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52 Sec. 3.1. Background

3.1 Background

The analysis of metagenomic data is becoming a routine for many different re-
search fields, since it serves scientific purposes as well as improves our life quality.
Particularly, with the use of metagenomics a large step was made towards the un-
derstanding of the human microbiome and uncovering its real composition and
diversity [225, 226, 227, 228, 229, 230]. The understanding of the human micro-
biome in health and disease contributed to the development of diagnostics and
treatment strategies based on metagenomics knowledge [231, 232, 233, 234, 235,
236, 237, 238]. The study of microbial ecosystems allows us to predict the possible
processes, changes and sustainability of particular environments [239, 240]. Genes
isolated from uncultivable inhabitants of soil metagenomes are being successfully
utilized, for example, in the biofuel industry for production and tolerance to byprod-
ucts [30, 241, 242]. Various newly discovered biosynthetic capacities of microbial
communities benefit the manufacturing of industrial, food, and health products, as
well as contribute into the field of bioremediation [54, 55, 56, 57].
Despite all the progress made in resolving genetic data derived from environmental
samples, it is still a challenging task. Reads binning is one of the most critical steps
in the analysis of metagenomic data. To estimate the composition of a particular
microbiome, it is important to ensure that sequencing reads derived from the same
organism are grouped together. Currently, alignment of DNA extracted from an
environmental sample to a set of known sequences remains the main strategy for
metagenomics binning [243, 244]. There is a full range of techniques allowing the
comparison of metagenomic reads to a reference database. It can be performed using
different metagenomic data types (16S or WGS) and various matching approaches
(classic alignment or matching performed using k-mers or taxonomic signatures).
Most of the time, the binning is performed for all reads in the database, but in some
cases only a particular subset of sequencing data is selected for binning. Lastly,
there is a wide spectrum of databases that can be used to perform the binning. The
database might contain all possible annotated nucleotide/protein sequences, marker
genes for distinct phylogenetic clades, sequencing signatures specific to particular
taxa, etc. (see more detailed explanation in Chapter 1). The obvious downside of
all listed strategies is the incapability to perform an accurate binning for the reads
derived from organisms that are not present in the reference database.
Metagenomics binning was improved by alignment-free approaches, which can be
split into two subgroups: reference-dependent and reference-independent methods.
The tools from the first subgroup utilize existing databases to train a supervised
classifier for the reads binning. Various techniques can be performed to achieve
this goal: Support Vector Machine, Interpolated Markov Models, Gaussian Mixture
Models, Hidden Markov Models [147, 148, 149, 151, 152, 153, 150]. Even though
these approaches are reference dependent, they can be used to classify reads derived
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from previously unknown species. However, the accuracy of reference-dependent
methods will be always limited by the content of reference databases. The content of
the current reference databases utilized for training differs from the true distribution
of microbial species on our planet[245, 246, 247, 248, 249, 250, 251]. For some meta-
genomic datasets the amount of unknown sequences might be quite high [252, 253],
thus using supervised classification tools based on known genetic sequences is
questionable if this is the case.
Reference-independent approaches for metagenomics binning try to solve the prob-
lem of missing taxonomic content: they are designed to classify reads into genetically
homogeneous groups without utilizing any information from known genomes. In-
stead, they use only the features of the sequencing data (usually k-mer distributions,
DNA segments of length k) for classification. One of those tools, LickelyBin, per-
forms a Markov Chain Monte Carlo approach based on the assumption that the
k-mer frequency distribution is homogeneous within a bacterial genome [140]. This
tool performs well for very simple metagenomes with significant phylogenetic diver-
sity within the metagenome, but it cannot handle genomes with more complicated
structure such as those resulting from horizontal gene transfer [141]. Another one,
AbundanceBin [142], works under the assumption that the abundances of species
in metagenome are following a Poisson distribution, and thus struggles analysing
datasets where some species have similar abundance ratios. MetaCluster [143] and
BiMeta [144] address this problem of non-Poisson species distribution. However, for
these tools it is necessary to provide an estimation of the final number of clusters,
which cannot be done for many metagenomes without any prior knowledge. Also,
both MetaCluster and BiMeta are using a Euclidian metric to compute the dissim-
ilarity between k-mer profiles, which was shown to be influenced by stochastic
noise in analysed sequences [145]. Another recent tool, MetaProb, implements a
more advanced similarity measure technique and can automatically estimate the
number of read clusters [146]. This tool classifies metagenomic datasets in two steps:
first, reads are grouped based on the extent of their overlap. After that, a set of
representing reads is chosen for each group. Based on the comparison of the k-mer
distributions for those sets, groups are merged together into final clusters. Even
though MetaProb outperformed other tools during the analysis of simulated data,
it was shown to perform not very well on the real metagenomicmetagenomic data
data.
In this article we present a new technique for alignment- and reference-free classifica-
tion of metagenomic data. Our approach is based on a pairwise comparison of k-mer
profiles calculated for each sequencing read in a long-read metagenomic dataset,
using the previously described kPAL toolkit [213]. It also performs unsupervised
clustering to facilitate the identification of genetically homogeneous groups of reads
present in a sample. The main assumption of our method is that after assigning the
pairwise distances for all reads in the dataset, those belonging to the same organism
will form dense groups, and thus the metagenome binning could be resolved using
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density-based clustering. We developed an algorithm which automatically detects
the regions with high density and hierarchically splits the dataset until there is one
dense region per cluster. The approach is designed to work with long reads (more
than 1,000 bp) since we calculate k-mer profiles for each read separately and shorter
reads would yield non-informative profiles. We performed our analysis on long
PacBio reads that were either simulated or generated from a real metagenomic sam-
ple. We have shown that despite the fact that PacBio data is known to have a high
error rate, the approach successfully performed read classification for simulated and
real metagenomic data.

