular coordinate ψ of the adhesion sites in the frame of
the ellipse (Figure 2.4a), namely:
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tanψ0 =
d sinφ+ 2ρ cosφ

d cosφ− 2γρ sinφ
, (2.11a)

tanψ1 =
d sinφ− 2ρ cosφ

d cosφ+ 2γρ sinφ
. (2.11b)

Illustrations of the possible con�gurations described by Eqs. (2.11) are shown in Figures
2.4b-e. When ρ becomes imaginary, the two adhesion sites are as far apart as possible
along the ellipse. This sets the position of the extremum of the curves displayed in Figure
2.4b.

2.6.2 Material parameters for di�erent cell types

Section 2.3 gives the material parameters γ, λmin, σ and α for a set of 285 cells. These
cells, in fact, come from a pool of two di�erent cell types. The GE11 cells used exhibit
an epithelioid morphology whereas the GD25 cells exhibit a �broblastoid morphology.
Both cell types are de�cient of the �bronectin receptor integrin β1. In both cell types
then either α5β1 was reexpressed, or αvβ3 was expressed. These cells are designated
GEβ1, GEβ3, GDβ1 and GDβ3. The di�ering cell and integrin types result in a di�erent
cell-substrate coupling leading to di�erent material parameters for each cell and integrin
expression type. It is outside the scope of this chapter to examine these di�erences in
detail, therefore initially only the average of each parameter over all 285 cells is given.
For completeness, we give the same parameters per cell type in Table 2.2. As can be
expected [172], cells expressing β1 exert higher traction forces than cells expressing β3,
which is re�ected in a lower λmin for the latter.

Table 2.2. Survey of the average material parameters per cell type in a sample of 285 �broblastoid
and epithelioid cells. Shown are the mean and standard deviation. Whereas γ does not vary
signi�cantly, there is some variance observed in especially λmin, which appears larger for cells
expressing β-integrin.

Cell type number of cells γ λmin (nN) σ (nN/µm) α (nN/µm)
GEβ1 59 0.32± 0.14 9.8± 6.9 1.4± 1.0 2.6± 2.2
GEβ3 112 0.31± 0.19 5.5± 3.4 0.62± 0.41 1.3± 1.1
GDβ1 56 0.38± 0.26 10.6± 9.4 0.92± 0.78 1.5± 1.7
GDβ3 58 0.34± 0.25 7.9± 6.0 1.0± 0.8 2.0± 2.2

All 285 0.33± 0.20 7.6± 5.6 0.87± 0.70 1.7± 1.7
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2.6.3 Supporting �gures
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Figure 2.5. (a) Curvature versus arc-length for a speci�c cell (inset). The blue, red, cyan, yellow
and black arcs are evidently non-circular as indicated by the smooth curvature variation. Because
any smooth plane curve can be locally approximated by a circle of radiusR = 1/κ, longer arcs are
more likely to exhibit appreciable curvature variations. The large curvature variation of the yellow
arc is instead caused by the fact that the arc is roughly perpendicular to the stress �bers, hence it
experiences the largest anisotropy in the force distribution. (b) Average radius of curvature of a
cellular arc versus the distance between the end-points of the arc (i.e., adhesion sites). The radius
of curvature is obtained by �tting cellular arcs with circles (see Figures 2.1 and 2.7). The data
points correspond to a sample of 285 cells and do not allow conclusive statements about a possible
correlation between the arc’s length and curvature.

Figure 2.6. Normalized cortical tension λ/λmin, calculated as expressed by Eq. (2.4), versus
the turning angle ϕ (see Figure 2.2) for θSF = π/2 and various γ values. Upon increasing the
anisotropy (decreasing γ), the cortical tension becomes progressively less uniform across the arc.
The isotropic limit is recovered when γ = 1 and λ = λmin along the entire cellular arc. Maximal
tension is attained when ϕ = π/2 and the tangent vector T is parallel to the stress �bers.
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Figure 2.7. Six examples of cells with circles �tted to the cell edges. The actin, cell edge and
micropillar tops are in the red, green and blue channels respectively. Circles (white) are �tted
to the edge of the cells. The arrows correspond to the measured forces (green) and predicted
directions (but not magnitudes) of the forces in the presence of isotropic (α = 0, white arrow) and
anisotropic (α 6= 0, yellow arrow) contractile stresses. The length of the green arrows indicates
the magnitude of the force. Green arrows originate from the center of the micropillar, while yellow
and white arrows originate from the intersections of ellipses and circles respectively, therefore,
arrows do not necessarily originate from the same point. Yellow and white arrows are only plotted
for adhesion sites under an intersection of ellipses or circles respectively. Panels (a) to (c) show
epithelioid cells and (d) to (f) show �broblastoid cells.
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Figure 2.8. Six examples of cells (same as in Figure 2.7) with ellipses �tted to the cell edges. The
actin, cell edge and micropillar tops are in the red, green and blue channels respectively. Ellipses
(yellow, including the major axis) are �tted to the edge of the cells. The arrows correspond to the
measured forces (green) and predicted directions (but not magnitudes) of the forces in the presence
of isotropic (α = 0, white arrow) and anisotropic (α 6= 0, yellow arrow) contractile stresses. The
length of the green arrows indicates the magnitude of the force. Green arrows originate from the
center of the micropillar, while yellow and white arrows originate from the intersections of ellipses
and circles respectively, therefore, arrows do not necessarily originate from the same point. Yellow
and white arrows are only plotted for adhesion sites under an intersection of ellipses or circles
respectively. Panels (a) to (c) show epithelioid cells and (d) to (f) show �broblastoid cells. Fit values
for the ellipses in panels (a) to (f) respectively: γ: 0.52; 0.25; 0.75; 0.40; 0.95; 0.46, λmin/σ (µm):
13.4; 15.7; 12.6; 14.7; 10.8; 18.0.
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Figure 2.9. Six examples of cells (same as in Figures 2.7 and 2.8) with all the traction forces
measured along the contour explicitly indicated. The actin, cell edge and micropillar tops are
in the red, green and blue channels respectively. The length of the green arrows indicates the
magnitude of the force and the pillars used for the geometrical �ts, illustrated in Figures 2.7 and
2.8, are highlighted. Panels (a) to (c) show epithelioid cells and (d) to (f) show �broblastoid cells.
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Figure 2.10. Orientational analysis of the stress �bers. On the left column, optical micrographs
of the six example cells displayed in Figures 2.7, 2.8 and 2.9. On the center column, color survey
of the stress �bers orientation. On the right column, density plot of the orientational coherence
of the stress �bers, computed via OrientationJ [177]. Along the cell periphery, stress �bers are
highly aligned and the calculated coherence is close to one (see Section 2.5.7).
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Chapter 3

Mechanical interplay

between cell shape and

actin cytoskeleton

organization

The experimental data presented in this chapter was kindly provided by Wim Pomp,
Erik H.J. Danen, and Thomas Schmidt. The chapter is available on arXiv as:

Koen Schakenraad, Jeremy Ernst, Wim Pomp, Erik H.J. Danen, Roeland M.H. Merks,
Thomas Schmidt, and Luca Giomi, ‘Mechanical interplay between cell shape and actin
cytoskeleton organization’, arXiv:1905.09805

Abstract

We investigate the mechanical interplay between the spatial organization of the
actin cytoskeleton and the shape of animal cells adhering on micropillar arrays.
Using a combination of analytical work, computer simulations and in vitro ex-
periments, we demonstrate that the orientation of the stress �bers strongly in-
�uences the geometry of the cell edge. In the presence of a uniformly aligned
cytoskeleton, the cell edge can be well approximated by elliptical arcs, whose ec-
centricity re�ects the degree of anisotropy of the cell’s internal stresses. Upon
modeling the actin cytoskeleton as a nematic liquid crystal, we further show that
the geometry of the cell edge feeds back on the organization of the stress �bers by
altering the length scale at which these are con�ned. This feedback mechanism
is controlled by a dimensionless number, the anchoring number, representing
the relative weight of surface-anchoring and bulk-aligning torques. Our model
allows to predict both cellular shape and the internal structure of the actin cyto-
skeleton and is in good quantitative agreement with experiments on �broblastoid
(GDβ1,GDβ3) and epithelioid (GEβ1, GEβ3) cells.
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3.1 Introduction

Mechanical cues play a vital role in many cellular processes, such as durotaxis [132,
169], cell-cell communication [168], stress-regulated protein expression [167] or rigidity-
dependent stem cell di�erentiation [28, 30]. Whereas mechanical forces can directly
activate biochemical signaling pathways, via the mechanotransduction machinery [178],
their e�ect is often mediated by the cortical cytoskeleton, which, in turn, a�ects and can
be a�ected by the geometry of the cell envelope.

By adjusting their shape, cells can sense the mechanical properties of their microen-
vironment and regulate traction forces [64, 170, 171], with prominent consequences on
bio-mechanical processes such as cell division, di�erentiation, growth, death, nuclear
deformation and gene expression [32–37]. On the other hand, the cellular shape itself
depends on the mechanical properties of the environment. Experiments on adherent
cells have shown that the sti�ness of the substrate strongly a�ects cell morphology [49,
50] and triggers the formation of stress �bers [51, 53]. The cell spreading area increases
with the substrate sti�ness for several cell types, including cardiac myocytes [49], myo-
blasts [50], endothelial cells and �broblasts [51], and mesenchymal stem cells [52].

In Chapter 2 we have investigated the shape and traction forces of concave cells,
adhering to a limited number of discrete adhesion sites and characterized by a highly
anisotropic actin cytoskeleton. Using a contour model of cellular adhesion [48, 62–64,
67], we demonstrated that the edge of these cells can be accurately approximated by a
collection of elliptical arcs obtained from a unique ellipse, whose eccentricity depends
on the degree of anisotropy of the contractile stresses arising from the actin cytoskele-
ton. Furthermore, our model quantitatively predicts how the anisotropy of the actin
cytoskeleton determines the magnitudes and directions of traction forces. Both predic-
tions were tested in experiments on highly anisotropic �broblastoid and epithelioid cells
[173] supported by sti� microfabricated elastomeric pillar arrays [55–57], �nding good
quantitative agreement.

Whereas these �ndings shed light on how cytoskeletal anisotropy controls the geo-
metry and forces of adherent cells, they raise questions on how anisotropy emerges from
the three-fold interplay between isotropic and directed stresses arising within the cyto-
skeleton, the shape of the cell envelope and the geometrical constraints introduced by
focal adhesions. It is well known that the orientation of the stress �bers in elongated
cells strongly correlates with the polarization direction of the cell [85–88]. Consistently,
our results indicate that, in highly anisotropic cells, stress �bers align with each other
and with the cell’s longitudinal direction (see, e.g., Figures 3.1A and 2.10). However,
the physical origin of these alignment mechanisms is less clear and inevitably leads to
a chicken-and-egg causality dilemma: do the stress �bers align along the cell’s axis or
does the cell elongate in the direction of the stress �bers?

The biophysical literature is not scarce of cellular processes that might possibly con-
tribute to alignment of stress �bers with each other and with the cell edge. Mechan-
ical feedback between the cell and the extracellular matrix or substrate, for instance,
has been shown to play an important role in the orientation and alignment of stress
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�bers [52, 76, 179–181]. Molecular motors have also been demonstrated to produce an
aligning e�ect on cytoskeletal �laments, both in mesenchymal stem cells [182] and in
puri�ed cytoskeletal extracts [183], where the observation is further corroborated by
agent-based simulations [184]. A similar mechanism has been theoretically proposed
for microtubules-kinesin mixtures [185]. Studies in microchambers demonstrated that
steric interactions can also drive alignment of actin �laments with each other and with
the microchamber walls [186–188]. Theoretical studies have highlighted the importance
of the stress �bers’ assembly and dissociation dynamics [75, 76], the dynamics of focal
adhesion complexes [136, 189], or both [77, 79]. Also the geometry of actin nucleation
sites has been shown to a�ect the growth direction of actin �laments, thus promot-
ing alignment [190, 191]. Finally, mechanical coupling between the actin cytoskeleton
and the plasma membrane has been theoretically shown to lead to �ber alignment, as
bending moments arising in the membrane result into torques that reduce the amount
of splay within the �laments [192]. Despite such a wealth of possible mechanisms, it
is presently unclear which one or which combination is ultimately responsible for the
observed alignment of stress �bers between each other and with the cell’s longitudinal
direction. Analogously, it is unclear to what extent these mechanisms are sensitive to
the speci�c mechanical and topographic properties of the environment, although some
mechanisms rely on speci�c environmental conditions that are evidently absent in cer-
tain circumstances (e.g., the mechanical feedback between the cell and the substrate dis-
cussed in Refs. [76, 136, 180, 193] relies on deformations of the substrate and is unlikely
to play an important role in experiments performed on sti� micro-pillar arrays).

In this chapter we investigate the interplay between the anisotropy of the actin cy-
toskeleton and the shape of cells adhering to sti� microfabricated elastomeric pillar ar-
rays [55–57]. Rather than pinpointing a speci�c alignment mechanism, among those re-
viewed above, we focus on the interplay between cell shape and the spatial organization
of the actin cytoskeleton. This is achieved by means of a phenomenological treatment of
the stress �ber orientation based on the continuum description of nematic liquid crys-
tals, coupled with the contour model of the cell edge that we developed in Chapter 2.
The chapter is organized as follows: in Section 3.2 we introduce our contour model for
cells with anisotropic cytoskeleton. We �rst review the key theoretical results, already
reported in Chapter 2, followed by an in-depth and previously unreported analysis of
the model. In Section 3.3 we further generalize this approach by studying the mechan-
ical interplay between the shape of the cell, described by our contour model, and the
orientation of the actin cytoskeleton, modeled as a nematic liquid crystal con�ned by
the cell edge, and we compare our results to experimental data on highly anisotropic
cells. In both sections we assume that the coordinates of the adhesion sites along the
cell contour are constant in time and known. A theoretical description of the dynamics
of these adhesion sites, as a result of focal adhesion dynamics, is beyond the scope of
this study and can be found, for example, in Refs. [136, 189].
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Figure 3.1. (A) A �broblastoid cell with an anisotropic actin cytoskeleton cultured on a sti�
microfabricated elastomeric pillar array. The color scale indicates the measured orientation of the
actin stress �bers. (B) Schematic representation of a contour model for the cell in (A). The cell
contour consists of a collection of concave cellular arcs (red lines) that connect pairs of adhesion
sites (blue dots). These arcs are parameterized as curves spanned counterclockwise around the
cell by the arc length s, and are entirely described via the tangent unit vector T = (cos θ, sin θ)
and the normal vector N = (− sin θ, cos θ), with θ the turning angle. The unit vector n =
(cos θSF, sin θSF) describes the local orientation θSF of the stress �bers.

3.2 Equilibrium con�guration of the cell contour

Many animal cells spread out after coming into contact with a sti� adhesive surface.
They develop transmembrane adhesion receptors at a limited number of adhesion sites
that lie mainly along the cell contour (i.e., focal adhesions [54]). These cells are then
essentially �at and assume a typical concave shape characterized by arcs which span
between the sites of adhesion, while forces are mainly contractile [48]. This makes it
possible to describe adherent cells as two-dimensional contractile �lms, whose shape is
unambiguously identi�ed by the position r = (x, y) of the cell contour [62–67, 194].
Figure 3.1B illustrates a schematic representation of the cell (�broblastoid) in Figure
3.1A, where the cell contour consists of a collection of curves, referred to as “cellular
arcs”, that connect two consecutive adhesion sites. These arcs are parameterized by the
arc length s as curves spanned counterclockwise around the cell, oriented along the
tangent unit vector T = ∂sr = (cos θ, sin θ), with θ = θ(s) the turning angle of the
arc with respect to the horizontal axis of the frame of reference. The normal vector
N = ∂sr

⊥ = (− sin θ, cos θ), with r⊥ = (−y, x), is directed toward the interior of the
cell. The equation describing the shape of a cellular arc is obtained upon balancing all
the conservative and dissipative forces experienced by the cell contour. These are:

ξt∂tr = ∂sF cortex + (Σ̂out − Σ̂in) ·N , (3.1)

where t is time and ξt is a (translational) drag coe�cient measuring the resistance,
arising from cell-substrate interactions, against motion of the cell contour. Σ̂out and
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Σ̂in are the stress tensors on the two sides of the cell boundary and F cortex is the stress
resultant along the cell contour [48, 63–65, 67, 194]. We assume the substrate to be ri-
gid and the adhesion sites, lying along the cell contour, to be stationary. For theoretical
models of cell adhesion on compliant substrates, see, e.g., Refs. [64, 65, 67]. The tem-
poral evolution of the cell contour is then dictated by a competition between internal
and external bulk stresses acting on the cell boundary and the tension arising within the
cell cortex. The former give rise to a contractile (i.e., inward-directed) force on the cell
contour and tend to decrease the cell area. By contrast, cortical tension decreases the cell
perimeter, thus resulting in an extensile (i.e., outward-directed) force, as a consequence
of the cell concavity. As the planar contour represents the two-dimensional projection of
the full three-dimensional body of the cell, changes in the area a�ect neither the density
of the cytoplasm nor the internal pressure. Finally, we assume the dynamics of the cell
contour to be overdamped.

The stress tensor can be modeled upon taking into account isotropic and directed
stresses. The latter are constructed by treating the stress �bers as contractile force di-
poles, whose average orientation θSF is parallel to the unit vector n = (cos θSF, sin θSF)
(see Figure 3.1B). This gives rise to an overall contractile bulk stress of the form [102,
103]:

Σ̂out − Σ̂in = σÎ + αnn , (3.2)
where Î is the identity matrix, σ > 0 embodies the magnitude of all isotropic stresses
(passive and active) experienced by the cell edge and α > 0 is the magnitude of the
directed contractile stresses and is proportional to the local degree of alignment between
the stress �bers, in such a way thatα is maximal for perfectly aligned �bers, and vanishes
if these are randomly oriented. In Section 3.3 we will explicitly account for the local
orientational order of the stress �bers using the language of nematic liquid crystals.
Furthermore, since Î = nn + n⊥n⊥, the nematic director n and its normal n⊥ =
(− sin θSF, cos θSF) correspond to the principal stress directions, whereas σmax = σ+α
and σmin = σ are, respectively, the maximal and minimal principal stresses. The degree
of anisotropy of the bulk stress is thus determined by the ratio between the isotropic
contractility σ and the directed contractility α. Finally, the tension within the cell cortex
is modeled as F cortex = λT , where the line tension λ embodies the contractile forces
arising from myosin activity in the cell cortex. This quantity varies, in general, along an
arc and can be expressed as a function of the arc length s. In the presence of anisotropic
bulk stresses, in particular, λ(s) cannot be constant, as we will see in Section 3.2.1. The
force balance condition, Eq. (3.1), becomes then

ξt∂tr = ∂s(λT ) + σN + α(n ·N)n . (3.3)

In this section we describe the position of the cell boundary under the assumption
that the timescale required for the equilibration of the forces in Eq. (3.3) is much shorter
than the typical timescale of cell migration on the substrate (i.e., minutes). Under this
assumption, ∂tr = 0 and Eq. (3.3) can be cast in the form:

0 = (∂sλ)T + (λκ+ σ)N + α(n ·N)n , (3.4)
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where we have used ∂sT = κN , with κ = ∂sθ the curvature of the cell edge. In the
following, we review (Section 3.2.1) and extend (Sections 3.2.2, 3.2.3 and 3.2.4) the results
reported in Chapter 2 about the geometry and mechanics of anisotropic cells adhering
to micropillar arrays.

3.2.1 Equilibrium cell shape and line tension

In this section we review the results previously reported in Chapter 2. A derivation of
the main equations can be found in Section 3.6.1 in the Appendix.

For α = 0, Eq. (3.4) describes the special case of a cell endowed with a purely
isotropic cytoskeleton [62–64]. Force balance requires λ to be constant along a single
cellular arc (i.e., ∂sλ = 0), whereas the bulk and cortical tension compromise along an
arc of constant curvature, i.e., κ = −σ/λ, with the negative sign of κ indicating that the
arcs are curved inwards. The cell edge is then described by a sequence of circular arcs,
whose radius R = 1/|κ| = λ/σ depends on the local cortical tension λ of the arc. This
model successfully describes the shape of adherent cells in the presence of strictly iso-
tropic forces. However, as we showed in Chapter 2, isotropic models are not suited for
describing cells whose anisotropic cytoskeleton develops strong directed forces originat-
ing from actin stress �bers [46, 47]. In the presence of an anisotropic cytoskeleton, α > 0
and the cell contour is no longer subject to purely normal forces. As a consequence, the
cortical tension λ varies along a given cellular arc to balance the tangential component
of the contractile forces arising from the actin cytoskeleton. In order to highlight the
physical mechanisms described, in this case, by Eq. (3.4), we introduce a number of sim-
pli�cations that make the problem analytically tractable. These will be lifted in Section
3.3, where we will consider the most general scenario. First, because the orientation of
the stress �bers typically varies only slightly along a single arc, we assume the orienta-
tion of the stress �bers, θSF, to be constant along a single cellular arc, but di�erent from
arc to arc. Furthermore, without loss of generality, we orient the reference frame such
that the stress �bers are parallel to the y−axis. Thus, θSF = π/2 and n = ŷ. Then,
solving Eq. (3.4) with respect to λ yields:

λ(θ) = λmin

√
1 + tan2 θ

1 + γ tan2 θ
, (3.5)

where the constant γ = σ/(σ + α) quanti�es the anisotropy of the bulk contractile
stress. The quantity λmin represents the minimal cortical tension attained along each
cellular arc, where the stress �bers are perpendicular to the cell contour (i.e., θ = 0).
By contrast, the actin cortex exerts maximal tension when the stress �bers are parallel
to the cell contour, i.e., λmax = λ(π/2) = λmin/

√
γ. We note that these variations

in line tension along a single arc do not necessarily have to be regulated by the cell.
Instead, they could simply be a result of passive mechanical forces in a way very similar
to the space-dependent tension in a simple cable hanging under gravity. Although the
minimal line tension λmin could, in principle, be arc-dependent, for example if the cell
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Isotropic stress

Directed stress

Figure 3.2. Schematic representation of a cellular arc, described by Eq. (3.6), for n =
(cos θSF, sin θSF) = ŷ, hence θSF = π/2. A force balance between isotropic stress, directed
stress and line tension results in the description of each cell edge segment (red curve) as part of
an ellipse of aspect ratio a/b =

√
γ and with major semi-axis b = λmin/σ. The cell exerts forces

F 0 and F 1 on the adhesion sites (blue). The vector d = d(cosφ, sinφ) describes the relative
position of the two adhesion sites, d⊥ = d(− sinφ, cosφ) is a vector perpendicular to d, and θ is
the turning angle of the cellular arc. The coordinates of the ellipse center (xc, yc) and the angular
coordinates of the adhesion sites along the ellipse ψ0 and ψ1 are given in Section 2.5.7.

cortex displays substantial variations in the myosin densities [63], here we approximate
λmin as a constant. This approximation is motivated by the fact that our previous in
vitro observations of anisotropic epithelioid and �broblastoid cells did not identify a
correlation between the arc length and curvature (see Figure 2.6b), which, on the other
hand, is expected if λmin was to vary signi�cantly from arc to arc [63]. Hence, α, σ and
λmin represent the independent material parameters of our model.

The shape of a cellular arc is given by a segment of an ellipse, which is given by:

σ2

λ2
min

[(x− xc) cos θSF + (y − yc) sin θSF]
2

+
σ2

γλ2
min

[−(x− xc) sin θSF + (y − yc) cos θSF]
2

= 1 . (3.6)

The longitudinal direction of the ellipse is always parallel to the stress �bers, hence tilted
by an angle θSF with respect to the x−axis, as illustrated in Figure 3.2 for n = ŷ. The
direct relation between the contractile forces arising from the cytoskeleton and the shape
of the cell is highlighted by the dimensionless parameter γ = σ/(σ + α): on the one
hand, γ de�nes the anisotropy of the contractile bulk stress, on the other hand it dictates
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the anisotropy of the cell shape. This, in turn, does not depend on the positions of the
adhesion sites, which instead a�ect the traction forces experienced by the substrate (see
Section 3.2.3). Both these properties arise from the fact that, in our model, cellular arcs
have no preferred length, and are consistent with experimental observations on �bro-
blastoids and epithelioids (see Chapter 2). The coordinates of the center of the ellipse
(xc, yc) and the angular coordinates of the adhesion sites along the ellipse, ψ0 and ψ1

in Figure 3.2, can be calculated using standard algebraic manipulation and are given in
Section 2.5.7.

Figure 3.3 shows an example of a �broblastoid cell with ellipses �tted to its arcs.
Because ellipse �tting is very sensitive to noise on the cell shape, only the longer arcs
are considered here (see Section 2.5). We stress that, as long as the contractile stresses
arising from the actin cytoskeleton are roughly uniform across the cell (i.e., α, σ and
λmin are constant), all cellular arcs of su�cient length are approximated by a unique
ellipse (see Figure 3.3). The parameters that describe this ellipse are, in general, di�erent
for each individual cell. A survey of these parameters over a sample of 285 �broblastoid
and epithelioid cells yielded γ = 0.33 ± 0.20, λmin = 7.6 ± 5.6 nN, σ = 0.87 ±
0.70 nN/µm, and α = 1.7 ± 1.7 nN/µm (see Chapter 2). Evidently, the variance in
the parameter values is in part due to the natural variations across the cell population,
and in part to possible statistical �uctuations in the experiments. Further insight about
the distribution of material parameters can be obtained in the future by combining our
model with experiments of cells adhering to micropatterned substrates, which impose
reproducible cell shapes [58]. Finally, we note that some of the smaller cellular arcs,
such as those in the bottom left corner of Figure 3.3, cannot be approximated by the
same ellipse as the longer arcs. This may be due to local �uctuations in the density and
orientation of stress �bers at the small scale or to other e�ects that are not captured by
our model. For a description of the selection of the �tted arcs and of the endpoints of
the arcs, see Section 2.5. For more experimental data on the elliptical �ts, see Figure 2.8.

