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28 Sec. 2.1. Background

2.1 Background

IN recent years, metagenomics - the genomic analysis of microorganisms by direct
extraction of DNA from an environmental sample - has become the most rapidly

developing branch of microbiology [161, 162, 163]. The interest in metagenomics
has grown drastically due to the expanding number of studies showing that the
vast majority of microorganisms cannot be grown under laboratory conditions [35,
164, 165, 166]. The possibility of culture-free investigation of microbial biodiversity
directly from an environmental habitat led to many amount of studies benefiting a
wide range of fields such as human health [167, 168, 169, 170, 171], ecology [172, 173],
agriculture [174, 175, 176], forensics [177, 178], food and drugs production [54, 55,
179]. Taxonomic profiling of metagenomic data is the key step during the data
analysis, allowing researchers to understand the structure of a microbiome and
to estimate the abundances of the organisms living in it. The main goal of this
study is to compare different data types and methods for taxonomic profiling of
metagenomic data sets with known abundance distributions of inhabitants.

The most common technique to investigate microbiome composition is amplicon-
based sequencing of the 16S rRNA gene [180, 181]. This relatively short (~1500
bp) gene is universal among bacteria and archaea [70, 71]. There are in total nine
hypervariable regions in the 16S rRNA gene that provide phylogenetic signatures
on different taxonomic levels. Hypervariable regions are surrounded by highly
conserved sequences, which are used for primer design. The analysis of 16S meta-
genomic datasets is usually performed in combination with one of several curated
databases that contain annotated sequences of the 16S rRNA gene or its parts [182].
The most commonly used 16S-specific databases are RDB [74, 75], GreenGenes [77]
and SILVA [76]. Analysis of 16S data is now routine for metagenomic-associated
projects, though many studies demonstrated a number of biases associated with this
type of data that make the validity of this approach questionable. Several reports
stressed uneven coverage of microorganisms’ diversity spectrum by common PCR
primers for the 16S rRNA gene amplification [183, 184, 185, 186, 83, 84]. Second, the
16S rRNA gene does not have a correct phylogenetic relationship within particular
taxa [81, 82]. The fact that bacteria and archaea might carry different copy numbers
of the 16S rRNA gene in their genomes seriously influences a reliable abundance
estimation after analysis of 16S data [187]. Additionally, the choice of a specific
hypervariable region and the reference database for the subsequent analysis requires
a priori knowledge about the investigated metagenome. Lastly, 16S data cannot
be used to investigate the metagenome functional profile, nor does it provide any
information about eukaryotic or viral members of the microbial community. The
applicability of 16S data was shown for a set of forensic studies. For example, 16S
data was successfully used for body fluid recognition [188] or matching between
individuals’ skin datasets and touched objects [62, 63]. The success of such analyses,
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however, does not imply that a 16S-based analysis of all metagenomic data is reliable
(or possible).
Apart from 16S, there are other methods that use rRNA genes to investigate microbial
diversity. Among them are 23S, 5S, 12S and various combinations [189, 190, 191].
Other methods like the IS-pro approach use 16S-23S ribosomal interspace fragment
lengths to analyse microbial communities [192]. Although these methods are very
suitable for some specific tasks, they are not as widely applied as 16S. Several recent
studies are based on targeting other genes in addition to 16S in order to determine
the cell type of the forensic traces [193] or to perform skin sample identification using
only microbial targeting genes [59, 194]. These studies also suggest that traditional
16S data is not always sufficient for a meaningful metagenomic analysis of forensic
traces.
In recent years, the number of metagenomic studies based on the whole genome
shotgun (WGS) sequencing data type has grown [90, 195, 196, 197, 198]. Among
the main reasons for this are advantages in sequencing techniques allowing for the
generation of sufficient number of high-quality reads for the WGS datasets, and
bioinformatics algorithms to perform subsequent analysis of the big data. Though us-
ing WGS data avoids the biases introduced by 16S, it requires more computationally
intense analysis, as well as higher sequencing costs.
While many studies in the field of forensics are based on the analysis of 16S data [199],
"the capacity of WGS data of microbiomes to aid in forensic investigations by con-
necting objects and environments to individuals has been poorly investigated" [200].
Presently, WGS experiments are reserved for those studies for which analysis beyond
the taxonomical assignment is required: investigating the microbiomes’ functional
profile, correlation between metagenome and host genome, search for the possible
virulent genes, etc. The vast majority of taxonomical annotations is still performed
by using only 16S data, despite all known disadvantages of the method [90]. One of
the reasons for that is the lack of a well-performed benchmark study, comparing 16S
and WGS data types. The vast majority of existing metagenomics benchmarks are
created in order to evaluate the accuracy of various metagenomic profiles and com-
prise either only 16S [201] or only WGSdata [202, 203, 204, 205, 206, 117, 207, 208].
Existing benchmarks that can be used to compare 16S and WGS data types are in-
silico created and based on a random set of bacterial species, lacking the information
about whether or not the selected set of organisms might live together in the same
environment [97]. One of the main goals of this study is the creation of a set of
benchmarks allowing to compare the 16S and WGS data types using a set of in-vitro
DNA mixes of bacteria species inhabiting skin.
Over the last decade, the number of different techniques for metagenomics data
analysis has grown remarkably. The tools used for performing the taxonomical
annotation, can be split into several groups based on the following criteria: strategy
for reads assignment (alignment or matching based on the k-mers or sequences
signatures); the database against which the search is performed; the proportion of
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reads participating in the profiling (all reads, only one read per read group, only
reads with particular features).
To investigate which type of metagenomic data is preferable for accurate taxonomic
annotation, as well as to test which method of reads assignment yields more precise
output, we created a series of bacterial mixes with known content. Each metagenomic
mix incorporated 14 to 15 bacterial species belonging to 7 distinct bacterial genera.
Each mix had a distinct distribution of the species abundances. For the analysis
we selected two popular tools: Centrifuge [111] and MG-RAST [118]. These allow
analysis of amplicon and WGS sequencing data and both perform the metagenome
profiling by a comparison of sequencing data to a reference database. However, the
strategies for metagenome profiling they exploit are different.
We did not include other popular tools for metagenomic analysis in this study as they
either have a similar analysis strategy as the tools described above or are designed
only for WGS or amplicon data analysis. In many studies, QIIME [100], objectively
the most popular tool for amplicon data analysis, was shown to perform with the
same accuracy as the MG-RAST pipeline for 16S rRNA sequencing data [209].

