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1.1 Why metagenomics

METAGENOMICS is a new and rapidly developing branch of microbiology. In
this chapter we will explain its advantages, list its possible applications and

give an overview of the most valuable scientific findings in recent years that were
made using mainly metagenomics approaches. Please note that the terms "microbes"
and "microorganisms" in this chapter, as well as in the entire thesis, primarily refer
solely to bacteria and archaea (another domain of prokaryotes distinct from bacteria).

We have all been taught about the importance of frequently washing our hands based
on the unquestionable assurance stating that "microbes are everywhere". Though
we often do not see them, we are well aware of their presence and possible harmful
impact. However, not everyone can imagine that these little creatures, microbes, are
the cornerstones of our biosphere.
Microorganisms are involved in a vast number of processes on our planet, making
it a habitable and sustainable ecosystem [1, 2, 3, 4, 5]. They are key players in the
biochemical cycling of elements such as carbon, nitrogen, oxygen and sulfur [6, 7, 8,
9, 10]. Most importantly, microbes can turn compounds that contain these elements
into forms accessible by other organisms. Through billions of years of evolution,
microorganisms became absolutely necessary symbionts for the majority of multi-
cell life forms. Microbial communities are providing their hosts with the necessary
vitamins, metals and nutrients [11, 12, 13]. They maintain digestion, flush out toxins
and fight parasites (which are often microorganisms themselves) [14, 15, 16, 17, 18].
Besides being in a close symbiotic association with other life forms, microbes learned
how to live in extreme environments where no other organisms can survive. In
order to do so, microorganisms developed countless strategies allowing them to
maintain their metabolism in the presence of for example severe temperatures,
pressures, pH levels and combinations of these and other factors [19, 20, 21, 22]. The
description of the roles of microbes in our biosphere would not be complete without
mentioning their contribution to technology. Microorganisms are being utilized for
fast and cheap food, drugs and chemical production, food fermentation, agricultural
improvements, soil and water depollution, biological fuel and many other aspects
that improve the quality of life [23, 24, 25, 26, 27, 28, 29, 30].
Investigation of microbes is extremely beneficent for humanity; it contributes to un-
derstanding the biochemical landscape of the biosphere, medicine, food production,
farming, agriculture and many other fields.
Historically, microbiology - the study of microorganisms - was based on the descrip-
tion and comparison of organisms’ morphological features, growth, and biochemical
profiles [31, 32]. These techniques were applied to single organisms, grown sepa-
rately as a pure culture without any ecological context. The invention of automated
DNA sequencing in late 1970s allowed researchers to understand the genetic basis
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underlying previous microbiological discoveries [33, 34]. It also became clear that the
standard laboratory culture-based way of investigating microorganisms is restricted
because of two main reasons: only a very small fraction of microorganisms has been
found to be cultivable and functions performed by microorganisms are conducted
within complex communities.
In 1985 the "great plate count anomaly" was discovered, the absolute majority of
microorganisms that can be seen through the microscope cannot successfully be
taken from the environment to laboratory cultivation [35]. The estimate was that
only 0.1-1% of the total variability of microbiological species, habituating soil, can
be grown under laboratory conditions. The cultivable fraction from some other
environments can be thousands of times smaller. Furthermore, the organisms that
can be cultivated, are not necessarily the most dominant or influential for a particular
environment, but rather favoured by the cultivating conditions.
Metabolic functions performed by microorganisms are conducted within complex
communities - microbiomes. The compositions of those communities are tailored to
their particular environment and adapt swiftly to environmental change. Investigat-
ing the isolated separate members of such complicated entities as microbiomes often
lead to incomplete and sometimes even incorrect conclusions, as the organisms’
properties and behaviour within a community might differ drastically from those
in a pure laboratory culture. Thus, the pure culture paradigm limits not only the
number of organisms for studies, but also the understanding of microbes functioning