3.2.2 Curvature

One of the most striking consequences of the elliptical shape of the cellular arcs is that
the local curvature is no longer constant, consistent with experimental observations on
epithelioid and �broblastoid cells in Figure 2.6a. This can be calculated from Eq. (3.6) in
the form:

κ = − 1

γb

(
1 + γ tan2 θ

1 + tan2 θ

) 3
2

, (3.7)

with b = λmin/σ the major semi-axis of the ellipse and with the negative sign indicating
that the arcs are curved inwards. A cellular arc thus attains its maximal (minimal) abso-
lute curvature where θ = 0 (θ = π/2) and the stress �bers are parallel (perpendicular)
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Figure 3.3. A �broblastoid cell with an anisotropic actin cytoskeleton on a microfabricated elas-
tomeric pillar array (same cell as in Figure 3.1A), with a unique ellipse (white) �tted to its arcs of
su�cient length (see Section 2.5). The actin, cell edge, and micropillar tops are in the red, green,
and blue channels respectively. The endpoints of the arcs (cyan) are identi�ed based on the forces
that the cell exerts on the pillars (Section 2.5). Scale bar is 10 µm.

to the arc tangent vector, namely

κmin = κ
(
θ =

π

2

)
= −
√
γ

b
, (3.8a)

κmax = κ (θ = 0) = − 1

γb
. (3.8b)

Consistent with experimental evidence, the radius of curvature of arcs perpendicular to
stress �bers is smaller than the radius of curvature of arcs parallel to the stress �ber
direction. Thus, regions of the cell edge having higher and lower local curvature corres-
pond to di�erent portions of the same ellipse, depending on the relative orientation of
the local tangent vector and the stress �bers. For a more detailed comparison between
theory and experiment, see Chapter 2.

3.2.3 Traction forces

With the expressions for shape of the cellular arcs [Eq. (3.6)] and cortical tension [Eq.
(3.5)] in hand, we now calculate the traction forces exerted by the cell via the focal
adhesions positioned at the end-points of a given cellular arc (Figure 3.2). Calling these
F 0 and F 1 and recalling that the cell edge is oriented counter-clockwise, we have F 0 =
−λ(θ0)T (θ0) and F 1 = λ(θ1)T (θ1), where θ0 and θ1 are the turning angles at the end-
points of the arc. For practical applications, it is often convenient to express the position
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of the adhesion sites in terms of their relative distance d = d(cosφ, sinφ) (Figure 3.2).
This yields

F 0 = λmin

[
−

(
d

2b
sinφ+

ρ

b
cosφ

)
n⊥+

(
− 1

γ

d

2b
cosφ+

ρ

b
sinφ

)
n

]
, (3.9a)

F 1 = λmin

[
−

(
d

2b
sinφ− ρ

b
cosφ

)
n⊥+

(
− 1

γ

d

2b
cosφ− ρ

b
sinφ

)
n

]
, (3.9b)

where the length scale ρ is de�ned as

ρ =

√
b2
(

1 + tan2 φ

1 + γ tan2 φ

)
− 1

γ

(
d

2

)2

. (3.10)

The total traction force exerted by the cell can be calculated by summing the two forces
associated with the arcs joining at a given adhesion site, while taking into account that
the the orientation n of the stress �bers is generally di�erent from arc to arc.

Another interesting quantity is obtained by adding the forces F 0 and F 1 from the
same arc. Although these two forces act on two di�erent adhesion sites, their sum rep-
resents the total net force that a single cellular arc exerts on the substrate. This is given
by

F 0 + F 1 = −dσ sinφn⊥ − d(σ + α) cosφn ,

= −
(
σÎ + αnn

)
· d⊥ , (3.11)

where d⊥ = d(− sinφ, cosφ) (Figure 3.2). Eq. (3.11) presents the force resulting from
the integrated contractile bulk stress [see Eq. (3.1)], which is independent of the line
tension λmin but scales linearly with the distance between adhesions. This implies that
the total traction increases with the cell size, consistent with earlier contour models [64,
65] and various experimental observations [195–197]. Because the cell size is expected
to be larger on sti�er substrates, as these stretch only slightly in response to the cell
contraction, the total amount of traction also increases with substrate sti�ness.

3.2.4 Mechanical invariants

We conclude this section by highlighting two mechanical invariants, local quantities
that are constant along a cellular arc, thus showing the intimate relation between the
geometry of the cell and the mechanical forces it exerts on the environment. From Eqs.
(3.9) we �nd

F 2
⊥ + γF 2

‖ = const., (3.12)
where F‖ and F⊥ are the components of the force, parallel and perpendicular to n, at
any point along a same cellular arc. Furthermore, by inspection of Eqs. (3.7) and (3.5)
we observe that

λ3κ = −λ2
min(α+ σ) = const . (3.13)
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From this, we �nd that the normal component of the cortical force, λκ [see Eq. (3.4)], is
then given by

λκ = −
(
λmin

λ

)2

(α+ σ) . (3.14)

This relation is an analog of the Young-Laplace law for our anisotropic system. In the
isotropic limit, α = 0 and λmin = λ, thus we recover the standard force-balance ex-
pression λκ = −σ. Eq. (3.14) shows that the normal force λκ decreases with increasing
line tension λ, because an increase in line tension is accompanied by an even stronger
decrease in the curvature κ.

3.3 Interplay between orientation of the cytoskeleton

and cellular shape

In this section we generalize our approach by allowing the orientation of the stress �bers
to vary along individual cellular arcs. This is achieved by combining the contour model
for the cell shape, reviewed in Section 3.2, with a continuous phenomenological model
of the actin cytoskeleton, rooted into the hydrodynamics of nematic liquid crystals [91].
This setting can account for the mechanical feedback between the orientation of the
stress �bers and the concave cellular shape and allows us to predict both these features
starting from the positions of the adhesion sites along the cell edge alone. Although ex-
perimental studies have shown the biophysical importance of substrate adhesions in the
cell interior [56, 198, 199], here we only describe a limited number of discrete adhesion
sites at the cell periphery, where the largest traction stresses are found [200–202]. A
treatment of the dynamics of focal adhesions is beyond the scope of this chapter and can
be found elsewhere, e.g., in Refs. [136, 189].

As mentioned in Section 3.1, experimental observations, by us (Chapter 2) and others
[85–88], have indicated that stress �bers tend to align with each other and with the cell’s
longitudinal direction. As we discussed, several cellular processes might contribute to
these alignment mechanisms, such as mechanical cell-matrix feedback [52, 76, 179–181],
motor-mediated alignment [182–185], steric interactions [186–188], stress �ber forma-
tion and dissociation [75–77, 79], focal adhesion dynamics [77, 79, 136, 189], the geo-
metry of actin nucleation sites [190, 191], or membrane-mediated alignment [192], but it
is presently unclear which combination of mechanisms is ultimately responsible for the
orientational correlation observed in experiments. Our phenomenological description
of the actin cytoskeleton allows us to focus on the interplay between cellular shape and
the orientation of the stress �bers, without the loss of generality that would inevitably
result from selecting a speci�c alignment mechanism among those listed above.

This phenomenological description necessitates a number of simplifying assump-
tions that can be addressed in future work. First, we again assume the typical timescale
associated with the equilibration of the forces (hence the reorientation of the actin �la-
ments) to be much shorter than that associated with cell motility (see also Section 3.2.1).

43



CHAPTER 3. MECHANICAL INTERPLAY BETWEEN CELL SHAPE AND ACTIN CYTOSKELETON
ORGANIZATION

Consequently, experiments on migrating cells [203] or cells subject to cyclic mechanical
loading [204, 205] are outside of the scope of the present chapter. Moreover, our model
does not take into account dynamical e�ects, such as actin �lament turnover and the
viscoelasticity of stress �bers [206, 207]. Additionally, as we did with in Section 3.2, we
restrict our model to e�ectively two-dimensional cells. This is not unreasonable, as cells
adhering to a sti� surface have a largely �at shape [48], but it does imply that our model
cannot capture three-dimensional stress �ber structures around the nucleus, such as the
actin cap [208], or distinguish between the orientations of apical and basal stress �bers
[209]. Third, we do not model signaling pathways, thus our approach cannot account for
variations of myosin activity (thus contractile stress) in response to the substrate sti�-
ness and other mechanical cues, but, as already discussed in Section 3.2, it can describe
the modulation of traction forces originating from the mechanical coupling between the
cell and the substrate [195–198] (see Section 3.2.3). Fourth, our model describes the over-
all cell-scale structure of the actin cytoskeleton and does not include local e�ects such
as the interactions of individual stress �bers with focal adhesions in the cell interior [56,
198, 199]. Finally, we assume a uniform density of actin. Therefore our model does not
account for local density variations that have been found experimentally on several cell
types, where stress �bers occur most prominently along concave cell edges [176, 196,
210, 211].

3.3.1 Model of the actin cytoskeleton

The actin cytoskeleton is modeled as a nematic liquid crystal con�ned within the cellu-
lar contour. This is conveniently represented in terms of the two-dimensional nematic
tensor (see, e.g., Ref. [91]):

Qij = S

(
ninj −

1

2
δij

)
, (3.15)

where δij is the Kronecker delta and S =

√
2 tr Q̂

2
is the so called nematic order para-

meter, measuring the amount of local nematic order. Here, 0 ≤ S ≤ 1, where S = 1
represents perfect nematic order and S = 0 represents randomly oriented stress �bers.
In the standard {x̂, ŷ} Cartesian basis, Eq. (3.15) yields

Q̂ =

[
Qxx Qxy
Qxy −Qxx

]
=
S

2

[
cos 2θSF sin 2θSF

sin 2θSF − cos 2θSF

]
. (3.16)

The preferred orientation of stress �bers within the cell is captured by the Landau-de
Gennes free-energy Fcyto [91]:

Fcyto =
1

2
K

∫
dA

[
|∇Q̂|2 +

1

δ2
tr Q̂

2
(tr Q̂

2
− 1)

]
+

1

2
W

∮
ds tr

[
(Q̂− Q̂0)2

]
. (3.17)
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The �rst integral in Eq. (3.17) corresponds to a standard mean-�eld free-energy, favor-
ing perfect nematic order (i.e., S = 1), while penalizing gradients in the orientation of
the stress �bers and their local alignment. For simplicity, we neglect the dependence on
the nematic order parameter on the density of actin (here assumed to be uniform). The
quantity K is known as Frank’s elastic constant and, in this context, expresses the sti�-
ness of the actin cytoskeleton with respect to both splay and bending deformations, on a
scale larger than that of the individual actin �laments. The length scale δ sets the size of
the boundary layer in regions where the order parameter drops to zero to compensate a
strong distortion of the nematic director n, such as in proximity of topological defects.
Hence, δ measures the typical size of regions where stress �bers are randomly oriented.

The second integral, which is extended over the cell contour, is the Nobili-Durand
anchoring energy [95] and determines the orientation of the stress �bers along the edge
of the cell, with the tensor Q̂0 representing their preferential orientation. Experimental
evidence form our (Figures 3.3 and 2.10) and other’s work (e.g., Refs. [85–88]), suggests
that, in highly anisotropic cells, peripheral stress �bers are preferentially parallel to the
cell edge. The same trend is recovered in experiments with puri�ed actin bundles con-
�ned in microchambers [186, 187]. In the language of Landau-de Gennes theory, this
e�ect can be straightforwardly reproduced by setting

Q0,ij = S0

(
TiTj −

1

2
δij

)
, (3.18)

withT the tangent unit vector of the cell edge. Along concave edges the local orientation
of stress �bers tends to be well de�ned [176, 210], so we further assume a large nematic
order along the contour: S0 = 1. The phenomenological constant W > 0 measures
the strength of this parallel anchoring, hence it is a measure for the preference of stress
�bers to align parallel to the cell boundary. Although stress �ber formation is a�ected by
the pre-existing cytoskeletal tension [51, 53], here we treat our bulk parameters K , W ,
and δ independently from α0, σ, and λmin which model the tension at the cell boundary.

In order to generate stationary con�gurations of the actin cytoskeleton, we numer-
ically integrate the following overdamped equation:

∂tQij = − 1

ξr

δFcyto

δQij
, (3.19)

where ξr is a rotational drag coe�cient, controlling the relaxation rate of the system,
but without a�ecting the steady-state con�gurations. Eq. (3.19) is numerically integrated
with Neumann boundary conditions:

KN · ∇Qij − 2W (Qij −Q0,ij) = 0 . (3.20)

This guarantees the steady-state con�gurations to be energy-minimizing, but without
imposing a speci�c non-physical orientation of the stress �bers along the contour of the
cell.
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3.3.2 The dynamics of the cell contour

The relaxational dynamics of the cell contour are governed, in our model, by Eq. (3.3),
which is now lifted from the assumption that the orientation n of the stress �bers is
uniform along individual cellular arcs. Furthermore, the contractile stress given by Eq.
(3.2) can now be generalized as:

Σ̂out − Σ̂in = σÎ + α0Snn

=

(
σ +

1

2
α0S

)
Î + α0Q̂ , (3.21)

with α0 a constant independent on the local order parameter. Comparing Eqs. (3.2)
and (3.21) yields α = α0S, thus the formalism introduced in this section allows us to
explicitly account for the e�ect of the local orientational order of the stress �bers on the
amount of contractile stress that they exert.

Next, we decompose Eq. (3.3) along the normal and tangent directions of the cell
contour. Since the cells considered here are pinned at the adhesion sites, which we
again assume to be rigid, and the density of actin along the cell contour is assumed to
be constant, tangential motion is suppressed, i.e., T · ∂tr = 0. Together with Eq. (3.21)
this yields:

0 = ∂sλ + α0 T · Q̂ ·N , (3.22a)

ξtN · ∂tr = λκ+ σ +
1

2
α0S + α0 N · Q̂ ·N . (3.22b)

Eq. (3.22a) describes then the relaxation of tension λwithin the cell edge, given its shape,
whereas Eq. (3.22b) describes the relaxation of the cellular shape itself. The variations
in the cortical tension might result from a regulation of the myosin activity or simply
form a passive response of the cortical actin to the tangential stresses.

Integrating Eq. (3.22a) then yields the cortical tension along an arc:

λ(s) = λ(0)− α0

∫ s

0

ds′ T · Q̂ ·N , (3.23)

where Q̂ = Q̂(s) varies, in general, along an individual cellular arc. The integration
constant λ(0), which represents the cortical tension at one of the adhesion sites, is re-
lated to the minimal tension λmin withstood by the cortical actin which we used, in
Section 3.2, as material parameter of the problem. In practice, we �rst calculate λ over
an entire arc using a arbitrary guess for λ(0). Then, we apply a uniform shift in such a
way that the minimal λ value coincides with λmin.

Combining the dynamics of the cell contour and that of the cell bulk, we obtain the

46



3.4. NUMERICAL RESULTS

following coupled di�erential equations:

∂tr =
1

ξt

[
λκ+ σ +

1

2
α0S + α0 N · Q̂ ·N

]
N , (3.24a)

∂tQ̂ =
K

ξr

[
∇2Q̂− 2

δ2
(S2 − 1)Q̂

]
. (3.24b)

These are complemented by the condition that r is �xed in a number of speci�c adhe-
sion sites, the boundary condition given by Eq. (3.20) for the nematic tensor Q̂ and the
requirement that mins λ(s) = λmin on each arc.

3.4 Numerical results

Eqs. (3.24) are numerically solved using a �nite di�erence integration scheme with mov-
ing boundary. As we detail in Section 3.6.2 in the Appendix, the time-integration is per-
formed iteratively using the forward Euler algorithm by alternating updates of the cell
contour and of the bulk nematic tensor. This process is iterated until both the cell shape
and the orientation reach a steady state.

To highlight the physical meaning of our numerical results, we introduce two di-
mensionless numbers, namely the contractility number, Co, and the anchoring number,
An. Co is de�ned as the ratio between the typical distance between two adhesion sites
d and the major semi-axis of the ellipse approximating the corresponding cellular arc
(b = λmin/σ, see Section 3.2.1):

Co =
σd

λmin
, (3.25)

and provides a dimensionless measure of the cell contraction (thus of the cell average
curvature). The anchoring number, on the other hand, is de�ned as the ratio between
a typical length scale R in which the internal cell structure is con�ned (not necessarily
equal to the distance d) and the length scale K/W , which sets the size of the boundary
layer where Q̂ crosses over from its bulk con�guration to Q̂0:

An =
WR

K
. (3.26)

This number expresses the ratio between the anchoring energy, which scales as WR
[i.e., last term in Eq. (3.17)], and the bulk energy, which scales as K , thus independ-
ently on cell size [i.e., �rst term in Eq. (3.17)]. Hence, An represents the competition
between boundary alignment (with strengthW ) and bulk alignment (strengthK) within
the length scale of the cell R. For An � 1, bulk elasticity dominates over boundary
anchoring and the orientation of the stress �bers in the bulk propagates into the bound-
ary, resulting into a uniform orientation throughout the cell and large deviations from
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parallel anchoring in proximity of the edge. Conversely, for An� 1, boundary anchor-
ing dominates bulk elasticity and the orientation of the stress �bers along the cell edge
propagates into the bulk, leading to non-uniform alignment in the interior of the cell.

To get insight on the e�ect of the combinations of these dimensionless parameters
on the spatial organization of the cell, we �rst consider the simple case in which the
adhesion sites are located at the corners of squares and rectangles (Section 3.4.1). In
Section 3.4.2 we consider more realistic adhesion geometries and compare our numerical
results with experimental observations on highly anisotropic cells adhering to a small
number of discrete adhesions.

3.4.1 Rectangular cells

Figure 3.4 shows the possible con�gurations of a model cell whose adhesion sites are
located at the vertices of a square, obtained upon varying An and Co, while keeping
γ = σ/(σ + α0) constant. Figure 3.10 in the Appendix shows the e�ect of varying
the ratio between σ and α0 for this model cell. The thick black line represents the cell
boundary, the black lines in the interior of the cells represent the orientation �eld n of
the stress �bers and the background color indicates the local nematic order parameter
S, or equivalently, the magnitude of the maximal principal stress σmax = σ + α0S.

As expected, for lowCo values (left column), cells with largeAn exhibit better parallel
anchoring than cells with small An values, but lower nematic order parameter S in the
cell interior (spatial average of S decreases from 1.0 at the bottom left to 0.80 at the
top left, see Figure 3.4). Interestingly, the alignment of stress �bers with the walls in
the con�guration with large An value (top left) resembles the con�gurations found by
Deshpande et al. [75, 76], who speci�cally accounted for the assembly and dissociation
dynamics of the stress �bers. More strikingly, the structure reported in the top left of
Figure 3.4 appears very similar to those found in experiments of dense suspensions of
pure actin in cell-sized square microchambers [186, 187], simulations of hard rods in
quasi-2D con�nement [186], and results based on Frank elasticity [212], even though
these systems are very di�erent from living cells. As is the case in our simulations, in
these studies the tendency of the �laments to align along the square edges competes
with that of aligning along the diagonal.

For large Co values (right column of Figure 3.4), the cell deviates from the square
shape. Interestingly, although the contractile stresses (σ and α0) do not directly a�ect
the con�guration of the cytoskeleton, they do it indirectly by in�uencing the shape of
the cell. This results into an intricate interplay between shape and orientation, con-
trolled by the numbers An and Co. In particular, for constant Co, i.e., for �xed stress
�ber contractility, increasing An leads to higher tangential alignment of the stress �bers
with the cell edge, thus increasing An decreases the contractile force experienced by the
cell edge, which is proportional to (n ·N)2 [Eq. (3.24a)]. Conversely, for constant An,
increasing Co leads to a more concave cell shape which forces the stress �bers to bend
more. Consequently, the average order parameter in the cell decreases with increasing
Co (see Figure 3.4).
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Figure 3.4. Con�gurations of cells whose adhesion sites are located at the vertices of a square. The
thick black line represents the cell boundary, the black lines in the interior of the cells represent
the orientation �eld n = (cos θSF, sin θSF) of the stress �bers and the background color indicates
the local nematic order parameterS. The spatial averages of the order parameterS are given, from
left to right, by: 0.80; 0.80; 0.77 (top row), 0.94; 0.92; 0.92 (middle row), and 1.0; 1.0; 1.0 (bottom
row). The vertical axis corresponds to the anchoring numberAn = WR/K and the horizontal axis
to the contractility number Co = σd/λmin. The cells shown correspond to values of An = 0, 1, 10
and Co = 0, 0.125, 0.25, where we take both d and R equal to the length of the square side. The
ratios σ/(σ + α0) = 1/9, λmin∆t/(ξtR

2) = 2.8 · 10−6, and K∆t/(ξrR
2) = 2.8 · 10−6, and

the parameters δ = 0.15R, Narc = 20, and ∆x = R/19 are the same for all cells. The number of
iterations is 5.5 · 105. For de�nitions of ∆t, ∆x, and Narc, see Section 3.6.2 in the Appendix.

Finally, we note that all con�gurations in Figure 3.4 display a broken rotational
and/or chiral symmetry. For An = 0 the stress �bers are uniformly oriented, but any
direction is equally likely. For non-zero An, the stress �bers tend to align along either
of the diagonals (with the same probability) to reduce the amount of distortion. Upon
increasing Co, chirality emerges in the cytoskeleton and in the cell contour (see, e.g., the
cell in the middle of the right column in Figure 3.4). In light of the recent interest in
chiral symmetry breaking in single cells [213] and in multicellular environments [214],
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we �nd it particularly interesting that chiral symmetry breaking can originate from the
natural interplay between the orientation of the stress �bers and the shape of the cell.

To conclude this section, we focus on four-sided cells whose adhesion sites are lo-
cated at the vertices of a rectangle and explore the e�ect of the cell aspect ratio (i.e.,
height/width). Figure 3.5 displays three con�gurations having �xed maximal width and
aspect ratio varying from 1 to 2. Figure 3.11 in the Appendix shows the e�ect of increas-
ing the aspect ratio while keeping instead the area of the rectangle �xed. Upon increasing
the cell aspect ratio, the mean orientation of the stress �bers switches from the diagonal
(aspect ratio 1) to longitudinal (aspect ratio 2), along with an increase in the order para-
meter in the cell bulk, as can be seen in Figure 3.5 by the slightly more red-shifted cell
interior (spatial average of S increases from 0.92 to 0.96). This behavior originates from
the competition between bulk and boundary e�ects. Whereas the bulk energy favors
longitudinal alignment, as this reduces the amount of bending of the nematic director,
the anchoring energy favors alignment along all four edges alike, thus favoring highly
bent con�gurations at the expense of the bulk elastic energy. When the aspect ratio in-
creases, the bending energy of the bulk in the diagonal con�guration increases, whereas
the longitudinal state only pays the anchoring energy at the short edges, hence inde-
pendently on the aspect ratio. Therefore, elongating the cell causes the stress �bers to
transition from tangential to longitudinal alignment, with a consequent increase of the
nematic order parameter. Interestingly, similar observations were made in experiments
on pure actin �laments in cell-sized microchambers [186, 187]. More importantly, the
longitudinal orientation of the stress �bers in cells of aspect ratio 2 is consistent with
several experimental studies of cells adhering on adhesive stripes and elongated adhe-
sive micropatterns [87–89, 196, 211]. Figures 3.12 and 3.13 in the Appendix show the
e�ect of the anchoring number An, the contractility number Co, and the ratio between
σ and α0 on a cell with aspect ratio 2.

3.4.2 Cells on micropillar arrays

In order to validate our model experimentally, we compare our numerical results with
experiments on �broblastoid and epithelioid cells [173] plated on sti� micropillar arrays
[55–57]. The cells are imaged using spinning disk confocal microscopy (see, e.g., Figure
3.6A) and the images are then processed in order to detect the orientation of the stress
�bers. Upon coarse-graining the local gradients of the image intensity, we reconstruct
both the nematic director n (black lines, representing the orientation of the stress �bers)
and order parameterS (background color, representing the degree of alignment), as visu-
alized in Figure 3.6B. Because of this coarse-graining, which takes place on a length scale
comparable to the radius of the micropillars (∼ 1µm) (see Section 2.5), local variations
in orientations and densities of stress �bers are smoothened out and the in�uence of in-
dividual micropillars under the cell interior, as visible in Figure 3.6A, is no longer visible
in Figure 3.6B. Regions in the cell with low actin expression, that do not show a clear
structural orientation, have a low order parameter S. Hence, in the experimental data,
a low S value might result from either a low local density of stress �bers, or from a
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Aspect Ratio
1 1.5 2

0 0.5 1.0
Order Parameter S

Figure 3.5. E�ect of the aspect ratio of the cell, ranging from 1 to 2, on cytoskeletal organiza-
tion for cells whose four adhesion sites are located at the vertices of a rectangle. The thick black
line represents the cell boundary, the black lines in the interior of the cells represent the orienta-
tion �eld n = (cos θSF, sin θSF) of the stress �bers and the background color indicates the local
nematic order parameter S. The spatial averages of the order parameter S are given, from left to
right, by: 0.92; 0.95; 0.96. The simulations shown are performed with An = WR/K = 1 where
R is equal to the short side of the rectangle, and Co = σd/λmin equal to 0.125, 0.1875, and 0.25
respectively, where d is equal to the long side of the rectangle. The ratios σ/(σ + α0) = 1/9,
λmin∆t/(ξtR

2) = 2.8 · 10−6, and K∆t/(ξrR
2) = 2.8 · 10−6, and the parameters δ = 0.15R

and ∆x = R/19 are the same for all cells. Narc = 20, 30, 40 from left to right and the number of
iterations is 5.5 · 105. For de�nitions of ∆t, ∆x, and Narc, see Section 3.6.2 in the Appendix.

high density of randomly oriented stress �bers. See Section 3.6.3 for more detail on the
construction of the nematic director and order parameter from experimental data.

Consistent with our results on rectangular cells (Figure 3.5), the stress �bers align
parallel to the cell’s longitudinal direction and perpendicularly to the cell’s shorter edges.
Furthermore, the nematic order parameter is close to unity in proximity of the cell con-
tour, indicating strong orientational order near the cell edge, but drops in the interior.
This behavior is in part originating from the lower density of stress �bers around the
center of mass of the cell, and in part from the presence of ±1/2 nematic disclinations
away from the cell edge. These topological defects naturally arise from the tangential
orientation along the boundary. Albeit not uniform throughout the whole cell contour,
thus not su�cient to impose hard topological constraints on the con�guration of the
director in the bulk (i.e., Poincaré-Hopf theorem), this forces a non-zero winding of the
stress �bers, which in turn is accommodated via the formation of one or more disclin-
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ations. As a consequence of the concave shape of the cell boundary, these defects have
most commonly strength −1/2. The average order parameter in the cell is S = 0.54.