2.2 Materials and Methods

2.2.1 DNA extraction and concentration measurement

Laboratory pure cultures of 15 bacterial species that frequently inhabit human
skin (Table 2.2) were grown with gentle shaking overnight at 37°C. Genomic DNA
was isolated with the Easy-DNA™ gDNA Purification Kit (Invitrogen™ Thermo
Fisher Scientific) using the standard protocol with ethanol precipitation [210]. RNA
contamination was removed using RNase A (Roche) and the DNA was stored at 4°C.
DNA concentrations were measured with the Qubit 3.1 Fluorometer (Invitrogen™).

2.2.2 Metagenomic mixes creation

Four bacterial mixes with known genome abundances were created for this research.
In order to achieve the desired species abundances, the estimated genome size
and the measured DNA concentration for each bacteria were used. One mix was
created to have a uniform- and other three mixes an exponential (λ = 1/6, λ = 1/2
and λ = 5/6) distribution of species abundances. From here on, these mixes are
referred to as EQ, EXP16, EXP12 and EXP56 respectively. Due to technical reasons,
Corynebacterium jeikeium was included only in EQ. The remaining 14 species were
used in all mixes.
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Step Temperature, °C Duration, min Cycles
Initial denaturation 95 3 1, hold
Denaturation 98 0.25 Ranged from 3 to 8

depending on
sample

Annealing 59 0.5
Extension 72 1.5
Final extension 72 5 1, hold

Table 2.1: PCR protocol for the WGS library preparation.

2.2.3 WGS sequencing library creation

DNA shearing was performed using the Covaris S2 sonicator (Covaris®) with the
following settings: duty factor = 10%, intensity = 2.5, cycles/burst = 200, temperature
= 6°C, total time, sec = 45. Size selection was performed on the sheared products
with Ampure XP beads (Agencourt) to maintain insert size around 450 base pairs.
Illumina sequencing libraries were prepared by ligating custom Illumina Truseq
adapters with dual barcoding (10 base pairs) using the KAPA Hyper Prep Library
Preparation kit (KAPA Biosystems, Inc.). To increase library yield, additional library
amplification was performed with KAPA HIFI HotStart ReadyMix using the PCR
protocol described in Table 2.1. To enable balanced pooling, sequencing libraries
were quantified in duplicate by real time PCR using the KAPA SYBR®FAST qPCR
kit. Quantification reactions were performed on a LightCycler®480 (Roche) using
a dilution series of PhiX control library (Illumina) as standard [210]. After pooling
the libraries, the final pool was quantified again using the same method to enable
optimal loading of the flow cell.

2.2.4 16S sequencing library creation

Previously published [211] Primers and PCR-protocol for the amplification of V3-V4
region of the 16S rRNA were used. Illumina sequencing libraries were prepared by
ligating custom Illumina Truseq adapters with dual barcoding (10 base pairs) using
the KAPA Hyper Prep Library Preparation kit (KAPA Biosystems, Inc.).

2.2.5 DNA sequencing

Sequencing of WGS and 16S libraries was performed on the MiSeq®sequencer
(Illumina) using v3 sequencing reagents according to the manufacturers’ protocol
with approximately 5% of PhiX control. This yielded one paired-end dataset with a
read length of 299 bp per sample.
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2.2.6 Bacterial genomes assembly

Sequencing reads for each bacterium were preprocessed using the Flexiprep qual-
ity control pipeline1. Post-QC reads were assembled by SPAdes Genome Assem-
bler [212] with default settings.

2.2.7 Regression analysis

k-mer counting was performed using command count of the kPAL toolkit [213] with
k set to 11. In case of the absence of the alternative DNA stand, k-mer profiles were
balanced with balance command of the kPAL toolkit. Linear regression was done
using the scikit-learn package for Python [214] with the fit_intercept parameter set
to "False". The model training and prediction was performed using 5-fold Cross
Validation.

