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4.1 Background

DURING the past decade, DNA sequencing technologies have undergone notable
improvements with great impacts on molecular diagnostics and biomedical

and biological research. Today, next-generation sequencing (NGS) technologies
can provide insights into sequence and structural variations by achieving unprece-
dented genome and transcriptome coverage. Despite molecular and computational
advances, the fast growing developments in library preparation, sequencing chem-
istry and experimental settings are of concern as they can diversify the complexity
and quality of sequencing data [262, 263, 264]. To address data quality, most strate-
gies rely on basic statistics of the raw data, such as the quality scores associated
with base calling, the total number of reads and average GC content. Technical
artefacts are usually only spotted after mapping of reads to the reference genome.
However, such approaches are prone to alignment biases and the loss of potentially
valuable information due to the predisposed and incomplete reference genome
sequences [265, 266, 267]. These biases are considerably more problematic in studies
of microbiomes as the species diversity can be immense [268], whereas the evalua-
tion of data complexity and quality is limited to the analysis of species for which a
reference genome sequence is available.
Analysing the k-mer (DNA words of length k) frequency spectrum of the sequencing
data provides a unique perspective on the complexity of the sequenced genomes,
with more complex ones showing a greater diversity in unique sequences and
repeated structures. Over- and under-represented k-mers have been associated with
the presence of functional or structural elements (such as repetitive, mobile or
regulatory elements), negative selection, or the hypermutability of CpGs [269, 270,
271, 272, 273]. Notably, the prevalence of functional elements and those caused by
neutrally evolving DNA (including duplications, insertions, deletions and point
mutations) is reflected in the modality (number of peaks) of the k-mer frequency
spectrum [274, 275]. The modality of the human genome is also subjected to its
function as all coding regions, including the 5’ untranslated regions (UTRs), exhibit
a unimodal k-mer spectrum, while the introns, 3’ UTRs and other intergenic regions
have a multimodal distribution [274, 275].
In recent years, k-mers have been used in a wide range of applications from the
identification of regulatory elements to correction of sequencing errors, genome
assembly, phylogeny analysis and the search for homologous regions [276, 277,
278, 279, 280, 281, 282]. It has also been shown that the characterization and com-
parative analysis of the k-mer spectrum can provide an unbiased view of genome
size and structure, but it can also expose sequencing errors [283]. However, to our
knowledge, most tools fail to accommodate for differences in library size and do not
reliably expose problematic samples nor provide information on potential sources
of variation in series of sequencing data. Here, we present a method, k-mer Profile



CHAPTER 4. DETERMINING THE QUALITY AND COMPLEXITY OF NEXT-GENERATION
SEQUENCING DATA WITHOUT A REFERENCE GENOME 71

Analysis Library (kPAL), for assessing the quality and complexity of sequencing
data without requiring any prior information about the reference sequence or the
genetic makeup of the sample. The proposed method uses the distance between
k-mer frequencies to measure the level of dissimilarity within or between k-mer
profiles. Since most distance measures are susceptible to differences in library size,
we have implemented a series of functions that ensure a more reliable assessment of
the level of dissimilarity between k-mer profiles. Based on the same principle, kPAL
can identify problematic samples, as their level of similarity reduces in the absence
of a significant difference between the genome of the sequenced samples. In this
work, we apply kPAL to four types of NGS data: 665 RNA sequencing (RNA-Seq)
samples [284, 285], 49 whole genome sequencing (WGS) samples, 43 whole exome
sequencing (WES) samples, and a series of microbiomes. We report the sources
of technical and biological variation present in each set of NGS data, highlight a
series of artefacts that were missed by standard NGS quality control (QC) tools, and
demonstrate how the complexity of microbiomes is reflected in their k-mer profiles.

4.2 Materials and Methods

4.2.1 kPAL implementation
kPAL is a Python-based toolkit and programming library that provides various tools,
many of which are used in this study. kPAL is an open-source package and can be
downloaded 1 2 3. kPAL can also be installed (including all prerequisites) through
the command line using: pip install kPAL. Detailed documentation and tutorials are
available 4. For detailed a description of the kPAL methodology, refer to Additional
file 1: Notes. The performance of kPAL, in terms of speed and memory usage, for
generating and pairwise comparison of k-mer profiles is provided in Additional file
1: Figure S18.

4.2.2 Creating k-mer profiles
The k-mer profiles were generated using the index function built into kPAL. For
all analyses k was set to 12 except when otherwise stated. To accommodate for the
analysis of both sequencing reads and genome reference sequences, we have chosen
to use the FASTA format as an input to kPAL. However, we provide a command-line
tool to convert FASTQ files to the appropriate format 5. For paired-end data, the

1k-mer Profile Analysis Library at GitHub repository https://github.com/LUMC/kPAL
2k-mer Profile Analysis Library at LUMC repository http://www.lgtc.nl/kPAL]
3k-mer Profile Analysis Library at official Python repository for open-source packages

https://pypi.python.org/pypi/kPAL
4Online documentation for k-mer Profile Analysis Library http://kPAL.readthedocs.org
5Available from: https://git.lumc.nl/j.f.j.laros/fastools.
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profiles for both reads were merged into a single k-mer profile using the kPAL merge
function. For more information on performance, runtime and memory usage, see
Additional file 1: Notes.