as a whole. The shift from pure cultures to the community, from the individual to
interaction, is the solution to the aforementioned problems.
Rapid improvements in sequencing techniques as well as deeper understanding
of the microbial genome led to the origin of metagenomics - the direct genetic
analysis of genomes contained within an environmental sample [36, 37, 38, 39, 40].
In pioneering metagenomics studies amplification of genes conserved among all
microorganisms was conducted directly from an environmental sample, followed
by cloning of the obtained amplicons into bacterial vectors and subsequent se-
quencing [41, 42]. The results were in agreement with the expectations: the reported
biodiversity was much higher than the estimation obtained using the culture-based
methods. These first revolutionary studies turned metagenomics into the most dy-
namic and quickly developing field within microbiology. Since then, the amount of
metagenomics projects targeted on different environments has grown extensively,
adapting different sequencing techniques, data types and bioinformatics algorithms
which will be discussed in detail in the following chapters of this thesis.
As previously mentioned, microbial communities can be found practically every-
where on our planet. This provides metagenomics with unlimited options for scien-
tific research. Metagenomics revolutionized the entire studies of microbial diversity
and evolution by providing access to the "hidden phylogenetic composition of com-
plex environmental microbial communities" [38]. The employment of metagenomics
also allows functional and metabolic potentials of a particular metagenome to be
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investigated. This all makes metagenomics a powerful tool, that can be used by
researchers in an extensive range of projects.
The most popular and developed area of metagenomic studies is the investigation
of microbiomes associated with other organisms, particularly human. The Human
Microbiome Project (HMP, launched in 2008) and Integrative Human Microbiome
Project (iHMP, launched in 2014) were announced as "a logical conceptual and ex-
perimental extension of the Human Genome Project", which stressed the importance
of understanding human-microbe interaction [43, 44]. These projects received more
than $170,000,000 in funding and contributed substantially to the understanding of
the human microbiome with regards to health and disease, as well as contributed
to developing diagnostics and treatment strategies based on metagenomics knowl-
edge, association of particular communities with individuals and populations and
correlations between the host genetics and microbiota [45, 46, 47, 48, 49, 50].
Studying microbial ecosystems in order to predict possible processes, changes and
sustainability of particular environments is another popular topic in metagenomics.
For example, various different studies contribute to understanding of how microor-
ganisms maintain the atmosphere. Notably, it was shown that - contrary to the
widely held belief - more than half of photosynthesis on our planet is performed by
bacteria [51, 52]. Marine metagenomic investigations have shown that viruses are by
far the most abundant group of marine life (both cellular and non-cellular), compris-
ing approximately 94% of the nucleic-acid-containing particles [53]. The discovery
of new microbial species and their functional and metabolic potential within a micro-
biome helps researchers to build better models for the microbiome-environment
interaction, thus contributing to the microbial ecology field.
Exploring new metabolic pathways and discovering functional genes is the most
important feature of metagenomics for technological uses. Genes isolated from soil
metagenomes are successfully being used for the production of biofuels and for
the tolerance of other microbiota to byproducts of biofuel production [30]. Various
newly discovered biosynthetic capacities of microbial communities benefit the pro-
duction of industrial, food and health products as well as contribute to the field of
bioremediation [54, 55, 56, 57].
Last but not least, metagenomic projects can be implemented in various fields such
as forensics [58, 59, 60, 61]. Mostly through skin microbiota, people leave marks
on objects they touch and on the surfaces of houses they live in. Several studies
have shown that human microbiota can be used to match touched subjects like
computer keyboards or mobile phones and their owners [62, 63]. Recent research has
shown a correlation between metagenomic DNA of household surfaces and the skin
microbiome of its inhabitants [64, 65, 66, 67]. A number of studies were conducted
for the identification of microbes associated with particular human cohorts, in order
to use those microbes as signatures when analysing forensic traces [68].