2.2.8 Analysis using Centrifuge

Centrifuge is a popular tool that allows for fast classification of reads in a metage-
nomic sample using comparison of k-mers derived from each read to an indexed
database. Centrifuge performs classification for all reads in a metagenomic sample
independently using the following algorithm. For each read it creates a classifica-
tion tree by pruning the taxonomy and only retaining taxa (including ancestors)
associated with k-mers found in that read. Each node is weighted by the number
of k-mers mapped to the node, and the path from root to leaf with the highest sum
of weights is used to classify the read. A fast and effective comparison is achieved
using the genome indexing technique, which is based on the Burrows-Wheeler
transform [112] and the Ferragina-Manzini index [113]. To perform taxonomy as-
signment, Centrifuge requires an indexed database which is based on the reference
database and its associated phylogenetic tree. A number of popular and regularly
updated premade indexed databases are available on the Centrifuge website2. It is
also possible to create a custom Centrifuge indexed database.
Metagenomic mixes samples were subjected to a QC-check using FastQC3 (version
0.11.7). Leftover adapter removal and quality trimming of the reads was performed
with cutadapt [95] (version 1.16, using options --trim-n, --minimum-length = 50 and
--quality-cutoff = 20). The number of reads before and after each aforementioned step
can be found in supplementary Table S1. High quality pairs of overlapping reads
were merged with FLASH [215] (version 1.2.11, using option --max-overlap=300). For
the subsequent taxonomic classification with Centrifuge, both merged reads and
pairs of non-merged reads were used.

1Available online at http://biopet-docs.readthedocs.io/en/latest/pipelines/flexiprep/
2ftp://ftp.ccb.jhu.edu/pub/infphilo/centrifuge/data
3Available online at:http://www.bioinformatics.babraham.ac.uk/projects/fastqc
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Post-QC reads were analysed with Centrifuge (version 1-0-2-beta, default settings).
Three different reference databases were used for the analysis: RefSeq database of
complete genomes of bacteria and archaea [216] (downloaded as premade in April
2018 Centrifuge index); GreenGenes 16S sequences database (downloaded in June
2018) and SILVA 16S sequences database (downloaded June 2018). In order to make
the content of reference databases comparable, sequences marked as eukaryotic
were removed from SILVA database. Results obtained by Centrifuge were analysed
using the Pavian interactive browser application [217].

2.2.9 Analysis using MG-RAST

MG-RAST is a web-based tool that allows the user to upload sequences and their
metadata and download the analysis results. The MG-RAST pipeline creates a meta-
genomic profile by extracting rRNA and protein coding sequences. Gene calling is
performed by the FragGenescan [119] algorithm, predicted protein sequences are
clustered using UCLUST [101]. Potential rRNA genes are identified using BLAT [107]
against a reduced version of the SILVA database and clustered with UCLUST. From
each obtained cluster one representative sequence (the longest one) is chosen for the
comparison with a reference database (M5nr58 [218] for proteins and combination of
SILVA59, GreenGenes42 and RDP41 for rRNA analysis) using BLAT. All sequences
from a particular cluster are assigned to the same taxonomic group as the clusters’
representative. Thus, only rRNA genes and functional genes are used for the analysis
of the metagenome, and the reads assignments are not independent. This strategy
allows MG-RAST to perform taxonomic and functional profiling of metagenomic
data. Finally, MG-RAST supports different metagenomic datatypes: genomic (in-
cluding WGS and 16S) and transcriptomic. It also considers the metagenome origin,
sequencing platform and many other features to tune the pipeline for a specific task.
Raw reads of bacterial mixes samples were submitted to the MG-RAST Metageno-
mics analysis server under project number 85582. Paired reads merging and quality
control was performed as part of the standard MG-RAST pipeline.

2.2.10 Taxa abundance estimation and results evaluation

Since the 16S amplification product has the same length among all bacterial taxa,
no correction for genome length is needed when estimating relative abundances of
the taxa. For the WGS samples however, normalization of read counts is required
because of the differences in genome lengths. In order to perform correct taxa
abundance estimations for taxonomic ranks higher than species, it is important
to know how many reads assigned to that taxon belong to each species within
the taxon. Both tools, Centrifuge and MG-RAST, assign reads to a node in the
phylogenetic tree. Thus, reads assigned to a particular genus, for example, might
belong to each of the species included to that genus as well as to the genus itself,



34 Sec. 2.2. Materials and Methods

without species annotation. The main assumption of our approach for the estimation
of taxa abundances is the following: all reads, assigned to the node higher than
species level (regardless of whether or not they have species annotation), will be
distributed among the species belonging to that node the same way as the reads
with known species annotation. If the estimated abundances for species were known
(in case of taxonomic annotation with Centrifuge), the procedure is trivial. When
performing the analysis with MG-RAST the reads are classified only up to the genus
level. In that case an equal distribution of reads among the species belonging to the
particular genus was assumed.