3.2 Materials and Methods

3.2.1 Software

All analyses were done using publicly available tools (parameters used are listed
below for each specific case) along with custom Python scripts which are stored in a
Git repository1.

3.2.2 PacBio data simulation

Complete genomes of five common skin bacteria were used to generate artificial
PacBio metagenomes (see Table 3.1). The reads were simulated from reference
sequences using the PBSIM toolkit [254] with CLR as the output data type and a
final sequencing depth of 20. For the calibration of the read length distribution, a set
of previously sequenced C. difficile reads [255] was used as a model.

3.2.3 Bioreactor metagenome PacBio sequencing

Bioreactor metagenome coupling anaerobic ammonium oxidation (Annamox) to
Nitrite/Nitrate dependent Anaerobic Methane Oxidation (N-DAMO) processes
[256] was used to generate WGS PacBio sequencing data.
Metagenome contained the N-DAMO bacteria Methylomirabilis oxyfera (complete ge-
nome with GeneBank Acsession FP565575.1 was used as a reference), two Annamox
bacteria (Kuenenia stuttgartiensis, assembly contigs from the Bio Project PRJEB22746
were used as a reference and a member of Broccardia genus, assembly contigs of
Broccardia sinica from Bio Project PRJDB103 were used as reference) and an archaea
species Methanoperedens nitroreducens (assembly contigs from the Bio Project PR-
JNA242803 were used as a reference).
Bacterial cell pellets were disrupted with a Dounce homogenizer. DNA was isolated
using a Genomic Tip 500/G kit (Qiagen) and needle sheared with a 26G blunt end

1Available at https://git.lumc.nl/l.khachatryan/pacbio-meta
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needle (SAI Infusion). Pulsed-field Gel electrophoresis was performed to assess the
size distribution of the sheared DNA. A SMRTbell library was constructed using
5µg of DNA following the 20 kb template preparation protocol (Pacific Biosciences).
The SMRTbell library was size selected using the BluePippin system (SAGE Science)
with a 10 kb lower cut-off setting. The final library was sequenced with the P6-C4
chemistry with a movie time of 360 minutes.

3.2.4 Reads origin checking

Reads were corrected using the PacBio Hierarchical Genome Assembly Process algo-
rithm before being mapped to the genomes of the expected metagenome inhabitants
genomes using the BLASR aligner [257] with default settings. The alignments were
used to determine the origin of the reads. Reads that were not mapped during the
previous step were subjected to the BLASTn [102] search against the NCBI database.
The identity cut-off was set to 90, the (E)value was chosen to be 0.001.

3.2.5 Bioreactor metagenome PacBio reads assembly

The assembly of corrected PacBio reads was performed using the FALCON [258]
assembler. The resulting contigs were mapped to the candidate reference genomes
using LAST [104] with default settings. To determine the similarity cutoff for the
mapping procedure, the curve representing the number of contigs versus the simi-
larity to the reference genome was analysed. The first inflection point at (in case of
mapping contigs to the M. oxyfera genome 12%), dividing the fast-declining part of
the curve from the slow-declining part, was chosen as a threshold (See Supplemen-
tary materials for more details).