4.2.3 Measuring pairwise distances

The matrix function was used in combination with the scale and/or smooth options
to measure the distance between two k-mer profiles. The pairwise distance between
profiles was calculated using the multiset distance measure [286]. This measure
was parameterized by a function that reflects the distance between two elements
in a multiset, in this case the difference between frequencies of specific k-mers. The
following function was used to calculate the distances after applying the scale and
smooth options.

f (x,y) =
|x− y|

(x + 1)(y + 1)

For further information about the procedure, refer to Additional file 1: Notes.

4.2.4 Calculating the k-mer balance

For all samples in this study, the balance between the frequencies of k-mers and
their reverse complement were found using the showbalance function in kPAL (see
Additional file 1: Notes). For all paired-end datasets, k-mer profiles were first merged
and then assessed for their balance.

4.2.5 Statistical analysis

The distance matrices produced by the pairwise comparison of all samples were
used to perform a hierarchical clustering and PCA in R and MATLAB, respectively.
The mRNA analysis pipeline, QC and exon quantification procedure are described
elsewhere [284, 285]. For the microbiomes, the hierarchical clustering was done
using the distance matrices provided by the k-mer profile or UniFrac [139] analyses.
Subsequently, the accuracy of the clustering arrangement was assessed based on the
silhouette [287] and weighted kappa [288] measures.

4.2.6 Library preparation and sequencing

For WGS datasets, two separate library preparation protocols were used. The gDNA
libraries for full genome libraries were prepared using the reagents from a True-Seq
DNA Sample Prep Kit according to the manufacturers’ instructions (TrueSeq DNA
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Sample Preparation Guide, revision C; Illumina Inc., San Diego, CA) with minor
modifications. After the ligation, the first protocol uses a gel-free method for samples
instead of a gel step that was used for the second protocol. Furthermore, the number
of PCR cycles in the PCR enrichment step differs between the two protocols (five
and ten cycles, respectively). A High Sensitivity DNA chip (Agilent Technologies
2100; Santa Clara, CA) was used for quantification and samples were subsequently
sequenced on an Illumina HiSeq 2000 sequencer at the same laboratory.
Libraries for the WES samples were prepared using the Agilent SureSelect Kit (Ag-
ilent Technologies, Santa Clara, CA), Nimblegen Capture Kit V2 or Nimblegen
Capture Kit V3 (Roche NimbleGen Inc., Madison, WI), according to the manufac-
turers’ instructions. A High Sensitivity DNA chip (Agilent Technologies 2100) was
used for the quantification and the samples were subsequently sequenced on an
Illumina HiSeq 2000 sequencer at the same laboratory.
The library preparation and sequencing of all RNA-Seq samples are described
elsewhere [284, 285].

4.2.7 Pre-processing

FastQC was run for all samples prior to analysis to assess the quality of the data.
However, none of the sequencing data was removed from the analysis as they all
passed the FastQC quality measures. Reads were trimmed for low quality bases
(Q < 20) using sickle6 and cleaned up for adapters.

4.2.8 Alignment

Alignment to the human reference genome was performed for WGS and WES using
Stampy [289], BWA [105] and Bowtie 2 [106] with default parameters. For the WES
samples, the number of on-target reads was calculated using the BEDTools [290]
intersect, BAM files and a BED track consisting of all targets according to the manu-
facturers’ guidelines. Reads with no overlapping base were considered as off target.
Basic alignment statistics (such as alignment rate, the fraction of properly paired
reads, etc.) were extracted using SAMtools [291] flagstat. For WGS samples, the insert
sizes were estimated using the Picard toolkit7. The number of base pairs that were
soft clipped during the alignment was extracted from the SAM files using a custom
script.

6Sickle: a windowed adaptive trimming tool for FASTQ files using quality
https://github.com/najoshi/sickle

7Picard: a set of tools for working with next-generation sequencing data in the BAM format
http://broadinstitute.github.io/picard/
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4.2.9 SGA
Comparison QC and exploration of data properties were performed using the
Preqc module of the SGA software. All analyses were performed according to SGA
guidelines [283].

4.2.10 Data availability
For the WGS and WES data, the FASTQ and BAM files have been deposited at the Eu-
ropean Genome-phenome Archive8, which is hosted by the European Bioinformatics
Institute, under the accession number [EGA:S00001000600]. In addition, all k-mer
profiles are available under the same accession. For the RNA-Seq data, the k-mer pro-
files can be found online9. The FASTQ files and BAM alignments as well as different
types of quantification are available in Array Express under accessions E-GEUV-1
(mRNA) and E-GEUV-2 (small RNA) for QC-passed samples and E-GEUV-3 for all
sequenced samples10 11 12. Microbiomes were obtained from the ’Moving Pictures
of the Human Microbiome’ project [MG-RAST:4457768.3-4459735.3] [292].