2.2.11 Statistical and correlation analysis
Correlation analysis was performed using the Pearson correlation coefficient, pair
wise comparisons were performed using the two-sided Mann-Whitney U test [219]
and False Discovery Rate (FDR, a statistical approach used in multiple hypothe-
sisto correct for multiple comparisons) control was performed using the Benjamini-
Hochberg procedure [220]. We used the ratio of properly predicted taxa to all taxa
predicted at that rank as a measure for the precision. Sensitivity was calculated as
the ratio of properly predicted taxa to all taxa that were supposed to be present in
the sample at that rank. F-scores (a measure of accuracy that considers both precision
and sensitivity) were calculated as described in [221].
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2.3 Results and Discussions

2.3.1 Individual bacterial genomes assembly

We sequenced and assembled the genomes of all 15 selected skin-associated bacteria
individually. The total length of the assembly for each species was comparable to
the length of the species references (Table 2.2 and section S1 of the Supplementary
materials). For one species ( A. lwoffii) there was no reference sequence available.
Obtained assembly lengths as well as the DNA concentration measured for each
bacterium were used to create four metagenomic mixes: one with equal and three
with exponential (λ = 1/6, λ = 1/2 and λ = 5/6) distribution of bacterial species
abundances. Taxa abundances were ordered from high to low as shown in Fig. 2.1.

2.3.2 Estimation of reference abundances

In order to estimate an abundance of an organism in terms of genome copies, the
length of the genome and the lengths and (relative) copy numbers of any plasmids
needs to be known. In the absence of a strain-specific reference sequence, de novo
assembly of a single organism can be used to obtain these data [222]. In most
common approaches [223], the coverage (and thereby the copy number) of contigs
(see Supplementary Fig. S1) is not considered when estimating an assembly length,
which leads to an inaccurate estimation of the organisms’ genome length and thus
influence the accuracy when creating bacterial mixes (see Supplementary Fig. S2 for
a step-by-step explanation). Other factors, such as inaccuracy in DNA concentration
measurement or mixing, can also lead to different abundances in the final bacterial
mixes from those intended.
Since the content of all our metagenomic mixes is known and individual assemblies
of all bacterial species were available, the intended distribution of bacterial abun-
dances in the metagenomic mixes could be verified using the following approach.
We used k-mer counts as a proxy for the number of genomes present in a pure
(unmixed) sample. Using these counts, we are able to infer the relative contributions
to a mixture. We use randomly chosen k-mers from the pure samples as profiles for
the organisms, the same k-mers are used to make a profile of the mix and by linear
regression, we estimate the contribution of each profile and thereby the contribution
of each organism to the mix. For a more detailed description and a motivational
example, see Section S1 and Figure S2 of the Supplementary materials. We calcu-
lated the 11-mer profiles for each bacteria using the contigs obtained after individual
genome sequencing and assembly. Since profiles were calculated using contigs, we
compensated for the absence of the reverse-complement DNA strand. We also cal-
culated the 11-mer profiles of the WGS datasets of each of the metagenomic mixes,
in these cases strand balancing was not applied. The 11-mer profiles were used to
build a linear regression model in which the individual bacterial k-mer counts were
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treated as independent variables and the k-mer counts of the metagenomic mix
served as dependent variable.

Bacteria Number
of

contigs

Accession
number

Reference
length,
Mb

Assembly
length,
Mb

Acinetobacter johnsonii ATCC
17969

206 NZ_CP010350.1 3.51 3.88

Acinetobacter lwoffii ATCC
15309

180 NA NA 3.44

Corynebacterium jeikeium
ATCC 43734

234 NC_007164.1 2.46 2.6

Corynebacterium urealyticum
ATCC 43042

99 NC_010545.1 2.37 2.35

Moraxella osloensis NCTC
10145

89 CP014234.1 2.43 2.58

Propionibacterium acnes ATCC
6919

26 NC_017550.1 2.49 2.55

Pseudomonas aeruginosa ATCC
10145

99 NC_002516.2 6.26 6.35

Staphylococcus aureus ATCC
29213

45 NZ_CP009361.1 2.78 2.72

Staphylococcus capitis ATCC
27840

52 NZ_CP007601.1 2.44 2.6

Staphylococcus epidermidis
ATCC 12228

142 NC_00446 2.5 3.3

Staphylococcus haemolyticus
ATCC 29970

770 NC_007168.1 2.69 2.86

Staphylococcus saprophyticus
ATCC 15305

351 NC_007350.1 2.15 1.89

Streptococcus piogenes ATCC
19615

65 NZ_CP008926.1 1.84 1.82

Staphylococcus xylosus ATCC
29971

97 NZ_CP008724.1 2.52 2.74

Streptococcus mitis LMG 14552 49 NC_013853.1 2.76 2.83

Table 2.2: Bacterial species used for metagenomics mixes.