To compare our theoretical and experimental results, we extract the locations of the
adhesion sites from the experimental data by selecting micropillars that are close to the
cell edge and experience a signi�cant force (for details, see Section 2.5), and use them
as input parameters for the simulations. In Figures 3.6C-E we show results of simula-
tions of the cell in Figures 3.6A,B for increasing An values, thus decreasing magnitude
of the length scale K/W . Here, we take the length scale R = 23.6 µm to be the square
root of the cell area and we use constant values for the ratios λmin/σ = 14.7 µm and
σ/(σ+α0) = 0.40 as found by an analysis of the elliptical shape of this cell (see Chapter
2). Figure 3.6C shows the results of a simulation where bulk alignment dominates over
boundary alignment (An = 0.33,K/W = 71µm), resulting in an approximately uniform
cytoskeleton oriented along the cell’s longitudinal direction. The nematic order para-
meter is also approximatively uniform and close to unity (spatial average of the order
parameter is S = 0.85). For larger An values (Figure 3.6D, An = 1.7 andK/W = 14µm),
anchoring e�ects become more prominent, resulting in distortions of the bulk nematic
director, a lower nematic order parameter (spatial average S = 0.60), and the emer-
gence of a −1/2 disclination in the bottom left side of the cell. Upon further increasing
An (Figure 3.6E, An = 8.0 and K/W = 2.9 µm), the −1/2 topological defect moves to-
ward the interior, as a consequence of the increased nematic order along the boundary.
This results in a decrease in nematic order parameter in the bulk of the cell, consistent
with our experimental data. The spatial average is S = 0.56, close to the experimental
average of S = 0.54.

A qualitative comparison between our in vitro (Figure 3.6B) and in silico cells (Figure
3.6E) highlights a number of striking similarities, such as the overall structure of the
nematic director, the large value of the order parameter along the cell edge and in the
thin neck at the bottom-right of the cell and the occurrence of a−1/2 disclination on the
bottom-left side. The main di�erence is the order parameter away from the cell edges,
which is lower in the experimental data than in the numerical prediction. The lower
order parameter also results in an additional −1/2 disclination at the top-left of the cell
in Figure 3.6B which is absent in Figure 3.6E. We hypothesize that this discrepancy is
caused by a lower actin density in the cell interior, as observed before in many other
experimental studies [176, 196, 210, 211]. As a consequence of the actin depletion, the
nematic order parameter can decrease, and potentially vanish, in a way that cannot be
described by our model, where the density of the actin �bers is, by contrast, assumed to
be uniform across the cell.

In order to make this comparison quantitative and infer the value of the phenomen-
ological parameters introduced in this section, we have further analyzed the residual
function

∆2 =
1

N

N∑
i=1

1

2
tr
[
(Q̂sim,i − Q̂exp,i)

2
]
, (3.27)
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Figure 3.6. Validation of our model to experimental data. (A) Optical micrograph (TRITC-
Phalloidin) of a �broblastoid cell (same cell as in Figures 3.1 and 3.3). The adhesions (cyan circles)
are determined by selecting micropillars that are close to the cell edge and experience a signi�cant
force (Section 2.5). (B) Experimental data of cell shape and coarse-grained cytoskeletal structure
of this cell. The white line represents the cell boundary, black lines in the interior of the cells
represent the orientation �eld n = (cos θSF, sin θSF) of the stress �bers and the background
color indicates the local nematic order parameter S. The spatial average of the order parameter
is S = 0.54. (C-E) Con�gurations obtained from a numerical solution of Eqs. (3.24) using the ad-
hesion sites of the experimental data (cyan circles) as input, and with various anchoring number
(An) values. This is calculated from Eq. (3.26), with R = 23.6 µm the square root of the cell area.
The corresponding values of the length scale K/W are 71 µm (C), 14 µm (D), and 2.9 µm (E)
respectively. The spatial averages of the order parameter S are given by: 0.85 (C), 0.60 (D), and
0.56 (E) respectively. The values for λmin/σ = 14.7 µm and σ/(σ+ α0) = 0.40 are found by an
analysis of the elliptical shape of this cell (see Chapter 2). The ratios λmin∆t/ξt = 1.2 ·10−3µm2

and K∆t/ξr = 1.2 · 10−3µm2, and the parameters δ = 11 µm, Narc = 20, and ∆x = 1.1 µm
are the same for �gures (C-E). The number of iterations is 2.1 · 106. For de�nitions of ∆t, ∆x,
and Narc, see Section 3.6.2 in the Appendix.
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Figure 3.7. Residual function ∆2, de�ned in Eq. (3.27), as a function of the anchoring number
An [Eq. (3.26) with R = 23.6 µm] for the cell displayed in Figure 3.6. The error bars display the
standard deviation obtained using jackknife resampling. For large An values the residual �attens,
indicating that the actual value ofAn becomes unimportant once the anchoring torques (with mag-
nitude W ), which determine the tangential alignment of the stress �bers in the cell’s periphery,
outcompete the bulk elastic torques (with magnitude K). The minimum (∆2 = 0.027) is found
for An = 8.0.

expressing the departure of the predicted con�gurations of the nematic tensor, Q̂sim,
from the experimental ones, Q̂exp. The index i identi�es a pixel in the cell and N is the
total number of pixels common to both numerical and experimental con�gurations. By
construction, ∆2 captures both di�erences in the nematic director n and in the order
parameter S [see Eq. (3.15)], and 0 ≤ ∆2 ≤ 1, with 0 representing perfect agreement.
Figure 3.7 shows a plot of ∆2 versus the anchoring number An for the cell shown in
Figure 3.6. Consistent with the previous qualitative comparison, the agreement is best
at large An values, indicating a substantial preference of the stress �bers for parallel
anchoring along the cell edge. For the cell in Figure 3.6, ∆2 is minimized for An = 8.0
(∆2 = 0.027), corresponding to a boundary layer K/W = 2.9 µm. The corresponding
numerically calculated con�guration is shown in Figure 3.6E. However, the �attening of
∆2 for large An values implies that the actual value of An becomes unimportant once the
anchoring torques (with magnitudeW ), which determine the tangential alignment of the
stress �bers in the cell’s periphery, outcompete the bulk elastic torques (with magnitude
K). Therefore, we conclude that the cell illustrated in Figure 3.6 is best described by
An & 5, corresponding to a boundary layer K/W . 5µm. The corresponding value of
∆2 = 0.027 indicates good quantitative agreement between the experimental (Figure
3.6B) and simulated (Figure 3.6E) data, despite the di�erence in order parameter away
from the cell edges. This quantitative agreement indicates that, although oversimpli�ed
in comparison with the complexity of living cells, our model satisfactorily describes
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the stationary con�guration of both the nematic order parameter and the stress �bers
orientation.

The same analysis presented above has been repeated for �ve other cells (Figure 3.8).
The �rst column shows the raw experimental data, the second column shows the coarse-
grained experimental data, and the third column shows the simulations. For these we
used the values of λmin/σ and σ/(σ + α0) obtained from a previous analysis of the
cell morphology (see Chapter 2) and the An values found by a numerical minimization
of ∆2 (see Figure 3.14 in the Appendix). Also for these cells ∆2 �attens for large An
values, and we estimate An & 3 and K/W . 7 µm. The minima of ∆2 are given,
from top to bottom, by 0.016, 0.058, 0.057, 0.034, and 0.037. This indicates reasonable
quantitative agreement between experiment and simulation for all cells, even though
the agreement is signi�cantly better for the cell in Figure 3.8F than for those in Figures
3.8G and 3.8H. Similar to the cell in Figure 3.6, we observe that the main discrepancies are
the order parameter in the cell interior, which is smaller in the experimental data than
in the numerical results, and a number of topological defects in this low nematic order
region of the experimental data that are absent in the numerical data. The cell in Figure
3.8F shows good agreement between the average order parameter in the experimental
(S = 0.54) and numerical (S = 0.52) data, but for the other cells the average order
parameter is overestimated by the simulations. We again attribute this discrepancy to
actin density variations in the experiments that are not captured by the theory. On the
other hand, we note that the overall structure of the stress �ber orientation, including
the emergence of a number of−1/2 topological defects (see, e.g., Figures 3.8F and 3.8K),
is captured well by our approach.
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Figure 3.8. Comparison of experimental data on �ve anisotropic cells with the results of computer
simulations. (A-E) Optical micrographs (TRITC-Phalloidin) of epithelioid (A,B,E) and �broblastoid
(C,D) cells on a microfabricated elastomeric pillar array. The adhesions (cyan circles) are deter-
mined by selecting micropillars that are close to the cell edge and experience a signi�cant force
(Section 2.5). (F-J) Experimental data of cell shape and coarse-grained cytoskeletal structure on a
square lattice of these cells. The white line represents the cell boundary, the black lines in the in-
terior of the cells represent the orientation �eld n = (cos θSF, sin θSF) of the stress �bers and the
background color indicates the local nematic order parameter S. The spatial averages of the order
parameter S are given, from top to bottom, by: 0.54; 0.44; 0.45; 0.46; 0.37. (K-O) Simulations
with the adhesion sites of the experimental data as input. The spatial averages of the order para-
meter S are given, from top to bottom, by: 0.52; 0.68; 0.61; 0.59; 0.53. The values for λmin/σ =
12.6; 15.7; 18.0; 10.8; 13.4µm and σ/(σ+α0) = 0.75; 0.25; 0.46; 0.95; 0.52 are found by an ana-
lysis of the elliptical shape of these cells (see Chapter 2). The values of An = 4.4; 4.1; 19; 4.6; 4.7,
whereR = 17.3; 24.4; 39.9; 24.9; 25.3µm is de�ned as the square root of the cell area, are deter-
mined by minimizing ∆2, with the minima given by ∆2 = 0.016; 0.058; 0.057; 0.034; 0.037.
These An values correspond to K/W = 3.9; 5.9; 2.1; 5.4; 5.4 µm. The ratios λmin∆t/ξt =
1.2 · 10−3µm2 and K∆t/ξr = 1.2 · 10−3µm2, and the parameters δ = 11 µm, Narc = 20,
and ∆x = 1.1 µm are the same for all cells. The number of iterations is 2.1 · 106. For de�nitions
of ∆t, ∆x, and Narc, see Section 3.6.2 in the Appendix.
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3.5 Discussion and conclusions

In this chapter we investigated the spatial organization of cells adhering on a rigid sub-
strate at a discrete number of points. Our approach is based on a contour model for
the cell shape [48, 62–64, 67] coupled with a continuous phenomenological model for
the actin cytoskeleton, inspired by the physics of nematic liquid crystals [91]. This ap-
proach can be carried out at various levels of complexity, o�ering progressively insight-
ful results. Assuming that the orientation of the stress �bers is uniform along individual
cellular arcs (but varies from arc to arc), it is possible to achieve a complete analytical
description of the geometry of the cell, in which all arcs are approximated by di�erent
portions of a unique ellipse. The eccentricity of this ellipse depends on the ratio between
the isotropic and directed stresses arising in the actin cytoskeleton, and the orientation
of the major axis of this ellipse is parallel to the stress �bers. This parallel alignment
highlights the ability of cells to employ their actin cytoskeleton to regulate their shape.
The method further allows to analytically calculate the traction forces exerted by the
cell on the adhesion sites and compare them with traction force microscopy data.

Lifting the assumption that the stress �bers are uniformly oriented along individual
cellular arcs allows one to describe the mechanical interplay between cellular shape and
the con�guration of the actin cytoskeleton. Using numerical simulations and inputs
from experiments on �broblastoid and epithelioid cells plated on sti� micropillar arrays,
we identi�ed a feedback mechanism rooted in the competition between the tendency
of stress �bers to align uniformly in the bulk of the cell, but tangentially with respect
to the cell edge. Our approach enables us to predict both the shape of the cell and the
orientation of the stress �bers and can account for the emergence of topological defects
and other distinctive morphological features. The predicted stress �ber orientations are
in good agreement with the experimental data and further o�er an indirect way to es-
timate quantities that are generally precluded to direct measurement, such as the cell’s
internal stresses and the orientational sti�ness of the actin cytoskeleton. The main dis-
crepancy between our predictions and the experimental data is the overestimation of the
nematic order parameter in the cell interior, which should be addressed in future work
by explicitely accounting for actin density variations.

The success of this relatively simple approach is remarkable given the enormous
complexity of the cytoskeleton and the many physical, chemical, and biological mech-
anisms associated with stress �ber dynamics and alignment [52, 75–77, 79, 136, 179–192].
Yet, the agreement between our theoretical and experimental results suggests that, on
the scale of the whole cell, the myriad of complex mechanisms that govern the dynamics
of the stress �bers in adherent cells can be e�ectively described in terms of simple en-
tropic mechanisms, as those at the heart of the physics of liquid crystals. Moreover, this
quantitative agreement further establishes the fact that the dynamics and alignment of
stress �bers in cells cannot be understood from dynamics at the sub-cellular scale alone,
and highlights the crucial role of the boundary conditions inferred by cellular shape [176,
210].

In addition, our analysis demonstrates that chiral symmetry breaking can originate
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from the natural interplay between the orientation of the stress �bers and the shape of
the cell. A more detailed investigation of this mechanism is beyond the scope of this
study, but will represent a challenge in the near future with the goal of shedding light
on the fascinating examples of chiral symmetry breaking observed both in single cells
[213] and tissues [214].

In the future, we plan to use our model to investigate the mechanics of cells adher-
ing to micropatterned substrates that impose reproducible cell shapes [58], with special
emphasis to the interplay between cytoskeletal anisotropy and the geometry of the ad-
hesive patches. These systems are not new to theoretical research, but previous studies
have focused on either the cytoskeleton [77] or on cell shape [69], rather than on their
interaction. This will enable us to more rigorously compare our model predictions with
existing experimental data on stress �ber orientation in various adhesive geometries [33,
43, 176, 210, 211], including convex shapes such as circles or stadium-shapes [196, 213,
215], see Chapter 4. Additionally, we will extend our model for the cytoskeleton (Section
3.3.1) to account for variations of myosin activity, which will allow us to study the in-
crease of cytoskeletal tension with substrate sti�ness [198] or substrate area [195–197],
as well as the interactions of stress �bers with micropillars in the cell interior [56, 198,
199]. Furthermore, our framework could be extended to study the role of cytoskeletal
anisotropy in cell motility, for instance by taking into account the dynamics of focal ad-
hesions [136, 189], biochemical pathways in the actin cytoskeleton [124], actin �lament
turnover and the viscoelasticity of stress �bers [206, 207], or cellular protrusions and
retractions [216]. Finally, our approach could be extended to computational frameworks
such as vertex models, Cellular Potts Models (see Chapter 4), or phase �eld models [84],
and could provide a starting point for exploring the role of anisotropy in multicellular
environments such as tissues [111, 217–223].

3.6 Appendix

3.6.1 Derivation of Eqs. (3.5) and (3.6)
In this section, we show how Eqs. (3.5) and (3.6) in Section 3.2.1 follow from Eq. (3.4).
Without loss of generality, we orient the reference frame such that the stress �bers are
parallel to the y−axis. Thus, θSF = π/2 and n = ŷ (see Figure 3.2). Since we assume α,
σ and n to be constant along an arc, Eq. (3.4) can be expressed as a total derivative and
integrated directly. This yields

λT + (σÎ + αnn) · r⊥ = C1 , (3.28)

where C1 = (C1x, C1y) is an integration constant. Decomposing Eq. (3.28) into x− and
y−directions yields

λ cos θ = C1x + σy (3.29a)
λ sin θ = C1y − (α+ σ)x . (3.29b)
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Next, taking the ratio of Eqs. (3.29), using tan θ = dy/dx and integrating, we obtain
a general solution for the shape of the cellular arc subject to a non-vanishing isotropic
stress (i.e., σ 6= 0), namely

1

γ
(x− xc)2 + (y − yc)2 = C2 , (3.30)

where C2 is another integration constant and we have set

xc =
C1y

σ + α
, yc = −C1x

σ
, γ =

σ

σ + α
.

Eq. (3.30) describes an ellipse centered at (xc, yc) and whose minor and major semi-axis
are a =

√
γC2 and b =

√
C2. Using again Eqs. (3.29), we further obtain an expression

for the line tension λ as a function of x and y:

λ2 = σ2(y − yc)2 + (σ + α)2(x− xc)2 . (3.31)

Using Eqs. (3.29) and (3.30), this can be also expressed as a function of the turning angle
θ, namely

λ2

σ2
= C2

1 + tan2 θ

1 + γ tan2 θ
. (3.32)

This expression highlights the physical meaning of the integration constant C2. The
right-hand side of Eq. (3.32) attains its minimal value (C2) where θ = 0, hence when the
tangent vector is perpendicular to the stress �bers (i.e., n ·T = 0). Thus C2 = λ2

min/σ
2,

where λmin is the minimal tension withstood by the cortical actin. SubstitutingC2 in Eq.
(3.32) then yields Eq. (3.5). The maximum value of the line tension is found at θ = π/2,
where the stress �bers are parallel to the arc, and is given by λmax = λmin/

√
γ.

Substituting C2 in Eq. (3.30) yields an implicit representation of the plane curve
approximating individual cellular arcs, namely

σ2

γλ2
min

(x− xc)2 +
σ2

λ2
min

(y − yc)2 = 1 . (3.33)

This equation describes an ellipse centered at the point (xc, yc) and oriented along the
y−direction, whose minor and major semi-axes are a = λmin

√
γ/σ and b = λmin/σ

respectively (Figure 3.2). For arbitrary stress �ber orientation θSF, Eq. (3.33) can be
straightforwardly generalized to �nd Eq. (3.6).

3.6.2 Numerical methods

Integration scheme Here we describe step by step the integration scheme that we
use to generate the results shown in Figures 3.4-3.8.

1) Initialization.
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1a) De�ne the positions of the adhesion sites. In Figures 3.4 and 3.5 these are the four
corners of a square or rectangle. For the comparison to experimental data (Figures 3.6-
3.8), the locations of the adhesion sites are directly determined from the experiments by
detecting the pillars along the cell contour that are subject to the largest traction forces
(see Section 2.5). These adhesion sites are �xed during the simulation.

1b) De�ne the initial cell boundary, consisting of cellular arcs that connect adjacent
adhesion sites. Cellular arcs are parameterized in terms of a discrete number of vertices
connected by straight edges in a chain-like manner. The initial cellular arcs are straight
lines connecting two adhesion sites. Hence, at t = 0 the cell boundary is an irregular
polygon.

1c) De�ne the initial cell bulk, which represents the cytoskeleton, as the region en-
closed by the initial cell boundary. The bulk is discretized as a regularly spaced two-
dimensional square lattice with Q̂ de�ned at every lattice point. Each lattice point ini-
tially obtains random values for the orientation −π/2 ≤ θSF ≤ π/2 and the nematic
order parameter 0 ≤ S ≤ 1, from which Q̂ is calculated using Eq. (3.16). Evidently,
the initial con�guration bears no resemblance to a real cell, but it reduces the risk of a
possible bias in the �nal con�guration.

2) Cell con�guration updates. Perform the following steps for a prede�ned number
of iterations, which is chosen such that both the cell edge and the cell bulk reach a
steady-state con�guration.

2a) Update the cell boundary for a single time step ∆t by discretizing Eqs. (3.23) and
(3.24a). For details, see below.

2b) Update the cell bulk. First, the bulk is rede�ned as the region enclosed by the
updated cell boundary (step 2a). In case of inclusion of a new lattice point that was
previously located outside the cell, the associated Qxx and Qxy values are generated by
averaging over the nearest neighbours (horizontally and vertically, not diagonally) that
were inside the cell during the previous time step. In case of removal of a lattice point,
the data at that lattice point are discarded. Then, Q̂ is updated at every lattice point for
a single time step ∆t by discretizing Eq. (3.24b). For details, see below.

3) The �nal con�gurations are plotted in Figures 3.4-3.6 and 3.8. The cytoskeleton
has been visualized with Mathematica Version 11.3 (Wolfram Research, Champaign, IL)
using the line integral convolution tool. When using this tool we de�ne S = 1 outside
the cell, while θSF is not de�ned outside the cell. In some cases this can lead to small
artefacts in the visualisation near the cell edge.

Cell contour update In order to update the position of the cell contour, we �rst cal-
culate the line tension λ by discretizing Eq. (3.23) as follows:

λk = λ0 − α0

k∑
n=1

∆sn T n ·
〈
Q̂n

〉
·Nn , k = 1, 2 . . . Narc , (3.34)

where λ0 is the line tension at the adhesion site at s = 0 (position r0) and λk is the line
tension at vertex k (position rk). Narc is the total number of vertices in which cellular
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arcs are discretized, and λNarc represents the line tension at the other adhesion site.
Furthermore, ∆sn = |rn − rn−1|, T n = (rn − rn−1)/∆sn, Nn = T⊥n and〈

Q̂n

〉
=

Q̂n + Q̂n−1

2
, (3.35)

with Q̂n and Q̂n−1 the nematic tensor at the vertices n and n− 1. These are set equal
to Q̂ at the closest bulk lattice point inside the cell among the four points, delimiting
the unit cell of the bulk lattice, containing the edge vertices n and n− 1 respectively. If
none of these is inside the cell, we setQxx,n = Qxy,n = 0. The quantity λ0 is calculated
in such a way that the minimal λ value along an arc equates the input parameter λmin,
representing the minimal tension withstood by the cortical actin.

Next, the position of the vertices rk , k = 0, 1 . . . Narc is updated upon integrating
Eq. (3.24a) using the forward Euler method with time step ∆t. The curvature and normal
vector at vertex k, κk and Nk , are found by constructing a circle with radius R through
vertices k − 1, k, and k + 1. The vector from vertex k to the center of the circle is then
equated to±RNk , with the sign such that Nk is an inward pointing normal vector, and
κk = ±1/R, with a negative sign for a concave shape and a positive sign for a convex
shape. Along each arc, r0 and rNarc represent the positions of the adhesion sites and
are kept �xed during simulations.

Cell bulk update Eq. (3.24b) is numerically solved at each lattice point inside the cell
via a �nite-di�erence scheme. Time integration is performed using the forward Euler
method with time step ∆t, whereas spatial derivatives are calculated using the centered
di�erence approximation. In order to calculate derivatives at lattice points located in
proximity of the edge, we use the boundary conditions, speci�ed in Eq. (3.20), to express
the values of Qxx and Qxy in a number of ghost points located outside the cell. This is
conveniently done upon identifying three possible scenarios, illustrated in Figure 3.9. 1)
There is a single ghost point on the x− or y−axis (Figure 3.9A). 2) There are two ghost
points, one on each axis (Figure 3.9B). 3) There are two ghost points on the same axis
and possibly a third one on the other axis (Figure 3.9C). In the following, we explain how
to address each of these cases.

1) Using the centered di�erence approximation for the �rst derivative yields the
following expression of the nematic tensor at a ghost point located at (x ± ∆x, y) or
(x, y ±∆y), with ∆x = ∆y the lattice spacing:

Qij(x±∆x, y) = Qij(x∓∆x, y)± 2∆x ∂xQij(x, y) , (3.36a)
Qij(x, y ±∆y) = Qij(x, y ∓∆y)± 2∆y ∂yQij(x, y) . (3.36b)

The derivative with respect to x in Eq. (3.36a) can be calculated from Eq. (3.20), upon
taking N = ±x̂, where the plus (minus) sign correspond to a ghost point located on
the left (right) of the central edge point. Thus N · ∇Qij = ±∂xQij . Analogously, the
derivative with respect to y in Eq. (3.36b), is approximated as N · ∇Qij = ±∂yQij ,
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Internal grid point
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Figure 3.9. Schematic overview of the three geometrical situations described in Section 3.6.2. (A)
There is a single ghostpoint on the x− or y−axis. (B) There are two ghost points, one on each
axis. (C) There are two ghost points on the same axis and possibly a third one on the other axis.

where the plus (minus) sign corresponds to a ghost point located below (above) the
central edge point. Combining this with Eq. (3.20), yields:

Qij(x±∆x, y) = Qij(x∓∆x, y)− 4∆x
W

K
[Qij(x, y)−Q0,ij(x, y)] , (3.37a)

Qij(x, y ±∆y) = Qij(x, y ∓∆y)− 4∆y
W

K
[Qij(x, y)−Q0,ij(x, y)] . (3.37b)

The tensor Q0,ij is evaluated via Eq. (3.18) using the local orientation of the cell edge.
2) If a given lattice point is linked to ghost points in both thex− and y−directions, we

evaluate equation (3.37) for both directions independently as explained in the previous
paragraph.

3) If a given lattice point is linked to two ghost points in either the x− or y−direction,
we employ a forward or backward �nite di�erence approximation for the �rst spatial
derivative of Qij to evaluate Qij at the ghost points. This yields:

Qij(x±∆x, y) = Qij(x, y)− 2∆x
W

K
[Qij(x, y)−Q0,ij(x, y)] , (3.38a)

Qij(x, y ±∆y) = Qij(x, y)− 2∆y
W

K
[Qij(x, y)−Q0,ij(x, y)] . (3.38b)

Finally, if the given lattice point is also linked to a ghost point on the other axis, this is
evaluated independently using Eq. (3.37).

3.6.3 Estimate of the nematic order parameter via OrientationJ

In this section, we demonstrate how the nematic director and order parameter can be
estimated from experimental data. First, the locations of the cell interior and the cell
edge were found by applying a low-pass �lter on the images using Matlab. The in-
terior of the cell was then sampled by overlaying a square lattice of 512 × 512 pixels
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(1 pixel = 0.138× 0.138 µm2) on the microscope �eld-of-view (Figures 3.6A and 3.8A-
E). For all pixels that are inside the cell, the nematic tensor was calculated using ImageJ
with the OrientationJ plugin [177] in the following way. Given the intensity I(x0, y0)
of the image (channel with TRITC-Phalloidin) at the point (x0, y0), we de�ned the sym-
metric 2 × 2 matrix Ĵ = 〈∇I∇I〉, where 〈· · · 〉 =

∫
w(x, y)dx dy (· · · ) represents

a weighted average with w(x, y) a Gaussian with a standard deviation of �ve pixels
(0.69 µm) centered at (x0, y0). The Ĵ matrix can be expressed as:

Ĵ = (Λmin − Λmax)

(
eminemin −

1

2
Î

)
+

Λmax + Λmin

2
Î , (3.39)

where Λmax and Λmin are the largest and smallest eigenvalues of Ĵ , emin the eigenvector
corresponding to Λmin, and Î the two-dimensional identity matrix. The Ĵ matrix was
then used to estimate the average stress �ber direction u:

〈∇I∇I〉
〈|∇I|2〉

= Î − 〈uu〉 . (3.40)

Here, the quantity Î−〈uu〉 re�ects that the largest gradients in intensity are perpendicu-
lar to the orientation of the stress �bers and 〈|∇I|2〉 = tr Ĵ = Λmax +Λmin. Combining
Eqs. (3.39) and (3.40), we obtain〈

uu− 1

2
Î

〉
=

Λmax − Λmin

Λmax + Λmin

(
eminemin −

1

2
Î

)
. (3.41)

Comparing this with the de�nition of the nematic tensor:

Q̂ =

〈
uu− 1

2
Î

〉
= S

(
nn− 1

2
Î

)
, (3.42)

we found the nematic order parameter S and the nematic director n at each pixel:

S =
Λmax − Λmin

Λmax + Λmin
, n = (cos θSF, sin θSF) = emin . (3.43)

We note that the order parameter is identical to the coherence parameter de�ned in
Chapter 2: S = C . If a pixel has zero actin expression, I(x0, y0) = 0, and consequently
S = 0.