3.2.6 Binning procedure

For each read, the frequencies of all possible five-mers were calculated using the
count command of the kPAL toolkit. The resulting profiles were balanced (a pro-
cedure that compensates for differences that occur because of reading either the
forward or reverse complement strand) and compared in a pairwise manner by
using the balance and matrix commands of kPAL accordingly, yielding a pairwise
distance matrix. Normalization for differences in read length was dealt with by the
scaling option during the pairwise comparison.
The resulting distance matrix, hereafter called the original distance matrix, was
subjected to a multi-step clustering procedure. A schematic representation of this
procedure can be found in Figure 3.1. Due to practical limitations (runtime), this
analysis was restricted to a set of 10,000 randomly selected reads. This multi-step
clustering procedure works recursively: it starts with the analysis of a set of reads
and either reports the entire set as one cluster, or it splits the set into two subsets,
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which are each analysed using the same procedure. The decision whether to split the
set of reads into two subsets is made using the following approach. First, the pairwise
distances for all reads in the set are extracted from the original distance matrix in
order to construct the working distance matrix. After that, the dimensionality of the
analysed set is decreased to three using the t-SNE algorithm [259] in order to reduce
noise caused by outliers in the distance matrix. The reads, now represented by a
point in three-dimensional space, are subjected to density-based clustering using
the DBSCAN algorithm [260] with the default distance function.

Set of reads

Two new sets of 
reads

Three-
dimensional 

representation

Clustering results

Original distance 
matrix

Working distance 
matrix

>1000 
reads?

>1 
cluster?

Non-linear 
dimensional 

reduction

Density-
based 

clustering

Cut the set 
into two 

parts

Report 
cluster

Repeat 
with each 

set

YES

YES

NO

NO

Figure 3.1: Schematic representation of the clustering procedure.

We choose the MinPts parameter of DBSCAN (the minimal amounts of points in
the neighborhood to extend the cluster) to be either 1% of the size of the dataset
for sets larger than 2,000 reads, or 20 for sets smaller than 2,000 reads. The number
of clusters found by DBSCAN depends on the neighborhood diameter ε. When
ε is too small, no clusters are reported since all points are isolated. On the other
hand, when ε is too large all points are grouped into one cluster. Our algorithm
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Figure 3.2: Density-based clustering analysis example. The data is clustered with DBSCAN with ε ranging from 0 to
the value when 90% of the points are assigned to one cluster. When at least half of the data set is assigned to a dense
cluster, the number of clusters is used to determine whether subdivision of the data set is required. Only if more
than one cluster is identified at this point, the procedure is repeated recursively with two partitions of the data. The
partitions are determined by using the largest ε that clusters the data into two clusters. In this example two datasets
are shown: one that was further split into two partitions (A) and one that was reported as one dense cluster (B).

therefore performs a parameter sweep for ε, from the value providing zero clusters
to the value with which 99% of the reads are grouped in one cluster for the chosen
MinPts. The results of this parameter sweep are used to check the dependency of the
number of dense clusters on a particular ε (only clusters larger than 100 points are
considered) and how many points of the analysed set are included in the obtained
clusters (Figure 3.2). If for some ε there are two or more clusters that together cover
more than half of the total amount, the analysed set is divided into two new sets
(Figure 3.2A). The analysed set is reported as one cluster if the aforementioned
condition is not satisfied (Figure 3.2B), or when the size of the analysed set is smaller
than 1,000 points.

The division is done using the following strategy. DBSCAN is performed using the
optimal ε, yielding two dense clusters that serve as center points for two partitions.
Each of the remaining unclassified points is assigned to the cluster containing the
closest classified neighbor.