To verify the intended distribution of bacterial abundances in the metagenomic
mixes, we use k-mer counts as a proxy for the number of genomes present in a pure
(unmixed) sample. Using these counts, we are able to deconvolute a mixture. We
use randomly chosen k-mers from the pure samples as profiles for the organisms,
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the same k-mers are used to make a profile of the mix and by linear regression,
we estimate the contribution of each profile and thereby the contribution of each
organism to the mix. For a more detailed description and a motivational example,
see section S1 and Figure S2 of the Supplementary materials. We calculated the 11-
mer profiles for each bacterum using the contigs obtained after individual genome
sequencing and assembly. Since profiles were calculated using contigs, we compen-
sated for the absence of the reverse-complement DNA strand. We also calculated
the 11-mer profiles of the WGS datasets of each of the metagenomic mixes, in these
cases strand balancing was not applied. The 11-mer profiles were used to build a
linear regression model in which the individual bacterial k-mer counts were treated
as independent variables and the k-mer counts of the metagenomic mix served as
dependent variable.
Since k-mer counts within one profile might be correlated, which violates the con-
dition for using the regression analysis, we did not analyse the complete profile of
4,194,304 possible 11-mers. Instead we performed 1,000 iterations, in each iteration
choosing 10,000 random k-mers and performing the regression analysis on that
subset of k-mers. Thus, for each organism we got 1,000 estimations of its abundance
in each mix. The result of this analysis is presented in Figure 2.1. Each boxplot
shows the distribution of the organisms’ abundances obtained from the regression
analysis. The median model fit of the cross-validated models (measured using the
R2 coefficient of determination) for each mix was larger than 0.95, accuracy of the
prediction (also measures using the R2 but on the data that did not participate in the
model training) ranged from 0.80 to 0.92 depending on the mix.
The regression analysis confirmed the distribution of bacterial abundances we aimed
for (uniform distribution turning into the exponential one), though for some species
(e.g., S. haemoliticus and P. aeruginosa), slight positive or negative deviations from
the anticipated values were found. This can be caused by a number of factors such
as inaccuracy in the DNA concentration measurement or DNA mixing, presence of
large amounts of non-chromosomal DNA (e.g., plasmids) in the pool of bacterial
DNA or inaccuracy in bacterial genome size estimation.
We use the results of this analysis as reference abundances for the experiments done
in section 2.3.5.

2.3.3 Analysis of bacterial mixes using Centrifuge and MG-RAST

The mixes were sequenced on the Illumina MiSeq using WGS (samples EQ_WGS,
EXP16_WGS, EXP12_WGS and EXP56_WGS) and 16S for V3-V4 region (samples
EQ_16S, EXP16_16S, EXP12_16S and EXP56_16S) protocols. Information about read
counts and QC statistics for each obtained dataset can be found in Supplementary
table S1.
WGS and 16S samples obtained from our four metagenomic mixes were analysed
with Centrifuge using the RefSeq complete bacterial genomes database. We per-
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Figure 2.1: Regression analysis performed for metagenomic mixes to estimate relative abundances. Results for each mix
are shown on a separate plot. Each boxplot represents the distribution of regression coefficients (vertical axes) obtained
for the particular organism (horizontal axes), thus representing the distribution of bacterial abundances within that
particular mix.

formed additional analysis for 16S samples using Centrifuge with the GreenGenes
and SILVA reference databases.

All eight datasets (four WGS and four 16S) were submitted to the MG-RAST Meta-
genomics analysis server under project number 85582. RefSeq and GreenGenes
databases provide taxonomic annotation down to the species level, while SILVA
database as well as the databases used by MG-RAST are restricted to the genus level.
Since the NCBI taxonomy and the taxonomy used by MG-RAST were different at
the order level for our set of bacteria, we excluded annotation at the order level from
further analysis.
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2.3.4 Profiling accuracy without considering relative abundances

Because the content of the metagenomic mixes is known, we can verify how many
of the reported taxa on each taxonomic rank are correct (true positive counts), how
many are incorrect (false positive counts) and how many are missed (false negative
counts).
Using these counts, both precision and sensitivity can be calculated. A perfect predic-
tion is made if both precision and sensitivity equal one. As can be seen in Figure 2.2,
both precision and sensitivity tend to increase in all cases with increasing taxonomic
rank. For all 16S datasets analysed with Centrifuge, we observe that precision never
reaches its maximum value, while for WGS datasets analysed with Centrifuge preci-
sion reaches its maximum already at the genus level. Interestingly, for 16S datasets
analysed with MG-RAST, precision reaches its maximum at the genus level, but the
sensitivity does not increase any further. For WGS datasets analysed with MG-RAST,
sensitivity reaches its maximum already at the family level.
The accuracy of the classifications can be expressed using the F-score, which is
calculated using precision and sensitivity. We tested whether the F-scores differed
significantly for each pair-wise comparison using the Mann-Whitney U test and the
Benjamini-Hochberg procedure for FDR control. The full table of p-values can be
found in Supplementary Table S2, a summary of the results is shown in Figure 2.3.
In most cases, the F-scores differ significantly when comparing WGS to 16S. At
the same time, when comparing WGS datasets with different tools, a significant
difference was observed only at the genus level.