8http://www.ebi.ac.uk/ega/
9http://www.ebi.ac.uk/arrayexpress/experiments/E-GEUV-3/files/profiles/?ref=E-GEUV-3

10http://www.ebi.ac.uk/arrayexpress/experiments/E-GEUV-1/
11http://www.ebi.ac.uk/arrayexpress/experiments/E-GEUV-2/
12http://www.ebi.ac.uk/arrayexpress/experiments/E-GEUV-3/
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4.3 Results and Discussion

4.3.1 Principles of kPAL

We developed an open-source package kPAL, which provides a series of tools (such
as distance calculation, smoothing and balancing) to investigate the spectrum of
k-mers observed in a given NGS dataset (Figure 4.1 A and Additional file 1: Notes).
The resulting k-mer profile holds valuable information on the complexity of the
sequencing libraries and the sequenced genome(s). This is delineated in a graphical
representation of the k-mer profiles, which plots the number of k-mers observed
at each frequency. The complexity of genomic information is often reflected in the
modality of this distribution, mainly due to repetitive and structural elements, and
the context-specific composition of k-mers [271, 274, 275, 293]. First, k-mers are
processed using efficient binary codes that facilitate a rapid reverse complement
conversion and access to specific k-mers (Figure 4.1 B). Next, kPAL uses the distance
between k-mer frequencies as a measure of dissimilarity between two k-mer profiles.
In addition, calculating the correspondence between the frequencies of k-mers and
their reverse complements aids in assessing the coverage balance between two
strands of the sequenced library (Figure 4.1 C). Generally, k-mer profiles can be
shrunk to a smaller k size using the shrink function to enable access to smaller k-mer
profiles without the need to reprocess the sequencing data (Figure 4.1 D). However,
it is important to note that large deviations from the original k size may obscure
the true k-mer frequencies due to limited access to both ends of the sequencing
reads (i.e., the last 12 nucleotides can be processed only once in a 12-mer profile
whereas the same information is processed seven times in a 6-mer profile). To
facilitate pairwise comparison of k-mer profiles and account for differences in library
sizes, we have implemented complementary scaling and smoothing functions. Scaling
k-mer frequencies to match the area under the curve of two profiles is a global
normalization of the k-mer profiles. The smoothing function borrows the utility of
shrinking and applies it locally to k-mers that have a frequency lower than a user-
defined threshold, which results in local collapsing of those k-mers to a smaller size
(i.e., k-1) until the threshold condition is met (Figure 4.1 E). For more information
and a detailed explanation of kPAL features, see Additional file 1: Notes.

4.3.2 Setting k size

To identify which k provides the best specificity for a mixed sample of bacteria,
the k-mer profiles from three modelled metagenomes consisting of 30 bacterial ge-
nomes from the Firmicutes and Proteobacteria phyla (in 100:0, 50:50 and 0:100 ratios
from each phylum) were compared to ten randomly shuffled sequences (without
changing the overall nucleotide composition). The optimal value for k is the one that
best separates metagenomes from randomly permuted sets. The overall distance
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Figure 4.1: Schematic overview of main kPAL principles. (A) An overview of the procedure used by kPAL to assess
the frequency of all k-mers within sequencing data. k-mers are identified and counted by a sliding window of size k.
The k-mer spectrum can then be produced using the k-mer frequencies. The main functions of kPAL can be divided
by their application to single or multiple profiles. For single k-mer profiles, general information about the number of
nullomers, total number of counts, distribution of k-mer counts and balance between sequencing information from
the plus and minus strands can be obtained with dedicated functions. If needed, profiles can be manipulated by the
balance, shuffle and shrink functions. The balance function uses a sum of k-mers and their reverse complements to
enforce balance between sequence information from the minus or plus strand. The shuffle function is designed to
produce random k-mer profiles without changing the overall distribution of counts. (B) kPAL efficiently processes k-
mers, as it encodes the sequences with a binary code using specific keys that can also facilitate a quick conversion to the
reverse complement. Each nucleotide is represented by a binary code that is subsequently used to construct each k-mer.
(C) The strand balance of a given k-mer profile is the overall distance measure between the frequency of the unique
k-mer and its reverse complement. Thus, k-mer profiles are split into two sub-profiles that are reverse complements of
each other and these are used to calculate the strand balance. (D) By design, kPAL can shrink k-mer profiles of size k
to any smaller size. Counts from k-mers that share the first (n - 1) nucleotides are merged to collapse k-mer profiles to
a size k - 1. (E) The smoothing function borrows the utility of shrinking and applies it locally to only k-mers that have
lower counts than one defined by the user. Thus, for those affected, k-mer counts are merged and dropped to the size k
- 1. The smoothing function accepts thresholds for the minimum, maximum or average counts of k-mers that share the
first (n - 1) nucleotides but it also accepts user-defined functions. This process reiterates until the threshold condition
is met. Prof., profile.

between k-mer profiles of the metagenomes and the corresponding randomly per-
muted sets starts to level off once k exceeds 10 (Additional file 1: Figure S1). A low
amount of variation in distance between the k-mer profiles of metagenomes and
their permuted sets indicates that the distance measure is generally robust and only
changes according to k. Interestingly, the optimal separation coincides with the k for
which the complete unimodal spectrum of frequencies (from those that are too rare
to those that are highly recurrent) is observed (Additional file 1: Figure S2 A,B,C).