The application area of metagenomics keeps expanding, challenging the scientific
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community to try new sequencing techniques and to develop new bioinformatics
tools and approaches for metagenomic data interpretation.

1.2 Metagenomics sequencing data

In this chapter we will introduce the most common types of data used in metage-
nomics, their advantages and disadvantages and possible sequencing platforms to
acquire this data. This serves as a motivation behind the use of particular types of
metagenomic data for each of the studies included in this thesis.
Technological advances in high-throughput sequencing enabling culture- and clo-
ning-free microbiome analysis has led to a sharp growth of metagenomics studies in
last 20 years. However, the data types used for the microbiome investigation remain
quite conservative.

1.2.1 Amplicon sequencing data

The first datatype we will discuss is based on sequencing only one marker gene
from each organism in the microbiome and performing the phylogenetic reconstruc-
tion of the microbiome content using this data. The most common target for such
microbiome profiling is the 16S ribosomal (rRNA) gene. This approach was used in
the pioneer metagenomics studies as well as for the major metagenomics projects
such as Human Microbiome Project. The 16 rRNA gene is highly conserved among
bacteria and archaea. The entire locus, which is about 1500 nucleotides long, contains
conserved regions as well as 9 hypervariable regions (V1-V9) which are 30-100 base
pairs long. Hypervariable regions provide phylogenetic signatures on different taxo-
nomic levels. This important feature makes the 16S rRNA gene analysis prevalent
for the classification of bacteria without the need for costly and elaborate phenotypic
identification. Between the hypervariable regions of the 16S rRNA gene lie highly
conserved sequences, which can be targeted by universal primers that can reliably
produce the same sections of the 16S sequence across different taxa [69, 70, 71, 72].
Historically, both whole-locus and partial sequencing of the 16S rRNA gene was
performed using the Sanger platform. However, since this approach is laborious,
costly and has a low throughput, it was substituted first with 454-pyrosequencing
and later with Illumina sequencing platforms. Presently, Illumina MiSeq is the
most popular sequencing platform for 16S rRNA data due to its cost efficiency and
improved community coverage in comparison to the 454-pyrosequensing platform.
Recent studies suggest implementing full-length 16S rRNA gene sequencing by
using the PacBio single molecule, real-time (SMRT) technology [73]. This approach
is still questionable due to the high error rate of PacBio sequencing and requires
large amounts of DNA for conducting the experiment.
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The importance of the 16S rRNA gene for bacterial classification led to the exis-
tence of several curated databases designed to contain reference sequences and
taxonomical classification exclusively for the 16S gene or its parts. The most well-
known databases are the Ribosomal Database Project (RDB) [74, 75], SILVA [76] and
GreenGenes [77]. These databases contain minor variations.
While 16S sequencing remains the most popular and routine procedure for metage-
nomics analysis, it has become clear that the method contains several biases, which
might influence the final outcome of the analysis drastically. The level of conserva-
tion varies between different hypervariable regions [78]. Thus, the accuracy of the
analysis based on the 16S rRNA sequencing directly depends on the choice of the
hypervariable region or the combination of the regions. Various studies were done
in order to identify the best hypervariable region suitable for the deep taxonomical
analysis. However, their outcome was directly dependent on the type of microbiota
used for the analysis and even on the choice of the sequencing platform. Recent
studies [79, 80, 73] suggested using the sequence of the entire 16S rRNA molecule in
order to solve this problem. However, this method is much costlier in comparison
with the standard amplification of one or several variable regions. Whilst the 16S
rRNA gene was considered to be a perfect phylogenetic marker before, there have
recently been reports, showing that for certain taxa the 16S sequencing data analysis
fails to differentiate between closely related organisms [81, 82]. Consequently, the
search for and subsequent sequencing of other taxon-specific genes is required. Even
the most popular and universal PCR primers cover the variability of the microorgan-
isms unevenly and can lead to the incorrect analysis [83, 84]. Microorganisms might
contain different numbers copies of the 16S rRNA gene and as a result negatively
affects the abundance estimation within the metagenome [85]. Several tools [86, 87]
have been developed for correcting this by using phylogenetic methods. However,
the accuracy of its predictions have not been independently assessed [88]. Finally, the
analysis of only the 16S rRNA gene can only provide the phylogenetic fingerprint of
the microbial community, thus, missing its functional capacity. There are bioinfor-
matics approaches are used to predict the functional landscape of the metagenome
by using its phylogenetic fingerprint from 16S rRNA profiling (e.g. [89]). However,
results obtained using these approaches are highly unreliable.