2.3.5 Abundance assignment accuracy

Both Centrifuge and MG-RAST provide read counts for each reported taxon. We
considered only reads that were assigned to the expected taxa and compared their
relative abundances to the reference abundances.
Only Centrifuge, when using either the RefSeq or GreenGenes database, reported the
taxonomic assignment down to the species level. In Figure 2.4, each metagenomic
mix is shown as a separate graph with species listed on the horizontal axes and
their relative abundances shown on the vertical axes. The black line represents
the intended distribution of species abundances. The dark green line shows the
mean reference abundances with the light green area representing ±3 standard
deviation around those means. The blue and red lines show the relative abundances
obtained for 16S and WGS datasets respectively, with the solid blue line for the
16S analysis done using the RefSeq database and the dashed blue line using the
GreenGenes database. As can be seen in Figure 2.4, the analysis of 16S data results
in a considerable overestimation of abundance of A. johnsonii. Centrifuge failed
to identify A. lwoffii, since there is no complete genome of that bacterium in the
RefSeq database and it did not report any significant presence of C. jeikeium in
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Figure 2.2: Precision vs. sensitivity of different profiling approaches. Results for each mix and taxonomic rank are
shown separately, with sensitivity on the horizontal axes and the precision on the vertical axes. Each shape represents
a combination of method, data type and reference database. RS - RefSeq database, GG - Greengenes database, S - SILVA
database.

the exponentially distributed metagenomic mixes. Analysis of the 16S datasets
using the GreenGenes database reported overestimated values for S. epidermidis and
A. johnsonii and did not report the presence of nine out of fifteen bacteria because of
their absence in the GreenGenes database.
We repeated the same analysis on three higher taxonomic ranks: genera, families
and phyla. For all these three taxonomic levels we analysed the results of Centrifuge
(Figure 2.5) and MG-RAST (Figure 2.6). As can be seen in Figure 2.5, the Centrifuge
analysis of 16S datasets using different reference databases provided a similar biased
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Figure 2.3: Comparison of F-scores (combination of precision and sensitivity) obtained from all four mixes for different
combinations of methods, data type and databases. Red dots indicate a p-value below 0.05. Combinations of methods,
data type and database are shown on the horizontal axis, taxonomic levels are shown on the vertical axis. RS - RefSeq
database, GG - Greengenes database, S - SILVA database. Please note that data points are connected only to visualize
the various types of distributions.

output, mostly due to an overestimation of the abundance of the Acinetobacter
genus, Moraxelaceae family and Proteobacteria phylum. The dissimilarity with
the reference abundances is especially pronounced at the phylum level. Results
obtained for the WGS datasets with Centrifuge were concordant with the reference
abundances with slight deviation for Acinetobacter genus, Moraxelaceae family and
Proteobacteria phylum (Figure 2.5). It is interesting to note, that these taxa were also
the major reason for disagreement between results obtained by Centrifuge for 16S
datasets and reference abundances.
The results obtained for different 16S datasets by MG-RAST were not consistent
(as is the case for Centrifuge) up to the phylum level. As can be seen in Figure 2.6,
analysis of 16S datasets with MG-RAST reported many disagreements with reference
abundances. The reasons of those disagreements are dataset- and taxonomy rank-
specific. Results reported by MG-RAST became more or less consistent only at the
phylum level, where they followed the same trend: overestimating the abundance
of Firmicutes relative to that of Proteobacteria.
Abundances obtained after analysis with MG-RAST of WGS datasets were also
following the reference results closely. There were, however, slight deviations from
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Figure 2.4: Comparison of relative abundances reported by Centrifuge (using two different reference databases) for
WGS and 16S with relative abundances obtained from the regression analysis. Results for each mix are shown sepa-
rately with the species’ names on the horizontal axes and the relative abundance on the vertical axes. Ref - reference
abundances, RS - RefSeq database, GG - GreenGenes database. Please note that data points are connected only to
visualise the various types of distributions.

the reference abundances. These deviations were, like the results for 16S datasets,
specific to taxonomy-rank and dataset.
In order to quantify the dissimilarity among the abundances provided by the differ-
ent methods, datasets, reference databases and the results of regression analysis we
calculated the absolute differences in abundances for each particular dataset and
taxonomic rank. The averages of these values (from here on called the error rate)
are reported in Figure 2.7. For the analyses of 16S datasets it is interesting to note
that for Centrifuge the average error rate grew with the increase of the taxonomic
rank in general. This was not the case for the error rate obtained for the 16S datasets
using MG-RAST. We tested whether the average errors differed significantly for each
pair-wise comparison using the Mann-Whitney U test and the Benjamini-Hochberg
procedure for FDR control. The full table of p-values can be found in Supplementary
Table S3, a summary of the results is shown in Figure 2.8. This analysis demonstrates
that for all taxonomic levels the error rates in the abundance estimations provided
by the analysis of 16S datasets (regardless of the method or reference database)
are significantly different (higher) compared to the abundances reported for WGS
datasets. We did not observe any significant difference in average error rate between



CHAPTER 2. TAXONOMIC CLASSIFICATION AND ABUNDANCE ESTIMATION USING 16S AND
WGS - A COMPARISON USING CONTROLLED REFERENCE SAMPLES 43