The human reference genome has a high complexity (described in Additional file
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1: Notes), based on the multimodality of the k-mer profiles, which ranges from 9
to 15 (Additional file 1: Figure S3 A). In humans, k = 11 is the smallest value for
which unique k-mers and nullomers (absent k-mers) are observed while genomic
spectra for k ≥ 13 start to lose their multimodality as they become too unique.
Thus, k = 12 was used to give a relatively balanced number of nullomers, and
unique and frequent k-mers. This allows for the identification of potential artefacts
(mainly reflected by rare k-mers) as well as biological and contextual variations.
Interestingly, the level of complexity varies between different types of genomic
information (WGS, WES and RNA-Seq; see Additional file 1: Figure S3 B). In contrast
to genomic sequences, the coding part of the human genome exhibits a unimodal
profile, as shown before [274, 275]. The minor differences between the k-mer profiles
of the exome and the transcriptome reference sequences are due to the number of
shared coding regions between different transcript variants of the same gene. The
transcriptome reference sequences generally exhibit higher counts for observed k-
mers and lower numbers of nullomers introduced by exon-exon junctions. Moreover,
the k-mer spectrum derived from sequencing data is in concordance with that of the
reference (Additional file 1: Figure S3 C). The minor deviations from the unimodality
of the exome and transcriptome data are mainly due to the capture performance
(off-target reads introduce low-count k-mers that represent intronic and intergenic
regions) and differences in the abundance of expressed mRNA.

In addition to the complexity of the genomic information, the sequencing depth
contributes to the modality and the resolution of the k-mer spectrum derived from
individual datasets. In RNA-Seq, we observed that the number of 12-nullomers
correlates with the total number of reads per dataset (R = -0.80; see Additional file
1: Figure S4 A,B). The variation in the total read counts per sample is partly due to
study design, as sequencing was performed in seven different laboratories [285].
Thus, the total number of 12-nullomers also varies between samples from different
laboratories (Additional file 1: Figure S4 C). It is crucial to account for bias introduced
by poor and variable coverage, as it may obscure the identification of factors that
determine the complexity of the k-mer spectrum. One obvious solution would be to
opt for lower k sizes (i.e., k = 9) at the expense of specificity. However, we propose
the dynamic smoothing function, which is resilient towards coverage bias and does
not sacrifice the specificity of the k-mer spectrum by choosing a smaller k (Additional
file 1: Notes). This function only shrinks the k-mer profile locally when the counts
do not pass predefined conditions (i.e., they fall below an acceptable threshold for
k-mer frequencies). In the next section, we show how kPAL can be used to assess the
quality of different types of sequencing data without relying on the availability of a
well-characterized reference genome.
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4.3.3 Evaluating data quality without a reference

Recently, we showed that performing a pairwise comparison of 9-mer (K9) profiles,
without alignment to the reference sequence, can expose quality issues in RNASeq
data [285]. The median of all pairwise distances for each sample correlated (R = -0.63)
with the correlation measures obtained after alignment and quantification of exon
expression levels, which are post-alignment measures often used for QC. Notably,
some of the problematic samples (due to a high duplication rate and/or high rRNA
content) could only be identified by an analysis of their k-mer profiles. However,
kPAL scores could not separate all problematic samples. Thus, we performed these
analyses for larger values of k to increase the specificity and investigate whether
smoothing can remove biases introduced by variable sequencing depth between
samples. For 12-mer (K12) profiles, the distance measures calculated after scaling
only showed a much weaker correlation (R = -0.34) with the correlation measures
obtained from the exon quantification of samples (Figure 4.2 A). They also displayed
a broad distribution with no apparent clustering of known outliers (Figure 4.2 B).
We also observed a variation between samples based on the laboratory in which the
sequencing was performed, mainly reflecting the library size differences (Figure 4.2
C and Additional file 1: Figure S5 A). After smoothing the k-mer profiles, the k-mer
pairwise distances were in good concordance (R = -0.62) with the correlation mea-
sures of the exon quantifications obtained after alignment (Figure 4.2 D). Smoothed
K12 profiles exhibited a narrow distribution, having known problematic samples
as only outliers (Figure 4.2 E). Importantly, the variation between laboratories was
significantly reduced as the dynamic smoothing function can accommodate differ-
ences in library size (Figure 4.2 F and Additional file 1: Figure S5 B). These median
pairwise distances were far less sensitive to differences in the total read counts per
sample than distances obtained from scaled 9-mer and 12-mer profiles (R = -0.33,
-0.67 and -0.83, respectively; Figure 4.2 G,H,I). Moreover, the number of known
problematic samples that fall outside the 95% prediction bounds is improved to
11 (out of 12) in smoothed K12 distances compared to that of K9 and K12 (eight
and five, respectively). The sample NA18861.4 has by far the highest distance to
other samples in both K9 and smoothed K12 analyses (Figure 4.2 G,I). We have
previously reported that this sample has a significant genomic DNA contamination
since only 4% of reads mapped to exons [285]. This contamination can affect the
complexity of the sequenced library as many reads represent the non-coding and
repetitive regions of the genome. Whereas samples that passed the QC measures
exhibited k-mer spectra that reflected the expected modality of the transcriptome
(Additional file 1: Figure S6 A), the distribution of k-mer frequencies in NA18861.4
clearly mimicked that of the full human reference genome (Additional file 1: Figure
S6 B).
We also addressed quality issues in WGS data. In our set of 49 WGS samples from
nine individuals, pairwise distances between smoothed 12-mers clustered samples
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Figure 4.2: See the figure on the previous page. Evaluating data quality for mRNA sequencing samples across different
laboratories. (A) Scatter plot showing for each sample the median pairwise Spearman correlation for exon quantifi-
cation and the median k-mer distance measures (K distance) after scaling. Problematic samples are highlighted in
different colours. (B) Histogram of median K distance (scaled) for each individual sample. (C) Distribution of median
K distance (scaled) for each sequencing laboratory (indicated by different colours). (D) Scatter plot of median pairwise
Spearman correlation between exon quantification and K distance (smoothed and scaled). (E) Histogram of median
K distance (smoothed and scaled) for each individual sample. (F) Distribution of median K distance (smoothed and
scaled) for each sequencing laboratory (indicated by different colours). (G) Scatter plot of the total number of reads per
sample versus the K distance of 9-mers (scaled). The poly2 fitted line and the 95% confidence intervals are indicated.
(H) Scatter plot of the total number of reads per sample versus the K distance of 12-mers (scaled). (I) Scatter plot of the
total number of reads per sample versus the K distance of 12-mers (smoothed and scaled). Lab, laboratory; QC, quality
control.