1.2.2 Whole genome sequencing data

The growing amount of evidence compromising the liability of the results obtained
using only 16S rRNA data resulted in the popularity of whole genome shotgun
sequencing (WGS) of metagenomics data [90, 91]. Though it used to be technically
and computationally difficult, this technique is becoming more and more popular
due to the advances in sequencing technologies, bioinformatics tools and approaches
to deal with big data. The broad range of NGS platforms are available for WGS
metagenomics sequencing, amongst them the popular platforms Illumina MiSeq and
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HiSeq. The previously widely utilized the 454-pyrosequensing and the IonTorrent
platforms are no longer popular due to their high cost and biases introduced during
the sequencing process. Methods offering extremely long reads (PacBio and Ox-
ford Nanopore) can be used for the WGS metagenomics sequencing as well[92, 93].
However, the price and the high DNA amount limitation in conjunction with the
high error rate making these approaches available for only a limited number of
projects. Therefore, PacBio sequencing is widely used in combination with Illumina
sequencing to facilitate and improve the performance of the analysis for the most
abundant metagenome inhabitants. WGS metagenomics data easily bypasses the bi-
ases introduced when using the 16S data as copy number variation or amplification
of the marker gene. The obtained data allow a more detailed analysis of the studied
microbiome, including species identification, functionality profiling and more pre-
cise abundance estimation. To perform the analysis the use of different databases
or the combinations of databases can be utilized. However, it is important to note
that performing the WGS sequencing is considerably more expensive in comparison
with sequencing only the 16S rRNA. WGS data also require more extensive analysis.
The estimation of the community complexity prior to the development of the WGS
experiment is crucial, as the sufficient coverage of metagenome inhabitants is vital
for the quality of the analysis results.

The question about the areas of the implementation of 16S and WGS data is still a
topic of contention among researches. For each study it is important to find the data
type that provides a comprehensive yet not excessive amount of information. The
delicate balance between the analysis depth and the experiments costs is a direct
consequence of understanding the advantages and the limitations of the data type,
sequencing techniques and the properties of the metagenome.

1.3 Approaches used in metagenomics

Proper and accurate analysis of metagenomic data is crucial to reveal the information
that a metagenome potentially provides. Most of the times during such analysis,
researchers are trying to find an answer to three main questions "Who is in the
metagenome?", "What are they doing?" and "What is the difference between two
metagenomes?" In this chapter we will try to give an overview of common methods
and techniques used to answer those questions.
Usually the analysis of every metagenomic dataset begins with reads preprocessing,
which includes a quality check followed by identification and removing of low-
quality sequences and contaminants. Preprocessing is performed by a set of standard
tools such as FastQC [94], Cutadapt [95], BBDuk1 and Trimmomatic [96]. In some

1tool of BBMap package, https://sourceforge.net/projects/bbmap/
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cases, filtering against a host genome (e.g., human) is required, although many tools
for downstream analysis already include this step.
The core process for each analysis of metagenomic data - called profiling or bin-
ning - is sorting the sequencing reads into genetically/functionally homogeneous
groups. The key question is whether the profiling procedure should be performed by
homology-based methods (comparing metagenomics reads to the known sequences),
de novo (using DNA features alone), or as a combination of thereof. Let us review
each of these profiling approaches.

1.3.1 Homology-based profiling

The vast majority of existing metagenomics binning approaches are homology-
based and thus depend on the content of the sequences databases [97]. Using this
group of methods allows researchers to find answers to all three questions that we
listed above. Profiling is performed by comparison of sequencing reads to known
genomes to find out which organisms are present in a particular microbiome and/or
their possible functionalities. Comparison of profiles obtained for two different
metagenomes (which will be discussed in section 1.3.1.3) allows us to address the
level of their similarity.
The choice of homology-based metagenomics analysis workflow mainly depends on
the sequencing data type. While Amplicon data analysis steps are rather standard-
ized, the set of approaches designed for WGS metagenomic data analysis is much
broader.

1.3.1.1 Amplicon metagenomic data profiling

The analysis of Amplicon metagenomic data will be discussed in the context of
the most common marker gene - 16S rRNA (see section 1.2.1). 16S data can pro-
vide the researchers only with information regarding the metagenome taxonomical
context. Preprocessed reads (see the beginning of section 1.3) are usually clustered
into so-called ’Operational Taxonomic Units’ or OTUs [98], based on sequences
similarity. Each of the obtained clusters is intended to represent a taxonomic unit of
a bacterial/archaeal species or genus depending on the sequence similarity thresh-
old. Usually a similarity of 97% is utilized to distinguish bacteria and archaea at
the genus level. After that, a representative sequence for each OTU is annotated
using a 16S rRNA database, where OTU representative sequences without database
hits are classified as "unknown". OTUs of unknown origin are usually discarded
and the remaining OTUs are used to generate taxonomical and abundance profiles.
Currently, there are two commonly used pipelines - Morthur [99] and QIIME [100]
- that perform all of the steps listed above. Their main difference is the choice of
the clustering approach for OTU formation: hierarchical clustering for Morthur and
’greedy’ USEARCH [101] for QIIME (note that QIIME can be adjusted to work with



CHAPTER 1. INTRODUCTION 19

other clustering approaches, including the Morthur-specific one). The two methods
also differ in the way they annotate OTU representative sequences, and they work
with different databases.