The data were further coarse-grained in blocks of 8 × 8 pixels corresponding to
regions of size 1.104 × 1.104µm2 in real space. This results in a new 64 × 64 lattice.
The value of the nematic tensor in the new coarse-grained pixels was obtained from
an average over those of the original 8 × 8 pixels located inside the cell. In turn, the
coarse-grained pixels were considered inside the cell if more than half of the original
pixels were inside the cell.
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3.6.4 Supporting �gures
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Figure 3.10. Con�gurations of cells whose adhesion sites are located at the vertices of a square.
The thick black line represents the cell boundary, the black lines in the interior of the cells rep-
resent the orientation �eld n = (cos θSF, sin θSF) of the stress �bers and the background color
indicates the local nematic order parameter S. The spatial averages of the order parameter S
are given, from left to right, by: 0.74; 0.76; 0.80 (top row), 0.90; 0.91; 0.92 (middle row), and
1.0; 1.0; 1.0 (bottom row). On the vertical axis the anchoring number An = WR/K is varied
(An = 0, 1, 10, with R the length of the square side) and on the horizontal axis the ratio between
the isotropic bulk stress σ and the directed bulk stress α0 ((σd/λmin = 1, α0d/λmin = 0),
(σd/λmin = 0.5, α0d/λmin = 1), and (σd/λmin = 0, α0d/λmin = 2), while λmin is con-
stant, and with d equal to the square side. The ratios λmin∆t/(ξtR

2) = 2.8 · 10−6 and
K∆t/(ξrR

2) = 2.8 · 10−6, and the parameters δ = 0.15R, Narc = 20, and ∆x = R/19
are the same for all cells. The number of iterations is 5.5 · 105.
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Aspect Ratio
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0 0.5 1.0
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Figure 3.11. E�ect of the aspect ratio of the cell, ranging from 1 to 4, on cytoskeletal organization
for cells whose four adhesion sites are located at the vertices of rectangles with the same area
A. The thick black line represents the cell boundary, the black lines in the interior of the cells
represent the orientation �eld n = (cos θSF, sin θSF) of the stress �bers and the background
color indicates the local nematic order parameter S. The spatial averages of the order parameter
S are given, from left to right, by: 0.92; 0.95; 0.96. The simulations shown are performed with
An = WR/K equal to 1, 0.67, and 0.5 respectively, where R is equal to the short side of the
rectangle, and Co = σd/λmin equal to 0.125, 0.1875, and 0.25 respectively, where d is equal to
the long side of the rectangle. The ratios σ/(σ + α0) = 1/9, λmin∆t/(ξtA) = 2.8 · 10−6, and
K∆t/(ξrA) = 2.8 · 10−6, and the parameters δ = 0.15R and ∆x = R/19 are the same for all
cells. Narc = 20, 30, 40 from left to right and the number of iterations is 5.5 · 105.
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Figure 3.12. Con�gurations of cells whose adhesion sites are located at the vertices of a rectangle
of aspect ratio 2. The thick black line represents the cell boundary, the black lines in the interior
of the cells represent the orientation �eld n = (cos θSF, sin θSF) of the stress �bers and the
background color indicates the local nematic order parameter S. The spatial averages of the order
parameter S are given, from left to right, by: 0.88; 0.86; 0.87 (top row), 0.97; 0.96; 0.96 (middle
row), and 1.0; 1.0; 1.0 (bottom row). The vertical axis corresponds to the anchoring number An =
WR/K and the horizontal axis to the contractility number Co = σd/λmin. The cells shown
correspond to values ofAn = 0, 1, 10 andCo = 0, 0.25, 0.50, withR the short side of the rectangle
and d the long side of the rectangle. The ratios σ/(σ+α0) = 1/9, λmin∆t/(ξtR

2) = 2.8 · 10−6,
and K∆t/(ξrR

2) = 2.8 · 10−6, and the parameters δ = 0.15R, Narc = 40, and ∆x = R/19 are
the same for all cells. The number of iterations is 5.5 · 105.
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Figure 3.13. Con�gurations of cells whose adhesion sites are located at the vertices of a rectangle
of aspect ratio 2. The thick black line represents the cell boundary, the black lines in the interior
of the cells represent the orientation �eld n = (cos θSF, sin θSF) of the stress �bers and the
background color indicates the local nematic order parameter S. The spatial averages of the order
parameter S are given, from left to right, by: 0.84; 0.85; 0.87 (top row), 0.94; 0.96; 0.96 (middle
row), and 1.0; 1.0; 1.0 (bottom row). On the vertical axis the anchoring number An = WR/K is
varied (An = 0, 1, 10, with R the short side of the rectangle) and on the horizontal axis the ratio
between the isotropic bulk stress σ and the directed bulk stress α0 ((σd/λmin = 1, α0d/λmin =
0), (σd/λmin = 0.5, α0d/λmin = 1), and (σd/λmin = 0, α0d/λmin = 2), whileλmin is constant,
and with d equal to the long side of the rectangle. The ratios λmin∆t/(ξtR

2) = 2.8 · 10−6 and
K∆t/(ξrR

2) = 2.8 · 10−6, and the parameters δ = 0.15R, Narc = 40, and ∆x = R/19 are the
same for all cells. The number of iterations is 5.5 · 105.
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Figure 3.14. Residual function ∆2, de�ned in Eq. (3.27), as a function of the anchoring
number An [Eq. (3.26)] for the cells displayed in Figures 3.8A-E, which correspond to the
magenta, red, blue, grey, and purple data respectively. The minima are given by ∆2 =
0.016; 0.058; 0.057; 0.034; 0.037 for the cells displayed in Figures 8A-E, at values of An =
4.4; 4.1; 19; 4.6; 4.7, where R = 17.3; 24.4; 39.9; 24.9; 25.3 µm is de�ned as the square root of
the cell area. These An values correspond toK/W = 3.9; 5.9; 2.1; 5.4; 5.4µm. Error bars display
the standard deviation obtained using jackknife resampling. For large An values the residual �at-
tens for all cells, indicating that the actual value of An becomes unimportant once the anchoring
torques (with magnitude W ), which determine the tangential alignment of the stress �bers in the
cell’s periphery, outcompete the bulk elastic torques (with magnitude K).
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Chapter 4

A hybrid Cellular Potts

Model predicts stress fiber

orientations and traction

forces on micropatterned

substrates

This chapter is in preparation as:

Koen Schakenraad, Bente H. Bakker, Gaia I. Martorana, Luca Giomi, and Roeland M.H.
Merks, ‘A hybrid Cellular Potts Model predicts stress �ber orientations and traction
forces on micropatterned substrates’

Abstract

Adherent cells exert traction forces on the underlying substrate. We numerically
investigate the intimate relation between traction forces, the structure of the actin
cytoskeleton, and the shape of cells adhering to adhesive micropatterned sub-
strates. By combining the Cellular Potts Model with a model on stress �ber con-
tractility, we reproduce prominent anisotropic features in previously published
experimental data on �broblasts, endothelial cells, and epithelial cells on adhesive
micropatterned substrates. Our work highlights the role of cytoskeletal aniso-
tropy in the generation of cellular traction forces, and provides a computational
strategy for investigating stress �ber anisotropy in dynamical and multicellular
settings.
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4.1 Introduction

The mechanical properties of the environment play a crucial role in many cellular pro-
cesses, such as stem cell di�erentiation [28, 30], durotaxis [132, 169] and protein ex-
pression [167]. Conversely, cells mechanically in�uence their environment by applying
traction forces, with direct biomedical consequences in, for example, cancer metastasis
[43–45] or asthma [40]. These traction forces are intimately related with the cell shape
[64, 69, 90, 195, 196] and the presence of actin stress �bers [89, 90, 194]. For instance,
the total traction [56, 195, 197, 224, 225] and the total amount of mechanical work that
the cell does [132, 196, 226, 227] on the substrate increase with the cell spreading area.

The distribution of traction forces within the cell has also been extensively studied,
showing, e.g., that traction forces are larger further away from the centroid of the cell
[200, 228] and accumulate at the cell periphery [201, 202], as a consequence of con-
tractility throughout the whole cell [229]. Many studies focus on the magnitudes of the
traction forces only [45, 197, 230–232], but the directions of these forces are important
for understanding, for instance, cell migration [233]. Many theoretical models consider
cell contractility to be isotropic and homogeneous [68, 73, 196, 197, 232]. Although suc-
cessful in explaining experimental observations on the scale of the whole cell, these
models cannot describe the anisotropic contractility caused by actin stress �bers, which
strongly in�uence the direction of traction forces [89, 90, 194]. In fact, in many con-
tractility models the traction forces are always normal to the surface because they are
calculated using only local information on the cell shape [69, 196, 234, 235], although
experimental studies on micropatterns [89, 196] and during cell spreading [224] clearly
show that traction forces have signi�cant tangential components. Other models take the
opposite limit in which the local cell shape and stress �ber orientation are not taken into
account and traction forces generally point to the centroid of the cell [73, 228].

In this chapter we overcome these limitations and develop a hybrid model combin-
ing a �nite di�erence method for the cytoskeleton based on liquid crystal (LC) theory,
developed in Chapter 3, with a Cellular Potts Model (CPM) for cell shape. Using this
hybrid LC-CPM method, we calculate the distribution and orientation of traction forces
at the cell periphery by taking into account both the local cell shape and the structure
of the actin cytoskeleton. We theoretically study single cells adhering to adhesive mi-
cropatterns [58], and �nd qualitative agreement between our simulations and previously
published experimental data on �broblasts, endothelial cells, and epithelial cells, demon-
strating the importance of cytoskeletal anisotropy in determining the magnitudes and
orientations of cellular traction forces.

To understand the complex interplay between cellular mechanics and geometry, cells
are often studied in vitro on an adhesive substrate [48]. Traction forces can be measured
using microfabricated elastomeric pillar arrays [55–57] or traction force microscopy [59–
61]. The latter is often combined with micropatterned substrates [58] to ensure repro-
ducible cell shapes which allows for a more systematic analysis of the data. On sti�
substrates, most animal cells spread out and adhere to the substrate, via focal adhesions
[54], at adhesion sites mainly lying along the cell contour. This results in �at cells with
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a large area that exert mainly contractile forces [48].
Several types of mathematical models have been developed to interpret experimental

�ndings and predict the shapes of adherent cells [48]. The simplest among those are two-
dimensional contour models [62–67, 194], in which the cell is completely described by
the position of a one-dimensional cell contour. For adherent cells with a limited number
of discrete adhesion sites, for instance cells on micropillar arrays, this contour consists
of a collection of curves, called “cellular arcs”, that connect two consecutive adhesion
sites. Di�erent contour models predict the shapes of these cellular arcs given di�erent
intracellular forces.

The simplest contour model, often referred to as the “Simple Tension Model” (STM),
describes the total force per unit length along the cell contour, f tot, as the competition
between a simple line tension in the cell contour, λT , and an isotropic bulk contractility
with magnitude σ [62–64]:

f tot = ∂s(λT ) + σN . (4.1)
Here, T is the tangent unit vector of the cell, N the inward pointing normal unit vector,
and ∂s is a derivative along the arc length s. Here, σ > 0 models the isotropic con-
tractility of the internal cytoskeleton, and λ describes the contractile forces arising from
myosin activity in the cell cortex. The term ∂s(λT ) describes the net force on the cell
contour originating from spatial variations in the cortical tension λ or in the orienta-
tion T of the cell contour. Solving f tot = 0 shows that, at mechanical equilibrium, the
balance between bulk contractility and line tension leads to concave circular arcs with
radius R = λ/σ [62–64]. Extensions to the STM include an elastic contribution to the
line tension [63, 64], bending elasticity of the cell membrane [65, 68], and anisotropic
bulk contractility (Chapters 2 and 3 of this thesis), which we discuss below.

In Chapters 2 and 3, we extended the existing contour models by incorporating a
directed, anisotropic, contractile bulk stress into the Simple Tension Model. This aniso-
tropic contractility originates from actin stress �bers [46, 47], which we treat as con-
tractile force dipoles with average local orientation θSF [102, 103]. Together with the
isotropic contribution [Eq. (4.1)] this leads to an overall force per unit length along the
contour given by

f tot = (∂sλ)T + (λκ+ σ)N + α(n ·N)n , (4.2)
withn = (cos θSF, sin θSF) a unit vector parallel to the average local stress �ber orienta-
tion, κ the local curvature of the cell boundary, α > 0 the magnitude of the directed con-
tractile stresses, and where we used ∂sT = κN . Here, α is treated as a constant, but in
Section 4.2.2 we will use the language of nematic liquid crystals to make α proportional
to the local degree of alignment between the stress �bers. Upon again solving f tot = 0,
the equilibrium shape of the concave cellular arcs is found, in the presence of aniso-
tropic contractility, to be given by a segment of an ellipse with aspect ratio

√
σ/(σ + α)

and whose longitudinal direction is parallel to the local orientation of the stress �bers
θSF. These predictions were experimentally veri�ed by an analysis of the shapes of an-
isotropic �broblastoid (GDβ1, GDβ3) and epithelioid (GEβ1, GEβ3) cells (see Chapter
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2). Because of the discrete nature of the adhesion sites in this contour model, cells are
always concave and comparisons to experimental data are limited to cells adhering to
substrates at a small number of adhesion sites.

In recent years, the Cellular Potts Model (CPM) framework, best known for studies of
multicellular systems (see, e.g., Refs. [9, 81]), has emerged as a computational alternative
for studying the shape [69, 83, 84] and motility [124, 125] of single cells. In the CPM, the
cell is represented by a collection of occupied lattice sites on an often two-dimensional
square lattice. The dynamics is inspired by a Monte Carlo method using the Metropolis
algorithm [236]. During each step of the simulation, the state (occupied or not occupied)
of a randomly chosen lattice site is copied into a random neighbor lattice site. Using a
prede�ned energy functional, called the Hamiltonian H , the energy change ∆H as a
result of the copy is calculated. Then, the copy is accepted if ∆H < 0 and accepted with
probability e−∆H/µ if ∆H > 0, where the reference energy µ is called the “motility
energy” and is a measure for the activity of the cell. Each term in the Hamiltonian
describes a particular cellular force �eld F via the relation F = −∇H , which can be
calculated for every con�guration of the cell [237].

Albert and Schwarz [69] used a CPM approach to apply the Simple Tension Model,
as well as the more extended “tension-elasticity model” [63, 64], to cells adhering to
micropatterns of arbitrary shape. Here, we focus on the STM, for which the Hamiltonian
is given by

H = σA+ λP − E0

Aref +Aad
Aad , (4.3)

with A the cell area, P the length of cell perimeter, and Aad represents the area of the
adhesive pattern covered by the cell. Minimization of the �rst two terms in Eq. (4.3) is
equivalent to applying the force �eld given in Eq. (4.1) [64]. The last term represents the
adhesion energy of the cell with the substrate, with strength E0. Because the number
of adhesion molecules in a cell is �nite, the adhesion energy saturates with the covered
area as determined by the reference area Aref .

Here, we develop an anisotropic hybrid liquid crystal-Cellular Potts Model (LC-CPM)
framework to apply the contour model in Eq. (4.2) to cells adhering to micropatterns.
The chapter is organized as follows: in Section 4.2.1 we theoretically study how stress
�bers a�ect cell shape, in Section 4.2.2 how cell shape a�ects the orientations of stress
�bers, and in 4.2.3 we study the interplay between shape and cytoskeleton. We demon-
strate that our results are consistent with earlier analytical and numerical approaches,
and our simulations reproduce cell shape and orientations of stress �bers of previously
published experimental data on �broblasts, endothelial cells, and epithelial cells on adhe-
sive micropatterned substrates. In Section 4.2.4 we predict how the anisotropy of stress
�bers a�ects the traction forces that the cell boundary exerts on the adhesive substrate,
and we reproduce prominent anisotropic features in experimentally observed traction
force patterns of �broblasts, endothelial cells and epithelial cells.
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4.2 Results

4.2.1 Cytoskeletal organization controls cell shape

Following Albert and Schwarz [69], we apply our anisotropic model to micropatterns
of arbitrary shape by implementing it in the Cellular Potts Model. In order to do so,
we need to translate the anisotropic contractile force density fa = α(n ·N)n to an
energy description. However, unlike the forces in Eq. (4.1), the force considered here is
derived from inherently non-equilibrium processes [102, 103] and is a non-conservative,
active, force. Consequently, fa cannot be derived from a Hamiltonian. For a review on
non-equilibrium forces and active matter, see, e.g., Ref. [14]. Instead, we follow the
lines of earlier works who have incorporated other non-equilibrium processes, such as
chemotaxis and durotaxis, in the Cellular Potts Model by calculating directly the energy
di�erence ∆H associated with a CPM copy [220, 238]. This energy di�erence is given by
minus the work done on the cell by the stress �bers: ∆Ha = −Wa, where the negative
sign indicates that the total energy of the cell, H , decreases when the stress �bers do
(contractile) work. For a given displacement of the cell boundary, i.e., the addition or
removal of one lattice site from the cell, the total workWa is obtained by integrating the
force density fa over a displacement dx (to obtain the work per unit length along the
boundary) and over a distance ds along the cell boundary:

Wa =

∫
ds

∫
fa · dx. (4.4)

As only normal displacements of the boundary change the cell shape, we write dx =
−dxN , where dx > 0 if the displacement is opposite to N , i.e., when the boundary
moves outwards. Upon further assuming that n and N change slowly on the scale of
the CPM lattice site that is added or removed, we can take them out of the integrals and
�nd

Wa = −α(n ·N)2

∫∫
dsdx. (4.5)

Finally, given that the displacements dx (along−N ) and ds (along T ) are perpendicular,
the double integral is equal to the change in area of the cell,

∫∫
dxds = ∆A, which yields

∆Ha = −Wa = α(n ·N)2∆A. (4.6)

with n and N evaluated at the boundary lattice site of the cell that is copied (in case of
an extension) or that is copied into (in case of a retraction), and where ∆A = 1 for an
extension and ∆A = −1 for a retraction.

To obtain the total energy change for a given CPM copy, we introduce two further
simpli�cations. First, we assume the line tension to be constant (i.e., ∂sλ = 0), although
previous work has shown that λ can in general be di�erent between di�erent cellular
arcs [63, 64] or even vary within a single arc (Chapters 2 and 3 in this thesis). Second,
we take the limit in which the reference area Aref [Eq. (4.3)] is much larger than the
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Figure 4.1. Single cellular arcs are well described by circles and ellipses. (a) Schematic of the
simulation setup for studying the shape of a single arc. The initial condition is a rectangular “cell”
(blue lattice sites) that occupies the lower half of the lattice sites in the simulation. Two adhesion
sites (green circles), placed 100 lattice sites apart, pin the cell to the substrate. In practice, all
lattice sites that are not in between the adhesion sites (grey areas) are frozen and are not updated
during the simulation. A Cellular Potts Model (CPM) simulation is then performed using the
Hamiltonian in Eq. (4.7), with γad = 0, to �nd the shape of the arc. (b,c) Con�gurations of single
arcs for µ/λ = 1/10 lattice sites and α = 0 are well approximated by circles. The theoretical
radii of the circles, R = λ/σ, are 50 and 100 lattice sites respectively, whereas the approximating
circles have radii of 54.5 and 105 lattice sites. (d-f) Con�gurations of single arcs for α 6= 0 are
well approximated by ellipses. The black lines in the cell interior represent the vertically oriented
stress �bers (i.e., θSF = π/2 and n = ŷ). The approximating ellipses have aspect ratios given
by
√
σ/(σ + α) and are vertically oriented, as theoretically predicted. The lengths of the major

semi-axes are given by: (d) 134 lattice sites (approximation) versus 120 lattice sites (theory), (e)
119 lattice sites (approximation) versus 120 (theory), (f) 98 lattice sites (approximation) versus
100 (theory). Parameters are given by: (d) α = σ, λ/σ = 120 lattice sites, and µ/λ = 1/12
lattice sites, (e) α = 2σ, λ/σ = 120 lattice sites, and µ/λ = 1/12 lattice sites, and (f) α = 2σ,
λ/σ = 100 lattice sites, and µ/λ = 1/10 lattice sites.

adhesion area, such that the adhesion energy is simpli�ed to γadAad, with γad < 0 a
negative surface tension of the adhesion area. The total energy change for a copy is then
given by

∆H =
(
σ + α(n ·N)2

)
∆A+ λ∆P + γad∆Aad . (4.7)

See Section 4.4.1 in the Appendix for the numerical methods used for determining the
normal vector N and the length of the perimeter P .

Before we study cells on micropatterned substrates, we �rst test the validity of our
CPM model by comparing the shapes of non-adhering (i.e., γad = 0) single cellular arcs
to previously published analytical predictions [62–64, 194]. To do so, we de�ne as initial
condition a rectangular “cell” to occupy all lattice sites in the lower half of the simulation
space. This is schematically illustrated in Figure 4.1a, where the lattice sites that are part
of the cell are displayed in blue. Then, we de�ne two adhesion sites (green circles in
Figure 4.1a), placed 100 lattice sites apart, where the cell is pinned to the substrate. All
lattice sites that are not in between the adhesion sites (grey areas) are frozen and are not
allowed to be updated during the simulation. The region in between the adhesion sites
then forms a cellular arc whose shape we study.
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First, we study a cell with an isotropic cytoskeleton, i.e., α = 0. The Hamiltonian
then reduces to H = σA+ λP , which is equivalent to a force per unit length along the
contour given by Eq. 4.1 [64]. Hence, we expect to �nd a concave circular arc with radius
R = λ/σ [62–64]. In Figures 4.1b,c we show the results of two simulations with the same
line tension λ but with di�erent values of the isotropic bulk stress σ. As expected, the
arcs are concave and the arc with the larger bulk stress (Figure 4.1c) is more curved. The
arcs are well approximated by circles (black lines in Figures 4.1b,c), as was also observed
before for this Hamiltonian in Ref. [69]. The radii of the circles shown in Figures 4.1b,c
are, however, slightly larger (5%-10%) than expected based on the theoretical prediction
R = λ/σ. This slight underestimation of the observed radius is consistently found
for all choices of the parameters λ and σ. We hypothesize that this is a consequence
of random �uctuations in the CPM due to the �nite motility energy µ. These random
�uctuations favor states of the system that can be realized in many di�erent ways (i.e.,
shapes with large entropy), leading to slightly less curved cellular arcs, and consequently
bigger circles than expected based on the theory.

Next, we include the directed bulk stress (i.e., α 6= 0), and assume a prede�ned and
constant orientation of the cytoskeleton n = ŷ (i.e, θSF = π/2). The resulting Hamilto-
nian [�rst two terms in Eq. (4.7)] is equivalent to a force per unit length described by
the second and third term of Eq. (4.2). Hence, we expect the cellular arcs to approximate
a segment of an ellipse with aspect ratio

√
σ/(σ + α) and whose long semi-axis of size

λ/σ is oriented vertical, parallel to the stress �ber orientation θSF (see Chapters 2 and
3), although we do not expect the agreement to be perfect because we ignore the �rst
term in Eq. (4.2) by assuming the line tension λ to be constant. Figures 4.1d-f show the
cellular arcs together with segments of ellipses matching the arcs. The thin black lines in
the interior of the cells visualize the vertical orientation of the stress �bers. Figure 4.1d
shows a cellular arc for σ = α and λ/σ = 120 lattice sites. In Figure 4.1e the directed
bulk contractility is increased to α = 2σ resulting in a more curved shape and a nar-
rower (larger aspect ratio) ellipse. In Figure 4.1f the line tension is additionally decreased
such that λ/σ = 100 lattice sites, resulting in an even more curved shape and a smaller
ellipse than in Figure 4.1e. The orientations and aspect ratios of the ellipses shown in
Figures 4.1d-f exactly match those predicted by the theory, but the size of the ellipse in
Figure 4.1d is, similar to what we observed for the circles, larger than expected based on
the theory. Interestingly, for large values of the directed bulk stress α (Figures 4.1e and
4.1f) the size of the ellipses matches the theoretical predictions surprisingly well. This
is because in the analytical results (for details, see Chapters 2 and 3), the average line
tension along the arc increases as a result of the directed bulk stress. Because we assume
the line tension to be constant here, the simulated ellipses are smaller than expected by
the theory, which compensates for the fact that circles and ellipses become too large due
to random CPM �uctuations.

Summarizing, although the correspondence between the theoretical predictions [62–
64, 194, 239] and our simulations on the shapes of single cellular arcs is not exact, the
lattice-based CPM approximates the continuous curves predicted by the theory remark-
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ably well. For a numerical treatment of these models that explicitly describes the cell
boundary, and therefore produces even more accurate shapes, we refer to Chapter 3.
Here, we take advantage of the possibilities of the CPM to study cells adhering to con-
tinuous micropatterned geometries in Sections 4.2.2, 4.2.3, and 4.2.4.

4.2.2 Cell shape controls cytoskeletal organization

In order to apply the method introduced in Section 4.2.1 to entire cells, we require a
theoretical description of the cytoskeleton to de�ne the non-constant stress �ber orien-
tation n at every lattice site. For this purpose we employ a continuous phenomenolo-
gical model of the actin cytoskeleton, using the language of nematic liquid crystals [91],
that we discussed in Chapter 3. We emphasize, however, that our method of anisotropic
cytoskeletal contractility in the CPM, as summarized by Eq. (4.6), can, in principle, be
combined with any theoretical description of the cytoskeleton (e.g., Ref. [77]).