into two main groups that represent the choice of the library preparation protocol
(Figure 4.3 A). Within the cluster representing the first protocol, most datasets were
further clustered on the individuals from whom the samples were obtained. Impor-
tantly, all datasets passed all the quality measures in the commonly used QC pipeline
for NGS data, FastQC13 . The alignment (99.7%), duplication rates (2.0%) and the
overall GC content did not differ significantly between datasets (Figure 4.3 B,C,F).
However, datasets differed in the percentage of properly paired reads (86.7% and
95.8%) and pairs mapping to different chromosomes (10.6% and 2.1% for protocol
1 and protocol 2, respectively) based on the choice of library preparation protocol
(Figure 4.3 D,E). Pairs that mapped to different chromosomes did not cluster at
specific loci but were distributed across the entire genome (Additional file 1: Figure
S7). Moreover, the sequencing reads from the first protocol exhibited a bimodal and
broader insert size distribution (Figure 4.3 G and Additional file 1: Figure S8 B). The
enrichment of pairs that map to different chromosomes and the widening of the
insert size distribution could indicate the presence of library chimeras (sequences
derived from two or more different fragments). The number of soft clipping events
(unmatched region of a partially aligned read, up to 80 base pairs long) during
the alignment confirms the enrichment of library chimeras in samples that were
prepared using the first protocol (Figure 4.3 H). We ruled out the influence of aligner
as the results obtained from three different aligners (Stampy, BWA and Bowtie2)
were in concordance (Additional file 1: Figure S9 A,B).
Library chimeras and erroneous bases can potentially introduce artificial k-mers and
therefore enrich for rare features in the k-mer spectrum. This is supported by the
k-mer profiles of the samples from the two library preparation protocols (Additional
file 1: Figure S10). These artefacts can be detrimental to downstream analysis as the
sequencing library partially represents artificial fragments.
In WES datasets, we identified four clusters after applying principal component
analysis (PCA) on the distances obtained from a pairwise comparison of smoothed
12-mers (Figure 4.4 A). Principal component 1 (PC1) separated samples based on the
rate of on-target reads (reads that map to the exons for which probes were designed).

13Available online at:http://www.bioinformatics.babraham.ac.uk/projects/fastqc
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Figure 4.3: Data quality and the influence of library preparation protocol in whole genome sequencing data. (A) Hierar-
chical clustering of pairwise k-mer distance measures across WGS samples. Samples prepared using different protocols
are indicated in different colours. (B) Percentage of aligned reads per sample. Black and grey bars separate samples
from different individuals. Red and blue circles indicate the choice of library preparation protocol. (C) Percentage of
duplicated reads. (D) Percentage of properly paired reads. (E) Percentage of paired reads that map to different chro-
mosomes. (F) Distribution of average GC content per read. Samples prepared using different protocols are coloured
accordingly. (G) Distribution of estimated insert size. (H) Distribution of the number of base pairs that are soft clipped
from reads during the alignment. Diff, different; WGS, whole genome sequencing.
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The low level of reads on target is the result of poor capture performance and not of
low sequencing depth (Additional file 1: Figure S11 A,B). Interestingly, PC2 separates
the successful WES datasets (69.9% ontarget reads, on average) based on the type
of capture kit (Agilent or Nimblegen) that was used during the library preparation
(Figure 4.4 A). The third principal component separates out a single failed dataset,
WE10_F1L3_NIM. This dataset has multiple problems since the rate of ontarget
reads is only 3.7% and the duplication rate is as high as 80%. The extreme level
of duplication significantly affects the balance of coverage on the plus and minus
strands of the reference genome. Therefore, the k-mer profile remains imbalanced
since most k-mers and their reverse complements have different frequencies. While
the hierarchical clustering concords with that of PCA, we observed another sub-
clustering among failed samples in which samples with only 11.3% of reads on
target were separated from those that exhibit an on-target rate of 49.8% (Figure 4.4
B). The influence of poor capture performance on k-mer profiles is evident from
the k-mer frequency distributions, as those with poor capture performance begin to
mimic that of the full genome (Additional file 1: Figure S12 A,B), due to an increase
in the number of off-target reads. The multimodality of these spectra is the result
of off-target reads that map to noncoding and repetitive regions [274]. Notably,
samples that passed QC could be separated by the capture kit used during library
preparation as a result of differences between the targeted regions of capture kits
(Additional file 1: Figure S12 C).
The analysis of balance between the frequency of k-mers and their reverse comple-
ment can expose library biases and provide a measure for estimating an optimal
sequencing depth to ensurebioreac comparable and sufficient coverage on both
strands (Additional file 1: Notes). In human WGS datasets, the balance curve begins
to level off as datasets exceed 400 million reads, which represents an approximately
12-times coverage of an entire human genome (Figure 4.5 A). Although the balance
curve did not saturate in our WES set, we picked up WE10_F1L3_NIM as an outlier
since the expected balance distance is roughly 0.015 for datasets with a comparable
number of reads (Figure 4.5 B). This sample suffers from multiple problems. How-
ever, its extreme level of duplications (80%) contributes to the imbalanced coverage
on the plus and minus strands (Additional file 1: Figure S13). In the RNASeq set, the
change in balance begins to level off at the 140 million reads mark (Figure 4.5 C). Of
course, this approach will not hold for strand-specific RNA-Seq runs. These data
can now be used to assess whether an independent sequencing run has the expected
balance distance and, thus, whether sufficient sequencing depth has been achieved.