0

10

20

30

40

50

A
b
u
n
d
a
n
c
e
,
%

Expected

Ref

16S, RS

16S, GG

16S, S

WGS, RS

0

10

20

30

40

50

A
b
u
n
d
a
n
c
e
,
%

Expected

Ref

16S, RS

16S, GG

16S, S

WGS, RS

0

10

20

30

40

50

A
b
u
n
d
a
n
c
e
,
%

Expected

WGS, Ref

16S, RefSeq

16S, GG

16S, S

WGS, RS

S
ta
p
h
y
lo
c
o
c
c
u
s

S
tr
e
p
to
c
o
c
c
u
s

A
c
in
e
to
b
a
c
te
r

M
o
ra
x
e
ll
a

P
s
e
u
d
o
m
o
n
a
s

C
u
lt
ib
a
c
te
ri
u
m

C
o
ry
n
e
b
a
c
te
ri
u
m

GENERA

0

10

20

30

40

50

60

A
b
u
n
d
a
n
c
e
,
%

Expected

Ref

16S, RS

16S, GG

16S, S

WGS, RS

0

10

20

30

40

50

A
b
u
n
d
a
n
c
e
,
%

Equal distribution

Expected

Ref

16S, RS

16S, GG

16S, S

WGS, RS

0

10

20

30

40

50

A
b
u
n
d
a
n
c
e
,
%

Exponential distribution, lambda = 1/6

Expected

Ref

16S, RS

16S, GG

16S, S

WGS, RS

0

10

20

30

40

50

A
b
u
n
d
a
n
c
e
,
%

Exponential distribution, lambda = 1/2

Expected

Ref

16S, RS

16S, GG

16S, S

WGS, RS

S
ta
p
h
y
lo
c
o
c
c
a
c
e
a
e

S
tr
e
p
to
c
o
c
c
a
c
e
a
e

M
o
ra
x
e
ll
a
c
e
a
e

P
s
e
u
d
o
m
o
n
a
d
a
c
e
a
e

P
ro
p
io
n
ib
a
c
te
ri
a
c
e
a
e

C
o
ry
n
e
b
a
c
te
ri
a
c
e
a
e

FAMILIES

0

10

20

30

40

50

60

A
b
u
n
d
a
n
c
e
,
%

Exponential distribution, lambda = 5/6

Expected

Ref

16S, RS

16S, GG

16S, S

WGS, RS

20

40

60

80

A
b
u
n
d
a
n
c
e
,
%

Expected

Ref

16S, RS

16S, GG

16S, S

WGS, RS

10

20

30

40

50

60

70

A
b
u
n
d
a
n
c
e
,
%

Expected

Ref

16S, RS

16S, GGe

16S, S

WGS, RS

0

20

40

60

80

A
b
u
n
d
a
n
c
e
,
%

Expected

Ref

16S, RS

16S, GG

16S, S

WGS, RS

F
ir
m
ic
u
te
s

P
ro
te
o
b
a
c
te
ri
a

A
c
ti
n
o
b
a
c
te
ri
a

PHYLA

0

20

40

60

80

A
b
u
n
d
a
n
c
e
,
%

Expected

Ref

16S, RS

16S, GG

16S, S

WGS, RS

Figure 2.5: Comparison of relative abundances reported by Centrifuge (using three different reference databases) for
WGS and 16S datasets on genera, orders and phyla levels with relative reference abundances. In the above grid of
figures each row indicates the mix and each column indicates the taxonomic level. In each figure, the taxa are shown
on the horizontal axes and the relative abundances are shown on the vertical axes. Ref - reference abundances, RS -
RefSeq database, GG - GreenGenes database, S - SILVA database.

WGS datasets analysed with Centrifule and MG-RAST.
We compared the error rates reported by Centrifuge when using the three different
16S reference databases. Error rates observed in the analysis with RefSeq and Green-
Genes databases were similar. Running the Centrifuge analysis using the SILVA
database reported a much higher error rate. That might be a direct consequence of
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Figure 2.6: Comparison of relative abundances on reported by MG-RAST for WGS and 16S datasets on genera, orders
and phyla levels with relative reference abundances. In the above grid of figures each row indicates the mix and
each column indicates the taxonomic level. In each figure, the taxa are shown on the horizontal axes and the relative
abundances are shown on the vertical axes. Ref - reference abundances

taxonomic annotation done using the SILVA database where a smaller proportion of
reads was assigned to the expected taxa in comparison to other reference databases
(see the section 2.3.4).
We also evaluated the similarity among the abundances obtained by employing
distinct methods and databases using a correlation analysis. In Figure 2.9 the results
of these comparisons are presented as a series of heatmaps.
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Figure 2.7: Average error between the abundances reported by the regression analysis and results obtained for different
datasets, reference databases and tools. Results for each metagenomics mix are shown separately. Bar colours represent
the tool, data type and reference database combination used for the analysis. The error rate (shown on the vertical
axes) was calculated for each taxonomic rank (shown on the horizontal axes) separately. RS - RefSeq database, GG -
GreenGenes database, SILVA - SILVA database

As can be seen from Figure 2.9, abundances obtained by the analysis of WGS data
(Centrifuge and MG-RAST) for all datasets at all taxonomic levels positively correlate
with reference abundances. Correlation of 16S analysis obtained using Centrifuge
with the reference abundances becomes worse at higher taxonomic levels, which is
the opposite for the 16S data results obtained using MG-RAST. The 16S data analyses
obtained for Centrifuge and MG-RAST do not demonstrate positive correlation with
each other.