As we detail in Chapter 3, the con�guration of the stress �bers in the actin cytoskele-
ton is described by the two-dimensional nematic tensor:

Q̂ =

[
Qxx Qxy
Qxy −Qxx

]
=
S

2

[
cos 2θSF sin 2θSF

sin 2θSF − cos 2θSF

]
. (4.8)

where θSF describes the local orientation of the stress �bers and 0 ≤ S ≤ 1 is the so
called nematic order parameter. S measures the amount of orientational order of the
stress �bers, where S = 1 represents perfect local alignment between stress �bers, and
S = 0 represents randomly oriented stress �bers. As Q̂ does not describe the local den-
sity of actin, our model does not predict experimentally observed actin density variations
within the cell [176, 196, 210, 211].

The general idea behind our cytoskeleton model is based on the experimental ob-
servation, by us (see, e.g., Figure 2.10) and others [85–89], that stress �bers in highly
anisotropic cells preferentially align with each other and with the cell’s edges. For an
overview of the physical, chemical, and biological mechanisms that are possibly involved
in these aligning interactions, see Chapter 3. The alignment is phenomenologically cap-
tured by a minimization of the Landau-de Gennes free-energy Fcyto [91]:

Fcyto =
K

2

∫
dA

[
|∇Q̂|2 +

1

δ2
tr Q̂

2
(tr Q̂

2
− 1)

]
+
W

2

∮
ds tr

[
(Q̂− Q̂0)2

]
. (4.9)

The �rst integral in Eq. (4.9) is responsible for the alignment of stress �bers with one
another, as it penalizes gradients in the orientation of the stress �bers and in their degree
of alignment (�rst term). The constant K expresses the sti�ness of the average stress
�ber orientation n with respect to splay and bending deformations, see also Chapter 3.
The second term equals S2(S2/2 − 1)/(2δ2), which favors perfect orientational order
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(i.e., S = 1), where the length scale δ de�nes the energy penalty associated with a low S
value. Consequently, δ determines the typical size of regions where the order parameter
S drops to zero to compensate for a strong local gradient in the stress �ber orientation
θSF. The second integral is the Nobili-Durand anchoring energy [95], a contour integral
which is responsible for the alignment of stress �bers with, and a large S value along,
the cell’s edges. This is achieved by de�ning the tensor Q̂0 as

Q̂0 =
S0

2

[
cos 2θ sin 2θ
sin 2θ − cos 2θ

]
. (4.10)

where θ is an angle parallel to the cell edge, such that T = (cos θ, sin θ). In addition
to stress �bers aligning to the cell edge, we assume that they do so with large nematic
order: S0 = 1. The phenomenological constantW > 0 [Eq. (4.9)] measures the strength
of the parallel anchoring, i.e., it measures to what extent stress �bers align with the cell
edge. For a description of the numerical methods employed for minimizing the energy,
see Section 4.4.2 in the Appendix.

As we mentioned in Section 4.1, the directed bulk contractility α [Eq. (4.2)] is pro-
portional to the local alignment between stress �bers. Having introduced the nematic
order parameter S, we now make this relation quantitative by setting α = α0S, with α0

a constant (see also Chapter 3). Apart from this, we treat the contractility parameters
α0, σ, and λ, which model the tension at the cell edge, independent from the parameters
K , W , and δ, which model the interior of the cell.

We combine this model for the cytoskeleton with the Cellular Potts Model for cell
shape described in Section 4.2.1. We alternatingly update the CPM, using the Hamilto-
nian given by Eq. (4.7) with γad 6= 0, and the structure of the cytoskeleton by minimi-
zation of the free energy Fcyto [Eq. (4.9)], until both the cell shape and the cytoskeleton
reach a steady state. For details, see Section 4.4.2 in the Appendix. Before we study
the interplay between cytoskeleton and cell shape in Section 4.2.3, in this section we
illustrate how cell shape a�ects the cytoskeleton and compare our model predictions
to previously published experimental data. Figure 4.2 shows the results of simulations
performed on three convex micropatterns (Figure 4.2a), namely a rectangle of aspect ra-
tio 2, a stadium-shape of aspect ratio 2 and a circle. For cells adhering to these convex
patterns, all contractile forces described by the �rst two terms in the Hamiltonian of Eq.
(4.7) are directed inwards. Hence, the steady-state shape of these cells is, independent of
the exact values of α0, σ, and λ, identical to the convex micropatterns that they adhere
to, making these shapes very suited for studying the e�ect of cell shape on cytoskeletal
organization. In Figure 4.2b we study the cytoskeleton for increasing parallel anchoring
of the stress �bers with the cell edge. The importance of this parallel boundary an-
choring, quanti�ed by W , relative to parallel alignment in the bulk, quanti�ed by K , is
described by the anchoring number An, a dimensionless number which we introduced
in Chapter 3 and is given by

An =
WR

K
, (4.11)
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Figure 4.2. Cytoskeletal structure of cells on adhesive micropatterns with convex shapes. (a)
Adhesive micropatterns with the shape of a rectangle of aspect ratio 2, a stadium of aspect ratio 2,
and a circle. The length scale R = 60 lattice sites is used to calculate the anchoring number An,
de�ned in Eq. (4.11). (b) Cells with increasing anchoring number (An = 1, An = 2.5, andAn = 10)
on the adhesive micropatterns shown in (a). The black lines in the interior of the cells represent
the orientation �eld n = (cos θSF, sin θSF) of the stress �bers and the background color indicates
the nematic order parameter S. The spatial averages of the order parameter are given, from top to
bottom, by: 0.90; 0.94; 0.97 (rectangles), 0.92; 0.94; 0.97 (stadiums), and 0.81; 0.87; 0.94 (circles).
For all cells, δ = 9 lattice sites, λ/σ = 300 lattice sites, α0/σ = 2, µ/λ = 1/30 lattice sites,
µ/|γad| = 1/20 of the area of a lattice site, and K∆t/(ξrR

2) = 2.5 · 10−6. For de�nitions of ∆t
and ξr , see Section 4.4.2 in the Appendix.

with R a typical length scale in which the cytoskeleton is con�ned, see Figure 4.2a. For
An� 1 bulk elasticity dominates boundary anchoring, resulting in a uniformly oriented
cytoskeleton with large deviations form parallel anchoring with the cell’s edges. On the
other hand, for An � 1, boundary anchoring dominates, leading to perfect alignment
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of the stress �bers with the boundary.
The left column of Figure 4.2b shows the cytoskeleton of a cell, adhering to the rect-

angular micropattern, for An = 10, An = 2.5 and An = 1 respectively, where R is
the short side of the rectangle (see Figure 4.2a). The black lines in the interior of the
cells represent the orientation �eld n = (cos θSF, sin θSF) of the stress �bers and the
background color indicates the nematic order parameterS. Consistent with our previous
results on rectangular geometries (Figure 3.12), stress �bers align with all edges for large
boundary anchoring (An = 10), but they align only with the rectangle’s long edges for
small boundary anchoring (An = 1). This longitudinal alignment of stress �bers is con-
sistent with various experimental observations on cells adhering to elongated adhesive
micropatterns and adhesive stripes [87–89, 196, 211]. We note that for con�gurations
with su�ciently large anchoring numbers (An = 2.5 and An = 10), the random ini-
tial con�guration of the simulation determines, independent of the anchoring number,
whether the stress �bers at the short edges of the rectangle bend in opposite directions,
leading to an “S”-shaped cytoskeleton (An = 10 in Figure 4.2), or in the same direction,
leading to a “U”-shaped cytoskeleton (An = 2.5 in Figure 4.2).

Next, we focus on shapes distinct from those of cells adhering to a small number of
discrete adhesion sites, which we studied in Chapter 3, and investigate the actin cyto-
skeleton on convex micropatterns with curved edges. The middle column of Figure 4.2b
shows the cytoskeleton, for identical values of An as in the left column, for a cell adher-
ing to a stadium-shaped micropattern of aspect ratio 2, where R is again the short axis
of the pattern. For An = 1 the cytoskeleton aligns parallel to the long axis of the stadium
with large order parameter throughout the cell (spatial average is 0.97), similarly to what
we observed for the rectangle. However, di�erent from the rectangular shape, the more
gentle curvature of the stadium causes the stress �ber orientation at the circular caps to
de�ect toward the middle. This e�ect becomes more pronounced for An = 2.5, where
two topological defects start to form at the ends of the circular caps, as can be seen from
the more blue-shifted color. For a review on topological defects in nematic liquid crystal
systems, see, e.g., Ref. [96]. For the largest value of An, the stress �bers align with the
edge throughout the complete cell, causing the topological defects to move inwards and
the average order parameter to decrease to 0.92. Unlike the topological defects found
in the stress �ber orientation in concavely shaped cells in Chapter 3, which have to-
pological charge −1/2, these topological defects have charge +1/2 due to the convex
cell shape. The observed cytoskeletal structures agree qualitatively with experimentally
observed stress �ber distributions in �broblasts on micropatterns of spherocylindrical
shape in Ref. [196], where structures similar to our theoretical results for An = 10 (for
relatively wide stadium-shapes, hence largeR and large An) and for An = 1 (for narrow
stadium-shapes, small R and An) are found. In Section 4.2.4, where we study traction
forces, we compare in more detail with the experimental data in Ref. [196].

Finally, we decrease the aspect ratio to 1 while keeping the micropattern curvature
constant. The right column of Figure 4.2b shows the cytoskeleton for a cell adhering to
a circular micropattern (with R the diameter of the circle). The resulting con�gurations
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Figure 4.3. Adhesive micropatterns to study the interplay between cell shape and the orientation
of the actin cytoskeleton. (a) Pattern in the shape of the letter V, where R = 60 lattice sites [Eq.
(4.11)] and d = 60 lattice sites [Eq. (4.12)]. (b) Pattern in the shape of a crossbow, where R = 60
lattice sites and d = 42 lattice sites.

are qualitatively similar to those observed for the stadium shapes: for An = 1 the stress
�bers align largely uniformly with small de�ections inwards (average order parameter
is 0.94), for An = 2.5 the structure bends more and topological defects start to form near
the edge (average order parameter 0.87), and for An = 10 the stress �bers align with the
cell edge everywhere, causing the defects to move inwards (average order parameter
0.81). The most important di�erence between circles and stadiums is that the main ori-
entation is no longer biased toward a speci�c direction due to the symmetry of the shape,
although the symmetry of the square lattice of the Cellular Potts Model appears to favor
either horizontal or vertical con�gurations. The linear stress �ber structure for An = 1
closely resembles the actin cytoskeleton of �broblasts found in Refs. [213, 215] and in
simulations by Pathak et al. [77], but this linear pattern is not found for �broblasts in
Ref. [196] or for non-keratinocyte epitheliocytes or keratinocytes in Ref. [215], where
mostly isotropic con�gurations that lack stress �bers are found. Hence, our cytoskele-
ton model qualitatively reproduces experimentally found stress �ber con�gurations for
lower An values, but is not applicable to describe cells that have not formed stress �bers.

4.2.3 Cytoskeleton and shape interplay on micropatterns

In previous sections we studied how the cytoskeleton a�ects cell shape (Section 4.2.1)
and how the shape a�ects the orientation of the cytoskeleton (Section 4.2.2). Before
demonstrating that stress �bers play an important role in directing traction forces in
Section 4.2.4, we �rst study the interplay between stress �ber orientation and cell shape.
We previously studied this interplay for concave cells adhering to a small number of
discrete adhesion sites in Chapter 3, but here we take advantage of the Cellular Potts
Model to study shapes that have both convex and concave features and again compare
our predictions to previously published experimental data. We use two frequently stud-
ied micropattern shapes to illustrate the phenomenology of our model, a pattern in the
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shape of the letter V [69, 77, 210] and a pattern in the shape of a crossbow [43, 69, 176],
see Figure 4.3. We measure the magnitude of the bulk contractility of the cells with re-
spect to their line tension using another dimensionless number which we introduced in
Chapter 3, the contractility number Co:

Co =
σd

λ
, (4.12)

with d the typical distance between the ends of a non-adherent cellular arc (see Figure
4.3). For Co � 1 line tension dominates bulk contractility, resulting in straight non-
adherent cellular edges, whereas Co � 1 leads to highly curved non-adherent cellular
edges.

Figure 4.4 shows cells on the V-pattern as a function of the anchoring number An
(on the vertical axis) and as a function of the contractility number Co (on the horizontal
axis). For Co = 0, the cell has a triangular shape, whereas for nonzero Co the free edge
at the top curves inwards. Similarly to what we observed in Figure 4.2b, for An = 10
the stress �bers align with the edge throughout the complete cell, leading to topological
defects in the cell interior. Di�erent from the circular and spherocylindrical shapes in
Figure 4.2b, in the triangle these defects have topological charge −1/2. For smaller An,
however, the boundary anchoring is too small to bend the stress �bers su�ciently to
align with all edges. Consequently, the cytoskeleton aligns in the vertical direction,
leading to perpendicular alignment with the non-adherent cell edge. We note that An
indirectly also in�uences the cell shape: for nonzero constant stress �ber contractility
(i.e., constant Co > 0), increasing An leads to more tangential alignment of the stress
�bers with the cell edge. Because the directed contractile bulk force is proportional to
(n ·N)2 [Eq. (4.6)], stress �bers exert a larger contractile force on the cell edge when
they are oriented perpendicular to the edge than when they are parallel. Consequently,
increasing An decreases the contractile force experienced by the cell edge, as can be seen
in the right column of Figure 4.4.

The result for large boundary anchoring and intermediate contractility best re-
sembles the actin structures found in epithelial cells in Ref. [210] and in numerical si-
mulations in Ref. [77]. However, an important di�erence is that in those studies, stress
�bers align more with the non-adhesive, concave edge at the top of the pattern than
with the other two edges, leading to a more horizontal actin orientation in the cell in-
terior. This discrepancy is most likely explained by the experimental observation that
stress �bers form more prominently along concave edges than along convex edges [43,
210, 211, 240], whereas our current model does not discriminate between those. Tak-
ing this di�erence into account will be an important step to improve the realism of our
cytoskeleton model in the future.

Figure 4.5 shows cells on the crossbow pattern (Figure 4.3b), again as a function of the
anchoring number (vertical axis) and contractility number (horizontal axis). For small
boundary anchoring, the cytoskeleton again orients vertically, leading to perpendicular
alignment at the bottom and top of the crossbow shape. Conversely, for large An, stress
�bers orient parallel to the edge throughout the cell. Interestingly, the top row of Figure
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Figure 4.4. Cells on adhesive micropatterns in the shape of the letter V (see Figure 4.3a). The
black lines in the interior of the cells represent the orientation �eld n = (cos θSF, sin θSF) of
the stress �bers and the background color indicates the nematic order parameter S. The vertical
axis corresponds to the anchoring number An = WR/K = 1, 2.5, 10 (with R = 60 lattice sites)
and the horizontal axis to the contractility number Co = σd/λ = 0, 0.6, 1.2 (with d = 60 lattice
sites). The spatial averages of the order parameter are given, from left to right, by: 0.76; 0.77; 0.75
(top row), 0.83; 0.85; 0.83 (middle row), and 0.93; 0.92; 0.91 (bottom row). For all cells, δ = 9
lattice sites, α0/σ = 2, µ/λ = 1/30 lattice sites, µ/|γad| = 1/20 of the area of a lattice site, and
K∆t/(ξrR

2) = 2.5 · 10−6. For de�nitions of ∆t and ξr , see Section 4.4.2 in the Appendix.

4.5 illustrates that Co indirectly in�uences the orientation of stress �bers: increasing the
bulk contractility changes the cell shape and therefore a�ects the boundary conditions
for the orientation of the cytoskeleton. As a result, the main orientation of the stress
�bers switches from vertical to horizontal, and the two topological defects of charge
+1/2 at opposite ends of the cell are replaced by three +1/2 defects surrounding a
−1/2 defect in the center. The cell shape at intermediate contractility values (middle
column in Figure 4.5) resembles the shape of epithelial cells on a crossbow pattern found
experimentally by Tseng et al. [43] and computationally by Albert and Schwarz [69], and
the actin orientation reported in Tseng et al. is best reproduced by low to intermediate
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Figure 4.5. Cells on adhesive micropatterns in the shape of a crossbow (see Figure 4.3b). The
black lines in the interior of the cells represent the orientation �eld n = (cos θSF, sin θSF) of
the stress �bers and the background color indicates the nematic order parameter S. The vertical
axis corresponds to the anchoring number An = WR/K = 1, 2.5, 10 (with R = 60 lattice sites)
and the horizontal axis to the contractility number Co = σd/λ = 0, 0.7, 1.4 (with d = 42 lattice
sites). The spatial averages of the order parameter are given, from left to right, by: 0.84; 0.79; 0.80
(top row), 0.89; 0.87; 0.85 (middle row), and 0.95; 0.94; 0.93 (bottom row). For all cells, δ = 9
lattice sites, α0/σ = 2, µ/λ = 1/30 lattice sites, µ/|γad| = 1/20 of the area of a lattice site, and
K∆t/(ξrR

2) = 2.5 · 10−6. For de�nitions of ∆t and ξr , see Section 4.4.2 in the Appendix.

boundary anchoring.

4.2.4 Traction forces on micropatterns

The steady-state con�guration of cells, as shown in Sections 4.2.1, 4.2.2, and 4.2.3, are
obtained when the terms in the Hamiltonian [Eq. (4.7)] reach a mechanical equilibrium.
On top of the micropatterned areas, the adhesive force applied by the substrate [last term
in Eq. (4.7)] balances the contractile forces generated by the cell [�rst two terms in Eq.
(4.7)]. The traction force that the cell edge exerts on the substrate is equal and opposite
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Figure 4.6. Traction forces of cells adhering to a micropattern in the shape of a stadium (same
shape as in Figure 4.2). The black lines in the interior of the cells represent the orientation �eld
n = (cos θSF, sin θSF) of the stress �bers, the background color indicates the nematic order
parameter S, and the white arrows represent the traction forces exerted on the substrate by the
cell. On the vertical axis the anchoring number An = WR/K = 1, 2.5, 10 (with R = 60
lattice sites) is varied, and on the horizontal axis the ratio α0/σ = 0, 4, 8. The spatial averages of
the order parameter are given, from left to right, by: 0.92; 0.92; 0.92 (top row), 0.94; 0.94; 0.94
(middle row), and 0.97; 0.97; 0.97 (bottom row). For all cells, δ = 9 lattice sites, λ/σ = 60 lattice
sites, µ/λ = 1/30 lattice sites, µ/|γad| = 1/20 of the area of a lattice site, and K∆t/(ξrR

2) =
2.5 · 10−6. For de�nitions of ∆t and ξr , see Section 4.4.2 in the Appendix.

to the adhesive force applied by the substrate, and given by:

f trac = (λκ+ σ)N + α0S(n ·N)n , (4.13)

which is di�erent from Eq. (4.2) because here we assume the line tension λ to be con-
stant (see Section 4.2.1). The isotropic contractility σ and the line tension λ generate
forces normal to the cell edge [�rst term in Eq. (4.13)]. However, the anisotropic con-
tractility caused by actin stress �bers, given by the last term of Eq. (4.13), points the
traction forces in the direction of the local stress �ber orientation n, consistent with ex-
perimental observations in Refs. [89, 90] and in Chapter 2 of this thesis. Consequently,
the traction forces in Eq. (4.13) do not point purely along the surface normal N , in
contrast to traction forces in many previous models for cell contractility [196, 234, 235].
Hence, in our model, the degree to which the traction forces deviate from the normal di-
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rection depends on the local orientation of stress �bers n, the ratio between the directed
contractility α0S and the parameters σ and λ, and on the local curvature κ of the cell
edge. For a description of how the curvature is numerically calculated, see Section 4.4.1
in the Appendix.

Figure 4.6 shows the traction forces at the cell periphery of cells on an adhesive
micropattern in the shape of a stadium (see Figure 4.2), as a function of the anchoring
number An (vertical axis) and the directed bulk contractility α0 (horizontal axis). Here,
the micropattern shape controls the curvature κ, An controls the orientation of the stress
�bers n (Section 4.2.2), and α0 sets the relative importance of directed stresses with re-
spect to the other stresses in the cell. For α0 = 0 (left column of Figure 4.6), all traction
forces are independent of the stress �ber orientation n and normal to the surface. At
the circular caps, the larger curvature increases the e�ect of the line tension [Eq. (4.13)],
which increases the traction forces, reproducing �ndings on the relation between local
curvature and traction from earlier models [69, 73, 196] and from experimental observa-
tions [90, 195, 196, 241].

The other extreme, where α0/σ = 8, is shown in the right column of Figure 4.6. For
An = 10 the di�erence with the case of zero directed contractility is negligible because
the stress �bers (n) are parallel to the cell boundary (perpendicular to N ) everywhere,
hence α0S(n ·N)n = 0 [Eq. (4.13)] independent of the value of α0. In other words, if
the stress �bers are perfectly parallel to the cell edge, they cannot pull on it. For lower
anchoring numbers (An = 1, An = 2.5), however, the e�ect of increasing α0 is evident,
as the traction forces largely align with the local stress �ber orientation. Because of the
longitudinal orientation of the stress �bers, the traction forces at the end of the circular
caps increase in magnitude with respect to the forces at other locations, and this e�ect
is strongest for An = 1 because in that case stress �bers are almost perpendicular to
the ends of the circular caps. Moreover, unlike in many other traction force models
[69, 196, 234, 235], the traction forces at the caps deviate signi�cantly from the normal
vector of the cell boundary. Interestingly, this deviation in orientation from the surface
normal is largest for intermediate anchoring number (An = 2.5), because the tangential
component of the traction force is proportional to (n ·N)(n · T ) [Eq. (4.13)], which is
maximized at a π/4 angle between the stress �bers and the boundary. In other words,
the tangential component of the traction force is maximized when stress �bers are not
too perpendicular to the boundary, but not too parallel either, because parallel stress
�bers do not pull on the boundary.

For intermediate values of α0 (middle column in Figure 4.6, α0/σ = 4), traction
force magnitude and orientation are determined by a combination of local boundary
shape and local stress �ber orientation. The resulting traction force patterns for An = 1
and An = 2.5 qualitatively reproduce experimental traction force patterns of �broblasts
reported by Oakes et al. [196] and of endothelial cells reported by Roca-Cusachs et al.
[89]. Not only are these experimentally observed traction forces larger at the spherical
caps than elsewhere, as was already reproduced by the isotropic model put forward in
Ref. [196], but they clearly deviate from the normal direction toward the stress �bers,
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which are oriented along the longitudinal direction of the stadium. Hence, our model
qualitatively reproduces not only the structure of the cytoskeleton (see Section 4.2.2),
but also both the magnitudes and the directions of the experimentally observed traction
forces.

Next, we study traction forces on an adhesive mircropattern in the shape of a cross-
bow (see Figures 4.3b and 4.5). Figure 4.7 shows the cells and the traction forces at the
cell boundary on the adhesive part of the substrate (Figure 4.3b) as a function of the
anchoring number An (vertical axis) and the directed bulk contractility α0 (horizontal
axis). For α0 = 0 (left column of Figure 4.7), traction forces are again independent of
the stress �ber orientation and normal to the surface. Because of larger local curvature,
the forces are larger at the left, bottom, and right sides of the cell. Similar to what we
observed in Figure 4.6, for An = 10 the traction forces are independent on the directed
contractility α0 because stress �bers parallel to the cell boundary cannot pull on it. For
lower anchoring numbers, increasing the directed bulk contractility is more interesting.
First, traction forces are again deviating from the cell boundary’s normal vector, and are
biased toward the local stress �ber orientation. This is most evident in the cells with
An = 1,An = 2.5 and α0/σ = 8, where traction forces in the top left and top right
of the crossbow point downward and forces in the bottom left and bottom right corners
point upward. Moreover, the forces increase in magnitude, as a function of α0, at the top
and bottom of the pattern, where the stress �bers orient perpendicular to the boundary.
Similar to what we observed in Figure 4.6 on the stadiums, the magnitudes of the forces
are largest for An = 1, whereas the orientations of the forces deviate most from the
surface normal at An = 2.5.

Comparing the results for low and intermediate anchoring and nonzero directed bulk
contractility in Figure 4.7 with the experimentally reported traction forces of epithelial
cells on a crossbow pattern in Tseng et al. [43] yields a number of interesting obser-
vations. First, the general orientation of the traction forces around the boundary and
the increased magnitudes of the traction forces at the bottom, left, and right sides of the
pattern agree well between theory and experiment, but these features were previously
explained by an isotropic Cellular Potts Model in the work of Albert and Schwarz [69].
However, Tseng et al. [43] additionally report an increase in traction force magnitude at
the top of the pattern. This increase was not reproduced in the isotropic model of Albert
and Schwarz [69], who suggested this discrepancy might be due to the presence of stress
�bers along the long side of the pattern (vertical) in the experiments, which are absent in
their model. Our results do show these stress �bers and a resulting increase in traction
force magnitude at the top of the pattern, demonstrating that the anisotropy of the actin
cytoskeleton is a likely explanation for the discrepancy between the experimental data
in Ref. [43] and the simulations in Ref. [69]. Moreover, Albert and Schwarz report that
the traction forces in the left and right corners of the crossbow pattern are directed more
upward in the experimental data than in their model. In our numerical predictions for
low and intermediate boundary anchoring, these forces do point more upward because
of the directed pull of the stress �bers, although a comparison with the experimental
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Figure 4.7. Traction forces of cells adhering to a micropattern in the shape of a crossbow (same
shape as in Figures 4.3b and 4.5). The black lines in the interior of the cells represent the orientation
�eld n = (cos θSF, sin θSF) of the stress �bers, the background color indicates the nematic order
parameter S, and the white arrows represent the traction forces exerted on the substrate by the
cell. On the vertical axis the anchoring number An = WR/K = 1, 2.5, 10 (with R = 60
lattice sites) is varied, and on the horizontal axis the ratio α0/σ = 0, 4, 8. The spatial averages of
the order parameter are given, from left to right, by: 0.82; 0.80; 0.81 (top row), 0.88; 0.86; 0.84
(middle row), and 0.94; 0.94; 0.93 (bottom row). For all cells, δ = 9 lattice sites, λ/σ = 60 lattice
sites, µ/λ = 1/30 lattice sites, µ/|γad| = 1/20 of the area of a lattice site, and K∆t/(ξrR

2) =
2.5 · 10−6. For de�nitions of ∆t and ξr , see Section 4.4.2 in the Appendix.

data in Ref. [43] shows that they point upward too much. This discrepancy between our
data and the experiments might be due to the fact that stress �bers often occur more
prominently along non-adhesive cell edges (see, e.g., Refs. [43, 210, 211, 240]), which
would lead to an e�ective downward pull at the left and right corners of the crossbow
pattern. This e�ect was taken into account in the model of Albert and Schwarz, but is
absent in our current model because we assume the line tension λ to be constant.
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4.3 Discussion and conclusions

In this chapter we developed a hybrid liquid crystal-Cellular Potts Model (LC-CPM)
framework able to account for the e�ect of directed forces, originating from actin stress
�bers, on cell contractility. We �rst veri�ed the method by comparing the shapes of
single cellular arcs in the CPM with analytical predictions. Then, we combined our
model for anisotropic contractility with a model for the organization of the actin cyto-
skeleton that we developed in Chapter 3, where the orientation of stress �bers is gov-
erned by a competition between the tendency of stress �bers to align tangentially to the
cell edges and the tendency to align parallel with one another in the cell interior. We
veri�ed that the hybrid LC-CPM method reproduces earlier numerical results on rect-
angular cells (Figure 3.12), and qualitatively reproduces experimentally observed stress
�ber distributions on convex adhesive micropatterns in the shape of circles [215] and
stadiums [196], and on non-convex patterns in the shape of a crossbow [43]. Finally,
we calculated the traction forces that cells exert on adhesive micropatterns, showing
that the direction of these forces is strongly in�uenced by the anisotropy of the stress
�bers. In particular, we present a numerical method that, unlike many theoretical mod-
els [69, 196, 234, 235], produces traction forces whose orientations deviate away from
the normal vector of the cell edge and toward the stress �ber orientation, in agreement
with experimental observations [89, 90, 194]. Importantly, our model qualitatively pre-
dicts prominent anisotropic features in traction force patterns reported in previously
published experimental data on �broblasts and endothelial cells adhering to micropat-
terns with stadium shape [89, 196] and epithelial cells on micropatterns with crossbow
shape [43], which were not captured by earlier models [69, 196]. Hence, our numerical
approach rationalizes �ndings on anisotropic traction force patterns in earlier experi-
ments, suggesting an important role for stress �bers that is worth investigating, both
experimentally and theoretically, in much greater detail.