1.3.1.2 WGS metagenomic data profiling

We will now switch gears and consider whole genome sequencing (WGS) data
analysis. Preprocessed WGS reads can enter the binning procedure directly or be
preliminarily assembled into contigs (longer contiguous sequences). The choice of
assembly-based analyses versus direct binning of reads depends on the research
question. Binning the contigs instead of reads has several advantages: higher relia-
bility of the obtained classification and the possibility to correct profiles using the
contigs co-abundances. On the other hand, the algorithms performing the metage-
nomic data assembly are still far from ideal: they often report chimeric (combining
sequences from more than one genome) contigs and require information about the
metagenome complexity a priori. In this chapter we will not discuss metagenomic
data assembly methods, we assume that the downstream analysis is performed on
sequencing reads directly after preprocessing.
The large number of tools available for the homology-based WGS metagenomics
data analysis can be split into several groups using the following criteria: strategy
for reads binning, possible database against which the search is performed, and the
part of reads used for profiling (Table 1.1). Matching to the database (and thus bin-
ning) can be performed by various alignment tools (BLAST [102], DIAMOND [103],
LAST [104], BWA [105], Bowtie 2 [106], BLAT [107], etc.) as well as by using k-mers
(DNA sequences of length k). Alignment and k-mer searching can be performed on
full-genome databases as well as on databases containing marker genes or genetic
"signatures" (unique genomic regions) associated with different clades. While some
metagenomics tools use the entire dataset, other prefer to perform binning only
on reads with particular features (e.g., reads predicted to be part of 16S rRNA and
coding sequences, CDS). Finally, a number of methods return one best match for
every read, while others use the principle of Lowest Common Ancestor (LCA [108])
in situations when the same read got matches with a group of different references.
Despite the variety and broad use of homology-based metagenome profiling tools,
reads binning provided by such approaches suffer from database incompleteness,
since the majority of microbial species are still not sequenced.

1.3.1.3 Comparison of profiles obtained using homology-base techniques

Similarity levels among different metagenomes, answering the third question men-
tioned in the beginning of this chapter, can be retrieved using the profiles obtained
during the homology-based analysis. Results of taxonomical binning can be used to
compute two important quantities widely applied in environmental microbiology:
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alpha and beta diversity. Alpha diversity represents taxonomical richness within
a single microbiome and is often quantified by the Shannon Index [136] or the
Simpson Index [137]. Beta diversity measures a similarity score between different
microbiomes and can be calculated using simple taxa overlap or Bray-Curtis dissim-
ilarity [138]. Phylogenetic distribution of taxa in metagenomics profiles also can be
used to describe the diversity within and between communities. This method com-
putes the alpha diversity as the cover of a phylogenetic tree by the taxa present in
microbiome. Beta diversity is calculated as a proportion of phylogenetic tree shared
between two microbiome profiles. The standard metric for the phylogeny-based
measurements is UniFrac [139], which can be performed with the abundances of
taxa considered (weighted UniFrac).

Method Binning
tool

Binning technique Database

Kraken
[110]

k-mer
matching

All reads are classified. Each
read is split into k-mers that
are assigned to the database
tree nodes using LCA prin-
ciple. Each node is weighted
by the number of k-mers
mapped to the node. Leaf
with the highest sum of
weights on the path from
root to leaf is used to classify
the read.

Suitable for any
database as long
as the phylogeny
within database is
provided. Constructs
a database that stores
every k-mer for each
reference genome.

MetaPhlAn
[117]

Bowtie2 All reads are classified, but
majority of them do not get
any hits due to the database
bias. Each read is assigned
to the best hit.

Uses the database of
clade-specific marker
genes.

CLARK
[115]

k-mer
matching

All reads are classified. Read
is assigned to the node with
which it shares most of the
k-mers.