2.4 Conclusions

In this study we created a series of bacterial mixes with known content in order
to investigate which type of metagenomics data and reads assignment strategy
yields better taxonomic classification. For each mix we generated WGS and 16S
sequencing datasets and analysed them using Centrifuge with RefSeq, GreenGenes
and SILVA reference databases and the MG-RAST metagenomics analysis server
with M5nr and M5nra reference databases. We compared the results of all analysis
done with Centrifuge and MG-RAST to the reference abundance profiles obtained
from a regression k-mer-based regression analysis.
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Figure 2.8: Comparison of average errors obtained from different mixes for different combinations of methods, data
type and databases. Combinations of methods, data type and database are shown on the horizontal axis, taxonomic
levels are shown on the vertical axis. Red dots indicate a p-value below 0.05. RS - RefSeq database, GG - GreenGenes
database, SILVA - SILVA database

The results from both Centrifuge and MG-RAST show that WGS datasets provide
much more accurate results in comparison to 16S-based methods. The analysis of
WGS data displayed better coverage of all taxa expected to be present in the mixes
on all phylogenetic levels, reaching the maximum accuracy already at the genus
level for Centrifuge and at the family level for MG-RAST. On the other hand, results
obtained for 16S-based data were often missing several taxa and/or had very high
false-positive rate. Centrifuge analyses based on the 16S datasets were suffering
from low precision, while MG-RAST analysis of the 16S datasets had low sensitivity.
Abundance profiles obtained from WGS demonstrated much less disagreement with
the expected abundances in comparison to the abundance profiles based on 16S
data. This was shown using two different measurements: the average (per taxonomy
rank) absolute difference between abundance profiles and by a correlation analysis.
For 16S datasets analysed with Centrifuge, the deviation from the reference abun-
dances, introduced at the species/genus levels, propagated further up the taxonomy
which led to a greater difference with the expected outcome on the higher taxonomic
ranks as well. In contrast, the analysis of 16S datasets performed by the MG-RAST
pipeline demonstrated greater differences with the reference abundances on the
lower taxonomic ranks in comparison with the higher ones. Our correlation anal-
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Figure 2.9: Correlation between the abundance profiles obtained for different combinations of method, datasets and
reference database on distinct taxonomic levels. In the above grid of figures each row indicates the mix and each
column indicates the taxonomic level. The combination of analysis type, dataset and reference database are shown on
the main diagonal of the heatmap, with the lower triangle representing the correlation shown in colors and the upper
triangle demonstrating the same data in the numeric representation. Ref - reference abundances, * - Centrifuge, ** -
MG-RAST, RS - RefSeq database, GG 435 - GreenGenes database, S - SILVA database.

ysis shows that the agreement between the MG-RAST results of 16S datasets and
reference abundances was growing with increasing taxonomic level.
Both tailor-made 16S databases (GreenGenes and SILVA) did not perform better than
the RefSeq database when analysing 16S datasets using Centrifuge. The Centrifuge
results using RefSeq and GreenGenes databases were correlated with a correlation
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coefficient higher than 0.95 for all 16S datasets on each taxonomic rank starting with
genus.
We conclude that WGS data is preferable for the study of metagenomic data, espe-
cially when the correct inhabitant abundances are required. We could not determine
which of the explored methods for the taxonomic assignment of the WGS data
provides a more accurate outcome. Centrifuge, however, has minor advantages in
comparison to MG-RAST, such as a faster, deeper and slightly better reads classifi-
cation, the possibility of local installation and use of custom databases and a more
flexible tuning of the tools’ settings. Among the investigated techniques for 16S
metagenomic data analysis, MG-RAST demonstrated slightly better results in both
reads assignment and abundance estimation, albeit only at higher taxonomic ranks.
As previously quoted, "the capacity of WGS data of microbiomes to aid in foren-
sic investigations by connecting objects and environments to individuals has been
poorly investigated". In light of this, our results are especially important, as they
demonstrate the inefficiency of routine 16S data to produce the accurate taxonomical
profiling.
The synthetic metagenomes created in our study is restricted to DNA of bacteria
that inhabit skin surface - a logical target for forensics analysis. However, human
skin is also the environment with one of the most within- and between-individual
diverse microbiota on the human body. The benchmark we created is rather small
and simple as the diversity of microbial species living on the human skin surface
is much larger than only 15 species [224]. The significant inaccuracy of the results
obtained for 16S data in comparison with those for WGS data on a small and simple
set of benchmarks can possibly question the accuracy of the previous 16S-based
forensic studies, at least those done on skin-associated microbial communities.
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