4.3.4 Comparative analysis of kPAL performance

We benchmarked the performance of kPAL in the identification of problematic
samples by comparing the QC analysis of kPAL on a subset of WGS, WES and
RNASeq samples with results from the Preqc function of the recently developed
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Figure 4.4: k-mer distances in whole exome sequencing data are associated with data quality and choice of capture
protocol. (A) PCA of pairwise distance measures. Blue circles indicate samples with poor capture performance. The
red circles highlight the WE10_F1L3_NIM sample, which suffers from multiple problems. Samples that passed the
QC measures are indicated by different types of black circle based on the choice of capture kit (Nimblegen or Agilent
SureSelect). (B) Hierarchical clustering of pairwise k-mer distance measures across WES samples. Different clusters
are indicated by colour. AGI, Agilent SureSelect; NIM, Nimblegen; PCA, principal component analysis; QC, quality
control; WES, whole exome sequencing.

k-mer based String Graph Assembler (SGA) [283]. SGA can estimate genome size,
insert size distribution, repeat content and heterozygosity of a sequenced genome as
well as the error rate and its potential consequence in de novo assembly. Unlike kPAL,
SGA does not perform a pairwise comparison between k-mer profiles obtained from
multiple datasets. Thus, we compared SGAs’ performance to that of kPAL based on
the identification of known problematic samples, using SGAs’ estimated genome
size, fragment size distribution and the overall error rate. A further evaluation of
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Figure 4.5: Detecting the balance in coverage depth of plus and minus strands in sequencing data. (A) Scatter plot of
distance between the frequencies of k-mers and their reverse complement (balance) versus the total number of reads in
WGS data. The poly2 fitted line and the 95% confidence intervals are indicated. (B) Scatter plot of balance versus the
total number of reads in WES data. The red circle indicates an outlier with an extreme duplication rate and imbalance of
coverage between the plus and minus strands. (C) Scatter plot of balance versus the total number of reads in RNA-Seq
data. RNA-Seq, RNA sequencing; WES, whole exome sequencing; WGS, whole genome sequencing.

SGA on the selected datasets is presented in Additional file 1: Figures S14-S17.
In WGS data from the first sample (FG1), SGA confirmed the bimodal insert size
distribution of libraries that were prepared based on the first protocol (Additional
file 1: Figure S15). Moreover, sequencing data from the two library preparation
protocols could be separated based on the position of the first occurring sequencing
errors (Additional file 1: Figure S14 A). This is in concordance with kPAL results
and the presence of a higher level of library chimeras that led to the introduction of
artificial and rare k-mers.
The selected WES data consists of two samples with failed capture (WE01_F1L1_NIM
and WE02_F1L1_NIM), one sample with multiple problems (WE10_F1L3_NIM),
and four samples with acceptable quality that were prepared using Agilen or Nim-
blegen capture kits (WE13_F2L2_AGI, WE14_F2L1_AGI, WE36_F4L1_NIM and
WE37_F4L1_NIM). SGA identified the problematic sample WE10_F1L1_NIM, which
suffers from an extremely high duplication rate and a very low number of on-target
reads (Additional file 1: Figure S14 B). The estimated genome size or duplication rate
did not further assist in identifying problematic samples and the position of the first
sequencing error seems to be obscured by the low coverage of off-target reads that
may resemble erroneous sequences. Together, identification of problematic samples
by SGA is less reliable for WES data than whole genome shotgun sequences.
For RNA-Seq data, we selected two samples that passed all quality measures
(HG00096.1 and HG00108.7) and four failed samples with different underlying
problems (HG00329.5: high duplication; NA12546.1: high rRNA; NA18858.1: poor
alignment and NA18861.4: high genomic DNA contamination). SGAs’ genome size
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estimation is designed for WGS data and, therefore, applying SGA on RNA-Seq data
should provide an estimate of the expressed part of the genome. Genomic DNA
contamination artificially increases the expressed part of the genome and allowed
SGA to identify NA18861.4 as a problematic sample (Additional file 1: Figure S14 C).
SGA could not reliably identify HG00329.5 as a sample with an exceptionally high
duplication rate (Additional file 1: Figure S14 C). Unlike kPAL, the SGA analysis
could not identify the other problematic RNA-Seq samples.