The main drawback of our current model is that it is a priori unclear how to adapt
the phenomenological parameters of the cytoskeleton, captured in the anchoring num-
ber An = WR/K [Eq. (4.11)], for di�erent cells types, environmental conditions, or
even di�erent arcs within the same cell (see also the discussion of Figure 4.4 in Section
4.2.3). For instance, in Chapter 3 we employed this model of the cytoskeleton to study
concavely shaped epithelioid and �broblastoid cells adhering to microfabricated pillar
arrays, and found that cells are best described by su�ciently large boundary anchoring
of the stress �bers (An & 3). In this chapter, however, we found qualitative agreement
with experimental traction force patterns of �broblasts, endothelial cells and epithelial
cells, adhering to convexly shaped micropatterns, for lower boundary anchoring values
(An = 1 and An = 2.5). A possible explanation for this discrepancy can be found in the
fact that concave cell edges promote stress �ber formation more than convex cell edges
do [43, 210, 211, 240], an e�ect that is not present in our current model. We emphasize,
however, that our methods for implementing directed cell contractility [Eq. (4.6)] and
non-normal traction forces [Eq. (4.13)] in the CPM do not crucially depend on our model
for the cytoskeleton (Section 4.2.2), but can be combined with any model for the orien-
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tation of stress �bers. This o�ers opportunities to, in the future, include other e�ects
into the model, such as the viscoelasticity of stress �bers and actin �lament turnover
[206, 207], the distinction between di�erent subtypes of stress �bers [242], spatial vari-
ations in actin densities [176, 196, 210, 211], and the increase of cytoskeletal tension with
substrate sti�ness [198] or with substrate area [195–197].

We have focused our traction force analysis on the edge of the cell. Although this is
not unreasonable, as traction forces are largest far away from the cell centroid [200, 228,
229] and accumulate at the cell periphery [201, 202], predicting traction forces in the
cell interior would help in quantitative comparisons between theory and experiment in
the future [69, 136]. Furthermore, our model could serve as a starting point for studying
the role of stress �ber contractility and anisotropy in cell spreading and migration. In
the framework of the Cellular Potts Model, this could be obtained by combining our
model for stress �ber contractility with current CPM implementations of cell motility
that depend on the formation of a lamellipodium at the cell’s leading edge [124, 125].
Integrating our stress �ber description with these models could improve the realism
of persistent cell motion, which crucially depends on pulling forces at the cell’s rear
end [243, 244]. The resulting model could then be employed to computationally study
the role of cytoskeletal anisotropy in spreading of single [69, 118, 210, 230] or multiple
[245] cells on micropatterns, to explore the e�ects of cytoskeletal anisotropy on cell-
substrate interactions [136, 189], and to better understand the migration of persistent
cells in complex topographies [143, 246] (see also Chapter 5). Finally, as the Cellular
Potts Model is an excellent tool to computationally study multicellular systems [9], our
work can serve as a starting point to study the role of cytoskeletal anisotropy in tissues
[111, 217–223].

4.4 Appendix

4.4.1 Calculating cell perimeter, normal vector, and curvature

Calculating the cell perimeter In order to avoid lattice e�ects, one cannot simply
compute the length of the perimeter P by calculating the total edge length of the cell on
the square lattice. Instead, we employ an algorithm that smoothens out lattice e�ects,
which was developed and described in detail in Ref. [247]. Brie�y, for every lattice
point inside the cell a circular neighborhood of radiusR, centered at this lattice point, is
de�ned. For all simulations we have usedR =

√
5. Then, the algorithm counts, for every

lattice point, the number of lattice points whose center lies inside the neighborhood but
outside the cell, and the resulting numbers are added up for all lattice points inside the
cell. Finally the result is divided by a scaling factor, that depends on the neighborhood
size used, to obtain P . In all simulations we have used a scaling factor of 11 [247].

Calculating the normal vector Again to avoid lattice e�ects, the normal vector of
the cell N = (cosψ, sinψ) cannot be evaluated as the normal vector of an edge between
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Figure 4.8. Schematic of the calculation of the normal vector at a lattice site (black dot) at the
edge of the cell. The cell is represented by the blue lattice sites. The normal vector is calculated
as the unit vector pointing from that lattice site to the center of mass (red dot) of the collection
of lattice sites that are both inside the cell and inside a circular neighborhood of radius R around
that lattice site (cyan lattice sites).

two lattice sites. Instead, we calculate the normal vector at a given lattice site at the cell
edge by again considering a circular neighborhood of radius R centered at that lattice
site. This is illustrated in Figure 4.8, where the black dot indicates the lattice site of
interest, the lattice sites inside the cell are blue, and those outside the cell are white.
Along the lines of Ref. [69], the normal vector N at a given edge lattice site is then
calculated as the unit vector pointing from that lattice site to the center of mass (red dot)
of the collection of lattice sites that are both inside the cell and inside the neighborhood
(cyan lattice sites). In our simulations [Eq. (4.7)], we have used R =

√
5, whereas for

the calculation of traction forces [Eq. (4.13)], we have used R = 10.5.

Calculating the curvature The curvature κ is required to calculate traction forces
[Eq. (4.13)], and is obtained by calculating the derivative of the normal angle ψ to the
arc length s, ∂sψ. This is done by �rst de�ning the boundary of the cell as the collection
of lattice sites that are inside the cell but have at least one neighbor lattice site (Moore
neighborhood, 8 neighbors) that is outside the cell, and labeling all boundary lattice
sites with an integer i such that the two neighboring (Von Neumann neighborhood, 4
neighbors) boundary lattice sites have labels i− 1 and i+ 1. At each of these boundary
lattice sites we calculate ψ by calculating the normal vector using a neighborhood with
R = 10.5. The derivative ∂sψ is then calculated using a �nite di�erence approximation
taking into account the lattice site of interest i and the boundary lattice sites i − n
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and i + n, with n an integer and where the distances ∆s− (distance between lattice
sites i − n and i) and ∆s+ (distance between lattice sites i and i + n) required for the
�nal di�erence approximation are, to avoid lattice e�ects, the shortest distances between
the centers of the two lattice sites rather than distances measured along the discrete
boundary. Consequently, ∆s− and ∆s+ are in general not equal.

The value of n that produces the most accurate approximation of the curvature de-
pends on the actual curvature of the cell boundary. Therefore, we �rst estimate the
radius of curvature r = 1/κ at a given lattice site using n = 3. Then, we calculate the
curvature again using n = 2 if the initial radius of curvature r < 14 lattice sites, n = 3
for 14 < r < 25 lattice sites, n = 4 for 25 < r < 35 lattice sites, and n = 5 if r > 35
lattice sites. In this way we obtain the curvature at each boundary lattice site with a
systematic error < 1% and a random error < 5%.

4.4.2 Numerical methods

Here we describe the procedure, step by step, that we use to generate the numerical
results shown in Figures 4.1-4.7.

1) Initialization.
1a) De�ne the lattice sites that are part of the adhesive micropattern. These are

illustrated in Figures 4.1a, 4.2a, and 4.3.
1b) De�ne the lattice sites that are initially part of the cell. For the data in Figure 4.1

this is illustrated in Figure 4.1a. For the other data, the initial cell shape is identical to
the shape of the adhesive micropattern.

1c) De�ne the cytoskeleton by de�ning Q̂ at every lattice site. In Figures 4.1b,c S=0
at each lattice site, and in Figures 4.1d-f S = 1 and θSF = π/2 at each lattice site. In
the other �gures, each lattice site is assigned random initial values for the orientation
−π/2 ≤ θSF ≤ π/2 and the nematic order parameter 0 ≤ S ≤ 1, from which Q̂ is
calculated using Eq. (4.8). This initial cell con�guration does not describe a realistic cell,
but it minimizes the risk of a possible bias in the �nal con�guration.

2) Cell con�guration updates. Perform the following steps for a prede�ned number
of Monte Carlo steps (MCS), which is chosen such that both the cell shape and the cy-
toskeleton reach a steady-state con�guration. 20,000 MCS are performed for the data in
Figure 4.1, 10,000 MCS are performed for the data with An = 2.5 in Figures 4.2-4.7, and
30,000 MCS are performed for the other data in Figures 4.2-4.7.

2a) Update the cell shape by performing one Monte Carlo step of the Cellular Potts
Model using the change in Hamiltonian described by Eq. (4.7). One MCS represents a
number of CPM updates equal to the number of lattice sites in the simulation. If a lattice
site inside the cell is copied into the surrounding medium, the associated Q̂ is copied
with it. If, conversely, a lattice site in the medium is copied into a lattice site that is
inside the cell, Q̂ at that speci�c lattice site is discarded.

2b) Update the cytoskeleton. This step is skipped for the simulations reported in
Figure 4.1. The free energyFcyto in Eq. (4.9) is minimized using overdamped relaxational
dynamics:
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∂tQij = − 1

ξr

δFcyto

δQij
, (4.14)

where Qij represents the various components of Q̂, and ξr is a rotational friction coef-
�cient required for dimensional consistency. ξr dictates the rate of the relaxational dy-
namics but does not a�ect the steady-state solution. To ensure the free-energy to be min-
imal in steady-state (i.e., when ∂tQij = 0), Eq. (4.14) is solved with Neumann boundary
conditions:

KN · ∇Qij − 2W (Qij −Q0,ij) = 0 . (4.15)

At each time step ∆t, Q̂ is updated at every lattice point by discretizing Eq. (4.14) using
a forward Euler method. For details on this procedure and on the boundary conditions,
see Section 3.6.2 . For every Monte Carlo step (MCS), 50 time steps of the cytoskeleton
are performed.

3) Final con�gurations
3a) The �nal con�gurations are determined by averaging the con�gurations of the

last 3,000 MCS of the simulation. If a lattice site was inside the cell for more than 50% of
this time, it is considered inside the �nal con�guration. Otherwise, it is considered to be
outside the cell. For lattice sites inside the �nal con�guration, the local Q̂ is determined
by averaging Q̂ over all MCS (within the last 3,000 MCS of the simulation) when this
lattice site was inside the cell.

3b) The �nal con�gurations are plotted in Figures 4.1-4.7. The cytoskeleton is visu-
alized with Mathematica Version 11.3 (Wolfram Research, Champaign, IL) using the line
integral convolution tool. When using this tool we de�ne S = 1 outside the cell, while
θSF is not de�ned outside the cell.
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Chapter 5

Topotaxis of active

Brownian particles

This chapter is reprinted with permission, copyright 2020 by the American Physical
Society. The chapter is published as:

Koen Schakenraad, Linda Ravazzano, Niladri Sarkar, Joeri A.J. Wondergem, Roeland
M.H. Merks, and Luca Giomi, ‘Topotaxis of active Brownian particles’, Physical Review
E 101, 032602 (2020)

Abstract

Recent experimental studies have demonstrated that cellular motion can be di-
rected by topographical gradients, such as those resulting from spatial variations
in the features of a micropatterned substrate. This phenomenon, known as topo-
taxis, has been extensively studied for topographical gradients on the sub-cellular
scale, but can also emerge as a result of topographical gradients at length scales
larger than the cell. This large-scale topotaxis has recently been observed for
highly motile cells that persistently crawl within a spatially varying distribution
of cell-sized obstacles. In this chapter we introduce a toy model of large-scale
topotaxis based on active Brownian particles constrained to move in a lattice of
obstacles, with space-dependent lattice spacing. Using numerical simulations and
analytical arguments, we demonstrate that topographical gradients introduce a
spatial modulation of the particles’ persistence, leading to directed motion to-
ward regions of higher persistence. Our results demonstrate that persistent mo-
tion alone is su�cient to drive large-scale topotaxis and could serve as a starting
point for more detailed studies on self-propelled particles and cells.
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5.1 Introduction

Whether in vitro or in vivo, cellular motion is often biased by directional cues from the
cell’s micro-environment. Chemotaxis, i.e., the ability of cells to move in response to
chemical gradients, is the best known example of this functionality and plays a crucial
role in many aspects of biological organization in both prokaryotes and eukaryotes [127,
128]. Yet, it has become increasingly evident that, in addition to chemical cues, mechani-
cal cues may also play a fundamental role in dictating how cells explore the surrounding
space. Haptotaxis (i.e., directed motion driven by gradients in the local density of adhe-
sion sites) and durotaxis (i.e., directed motion driven by gradients in the sti�ness of the
surrounding extracellular matrix) are well studied examples of taxa driven by mechani-
cal cues [131, 132, 134].

In vivo, cells crawl through topographically intricate environments, such as the ex-
tracellular matrix, blood and lymphatic vessels, other cells, etc. Complex environments
like these can signi�cantly in�uence cellular migration strategies [248–255], and asym-
metries in the topographical properties of the environment can serve as a directional
cue for cell migration in a process called topotaxis. This term was used in early work
on directed cell migration as a synonym for the general term “taxis” [256], but was re-
cently rede�ned by Park et al. to describe directed motion of invasive melanoma cells
on substrates with a spatial gradient in the density of nanoscale posts [140]. In general,
the term “topotaxis” is suitable to describe any directional cue due to local anisotropy
in the topographical properties of the surrounding environment. For instance, adhesive
ratchets [137–139] and several types of anisotropic subcellular structures [137, 141, 142,
257, 258] have also been shown to lead to directed cell migration. In all of these examples,
cell motion is biased due to topographical cues at sub-cellular length scales. More re-
cently, Wondergem and coworkers demonstrated that topotaxis can also be achieved by
topographical cues at length scales larger than the cell itself [143]. They studied single,
highly motile, persistently migrating cells (i.e., cells performing amoeboid migration),
moving on a substrate in between cell-sized micropillars that act as obstacles and con-
sequently force the cells to move around them. If the obstacles’ density smoothly varies
across the substrate at length scales larger than the cell size, the cells perform large-scale
topotaxis: the topographical gradient serves as a directional cue for the cells to move to-
ward the regions of lower obstacle density.

Although the precise biophysical or biochemical principles behind this large-scale
topotaxis, as observed in Ref. [143], are presently unknown, its occurrence for cells per-
forming amoeboid migration suggests the possibility of cell-type-independent mech-
anisms that, separately from the cell’s mechanosensing machinery, provide a generic
route to the emergence of large-scale topotaxis. In this chapter we explore this hypo-
thesis. Inspired by the observations on persistently migrating cells by Wondergem et al.
[143], we study active Brownian particles (ABPs) constrained to move within a lattice of
obstacles. We demonstrate that large-scale topotaxis of ABPs can result solely from the
spatial modulation of persistence resulting from the interaction between the particles
and the obstacles.
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ABPs represent a simple stochastic model for self-propelled particles, such as active
Janus particles [259], and for cell motility on �at substrates [116]. ABPs perform per-
sistent self-propelled motion in the direction of the particle orientation in combination
with rotational di�usion of this orientation. The motion of active particles has been
explored in several complex geometries, including convex [260, 261] and non-convex
[262] con�nements, mazes [263], walls of funnels [264], interactions with asymmetric
[265, 266] and chiral [267] passive objects, periodic [268] and random [269–272] obstacle
lattices, and porous topographies [273]. For a review, see Refs. [144, 145]. Because of the
non-equilibrium nature of active particles, local asymmetries in the environment can be
leveraged to create a drift; these particles have been demonstrated to perform chemotaxis
[155, 156], durotaxis [157], and phototaxis [158]. Furthermore, topographical cues, such
as those obtained in the presence of arrays of asymmetric posts [149, 150] and ratchets
consisting of asymmetric potentials [146–148] or asymmetric channels [151–154], have
been shown to produce a directional bias in the motion of active particles reminiscent
of those observed for cells.

In this chapter we study large-scale topotaxis of active Brownian particles, which
we from here on simply refer to as “topotaxis”. The chapter is organized as follows:
in Section 5.2 we present our model for ABPs and their interaction with obstacles. In
Section 5.3.1 we show that, in the presence of a gradient in the obstacle density, ABPs
drift, on average, in the direction of lower density. The speed of this net drift, here
referred to as topotactic velocity, increases as a function of both the density gradient
and the persistence length of the ABPs. In Section 5.3.2 (numerically) and Section 5.3.3
(analytically) we study ABPs in regular obstacle lattices and demonstrate that the origin
of large-scale topotaxis of active particles can be found in the altered persistence length
of the particles in the presence of obstacles.

5.2 The model

Our model of ABPs consists of disks of radius Rp self-propelling at constant speed v0

along the unit vector p = (cos θ, sin θ) and subject to rotational white noise. The dy-
namics of the particles is governed by the following overdamped equations:

dr

dt
= v0p + µF , (5.1a)

dθ

dt
=
√

2Dr ξ , (5.1b)

where r = r(t) is the position of the particle, t is time, and µ is a mobility coe�cient.
The force F = F (r) embodies the interactions between the particles and the obstacles.
ξ = ξ(t) is a random variable with zero mean, i.e., 〈ξ(t)〉 = 0, and time-correlation
〈ξ(t)ξ(t′)〉 = δ(t− t′). The extent of rotational di�usion is quanti�ed by the rotational
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di�usion coe�cient Dr , whereas translational di�usion is neglected under the assump-
tion of large Péclet number: Pe � 1. Overall, this set-up provides a reasonable toy
model for highly motile cells such as those used in experimental studies of large-scale
topotaxis [117, 143, 274]. For a study on the in�uence of the Péclet number on the motion
of ABPs around obstacles, see, for example, Ref. [268, 270].

In free space, (i.e., F = 0), ABPs described by Eqs. (5.1) perform a persistent random
walk (PRW) with mean displacement 〈∆r(t)〉 = 0 and mean squared displacement:

〈
|∆r(t)|2

〉
= 2v2

0τ
2
p

(
t

τp
+ e−t/τp − 1

)
, (5.2)

where ∆r(t) = r(t)−r(0) and 〈· · · 〉 represents an average over ξ (see, e.g., Ref. [145]).
The constant τp = 1/Dr , commonly referred to as persistence time, quanti�es the typ-
ical timescale over which a particle tends to move along the same direction. Thus, over
timescales shorter than the persistence time, t� τp, ABPs move ballistically with speed
v0:
〈
|∆r(t)|2

〉
≈ (v0t)

2, while over timescales larger than the persistence time, t� τp,
ABPs di�use, i.e.,

〈
|∆r(t)|2

〉
= 4Dt, with D = v2

0τp/2 the di�usion coe�cient. From
τp, one can de�ne a persistence length, lp = v0τp, as the typical distance travelled by a
particle before losing memory of its previous orientation. Consistently, the autocorrela-
tion function of the velocity v = dr/dt (v = v0p in free space) is given by:

〈v(t+ ∆t) · v(t)〉 = v2
0e−∆t/τp . (5.3)

Our ABPs roam within a two-dimensional array of circular obstacles of radius Ro.
Following Refs. [261, 262], the interactions between particles and obstacles are modeled
via a force of the form:

F =

{
− v0µ (p ·N)N if |∆ro| ≤ R ,

0 otherwise ,
(5.4)

where N is a unit vector normal to the obstacle surface, |∆ro| is the distance between
the obstacle center and the particle center, and the e�ective obstacle radiusR is the sum
of the obstacle and the particle radii: R = Ro + Rp. Eq. (5.4) describes a friction-
less hard wall force that cancels the velocity component normal to the obstacle surface
whenever the particle would penetrate the obstacle, and vanishes otherwise. Therefore,
the obstacle force F is either repulsive or zero, but never attractive. We stress that the
wall force does not in�uence the particle orientation p. Thus, a particle slides along an
obstacle until either the obstacle wall becomes tangential to p or rotational di�usion
causes the particle to rotate away. This is consistent with experimental observations on
self-propelled colloids [260] as well as various types of cells [275, 276]. For details of the
numerical implementation of Eqs. (5.1) and (5.4), see Section 5.5.1 in the Appendix. In
the following sections, we measure time in units of the persistence time, i.e., t̃ = t/τp,
and length in units of the e�ective obstacle radius, i.e., ˜̀= `/R.
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5.3 Results

The motion of ABPs in di�erent lattices of obstacles is visualized in Figure 5.1. Each
panel shows 20 simulated trajectories with persistence length l̃p = 5. Figures 5.1a,b
show regular square lattices with dimensionless center-to-center obstacle spacings of
d̃ = 2.5 and d̃ = 4 respectively. In Figure 5.1, the obstacles are graphically represented
as disks of radiusR and the ABPs as point particles. To avoid biasing the statistics of the
particle trajectories, ABPs start at a random location inside the unit cell of the regular
square lattice (Figure 5.1c) at t̃ = 0 with random orientation. All trajectories are shown
for a total time of t̃ = 3. Comparing the spreading of the active particles in Figure 5.1a
with that in Figure 5.1b, we observe that the more dense the obstacle lattice is, the more
it hinders the di�usion of the active particles. We will quantify this later.

To study topotaxis, we de�ne an irregular square lattice comprising a linear gradient
of the obstacle spacing in the positive x−direction. The latter is quanti�ed in terms of a
dimensionless parameter r representing the rate at which the obstacle spacing increases
as x increases. Thus r = 0 corresponds to a regular square lattice, whereas large r
values correspond to rapidly increasing obstacle spacing. Figure 5.1d shows this lattice
for r = 0.07 with 20 particle trajectories, starting in the origin at t̃ = 0 with a random
orientation, plotted for a simulation time of t̃ = 5, where d̃ = 5 represents the obstacle
spacing in the center of the gradient region. The gradient region has a �nite width (not
visible in Figure 5.1d) and is �anked by regular square lattices to the left, with lattice
spacing d̃min = 2.1, and to the right, with lattice spacing d̃max = 2d̃ − d̃min. The
minimal and maximal obstacle-to-obstacle distances (d̃min and d̃max, respectively) do
not depend on the steepness of the gradient, and consequently the width of the gradient
region decreases for steeper gradients (larger r). For a detailed description of both the
regular and gradient lattices as well as an image of the gradient lattice including the
regular lattices on the left and right, see Section 5.5.2 in the Appendix.

5.3.1 The emergence of topotaxis

To quantify topotaxis, we measure the average x and y coordinates, 〈x̃〉 and 〈ỹ〉, as a
function of time for 106 particles. The results are given for �ve values of the dimension-
less density gradient r in Figure 5.2a and Figure 5.6a (Section 5.5.3 in the Appendix) for
x and y respectively. The emergence of topotaxis is clear from Figure 5.2a: the active
particles move, on average, in the positive x−direction, hence in the direction of lower
obstacle density. As expected by the symmetry of the lattice, there is no net motion
in the y direction independently of the value of r (Figure 5.6a, Section 5.5.3 in the Ap-
pendix). To further quantify topotaxis, we de�ne the topotactic velocity as the average
velocity in the positive x direction in a time interval ∆t, vtop = 〈∆x〉 /∆t, and evaluate
it between t̃ = 0 and t̃ = 30. Figures 5.2a and 5.2b show that ṽtop is approximatively
constant in time and proportional to the density gradient r.

Next, we investigate the e�ect of the intrinsic motion of the ABPs on topotaxis. This
intrinsic motion is characterized by the persistence length lp = v0τp, which uniquely
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Figure 5.1. Simulated trajectories of 20 active Brownian particles (ABPs) with persistence length
l̃p = v0τp/R = 5 in di�erent lattices of obstacles. The obstacles are graphically represented as
disks of radiusR and the ABPs as point particles. (a,b) ABPs in regular square lattices of obstacles
with center-to-center obstacle spacings d̃ = d/R = 2.5 and d̃ = 4 respectively. The particles
start at t̃ = 0 at a random location in the unit cell of the lattice and are simulated for a total time
of t̃ = 3. (c) The unit cell of the regular square lattice showing the starting points (crosses) of the
20 trajectories in (b). (d) ABPs in a lattice with a linear gradient in obstacle spacing, quanti�ed by
a dimensionless parameter r = 0.07 (see Section 5.5.2 in the Appendix), and d̃ = 5 at the center
of the gradient region. The particles start at t̃ = 0 in the origin and are simulated for a total time
of t̃ = 5.

determines the statistics of the particle trajectory in free space. Namely, if two types of
ABPs have di�erent v0 and τp, but the same lp, their trajectories have the same statistical
properties, even though faster particles move along these trajectories in a shorter time.
Figure 5.2c shows 〈x̃〉 as a function of time for �ve values of l̃p. The speed of topotaxis
is again approximately constant in time and increases with l̃p (Figure 5.2d). This trend
partly results from the fact that increasing the persistence length corresponds either to
an increment in v0 or τp, both resulting into an increase of ṽ0. However, Figure 5.2d
shows that ṽtop increases faster than linear as a function of l̃p, suggesting an additional
e�ect caused by the obstacle lattice. As we will see in Section 5.3.2, this e�ect is caused
by the fact that the lattice hinders ABPs with large persistence lengths more than ABPs
with smaller persistence lengths. Finally, we note that there is no net motion in the y
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Figure 5.2. The emergence of topotaxis in density gradient lattices. (a) 〈x̃〉 = 〈x〉 /R as a
function of time t̃ = t/τp for several values of the density gradient r, with d̃ = d/R = 5 and
l̃p = v0τp/R = 5. (b) Topotactic velocity, de�ned in the main text, in the x direction as a function
of the density gradient r based on the data in (a). (c) 〈x̃〉 = 〈x〉 /R as a function of time t̃ = t/τp
for several values of the persistence length l̃p = v0τp/R, with d̃ = d/R = 5 and r = 0.07. (d)
Topotactic velocity in the x direction as a function of the persistence length l̃p based on the data
in (c). Data in (a) and (c) represent averages over 106 particles. Error bars in (b) and (d) are given
by the standard error of 〈x〉 (t)/(R t) at t = 30 τp.

direction irrespective of the persistence length, as expected by symmetry (Figure 5.6b,
Section 5.5.3 in the Appendix).