3.2.7 Classification for larger sets

Read classification for sets larger than 10,000 was performed in two steps. First,
10,000 reads (larger than 10 kb) were randomly chosen and classified using the
algorithm described in section 3.2.6. After that, the pairwise distances between every
unclassified read and every classified read were calculated using their 5-mer profiles.
These distances were used to assign the unclassified read to the cluster containing
the closest classified read.
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3.2.8 Data avaliability
Sequencing reads of bioreactor metagenome were submitted to SRA under the study
number SRP159147.
Supplementary materials were deposited on Figshare and available for downloading
using the following link: https://doi.org/10.6084/m9.figshare.c.4218857.v1
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3.3 Results

3.3.1 Reads classification in artificial PacBio metagenomes

To construct artificial metagenomes, we used simulated PacBio reads based on the ge-
nomes of five common skin flora bacteria together with so-called "noise" reads. These
are reads from a PacBio sequencing data of an environmental metagenome [261]
that were not assigned to the major inhabitant K. stuttgartiensis or other known
organisms. They were added to represent low abundant species that are present in
any typical metagenomic dataset.
We constructed four artificial PacBio datasets in this way, each containing 10,000
randomly selected reads (length > 9 kb) containing 0%, 5%, 10% and 15% noise
reads, respectively. For the simplicity the number of simulated reads was adjusted to
provide an equal abundance for each bacterium in the final metagenome (Table 3.1).

Reads origin RefSeq AC Genome
length, Mb

Number of reads per dataset

0% 5% 10% 15%
S. mitis NC_013853.1 2.1 1,246 1,183 1,121 1,059
P. acnes NC_017550.1 2.5 1,443 1,371 1,298 1,226
S. epidermidis NC_004461.1 2.6 1,448 1,376 1,304 1,231
A. calcoaceticus NC_016603.1 3.9 2,236 2,125 2,013 1,901
P. aeruginosa NC_002516.2 6.3 3,627 3,446 3,264 3,083

Table 3.1: Content of artificial metagenomics PacBio datasets.

We subjected each dataset to the classification procedure described in section 3.2.6.
The reads in the resulting clusters were then classified according to their origin
(See Supplementary Material for more data). In Figure 3.3, it can be seen that for
each experiment we obtained five large clusters (> 1,000 reads) consisting mainly of
reads belonging to the same species. For all three datasets containing noise reads
we see the tendency of noise reads to be clustered with some fraction of P. acnes and
P. aeruginosa reads. However, as can be seen from Figure 3.3 and Table 3.2, increasing
the noise content leads to better isolation of these reads. Indeed, for dataset B (5%
of the noise reads), the majority of noise reads were assigned to the cluster that is
primarily occupied by reads belonging to P. acnes and P. aeruginosa. Increasing the
noise content (dataset C and D in Fig. 4, 10% and 15% noise reads accordingly) led
to the appearance of two clusters which contain mostly noise reads (Table 3.2, A).
We also see that with the increase of noise content, the fractions of P. acnes and
P. aeruginosa reads included in the same clusters as the noise reads are dropping
(Table 3.2, B). In conclusion, the more noise reads were added to the dataset, the
better they were grouped together in one or two clusters (Table 3.2, A).
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Dataset 5% noise 10% noise 15% noise
Reads origin Cluster 2 Cluster 2 Cluster 8 Cluster 6 Cluster 7

A
noise 21.4 90.3 47.8 85.6 97.3
P. acnes 63.7 0.5 33.8 5.6 0
P. aeruginosa 10.4 1.3 19.1 8.9 0

B
noise 91.8 55.9 39.9 45.0 50.8
P. acnes 99.6 0.2 22.3 3.6 0
P. aeruginosa 6.4 0.2 5.3 2.3 0

Table 3.2: Composition of clusters containing the majority of noise reads after the classification procedure for three
artificial PacBio datasets. A - cluster composition; B - the percentage of reads with particular origin (noise, P. acnes or
P. aeruginosa) included to the cluster within all reads of the same origin in the dataset. Clusters are grouped per dataset.
Only organisms whose reads would occupy more than 90% of cluster content are shown.

3.3.2 PacBio sequencing of bioreactor metagenome

After sequencing and correction, we obtained 31,757 reads longer than 1kb for the
bioreactor metagenome. The read length distribution for this dataset can be found in
Figure 3.4. Reads were mapped to the genomes of the expected metagenome inhabi-
tants. Since the groups of reads that we could map to the genomes of K. stuttgartiensis
and B. sinica had a significant overlap (27%), we decided to combine reads mapped to
the reference genomes of these two organisms in one group. We detected almost no
(0.01%) reads that would map to the M. nitroreducens genome in the sequencing data,
suggesting that this organism was either not present in the metagenome sample, or
that its DNA could not be isolated reliably during the sample preparation.
Thus, we divided our reads into three groups: uniquely mapped on M. oxyfera
(4,903 reads), uniquely mapped on K. stuttgartiensis/B. sinica (2,973 reads), and all
remaining reads with unknown origin ( 75%, 23,881 reads). The reads with unknown
origin were checked with the BLASTn software against NCBI microbial database, to
find significant similarity to any known organism. However, only 334 reads (less
then 2% of total number of checked reads) got hits; there were no organisms among
the obtained hits reported more than 53 times.