Suitable for any
database. Creates
k-mer based database
with all non-unique
k-mers removed.

Table 1.1: To be continued on the next page
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Method Binning
tool

Binning technique Database

Centrifuge
[111]

Comparison
with FM-
indexed
genomes

All reads are classified. Each
read is compared to all
indexed genomes in the
database.

Suitable for any
database as long
as the phylogeny
within database is
provided. Uses the
Burrows-Wheeler
transform [112] and
an FM-index [113]
to store and in-
dex the genome
database. Combines
shared sequences
from closely related
genomes using
MUMmer [114].

GOTTCHA
[116]

BWA mem All reads are classified.
Reads are split into non-
overlapping 30-mers, that
are used for the alignment.

Each 30-mer is as-
signed to the best
hit. Suitable for any
database. Preprocess
the database, keep-
ing only the genomic
regions (signatures)
that are unique to
each reference.

MEGAN6
[109]

Alignment
(BLASTX,
DIA-
MOND,
LAST)

All reads are classified.
Reads are aligned to each
sequence in the reference
database. LCA principle is
used to assign reads with
multiple hits.

Suitable for any
database as long
as the phylogeny
within the database is
provided.

Kaiju [125] BWT
(modified)
to the FM-
indexed
reference

Predicted protein-coding
reads are classified. LCA
principle is used to assign
reads with multiple hits.

Uses NCBI BLAST
non-redundant pro-
tein database

Table 1.1: To be continued on the next page
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Method Binning
tool

Binning technique Database

mOTU
[122]

BWA All reads are classified
based on the results of
comparison with 40 marker
genes

Uses the database
of 40 prokaryotic
marker genes

MG-RAST
[118]

BLAT Only reads predicted (using
FragGeneScan [119]) to be
part of 16S rRNA or CDS are
used for the analysis.

Bond to the set of cus-
tom databases (M5nr
and M5nra)

EBI Meta-
genomics
[128]

QIIME
for 16S
predicted
reads, In-
terProScan
[129] for
predicted
CDS

Only reads predicted (us-
ing rRNAselector [130] and
FragGeneScan) to be part of
16S rRNA or CDS are used
for the analysis.

Bond to the set of
custom databases
(GreenGenes, Pfam
[131], TIGRFAMs
[132], PRINTS [133],
PROSITE patterns
[134], Gene3d [135])

Quikr [123]
and
WGSQuikr
[124]

k-mer
matching
(complete
sequenc-
ing data
profile
to the
database
k-mer
matrix)

All reads are classified. Solv-
ing the NNLS problem with
variant of basis-pursuit de-
noising

Suitable for any
database. Creates
one k-mer-based
matrix for the entire
reference database

FOCUS
[127]

k-mer
matching
(complete
sequenc-
ing data
profile
to the
database
k-mer
matrix)

All reads are classified. Uses
non-negative least squares
to compute the set of k-mer
frequencies that explains the
optimal possible abundance
of k-mers in the analysed
metagenome by selecting
the optimal number of fre-
quencies from the reference
k-mer matrix

Suitable for any
database. Creates
one k-mer-based
matrix for the entire
reference database

Table 1.1: To be continued on the next page
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Method Binning
tool

Binning technique Database

Taxator-tk
[120]

Local
BLAST or
LAST

All reads are classified. Lo-
cal alignment for each read
against the database is used
to split the read into distinct
segments and to determine
a taxon for each segment.
Taxon for the entire read is
determined by the taxa as-
signed to its segments. All
taxon assignments are per-
formed using LCA princi-
ple.

Suitable for any
database.

MetaPhyler
[121]

BLASTX All reads are classified, but
majority of them do not get
any hits due to the database
bias. Each read is assigned
to the best hit.

Uses the database of
31 marker genes.