5.3.2 The physical origin of topotaxis

The observed occurrence of topotaxis of ABPs is intuitive, as particles migrate in the
direction where there is more available space. However, the mechanism by which ABPs
are guided toward the less crowded regions is not obvious from the results in Section
5.3.1. To gain more insight into the physical origin of topotaxis, we investigate how
particle motility depends on the local obstacle spacing. In doing so, we take inspiration
from recent works [135, 157, 277] that have shown, in the context of durotaxis, that per-
sistent random walkers, moving in a spatial gradient of a position-dependent persistence
length, show an average drift toward the region with larger persistence. As is the case
in our system (Section 5.3.1), this e�ect is stronger in the presence of larger gradients
[135, 157]. In order to understand whether or not such a space-dependent persistence
might explain the observed topotactic motion, we study and characterize the motion of
ABPs in regular square lattices. To do so, we measure the mean squared displacement
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Figure 5.3. Regular square lattices of obstacles modify the e�ective parameters of the persis-
tent random walk. (a) Dimensionless mean squared displacement

〈
|∆r̃|2

〉
=
〈
|∆r|2

〉
/R2 as

a function of dimensionless time t̃ = t/τp for l̃p = v0τp/R = 10 in free space (d → ∞,
black line) and in the presence of square lattices with obstacle spacings d̃ = d/R = 2.5
(blue) and d̃ = 4 (red). The e�ective di�usion coe�cient Deff is obtained from a linear �t
to the long-time (t > τp) regime of the log-log data. (b) Dimensionless velocity autocorrela-
tion function 〈ṽ(t+ ∆t) · ṽ(t)〉 = 〈v(t+ ∆t) · v(t)〉 τ2

p/R
2 as a function of ∆t̃ = ∆t/τp for

l̃p = v0τp/R = 10 in free space (d → ∞) and in the presence of square lattices with obstacle
spacings d̃ = 2.5 and d̃ = 4. The e�ective velocity veff and e�ective persistence time τeff are
obtained from a exponential �t to the autocorrelation function. MSD and VACF data represent
averages over 104 particles.

(MSD)
〈
|∆r(t)|2

〉
as a function of time and the velocity autocorrelation function (VACF)

〈v(t+ ∆t) · v(t)〉 as a function of the time interval ∆t for 104 particles for various lat-
tice spacings d̃ and persistence lengths l̃p.

Figure 5.3a shows a log-log plot of the MSD for l̃p = 10. The curve with d̃ → ∞
(black) represents the theoretical MSD in free space [Eq. (5.2)] and exhibits the well-
known crossover from the ballistic regime (slope equal to 2) to the di�usive regime (slope
equal to 1) around t̃ = 1 (t = τp). The hindrance of the obstacles is evident from the data
obtained in regular lattices with d̃ = 4 (red curve) and d̃ = 2.5 (blue curve), as the MSD
is smaller than the MSD in free space at all times (see also the inset). Moreover, the MSD
is smaller for the smaller lattice spacing, as we already observed qualitatively in Figures
5.1a,b. The hindrance also manifests itself in the short-time (t < τp) regime, where the
slope of the red and blue curves is slightly smaller than that of the black curve. When
not interacting with obstacles, individual ABPs still move ballistically, but interactions
with obstacles prevent them from moving along straight lines. As the particles start at
random locations within the unit cell (Figure 5.1c), each particle interacts with obstacles
at di�erent times, causing the MSD to show slightly sub-ballistic behavior.

The slope of the curves at timescales larger than the persistence time, on the other
hand, is independent of the presence of obstacles and equal to 1 (see inset). In other
words, even though the motion of the ABPs is hindered by the obstacles at all time-
scales, the long-time motion remains di�usive, as was also observed for ABPs in random
obstacle lattices of low density [270]. Fitting the MSD at long times allows one to de�ne
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an e�ective di�usion coe�cient Deff , namely:〈
|∆r(t)|2

〉
−−−→
t�τp

4Defft. (5.5)

Figure 5.3b shows the velocity autocorrelation function (VACF) on a semilogarithmic
plot as a function of the time interval ∆t̃ = ∆t/τp for l̃p = 10. The d→∞ curve again
represents the theoretical curve in free space and shows exponential decay [Eq. (5.3)].
Interestingly, in the presence of increasing obstacle densities, hence for smaller lattice
spacings d̃, the velocity autocorrelation decreases but remains, to good approximation,
exponential. From this numerical evidence, we conclude that the average motion of
ABPs in a two-dimensional square lattice can be described as a persistent random walk
with an e�ective velocity veff and an e�ective persistence time τeff [270],

〈v(t+ ∆t) · v(t)〉 = v2
eff e−∆t/τeff . (5.6)

Figure 5.4 shows Deff , τeff and veff , normalized by their free space values, as a function
of the obstacle spacing d̃ for three values of the free space persistence length l̃p. Starting
with the e�ective di�usion coe�cient (Figure 5.4a), we observe that, for every value of
the persistence length, the e�ective di�usion coe�cient Deff increases as a function of
d̃ until it approaches the free space di�usion coe�cient D for large d̃. This is consistent
with what we observed in Figures 5.1a,b and 5.3: ABPs on low density lattices spread out
more than ABPs on high density lattices. Moreover, the e�ective di�usion coe�cient
deviates more from its free space value for large l̃p than it does for small l̃p. This is
intuitive because more persistent particles tend to move longer along the same direction
and therefore are hindered more in their motion by the obstacle lattice.

The e�ective persistence time τeff (Figure 5.4b) and the e�ective velocity veff (Figure
5.4c), both extracted from the velocity autocorrelation function [Eq. (5.6)], show a similar
trend: they increase as a function of d̃ until they approach their free space values at high
d̃, and they deviate more from their free space values for large l̃p than they do for small
l̃p. These data show that the obstacles cause the ABPs, on average, to move slower and
change their direction of motion more quickly. We emphasize that it is the velocity v that
turns more quickly, not the particle orientation p, which is una�ected by the obstacles as
we discussed in Section 5.2. The decreased e�ective velocity, with respect to free space, is
intuitive given the interactions between particles and obstacles [Eq. (5.4)], which slow
down the ABPs. The decreased e�ective persistence time, on the other hand, is less
obvious as one could imagine the periodic obstacle lattice to guide ABPs along straight
lines, as reported in Refs. [268, 278]. Apparently, this potential guiding mechanism is
outcompeted in our system by the fact that encounters of ABPs with individual obstacles
at shorter timescales cause them to change their direction of motion more quickly than
in free space. In Section 5.3.3 we will study these short-timescale interactions in greater
detail.

Combining the e�ective persistence time (Figure 5.4b) and the e�ective velocity (Fig-
ure 5.4c) gives the e�ective persistence length leff = veffτeff and the e�ective di�usion
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Figure 5.4. E�ective parameters of the persistent random walk in regular lattices of obstacles.
(a) Normalized e�ective di�usion coe�cient Deff/D, obtained from the mean squared displace-
ment [Eq. (5.5)], as a function of the normalized obstacle spacing d̃ = d/R for three values of
the normalized persistence length l̃p = v0τp/R. Inset shows Deff for l̃p = 5 obtained via the
mean squared displacement (MSD) and via the velocity autocorrelation function (VACF), using
Deff = v2

effτeff/2. (b) Normalized e�ective persistence time τeff/τp, (c) normalized e�ective velo-
city veff/v0, both obtained from the velocity autocorrelation function [Eq. (5.6)], and (d) normal-
ized e�ective persistence length leff/lp = veffτeff/(v0τp) as functions of the normalized obstacle
spacing d̃ = d/R for three values of the normalized persistence length l̃p = v0τp/R. Data points
represent the average of 10 independent measurements from MSD or VACF data (Figure 5.3). The
error bars show the corresponding standard deviations.

coe�cient Deff = v2
effτeff/2. The inset of Figure 5.4a shows the e�ective di�usion coef-

�cient for l̃p = 5, calculated both by using the e�ective persistence time and e�ective
velocity from the velocity autocorrelation function (VACF) and by a direct measure-
ment from the mean squared displacement (MSD). The excellent agreement between
Deff measured at short and long timescales (using the VACF and MSD respectively) is
another indication that the motion of the ABPs in regular square obstacle lattices can
indeed be considered to be an e�ective persistent random walk.

The e�ective persistence length leff = veffτeff is plotted in Figure 5.4d. As antici-
pated, the e�ective persistence length increases with increasing lattice spacing d̃, con-
sistent with �ndings of ABPs in random obstacle lattices [270] and a model of persist-
ently moving cells in a tissue of stationary cells [125]. This e�ect increases with the free
space persistence length, as the motion of less persistent particles is randomized before
they can reach an obstacle. Furthermore, the di�erence between data with l̃p = 5 and
l̃p = 10 is negligible, indicating that the free space persistence length l̃p a�ects particle
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motion only when it is comparable with the lattice spacing.
These observations, combined with those in Refs. [135, 157, 277] which demonstrate

a net �ux of persistent random walkers toward regions of larger persistence, ultimately
explain the origin of topotaxis in our system. ABPs migrate, on average, toward re-
gions of higher persistence, hence to regions of lower obstacle density. Moreover, the
dependence of the e�ective persistence length leff on the free space persistence length
l̃p (Figure 5.4d) justi�es the superlinear increase of the topotactic velocity ṽtop as a func-
tion of l̃p (Figure 5.2d). In addition to the normal speed-up due to the higher persistence,
more persistent particles experience a larger gradient in persistence.

5.3.3 Fokker-Planck equation for regular lattices

As we explained in Section 5.3.2, topotaxis in our model of ABPs crucially relies on
the fact that, even when trapped in an array of obstacles, ABPs still behave as persis-
tent random walkers. The physical origin of this behavior is, however, less clear from
the numerical simulations. In this section, we rationalize this observation using some
simple analytical arguments. The probability distribution function P = P (r, θ, t) of the
position and orientation of an ABP, whose dynamics is governed by Eqs. (5.1), evolves
in time based on the following Fokker-Planck equation:

∂P

∂t
= −v0p · ∇P − µ∇ · (PF ) +DR

∂2P

∂θ2
, (5.7)

subject, at all times, to the normalization constraint:∫
dr dθ P (r, θ, t) = 1 , (5.8)

with dr = dx dy. Eq. (5.7) cannot be solved exactly, but useful insights can be obtained
by calculating the rate of change of the mean squared displacement

〈
|∆r|2

〉
. Here we

assume r(0) = 0, which yields |∆r|2 = |r|2 = x2 + y2, and

∂
〈
|r|2
〉

∂t
=

∫
dr dθ |r|2 ∂P (r, θ, t)

∂t
(5.9)

Upon substituting Eq. (5.7) in Eq. (5.9) and integrating by parts, we obtain:

∂〈|r|2〉
∂t

= 2v0〈r · p〉+ 2µ〈r · F 〉. (5.10)

Analogously, the term 〈r · p〉 evolves accordingly to:

∂〈r · p〉
∂t

= v0 −DR〈r · p〉+ µ〈p · F 〉 . (5.11)

105



CHAPTER 5. TOPOTAXIS OF ACTIVE BROWNIAN PARTICLES

In free space (F = 0), Eqs. (5.10) and (5.11) can be solved exactly, using the boundary
condition r(t = 0) = 0, to �nd:

〈r · p〉F=0 =
v0

DR

(
1− e−DRt

)
, (5.12)

and the mean squared displacement 〈|r|2〉 given by Eq. (5.2). A generic nonzero F
compromises the closure of the equations, thus making the problem intractable with
exact methods. Nevertheless, it is possible to use some simplifying assumptions to obtain
intuitive results about Deff and τeff (Figure 5.4) at short (t � 1/Dr = τp) and long
(t� 1/Dr = τp) timescales.

At short timescales, we can assume a particle to be still relatively close to its initial
position r(0) = 0. Thus one can expand the force in Eq. (5.11) at the linear order in r,
i.e., F (r) ≈ F (0) +∇F (0) · r. Evidently, such an expansion is ill-de�ned for discon-
tinuous forces such as that given by Eq. (5.4). However, one can imagine to smoothen the
force (for instance using a truncated Fourier expansion), without altering the qualitative
picture. By the symmetry of the obstacle lattice, F (0) = 0, ∂yFx(0) = ∂xFy(0) = 0,
and the constant ∂xFx(0) = ∂yFy(0) < 0, as the horizontal (vertical) component of
the force experienced by a particle moving in the positive x−direction (y−direction),
becomes more negative as the particle moves away from the origin. Using this approx-
imation, the short-time motion is analogous to that of ABPs con�ned by a harmonic trap
[279–282]. The approximation allows us to write

〈p · F 〉|t�τp =
∂Fx
∂x

(0) 〈r · p〉 , (5.13)

and by inserting Eq. (5.13) into Eq. (5.11) we �nd:

∂〈r · p〉
∂t

∣∣∣∣
t�τp

= v0 −
(
Dr − µ

∂Fx
∂x

(0)

)
〈r · p〉 . (5.14)

Solving Eq. (5.14) yields:

〈r · p〉
∣∣∣
t�τp

=
v0

Dr,eff

(
1− e−Dr,eff t

)
, (5.15)

with Dr,eff = Dr − µ ∂xFx(0) > Dr . By comparing Eq. (5.15) with its free space
equivalent [Eq. (5.12)], we identify Dr,eff as an increased e�ective rotational di�usion
coe�cient. This implies a decreased e�ective persistence time, consistent with the data
in Figure 5.4b. The above analysis shows that, to �rst order, the observed decrease in ef-
fective persistence time simply results from the short-time interactions, within a unit cell
of the lattice, that cause the particles to change their direction of motion more quickly.
Finally, substituting Eq. (5.15) in Eq. (5.10) and taking again the �rst order Taylor ex-
pansion for F allows one to solve Eq. (5.10) exactly. Expanding this exact solution at
the second order in time yields:

〈|r|2〉
∣∣
t�τp

= v2
0t

2 , (5.16)
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which is the standard ballistic regime of the mean squared displacement. Hence, the
decreased e�ective velocity observed in Figure 5.4c originates from interactions with
obstacles at larger timescales (t ∼ τp, see also Figure 5.3b).

In the long timescale (t � 1/Dr = τp) the particles reach a di�usive steady state,
thus ∂t〈r · p〉 = 0. Hence, solving Eq. (5.11) for 〈r · p〉 and substituting in Eq. (5.10)
yields:

∂〈|r|2〉
∂t

∣∣∣∣
t�τp

=
2v2

0

Dr

(
1 +

µ

v0
〈p · F 〉+

µDr

v2
0

〈r · F 〉
)
, (5.17)

As the long time behavior is di�usive, the expression on the right-hand side of Eq. (5.17)
is constant and equal to 4Deff . Now, according to Eq. (5.4), µ(p · F ) = 0 if |∆ro| > R,
and µ(p · F ) = −v0(p · N)2 otherwise. Thus, 〈p · F 〉 < 0. This term shows that
di�usion is slowed down because the obstacle force F always slows down the particles
(but never accelerates them). Moreover, for more dense obstacle lattices, particles in-
teract with obstacles more often, which explains the observed dependence of Deff on
the obstacle spacing in Figure 5.4a. Analogously, since particles move in an open space
and, on average, away from the center, 〈r · F 〉 < 0 (i.e., the repulsion forces due to the
obstacles are directed more often toward the origin than toward in�nity, further slowing
down di�usion). ThusDeff < D, consistent with our numerical simulations (Figures 5.3
and 5.4a).

5.4 Discussion and conclusions

In this chapter we investigated topotaxis, i.e., directed motion driven by topographical
gradients, in a toy model of ABPs constrained to move within a two-dimensional array
of obstacles of smoothly varying density. We found that ABPs migrate preferentially
toward regions of lower density with a velocity that increases with the gradient in the
lattice spacing and with the particles’ persistence length. In our model, the origin of
topotaxis crucially relies on the fact that, even when moving in a lattice of obstacles,
ABPs still behave as persistent random walkers, but with renormalized transport coe�-
cients: τeff and veff . As these depend on the topography of the substrate, here quanti�ed
in terms of lattice spacing, topographical gradients result into spatially varying persis-
tence in the motion of the particles, which in turn drives directed motion toward regions
of larger persistence [135, 157, 277]. We note that the motion we report here, just like
the durotactic motion described in Refs. [135, 157], is perhaps better described as a
“kinesis” than as a “taxis”, because the underlying mechanism of transport is a nondi-
rectional change in behavior induced by a purely positional cue. This is in contrast to
the true directional bias underlying, for instance, chemotaxis of E. coli [126] which leads
to signi�cantly more e�cient transport [277].

Several questions remain open to future investigation. For instance, how is the pic-
ture a�ected by translational di�usion? Is topotaxis robust against competing direc-
tional cues, such as chemotaxis [143]? How sensitive is the performance of topotaxis
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with respect to the obstacles’ shape [149, 150, 260], the type of motion (e.g., persistent
random walk, run-and-tumble, Lévy walk, etc. [260, 263, 273, 283–285]), and the details
of particle-obstacle interactions [149, 271, 286–288]? Another interesting setting of the
problem could be obtained by considering random arrangements of obstacles, where,
unlike in the lattices studied here, particles can be trapped into convex-shaped features
that can signi�cantly alter their motion [270, 273].

Finally, although here we demonstrated that topotaxis can be solely driven by the
interplay between topographical gradients and persistent random motion, whether this
is su�cient to explain large-scale topotaxis of cells remains an open problem. A quan-
titative comparison between our numerical data and experiments on highly motile cells
[143] shows, in fact, discrepancies that could be ascribed to the enormously more com-
plex interactions between cells and their environment. Speci�cally, the topotactic velo-
city in our simulations is of the order of 1% of the intrinsic particle speed (Figure 5.2),
whereas in the experiments on cells this ratio is approximately 5%, provided that the
obstacles are not spaced further apart than the cell size [143]. In order to better under-
stand this surprising e�ciency, the large-scale topotactic response of several types of
persistently and individually moving cells, such as amoeba [289], invasive (amoeboid)
cancer cells [290, 291], or leukocytes [292], could be compared. On the theoretical side,
we are currently addressing the problem using more biologically-realistic models of cell
motility based on the Cellular Potts Model [124, 125] (see also Chapter 6), which allow
explicitly taking into account e�ects such as the resistance of cells against deformations,
adhesion between cells and obstacles, and more realistic cell-obstacle interactions.

5.5 Appendix

5.5.1 Numerical methods

We numerically generate particle trajectories that perform a persistent random walk
by discretizing the equations of motion as follows [157]: a particle starts at position
r0 at t = 0, after which the particle is moved by a distance v0∆t in a random initial
direction −π < θ1 < π, such that the new position is r1 = r0 + v0∆t p(θ1). For all
subsequent time steps, the angle at time stepn, θn, is updated by adding a small deviation
angle to the angle of the previous time step, θn = θn−1 + δθ. Here, −π < δθ < π is
extracted randomly from a Gaussian distribution with mean 0 and varianceσ2 = 2∆t/τp
using the Box-Muller transform. The new position of the particle, rn, is then found by
rn = rn−1 + v0∆t p(θn), with rn−1 the position at the previous time step.

If the update step moves the particle into an obstacle, however, the particle-obstacle
force [Eq. (5.4)] is triggered. In that case, the normal component of the attempted dis-
placement is subtracted, and the actual displacement is given by the tangential compo-
nent of the attempted displacement, rn = rn−1 + v0∆t

(
p(θn) · T

)
T , with T the

tangent unit vector of the obstacle surface at the point of the surface closest to rn−1.
This procedure is implied by Euler integration of Eq. (5.1a) with the force F described by
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Figure 5.5. Snapshot of the gradient lattice as described in Section 5.5.2. The gradient region
is characterized by r = 0.15 and d̃ = d/R = 5. The obstacles are graphically represented as
disks of radius R. The lattice spacing varies from d̃min = 2.1 to d̃max = 7.9 over the x range
[xmin, xmax] = [−19, 19]. The gradient region is �anked by a regular square lattice with d̃ = d̃min

on the left (x < xmin) and by a regular square lattice with d̃ = d̃max on the right (x > xmax).
Only the �rst two columns of both (in�nitely large) regular lattices are shown.

Eq. (5.4). We choose the time step ∆t such that it is much smaller than the persistence
time, ∆t � τp, and such that every displacement is much smaller than the obstacle
radius, v0∆t� R. In all reported simulations we have used ∆t = 0.01τp.

5.5.2 Obstacle lattices

We de�ne a regular square lattice of obstacles with the coordinates of the centers of the
obstacles given by

x(n,m) = nd+
d

2
(5.18a)

y(n,m) = md+
d

2
(5.18b)

where n,m ∈ Z are the obstacle numbers and d is the distance between the centers of
two neighboring obstacles. The term d/2 is added to make sure that the origin of the
coordinate system is in the middle of four obstacles. An illustration of this lattice is given
in Figures 5.1a,b.
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We de�ne an irregular square lattice with a linear gradient of the obstacle spacing in
the positive x direction. The gradient region has a �nite width, is centered in the origin,
and is �anked by regular square lattices to the left and to the right. The coordinates of
the centers of the obstacles in the gradient region are given by

x(n,m) =
d

1− e−r
(ern − 1) +

d

2
(5.19a)

y(n,m) = d(m+
1

2
)ern (5.19b)

where n,m ∈ Z are again the obstacle numbers, d is the distance between the centers
of obstacles with (n,m) = (0, 0) and (n,m) = (−1, 0) (i.e., the lattice spacing in the
origin), and r is a dimensionless number that quanti�es the gradient in the obstacle
spacing.

Eq. (5.19) represents an obstacle lattice where the lattice spacing depends exponen-
tially on the horizontal obstacle number n, such that x(n,m) − x(n − 1,m) = dern

and y(n,m) − y(n,m − 1) = dern. This exponential gradient in the obstacle spacing,
as a function of the obstacle number n, leads to a linear gradient in the obstacle spa-
cing as a function of the horizontal coordinate x. This can be seen by calculating the
di�erence in obstacle distance between two adjacent pairs of obstacles, divided by the
distance between those two pairs,(

x(n+ 1)− x(n)
)
−
(
x(n)− x(n− 1)

)
x(n)− x(n− 1)

= er − 1, (5.20)

which is independent of n, as required for a linear gradient. In the limit of r → 0, Eqs.
(5.19) reduce to the regular square lattice given in Eqs. (5.18).

The gradient lattice is cut o� on the left side at xmin < 0, where the vertical distance
between two neighboring obstacles, y(n,m) − y(n,m − 1), would otherwise become
smaller than a minimal distance dmin = 2.1R. At the �rst column of obstacles for
which this is the case, the vertical coordinates [Eq. (5.19b)] are replaced by y(n,m) =
mdmin + dmin/2. To the left of this transition column (x < xmin), a regular obstacle
lattice with spacing dmin is placed such that the transition column is part of this regular
lattice.

On the right side the gradient lattice is cut o� at xmax = −xmin. To the right of this
cut-o� (x > xmax), a regular obstacle lattice with spacing dmax = 2d − dmin is placed
such that the horizontal distance between the rightmost column of the gradient lattice
and the leftmost column of the regular lattice is equal to dmax. Thus, the gradient lattice
connects two regular square lattices of lattice spacings dmin and dmax. The width of the
gradient region, 2xmax, then depends on the gradient parameter r. For an illustration of
the gradient lattice for r = 0.15 and d̃ = d/R = 5, see Figure 5.5.
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Figure 5.6. There is no average drift in the y direction in density gradient lattices. (a) 〈ỹ〉 =
〈y〉 /R as a function of time t̃ = t/τp for �ve values of the density gradient r, with d̃ = d/R = 5
and l̃p = v0τp/R = 5. (b) 〈ỹ〉 = 〈y〉 /R as a function of time t̃ = t/τp for �ve values of the
persistence length l̃p = v0τp/R, with d̃ = d/R = 5 and r = 0.07.

5.5.3 Average motion in y

We plot 〈ỹ〉 (t̃) of 106 particles moving in a density gradient lattice with d̃ = 5, starting
in the origin with a random orientation, for several values of the dimensionless density
gradient r in Figure 5.6a, and for several values of the persistence length l̃p in Figure
5.6b. As expected, there is no average drift in the y direction. The �uctuations in 〈y〉 are
of the order of 10% of the e�ective radius R.
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Chapter 6

Final conclusions and

outlook

In this thesis we studied the e�ects of anisotropy on two fundamental aspects of cell
mechanics: the role of the actin cytoskeleton in determining cell shape and the genera-
tion of traction forces (Part I), and cell migration in an asymmetric crowded environment
(Part II). In Part I we focused on the role of actin stress �bers, bundles of actin �laments
that can contract under the in�uence of the motor protein myosin. By contracting, stress
�bers can adjust the cell shape and exert forces on the environment of the cell. The
structure and function of stress �bers is relatively well understood [46, 47] and several
experimental studies have shown their importance in the anisotropy of the cytoskele-
ton and the anisotropy of traction forces [89, 90], but most theoretical models for cell
contractility describe cells as isotropic objects [63, 64, 68, 73, 196, 197, 232]. In Part I
we combined analytical calculations, computer simulations and in vitro experiments to
study the geometrical and mechanical properties of cells with a highly anisotropic cyto-
skeleton adhering to adhesive substrates. Our �ndings highlight the crucial mechanical
interplay between the actin cytoskeleton, which dictates the shape and traction forces
of cells, and the cell shape, which, in turn, determines the structure of the actin cyto-
skeleton.