3.3.3 Bioreactor metagenome PacBio read classification

For the reads originating from M. oxyfera and K. stuttgartiensis/B. sinica, we checked
whether the data was clustered by origin. Since roughly 75% of this sequencing data
is of unknown origin, we assessed whether the clustering results for reads with
unknown origin is robust. To do this, we created five subsets using the bioreactor
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Figure 3.3: Classification recall for artificial PacBio metagenomes. Subsets that were subjected to the partitioning are
shown as black circles, final clusters are represented as pie charts with the colour indicating the reads origin. The area
of the pie chart corresponds to the relative cluster size. The cluster number is shown next to each pie chart. The results
are shown for datasets with 0% (A), 5% (B), 10% (C) and 15% (D) of noise reads.

metagenome sequencing data. Each subset contains 10,000 randomly selected reads
with length > 10 kb. After subjecting each subset to the classification procedure, we
checked whether reads, shared by two subsets, are being clustered similarly. We
compared all clusters from different subsets in a pairwise manner and marked two
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Figure 3.4: Bioreactor metagenome reads length distribution.

clusters ’similar’ when they shared at least 25% of their content. On average, every
pair of subsets shared 34% of their content. Thus, in case of perfect matching of
clustering results, the pair of clusters from two different subsets should on average
share 34% of their content. The 25% cutoff value was chosen to compensate for
possible flaws introduced by clustering mis-assignments.
In Figure 3.5 this analysis is shown as a graph: each pie chart represents a cluster
obtained for one of the subsets (with a subset number marked next to the pie chart).
Clusters are connected if they were marked as similar and thus shared more then
25% of their content. We looked for sub-graphs, of size five for which all five nodes
would be mutually connected. That would mean that all five clusters are coming
from the different subsets and share a significant (at least 25% out of 34% possible)
number of reads. These groups of clusters (here and after called the stable groups)
represent reads that are clustered the same way regardless of the subset of reads
selected. Clusters belonging to the stable groups are called the stable clusters. The
proportion of reads in the stable clusters was comparable among datasets and
equaled on average 64%. As displayed in Figure 3.5, we found seven groups of
stable clusters. Four groups of stable clusters have clusters with more than 1,000
reads, and two of those four are represented by clusters enriched with M. oxyfera or
K. stuttgartiensis/B. sinica reads. In Table 3.3 we display the content and the number
of reported clusters after the classification procedure for each of the five subsets.
Once we estimated the robustness of the classification procedure, we selected the
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Subset 1 2 3 4 5
Number of M. oxyfera reads 1,499 1,563 1,528 1,544 1,529
Number of K. stuttgartiensis/B. sinica reads 949 918 981 935 906
Clusters after the classification procedure 14 11 13 13 12
Big (>1,000 reads) clusters 5 5 5 5 5
% of reads in stable clusters 65.96 64.12 61.98 64.46 64.16

Table 3.3: Subsets information and clustering results.

subset that yielded the lowest number of clusters (subset 2, 11 clusters) for down-
stream analysis. The content of all clusters that were not reported as stable were
merged into one cluster. Thus, the original 10,000 reads were spread among 8 clus-
ters. These clusters were used as a classifier for the remaining 21,757 reads in the
dataset (Table 3.4).

Cluster Stable Reads before extension Reads after extension
1 Yes 403 1,038
2 Yes 168 528
3 Yes 1,133 3,204
4 Yes 1,540 5,151
5 Yes 1,004 3,337
6 Yes 181 506
7 Yes 1,983 6,459
8 No 3,588 11,534