4.3.5 Detecting data complexity

The complexity of sequencing libraries is reflected in the k-mer spectrum as k fre-
quencies often represent functional or structural elements of the associated genome.
For metagenomes, the abundance of different bacteria diversifies the frequency of
k-mers, which can be used to differentiate microbiome communities. To investi-
gate the application of kPAL in the comparative analysis of microbiomes, we first
simulated a series of metagenomes with different copy number for three closely re-
lated bacterial genomes: Bifidobacterium animalis subspecies lactis (NC_017834.1),
Bifidobacterium animalis subspecies animalis (NC_017867.1) and Bifidobacterium ado-
lescentis (NC_008618.1). The selected genomes have a comparable genome size
of approximately 2 Mbp. The level of homology between Bifidobacterium animalis
subspecies lactis and Bifidobacterium animalis subspecies animalis is estimated to be
between 85% and 95% [294]. The genomes of these bacteria are represented in copies
of 6:0:0, 3:3:0 and 2:2:2. The distances from a pairwise comparison of 10-mer profiles
show an interesting pattern (Figure 6 A). Within the three-dimensional space of
individual species, datasets with six copies of a single genome lie within a main
triangular space bounded by the absolute minimum distance to their corresponding
species. The second triangular space holds datasets that have three copies of two
genomes while the dataset with two copies of all genomes sits in the middle of the
three-dimensional space (Figure 4.6 A). The relatedness of these datasets relies on
the number of rare k-mer s that could differentiate the abundance of different species
within each set.
Next, we explored the capability of kPAL in resolving the composition of a more
complex series of simulated metagenomes. Without considering the phylogeny, 30
bacterial genomes were selected from both the Firmicutes and Proteobacteria phyla
and used to construct 31 datasets where the first set comprises 30 genomes from the
Firmicutes phylum. The sequence content of each set was subsequently shifted to the
Proteobacteria phylum by single genome substitutions (Additional file 1: Table S2).
Thus, the 31st dataset consists of 30 genomes from only the Proteobacteria phylum.
After performing the pairwise distance comparison on 10-mer profiles, datasets were
plotted based on their distance to each phylum (Figure 4.6 B). Notably, the order of
the datasets concords with the number of genomes from each phylum. Although
the modelled metagenomes do not reflect the true relative abundance of
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Figure 4.6: See the legend on the next page



CHAPTER 4. DETERMINING THE QUALITY AND COMPLEXITY OF NEXT-GENERATION
SEQUENCING DATA WITHOUT A REFERENCE GENOME 87

Figure 4.6: See the figure on the previous page. Resolving the level of relatedness between microbiomes. (A) Three-
dimensional scatter plot of the k-mer distance measures for a series of metagenomes with different copy number of
three closely related species. (B) Scatter plot k-merof the relative distance between Firmicutes and Proteobacteria phyla.
Each data point represents a metagenome with a differing number of species from each phylum. Data points are col-
ored according to the number of species from each phylum. (C) PCA plot of pairwise k distance measures for gut
microbiomes. Data points are colored based on the origin of the sample (male in blue and female in red) and time. (D)
PCA plot of pairwise k-mer distance measures for right-palm microbiomes. (E) PCA plot of pairwise UniFrac distance
measures for gut microbiomes. (F) PCA plot of pairwise UniFrac distance measures for right-palm microbiomes. PCA,
principal component analysis.

these bacteria, they allow us to assess whether kPAL can resolve the level of similar-
ity between a series of modelled metagenomes. Distances between k-mer profiles
generated on the 16S rDNA also confirm the relative similarity of datasets with a
slightly smoother transition. This is mainly due to the limited amount of genomic
information that is available in 16S rDNA and different rate of evolution compared
to the entire genome.

We used the previously pcolourublished data by Caporaso et al. [292] to evaluate
further the performance of kPAL in resolving microbiomes. The gut and right-palm
microbiomes of a male individual and a female individual were sequenced over a
period of 6 months. For this analysis, we only included samples that were collected
on the same day from both individuals (122 gut microbiomes and 128 right-palm
microbiomes). Furthermore, we also excluded 14 samples that were classified as
being mislabeled using a random forest classifier as described by Caporaso et al. [292].
Pairwise distances were calculated for samples from each body part using kPAL
(using 10- mer profiles) and UniFrac [139], which relies on the characterization of
operational taxonomical units and inferred phylogeny. UniFrac parameters were set
to those specified in the original paper [292]. The agreement between the expected
clusters (based on the origin of samples) and that obtained from distance matrices
was estimated using the weighted kappa index (Kw). PCA analysis of k-mer distance
matrices from gut (Figure 4.6 C) and right-palm (Figure 4.6 D) microbiomes revealed
that samples from each individual could be separated using the kPAL approach
(Kw = 0.95 and 0.82, respectively). In addition, PC2 and PC3 indicate that temporal
changes in the microbiomes of each individual influence the relative distances
between datasets. We also noticed that datasets from the first 12 days of right palm
microbiomes from the male individual cluster with female samples. This can be
caused by possible contamination or sample swapping. Gut microbiomes could also
be resolved using UniFrac (Figure 4.6 E), with Kw = 0.94. Concordant to the kPAL
results, PC2 and PC3 jointly order samples based on the sampling day. However,
UniFrac failed to differentiate right-palm microbiomes based on their origin (Kw =
0.47) with no apparent pattern corresponding to the day on which samples were
collected (Figure 4.6 F).
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4.4 Conclusions