In Chapter 2 we studied how the orientation of the stress �bers a�ects the shape of
the cell. We extended a previous isotropic contour model for cell contractility called the
Simple Tension Model [63, 64]. When cells adhere to the substrate at a small number
of discrete adhesion sites, the Simple Tension Model predicts that the cell has a concave
shape and that each part of the cell edge between two adhesion sites, called a cellular
arc, can be approximated by a segment of a circle. We extended this contour model by
introducing the e�ects of anisotropic contractility due to actin stress �bers, and predict
that cellular arcs of anisotropic cells are better approximated by segments of an ellipse.
The aspect ratio of this ellipse is determined by the degree of anisotropy of the internal
cell stresses, and the orientation of the long axis is parallel to the local orientation of
stress �bers along that cellular arc. We validated our model predictions by studying epi-
thelioid and �broblastoid cells [173] on microfabricated elastomeric pillar arrays [55–
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57]. We demonstrated that the arcs of cells with an anisotropic cytoskeleton are well
approximated by a unique ellipse, which is for each cellular arc oriented parallel to the
local stress �ber orientation along that arc. Additionally, we demonstrated that the trac-
tion forces that the cell exerts on the micropillar array are a�ected signi�cantly by the
anisotropy of the cytoskeleton. Our work shows that cells can control the anisotropy of
their shape and traction forces by regulating the anisotropy of their cytoskeleton.

In Chapter 3 we reversed the question from Chapter 2, and asked how the shape of
the cell a�ects the orientation of the stress �bers. We presented a phenomenological
model for stress �ber orientation based on the continuum theory of nematic liquid crys-
tals [91]. This model for the cytoskeleton was coupled with the model for cell shape,
developed in Chapter 2, to study the mechanical interplay between cell shape and the
organization of the actin cytoskeleton. Our model predicts that the orientation of the
stress �bers is governed by an interplay between alignment of stress �bers with one
another in the bulk of the cell and alignment of stress �bers with the cell edge. We com-
pared our model predictions with experimental data on epithelioid and �broblastoid cells
[173] on microfabricated elastomeric pillar arrays [55–57], and demonstrated good qual-
itative agreement. Because our phenomenological model for the cytoskeleton does not
explicitly take into account a number of biochemical pathways that are important in
the generation of cytoskeletal anisotropy and traction forces [56, 176, 196, 198, 199, 206,
207, 210, 211], our theoretical predictions do not perfectly agree with the experimental
data. Importantly, however, our work demonstrates that the formation and organization
of the actin cytoskeleton cannot be understood from processes at the sub-cellular scale
alone, but that it is crucial to take into account the boundary conditions imposed by the
shape of the cell.

In Chapter 4 we build on the work in Chapters 2 and 3 and implement our model for
cell shape in the framework of the Cellular Potts Model (CPM). Combining this Cellular
Potts Model with the liquid crystal model for the cytoskeleton developed in Chapter 3,
we study cells adhering to adhesive micropatterns that ensure reproducible cell shapes
[58]. Our model predictions qualitatively reproduce experimentally observed stress �ber
distributions of several cell types on di�erently shaped micropatterns. Additionally, this
approach allowed us to calculate traction forces on micropatterned substrates. Our nu-
merical predictions show that the traction forces are strongly biased by the local stress
�ber orientation, consistent with experimental observations [89, 90] but di�erent from
many earlier models [69, 196, 234, 235]. Comparing the predictions to previously pub-
lished experimental data of several cell types on di�erent pattern shapes [43, 89, 196],
we reproduce prominent anisotropic features in traction force patterns that were not
captured in earlier isotropic models [69, 196]. These �ndings demonstrate the impor-
tance of carefully considering the con�guration of the actin cytoskeleton in the study of
cellular traction forces.

In Part II of this thesis we shifted our focus to cells migrating in a crowded environ-
ment, and studied large-scale topotaxis. This process was �rst observed by Wondergem
et al. [143] in experiments of highly motile cells moving on a substrate in between

114



6.1. OUTLOOK

cell-sized obstacles. In the presence of a gradient in the density of these obstacles, the
cells migrate, on average, in the direction of lower obstacle densities. Inspired by these
observations, in Chapter 5 we studied large-scale topotaxis of active Brownian particles
(ABPs), which represent a simple model system for self-propelled particles. This allowed
us to zoom out from the internal structure of the cell that we studied in Part I, and to
study the role of persistent cell migration in large-scale topotaxis. We demonstrated
numerically that ABPs perform topotaxis and that topotaxis is stronger for particles
with larger persistence lengths and for lattices with steeper density gradients. Using
a combination of numerical simulations and analytical arguments, we studied ABPs in
regular obstacle lattices and showed that the origin of ABP topotaxis lies in an e�ective
persistence length that depends on the local obstacle density. Our work demonstrates
that persistent migration is on itself su�cient to drive large-scale topotaxis, even in the
absence of any more complex biochemical regulatory mechanisms.

6.1 Outlook

Our work has revealed a number of promising directions for future work. In Part I,
we identi�ed several possibilities to extend our models with additional biochemical and
biomechanical mechanisms to further improve the agreement with experimental data.
These potential model extensions include spatial variations in actin densities [43, 176,
196, 210, 211, 240], the distinction between di�erent stress �ber subtypes [242], interac-
tions of stress �bers with the substrate in the cell interior [56, 118, 198, 199], the increase
of cytoskeletal tension as a function of substrate area [195–197] or substrate sti�ness
[198], and the evaluation of traction forces in the cell interior [69, 136].

The most promising direction for future work is, arguably, extending our model to
study the role of cytoskeletal anisotropy in cell spreading and migration. This could
be achieved by taking into account, for instance, actin �lament turnover and the vis-
coelasticity of stress �bers [206, 207], the dynamics of focal adhesions [136, 189], or
cellular protrusions and retractions [216]. A natural platform for achieving this goal is
the Cellular Potts Model, in which the model for stress �ber contractility we developed
in Chapter 4 could be combined with previously published CPM implementations of cell
migration based on the formation of a lamellipodium at the front of the cell [124, 125].
As cell migration crucially depends on pulling forces at the back of the cell [243, 244],
integrating our cytoskeleton model in these existing Cellular Potts Models would be an
important step forward in realistically modeling cell migration.

In Part II we were inspired by cell migration in crowded environments and demon-
strated that active Brownian particles (ABPs) perform topotaxis. In the future, it is im-
portant to understand how sensitive topotaxis of active particles is with respect to the
details of the model, such as the details of particle-obstacle interactions [149, 271, 286–
288], the shape of the obstacles [149, 150, 260], or the type of active motion [260, 263,
273, 283–285]. From a biophysical perspective, however, the most important question
is what our �ndings imply for cellular large-scale topotaxis. As we commented in the
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discussion of Chapter 5, the e�ciency of ABPs to perform topotaxis is about a factor 5
lower than that of highly motile cells [143]. Investigating the origin of this large dis-
crepancy is an important next step toward a better understanding of cellular large-scale
topotaxis. Here, we speculate about a number of possible explanations for the origin of
this discrepancy, and show preliminary data that presents a �rst step toward identifying
this origin. Possible explanations include, but are not limited to:

1. ABPs in Chapter 5 are modelled as hard, non-deformable objects. Cells, on the
other hand, are highly �exible and can take on many di�erent shapes, as we have
seen in Part I of this thesis. This property allows cells to squeeze themselves
through narrow spaces between the obstacles [143], whereas ABPs either move
through spaces e�ortlessly (if they �t) or not at all (if they do not �t).

2. Cells can adhere to obstacles using various physical or chemical interactions. This
might guide them through an obstacle lattice in a way that is not possible for ABPs.

3. Cells respond di�erently to collisions with obstacles than ABPs do. As we ex-
plained in Chapter 5, obstacles in our model slow down ABPs and change the
direction in which they move, but they do not change the particle orientation. In
other words, obstacles a�ect the direction in which particles move, but they do
not a�ect the direction in which the partcicles try to move. This particle-obstacle
interaction is realistic for active colloids [260], but cells crawling on a substrate
are likely to show a more complicated response upon encountering an obstacle.

A �rst step toward identifying which of the explanations above might contribute to
the suprising e�ciency of experimentally observed large-scale topotaxis of cells [143],
is currently being undertaken by Van Steijn et al. [293]. They numerically study large-
scale topotaxis by employing more biologically-realistic models of cell migration based
on the Cellular Potts Model (CPM). In particular, they adapt the standard CPM, which
we discussed in Chapters 1 and 4, in two di�erent ways to include persistent cell motion.
The �rst method is based on the persistent motion described in Chapter 5 of this thesis:
each cell is assigned an orientation vector p, which evolves in time according to Eq. (5.1).
Consistent with ABPs in Chapter 5, the orientation vector is not a�ected by encounters
with obstacles. Then, the HamiltonianH is adapted such that cell motion in the direction
of p becomes more likely, whereas motion in the opposite direction becomes less likely.
We call this method for cellular persistence in the CPM “vector based persistence”.

The second method of cellular persistence is based on a phenomenological descrip-
tion of actin polymerization at the leading edge of the cell developed by Niculescu et
al. [125]. In this model, called the “Act model”, each lattice site in the cell is assigned
an “activity value” that keeps track of the time that the lattice site was included in the
cell. A term is then added to the Hamiltonian which favors the cell to expand at lattice
sites that were recently added to the cell. In this way, the cell is likely to keep forming
protrusions at the same side, which leads to persistent migration. However, unlike CPM
cells with vector based persistence, these cells do not stubbornly keep trying to move in

116



6.1. OUTLOOK

0.02 0.04 0.06 0.08 0.10
r

0.000

0.005

0.010

0.015

0.020

0.025
Act based persistence
Vector based persistence

v
to
p

m
/s
)

(

Figure 6.1. Topotactic velocity vtop (see Chapter 5) as a function of the dimensionless obstacle
density gradient r (Chapter 5) for two di�erent models of highly motile and persistently migrating
cells based on the Cellular Potts Model [293]. The model with “vector based persistence” imple-
ments persistent cell motion based on the vector p in Chapter 5, whereas cells with “Act based
persistence” move persistently due to a phenomenological model of actin protrusion dynamics at
the cell’s leading edge [125]. This Figure was printed with permission from Leonie van Steijn.

the same direction when they encounter an obstacle. Instead, they quickly “forget” the
direction in which they were previously migrating, and start moving in a new direction.

By comparing the topotactic abilities of these two types of persistently migrating
cells in the Cellular Potts Model, Van Steijn et al. [293] investigate to what extent ex-
planation 3 might cause the di�erence in topotactic e�ciency between ABPs and highly
motile cells. Figure 6.1 shows the topotactic velocity vtop as a function of the dimen-
sionless obstacle density gradient r (see Chapter 5) for highly motile CPM cells with
vector based persistence and highly motile CPM cells with persistence based on the Act
model [293]. The cells with Act based persistence have about twice the topotactic velo-
city of cells with vector based persistence for all values of r. This result demonstrates
that the “smart” way in which Act based persistent cells adapt their direction of motion
upon encountering an obstacle allows them to perform topotaxis more e�ciently than
cells that stubbornly keep trying to move in the same direction. Returning to the results
of Chapter 5, this suggests that the limited topotactic e�ciency of ABPs with respect
to highly motile cells can in part be explained by the fact that their orientation is not
a�ected by interactions with obstacles. However, experimentally observed large-scale
topotaxis is about �ve times as e�cient as that of ABPs, suggesting that other explana-
tions, such as those listed above, might also contribute to the discrepancy. In the future,
it is worth investigating this in greater detail. On the theoretical side, for example, the
topotactic e�ciency of ABPs could be compared to that of CPM cells with vector based
persistence to test explanation 1, and the adhesion a�nity of cells with the obstacles
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can be varied in the Cellular Potts Model to test explanation 2. On the experimental
side, the large-scale topotactic e�ciency could be compared for di�erent types of per-
sistently migrating cells, such as leukocytes [292], amoeba [289], or invasive (amoeboid)
cancer cells [290, 291]. Additionally, the actin dynamics within the cell could be studied
during cell-obstacle interactions to shed more light on the reorientation dynamics and
to inspire more realistic models of cell migration. Together, these e�orts will contribute
to a better biological and biophysical understanding of cell migration in crowded envi-
ronments, which can potentially inspire biomedical applications in, for instance, malaria
[294, 295] or cancer [251] treatments.
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Samenvatting

Wat hebben natuurkunde en biologie met elkaar te maken? Hoewel dit oorspronkelijk
twee onafhankelijke wetenschappen waren, kunnen beide vakgebieden veel van elkaar
leren. Enerzijds vormen de complexe en ingenieuze structuren en materialen waaruit
levende organismen zijn opgebouwd een enorme inspiratie voor nieuwe technologische
toepassingen. Je kunt hierbij bijvoorbeeld denken aan het ontwerpen van operatierobots
die tijdens het opereren van vorm moeten kunnen veranderen. Anderzijds vinden er in
levende organismen een hoop natuurkundige processen plaats, waardoor het bestuderen
van het leven met een natuurkundige bril leidt tot een beter begrip van biologische
processen op verschillende schalen. Zo speelt de mechanica, de tak van de natuurkunde
die zich bezighoudt met de relatie tussen krachten, vervorming en beweging, een
belangrijke rol bij het a�ezen en kopiëren van de erfelijke code in het DNA, bij de
embryonale ontwikkeling, en zelfs bij het collectieve gedrag van een school vissen of
een zwerm vogels. Op de langere termijn kunnen deze natuurkundige inzichten ook
leiden tot nieuwe medische toepassingen, zoals het verbeteren van behandelingen van
astma, malaria en kanker.

In dit proefschrift kijken we niet direct naar deze medische toepassingen, maar
leveren we een bijdrage aan de fundamentele kennis van de biofysica, het snijvlak
van natuurkunde en biologie. Dit doen we door cellen te bestuderen. Alle levende
organismen zijn opgebouwd uit cellen, die vaak gespecialiseerd zijn als bijvoorbeeld
spiercellen of levercellen. Om hun taken uit te voeren produceren cellen allerlei
sto�en. Je kunt hier bijvoorbeeld denken aan speeksel of maagzuur, maar ook aan
hersencellen die met elkaar communiceren via neurotransmitters. Cellen worden
dan ook vaak bestudeerd vanuit het perspectief van de biochemie. Er zijn echter
ook veel cellen die mechanische taken uit moeten voeren, zoals rondlopen om op
een ziekteverwekker te jagen of aan weefsel trekken om een wond te dichten. Het
vakgebied dat probeert te begrijpen hoe cellen dit soort mechanische taken uitvoeren,
heet de celmechanica. In dit proefschrift bestuderen we celmechanica met behulp van
theoretisch onderzoek: we gebruiken wiskundige modellen om biofysische processen
te beschrijven. Theoretisch natuurkundig onderzoek met behulp van wiskundige
modellen is zo oud als de natuurkunde zelf, maar in de biologie is theoretisch
onderzoek relatief nieuw. De invloed van de zogenoemde mathematische biologie wordt
echter steeds groter. In dit proefschrift combineren we methoden uit de theoretische
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natuurkunde en de mathematische biologie. Het is daarbij heel belangrijk dat de
theorie altijd hand in hand gaat met het experiment, omdat theoretisch werk juist
in samenwerking met experimenten zijn meest nuttige bijdrage kan leveren. Zo kunnen
met behulp van modellen kwantitatieve (zoals in Hoofdstukken 2 en 3) of kwalitatieve
(Hoofdstuk 4) voorspellingen gedaan worden die weer als inspiratie kunnen dienen
voor nieuwe experimenten. Bovendien kunnen verschillende verschijnselen in modellen
eenvoudig worden toegevoegd of juist weggelaten, waardoor modellen kunnen helpen
de uitkomsten van experimenten te interpreteren (Hoofdstuk 5).

In dit proefschrift kijken we naar het e�ect van anisotropie op de celmechanica. Dat
is het tegenovergestelde van isotropie, wat letterlijk ‘gelijk in elke richting’ betekent.
Een materiaal is isotroop als je het verschil niet zou kunnen zien als het gedraaid wordt,
zoals bij zand. Anisotrope materialen bestaan vaak uit langwerpige deeltjes, waardoor
je het wel kunt zien als ze gedraaid worden. Zie bijvoorbeeld Figuur 1.4b in Hoofdstuk 1.
De technologie van een LCD-scherm maakt hier bijvoorbeeld gebruik van, maar je zou
ook iets alledaags als een doosje lucifers anisotroop kunnen noemen. Dit proefschrift
bevat twee delen, die twee verschillende aspecten van anisotropie in de celmechanica
bestuderen. In Deel I (Hoofdstukken 2, 3, en 4) bestuderen we het cytoskelet van de
cel. Het cytoskelet is een complex netwerk van �lamenten in de cel dat de cel stevig
maakt maar ook laat bewegen. Met andere woorden, het cytoskelet is voor een cel wat
de combinatie van botten en spieren zijn voor het menselijk lichaam. We concentreren
ons hierbij op een speci�ek soort �lament dat actine heet. Actine�lamenten kunnen in
grote hoeveelheden allerlei complexe structuren vormen. Wij hebben vooral gekeken
naar zogenaamde stress �bers, dikke bundels van parallelle actine�lamenten. De
actine�lamenten hierin kunnen ten opzichte van elkaar schuiven, waardoor stress �bers
aan hun omgeving kunnen trekken. In Deel I bestuderen we hoe cellen deze stress �bers
gebruiken om hun eigen vorm te reguleren en om krachten op hun omgeving uit te
oefenen. De typen cellen die wij bestuderen, bevatten veel stress �bers die vaak dezelfde
oriëntatie hebben als de naastgelegen stress �bers. Dit is zichtbaar in bijvoorbeeld Figuur
1.4a en geïllustreerd met lijnen op de kaft. Omdat de stress �bers dus parallel aan elkaar
liggen, is het cytoskelet van deze cellen anisotroop. Daardoor trekken deze cellen niet
even hard in alle richtingen, maar wordt de kracht in één richting geconcentreerd. We
bestuderen dus hoe de anisotropie van het cytoskelet de mechanica van de cel beïnvloedt.

We beginnen in Hoofdstuk 2 met de vraag hoe het cytoskelet de vorm van de cel
bepaalt. We doen dit door samen te werken met collega’s die experimenten doen waarbij
ze cellen op een chemisch bewerkt oppervlak leggen dat we het substraat noemen. Deze
cellen spreiden zich over het substraat uit en binden er op een aantal plaatsen aan.
Omdat de rand van deze cellen nu door de stress �bers in hun cytoskelet naar binnen
getrokken wordt, heeft elk stuk van de rand tussen twee bindingsplaatsen een naar
binnen gekromde vorm. Zie bijvoorbeeld Figuren 1.2, 1.3, 2.1 en 2.2 in Hoofdstukken 1 en
2 en de illustratie op de kaft. Bij cellen met een isotroop cytoskelet, dus zonder parallelle
stress �bers, kan de vorm van dit stuk celrand goed benaderd worden met een stuk van
een cirkel. De vorm van de celrand is dus ook isotroop: je zou het verschil niet kunnen
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zien als een cirkel wordt gedraaid. Bij cellen met een anisotroop cytoskelet, dus met
parallelle stress �bers, blijkt echter uit de experimenten dat de vorm van de cel niet meer
met cirkels benaderd kan worden. Om dat te verklaren, hebben wij eerdere modellen
voor de celvorm uitgebreid met het e�ect van stress �bers. Ons model voorspelt dat bij
cellen met een anisotroop cytoskelet elk stuk naar binnen gekromde rand de vorm van
een ellips heeft. Een ellips is een cirkel die in één richting is uitgerekt, zie bijvoorbeeld
Figuur 2.2. Deze vorm is dus, net als de stress �bers, anisotroop omdat je het kan zien
als een ellips gedraaid wordt. Het model voorspelt daarnaast dat de richting waarin
de cirkel is uitgerekt precies gelijk is aan de richting van de stress �bers in de cel.
Uit de experimentele data van onze collega’s blijkt dat beide voorspellingen van het
model correct zijn. Daarmee hebben we dus laten zien dat cellen de anisotropie van hun
binnenkant, in de vorm van parallelle stress �bers, kunnen gebruiken om hun vorm aan
de buitenkant ook anisotroop te maken. Dit is relevant voor cellen die zich in het lichaam
door nauwe openingen moeten wringen zoals cellen die op een ziekteverwekker jagen,
cellen die wondjes genezen, of kankercellen tijdens een uitzaaiing.

In Hoofdstuk 3 draaien we de vraag om, en bestuderen we hoe de vorm van de
cel de structuur van het cytoskelet beïnvloedt. We hebben een model ontwikkeld dat
beschrijft hoe de celvorm de oriëntatie van de stress �bers in de hele cel beïnvloedt.
Ons model laat zien dat de stress �bers in de cel enerzijds dezelfde oriëntatie ‘willen’
hebben als de naastgelegen stress �bers, en anderzijds dezelfde oriëntatie als de
dichtstbijzijnde celrand. De voorspellingen van ons model tonen veel overeenkomsten
met de experimentele data van onze collega’s. Hiermee hebben we laten zien dat de
structuur van het cytoskelet niet volledig begrepen kan worden door de vorming van
individuele stress �bers te bestuderen, maar dat de vorm van de cel waarin de stress
�bers zich bevinden ook een belangrijke rol speelt.

In Hoofdstuk 4 implementeren we het model uit Hoofdstuk 3 in het Cellular
Potts Model, een veel gebruikt computermodel uit de mathematische biologie voor het
simuleren van celmechanica. Met behulp van het Cellular Potts Model bestuderen we de
krachten die cellen uitoefenen op het substraat waar ze op liggen. Deze krachten worden
tractiekrachten genoemd. Er bestaan al veel modellen om deze krachten uit te rekenen,
maar deze modellen gebruiken doorgaans de aanname dat het cytoskelet isotroop is.
In Hoofdstuk 4 bestuderen we hoe de tractiekrachten veranderen als het cytoskelet veel
parallelle stress �bers bevat, en dus anisotroop is. De voorspellingen van ons model laten
zien dat de tractiekrachten sterk afhangen van de speci�eke structuur van het cytoskelet:
de oriëntatie van de stress �bers bepaalt zowel de richting van de tractiekrachten als de
plek waar de cel de grootste krachten op het substraat uitoefent. Onze voorspellingen
reproduceren experimentele observaties uit de literatuur die eerdere isotrope modellen
niet konden verklaren.

In Deel II van dit proefschrift verleggen we onze aandacht naar een ander aspect
van celmechanica, en bestuderen we de migratie van cellen over een substraat. Er zijn
veel mechanismen bekend die cellen kunnen stimuleren om in een speci�eke richting te
bewegen. Het bekendste voorbeeld hiervan is chemotaxis, een proces waarbij cellen naar
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een hogere of juist een lagere concentratie van een bepaalde stof bewegen. Er zijn echter
ook veel mechanische stimuli bekend die cellen een speci�eke kant op kunnen sturen.
De belangrijkste voorbeelden hiervan zijn haptotaxis, waarbij cellen richting gebieden
migreren waar ze makkelijker aan het substraat kunnen binden, en durotaxis, waarbij
cellen van zachte naar harde substraten bewegen. Omdat de cellen in deze processen
een voorkeur hebben voor één speci�eke richting, zou je het kunnen waarnemen als
het substraat gedraaid werd. Deze processen zijn dus ook anisotroop. Studies naar deze
anisotrope stimuli worden vanwege reproduceerbaarheid en praktische overwegingen
vaak op volledig vlakke substraten gedaan. In het menselijk lichaam komen migrerende
cellen echter voortdurend obstakels tegen, zoals andere cellen of bloedvaten, maar het
is onbekend hoe deze obstakels de gerichte beweging van cellen beïnvloeden. Om dit
op een systematische manier te onderzoeken, bestuderen onze experimentele collega’s
de beweging van cellen over substraten waar ze kunstmatige obstakels op hebben
aangebracht. Daarbij deden ze een interessante ontdekking: als de dichtheid van de
obstakels varieert over het substraat, zorgen de obstakels zelf voor een anisotrope
stimulus. De cellen bewegen dan vaak van gebieden met veel obstakels naar gebieden
met minder obstakels: ze vertonen topotaxis. Uit de experimenten is het echter lastig op
te maken waardoor de cellen hiertoe in staat zijn. Daar komen wij in beeld.

In Hoofdstuk 5 bestuderen we topotaxis met behulp van computersimulaties van
bewegende deeltjes, een sterk vereenvoudigd model voor celmigratie. De kern van dit
model is dat de voortbeweging van de deeltjes, net als die van de echte cellen, persistent
is: de deeltjes bewegen altijd een stuk in dezelfde richting voordat ze in een willekeurige
richting afbuigen. Als ze echter een obstakel tegenkomen, moeten ze eromheen
bewegen. Wanneer we deze deeltjes laten rondbewegen in een obstakellandschap
met een variatie in de obstakeldichtheid, observeren wij ook topotaxis: de deeltjes
bewegen vaker van gebieden met veel obstakels naar gebieden met weinig obstakels dan
andersom. Hiermee hebben we laten zien dat persistente voortbeweging op zichzelf al
voldoende is voor het optreden van topotaxis, ook in de afwezigheid van complexere
biologische processen of ‘intelligentie’ van de cellen. Wel blijkt uit een vergelijking
tussen de experimenten en onze simulaties dat cellen een stuk sneller in de richting
van lage obstakeldichtheid bewegen dan de gesimuleerde deeltjes, wat suggereert dat er
ook andere natuurkundige en/of biologische processen een rol spelen bij topotaxis. In
Hoofdstuk 6 bespreken we lopend vervolgonderzoek waarin we proberen deze andere
processen te identi�ceren. Dit onderzoek laat onder andere zien dat de verklaring voor
de hogere snelheid van topotaxis bij cellen wellicht te vinden is in de manier waarop
deeltjes en cellen reageren op botsingen met obstakels. De gesimuleerde deeltjes zijn
‘dom’ en proberen altijd rechtdoor te lopen, ook als er iets in de weg staat. Cellen lijken
echter mechanismen te gebruiken om hun richting van voortbeweging snel aan te passen
als ze een obstakel tegenkomen. Verder onderzoek zal moeten uitwijzen of dit inderdaad
het verschil in snelheid van topotaxis tussen deeltjes en cellen verklaart.
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