Table 3.4: Results of bioreactor metagenome reads classification

3.3.4 Assembly of the bioreactor metagenome before and after reads
binning

We assembled reads belonging to different clusters separately, and compared the
resulting contigs with the results of the assembly of the entire dataset. The total
number of contigs after assembly of the partitioned dataset was comparable to the
amount of contigs obtained from the assembly of the entire dataset (Table 3.5). The
same can be said about the total length of contigs and contigs length distributions
(see supplementary materials). These results, showing that the database partitioning
did not lead to the change of the contigs number or their lengths, can be seen as
indirect evidence proving that our k-mer based binning of metagenome reads results
in species-based clustering.
We compared the assembled contigs obtained for the entire and partitioned datasets
to the reference genomes of M. oxyfera, K. stuttgartiensis and B. sinica. Even though
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we could successfully map around 9% of the reads to the reference genomes of
K. stuttgartiensis and B. sinica, we did not get contigs that could be mapped to these
genomes. However, the contigs assembled from the entire and partitioned datasets
did map to M. oxyfera genome. Only 91 out of 196 contigs obtained from the entire
dataset assembly could be mapped back to the M. oxyfera genome covering 54% of
its length. For the assembly of the partitioned dataset, 85 contigs were mapped to
the genome of M. oxyfera in total, covering 52.65% of its length. The vast majority of
those contigs (79, covering 51% of the M. oxyfera genome length) derived from the
assembly of reads belonging to one cluster. Thus, our dataset partitioning binned
the majority of contigs according to their origin.

Dataset
assembled

Entire
dataset Cl 1 Cl 2 Cl 3 Cl 4 Cl 5 Cl 6 Cl 7 Cl 8

Assembly
length,
bp

3,251,357 5,438 10,747 380,905 377,792 601,065 0 1,602,878 41,310

Contigs 196 1 1 28 30 47 0 71 2

Contigs
mapped
on
M. oxyfera
genome

91 0 0 9 1 2 0 71 2

Length of
mapped
contigs

1,842,182 0 0 132,863 11,945 21,105 0 1,497,132 17,013

M. oxyfera
genome
covered, %

54 0 0 1.2 0.1 0.15 0 51 0

Table 3.5: Results of entire and partitioned bioreactor sequencing data assembly and comparison of obtained contigs to
the M. oxyfera genome. Cl - cluster.

3.4 Discussion

We described a new approach for efficient, alignment-free binning of metagenomic
sequencing reads based on k-mer frequencies. Our method successfully classifies
reads per organism of origin, for both simulated and real metagenomic data.
As shown in the results section, the approach was used to classify reads obtained by
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PacBio sequencing of a real bioreactor metagenome. The absolute majority of the
reads with known origin (M. oxyfera or K. stuttgartiensis/B. sinica) were clustered
together per origin after pairwise comparison of their k mer profiles and subsequent
density-based cluster detection. This result was robust, as we observed during the
analysis of five subsets of the original PacBio sequencing data with overlapping
content. The same experiment demonstrated that each subset provides a similar
number of clusters. Reads with unknown origin had a tendency to cluster similarly
among different subsets, again confirming the clustering consistency. Although the
majority of reads in the analysed metagenome was of unknown origin, the results
can be used to estimate the microbial community complexity for its most abundant
inhabitants.
The binning of the bio-reactor metagenomic dataset had almost no influence on
the results of the metagenome assembly. The number of contigs and their lengths
obtained for the entire and partitioned datasets were comparable. This indicates
that the k-mer based reads binning leads to the organism-based partitioning of
metagenomic data. Furthermore, contigs, belonging to the same organism, were
automatically grouped together when assembling the dataset subjected to the classi-
fication procedure. Thus, our k-mer based binning technique can be used to interpret
metagenomic assembly results.
Performing the binning procedure on an artificially generated PacBio datasets lead
to a reads classification per organism, even after adding reads with unknown origin
(noise reads). Moreover, increasing the proportion of noise reads leads to a better sep-
aration between them and the reads with known origin. This observation supports
the ck-merentral hypothesis of this research, namely that k-mer distances can be
used to cluster reads of the same origin together once those reads provide sufficient
coverage of the organisms’ genome.
The main disadvantages of the current implementation of our method is the limited
number of reads (10,000) that can be analysed. As mentioned before, reads, derived
from the same organism, will cluster together, but this is possible only under the
condition that the organisms’ genome is sufficiently covered. Thus, the described
technique is unsuitable for the analysis of metagenomes with a large number of
inhabitants or when the inhabitants have large genomes, as 10,000 reads will not be
enough to provide sufficient coverage. The depth of the classification that can be
performed by the suggested method is still to be discovered.
We believe that adapting our metagenomics reads binning technique for larger sets
of data and further investigation of its metagenome resolving capacity would allow
to expand the current limits of microbiology in the future.
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