The continued decrease in sequencing costs and technological development have
overtaken our ability to assess the quality of data and the complexity of sequencing
libraries robustly. For instance, many QC steps that are essential for accurate down-
stream analysis of NGS data are often neglected in the absence of a reliable reference
genome. In addition, NGS data are always subjected to some degree of technical and
run-to-run variation, which can hamper the interpretation of the genetic makeup of
the sequenced sample. As shown here, variations introduced during library prepara-
tion can have a significant influence on the complexity and quality of the sequencing
data.
So far, k-mer profiles have been used in a wide range of applications, such as the
identification of regulatory elements, error correction of sequencing reads, identifica-
tion of point mutations, whole genome assembly, searches for homologous regions
and phylogenetic analysis [276, 277, 278, 279, 280, 281, 282, 295, 296]. A number of
k-mer analysis tools are capable of efficiently generating k-mer profiles (such as
Jellyfish [297] and khmer [298]), and the recent work of Simpson [283] proposes a
novel method to estimate the repeat content, genome size, heterozygosity of the
sequenced genome, insert size distribution and estimated level of erroneous reads
in sequencing data using a k-mer approach.
Although SGA provides valuable information on the genetic makeup and quality
of sequencing data, it cannot reliably identify outliers from a series of NGS data or
provide information on potential sources of variation. Thus, in the absence of a well
characterized reference sequence, there is an urgent need for tools that can charac-
terize potential biases such as sample swapping, library chimeras, high duplication
rates and potential contamination.

In this work, we introduce a new strategy for determining the quality and complexity
of a variety of different NGS datasets without any prior information about the
reference sequence. The kPAL package consists of a variety of tools to generate
k-mer frequencies and enables pairwise comparisons. kPAL measures the level of
similarity between multiple NGS datasets, based on the genomic information that is
shared between them.
We show that kPAL outperforms pre-alignment QC tools (such as FastQC) in reli-
ably exposing samples that suffer from poor capture performance, contamination,
enrichment of library chimeras or other types of artefact. Even though the last step
in assessing data quality by FastQC involves the analysis of overrepresented 5-mers,
FastQC fails to identify problematic samples due to the low k-mer size and the way
k-mer profiles are processed. In contrast, tools that rely on aligned reads (such as
RNASeQC [299] and the Picard toolkit) can expose the majority of these technical
artefacts, though some of them still require a thorough and vigorous assessment
to be identified. The Preqc feature of SGA performs well on WGS data and can
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precisely estimate insert size distribution and expose erroneous reads. However, the
performance of SGA on other types of NGS data, such as WES and RNA-Seq, is less
reliable since it was originally developed for pre-processing, error correction and
de novo assembly of whole genome sequences. The lack of a pairwise comparison
and accommodation for differences in library size limits the application of SGA in
quality assessment and measuring the level of dissimilarity between k-mer profiles
of sequenced samples.
The unique feature of kPAL is its ability to account for biases introduced by dif-
ferences in sequencing depth between samples to expose outliers and problematic
samples and that, like SGA, it does not rely on prior information. Potential applica-
tions of this strategy are to determine the quality of sequencing data, estimate the
sequencing depth required for de novo assembly projects and identifying sequencing
reads that represent the uncharacterized regions of the genome of a given species.

Most microbiome studies have focused on phylogenetically informative markers
such as 16S rDNA to reveal the relative composition and diversity of the meta-
genome in question (reviewed in [268, 300]). Despite the efficiency of such ap-
proaches, amplicon-based studies lack the ability to provide a genome-wide charac-
terization of microbiomes. Moreover, sequencing errors and the presence of library
chimeras can hamper the analysis of microbiomes using conventional tools, as
only a handful of reads may be produced from any given fragment. This results
in unreliable operational taxonomical units, which are often used in microbiome
studies.
The advantage of our approach is that it can potentially discriminate between
different species of a common phylum by relying on sequence content beyond the
resolution of 16S rDNA sequences. We show that the similarity of microbiomes
based on their composition and diversity can be revealed using kPAL, which is
purely founded upon the sequencing data alone. In contrast, although UniFrac could
reliably resolve rather stable gut microbiomes, it struggled with resolving highly
diverse and dynamic microbiomes, such as those obtained from skin (i.e., the palm).
We show that kPAL is sensitive to temporal changes in microbiomes and can poten-
tially be used for a wide range of applications, such as forensic DNA fingerprinting.
It is important to note that further developments are required for reliable assessment
of temporal changes in a microbial community using the kPAL approach. Although
kPAL does not provide a biological reason for the sources of variation within and
between datasets, it opens the way to a more accurate and unbiased determination
of the quality and complexity of genomic sequences.
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Supplementary file Additional file 1: Supplemental notes, figures and tables is
accessible online:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4298064/bin/13059_2014_555_MOESM1_ESM.pdf

4.6 Abbreviations

• kPAL: k-mer Profile Analysis Library;

• Mbp: Megabase pairs;

• NGS: Next-generation sequencing;

• PCA: Principal component analysis;

• PCR: Polymera se chain reaction;

• QC: Quality control;

• RNA-Seq:

• RNA sequencing;

• SGA: String Graph Assembler;

• UTR: Untranslated region;

• WES: Whole exome sequencing;

• WGS: Whole genome sequencing.
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