TIPP [126] All reads
are clas-
sified.
HMMER
mapping

Mapping to the marking
genes. SEPP phylogenetic
placement

Using the database
of 30 phylogenetic
marker genes that
span the Bacteria and
Archaea domains

Table 1.1: The overview of popular metods for the homology-based analysis of metagenomic data

1.3.2 De novo profiling

De novo approaches for metagenomics binning try to solve the problem of missing
taxonomic content: they are designed to classify reads into genetically homogeneous
groups without utilizing any information from known genomes. Instead, they use
only the features of the sequencing data (usually reads similarities or k-mer distri-
butions) for classification. For example, the first step of homology-based profiling
for 16S data, namely clustering sequences into OTUs, is nothing else but de novo
profiling of a metagenomics dataset.
Due to their nature, de novo binning techniques cannot give an answer to the ques-
tions "Who is in metagenome?" and "What are they doing?". However, they can be
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used for a metagenome complexity estimation, revealing the true composition diver-
sity of a metagenome, which is usually underestimated during classical homology-
based analyses.
There are several tools designed for de novo binning of WGS metagenomics data,
which we will discuss in this section. One of them, LiklyBin [140], follows a Markov
Chain Monte Carlo approach based on the assumption that the k-mer frequency
distribution is homogeneous within a bacterial genome. This approach works well
for very simple metagenomes with a significant phylogenetic diversity within the
metagenome, but it cannot handle genomes with more complicated structures such
as those resulting from horizontal gene transfer [141]. Another approach, Abun-
danceBin [142], works under the assumption that the abundances of species in
metagenome reads are following a Poisson distribution, and thus struggles when
analysing datasets where some species have similar abundance ratios. MetaClus-
ter [143] and BiMeta [144] address the problem of non-Poissonian species distribu-
tion. However, for these tools it is necessary to provide an estimation of the final
number of bins which cannot be done for many metagenomes without any a priori
knowledge. Also, both MetaCluster and BiMeta use the Euclidian metric to compute
the dissimilarity between k-mer profiles, which was shown to be easily influenced
by stochastic noise in analysanalysed sequences [145]. Finally, one of the most recent
approaches - MetaProb [146] - implements a more advanced similarity measure
technique and can automatically estimate the number of read clusters. This tool
classifies metagenomic datasets in two steps: first, reads are grouped based on the
extent of their overlap. After that, a set of representing reads is being chosen for each
group. Based on the comparison of the de novo distributions for those sets, groups
are merged together into final clusters. Even though MetaProb outperformed other
de novo binning approaches during the analysis of simulated data, it did not provide
solid results when testing on real metagenomics data.
To conclude, de novo metagenomics binning remains a challenging task. However, a
successful de novo technique would open up countless opportunities for the future
of microbiology, due to the complete independence from reference databases.

1.3.3 Mixed profiling

After describing the set of homology-based and de novo approaches we would like
to continue with the group of methods combining the features of reference-based
and de novo profiling tools. Such approaches are recently gaining interest due to
their indirect reliance on a reference database. These approaches use supervised
training on known databases, to learn about differentiating sequence features in
order to perform de novo reads binning. This enables metagenomics profiling for
the reads that would not have any match with any known references. Supervised
approaches can be trained using a various set of techniques, such as Interpolated
Markov Models, Gaussian Mixture Models, Hidden Markov Models, mixtures of
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variable-order Markov chains, naive Bayes classifier, Support Vector Machine and
many others [147, 148, 149, 150, 151, 152, 153]. The training database can, as well as
in case of classical homology-based techniques, consist of a complete genome or a set
of marker genes. Features used for training are in most cases k-mers of a particular
length, or a mixture of k-mers of different length. Sometimes species "signature"
sequences and reads co-assurances can be used for model training.
The results of supervised classification techniques are still doubtful, since the content
of the current reference databases utilized for the training differs from the true
distribution of microbial species on our planet.

1.3.4 Reference-free comparison of metagenomics data
As was mentioned at the beginning of this section, there are three main questions
the metagenomics studies. The first two can be answered only by using a reference-
dependent analysis, whereas the third one, "What is the difference between two
different metagenomes?" does not necessarily require any reference database. The
group of methods allowing to determine the difference between two genetic datasets
without comparing them to a known genetic reference are mostly based on reads
overlapping between different samples, k-mer-mer counts and a comparison of
the obtained profiles using various different metrics [154, 155, 156, 127, 157, 149,
158, 159, 160]. Some approaches for the reference-free comparison of metagenomics
data work with results of mixed and de novo profiling, comparing the binning
results obtained for the different metagenomes using the different variations of
Bray-Curtis dissimilarity. For example, such analysis can be performed on 16S data
by simple overlapping of OTUs derived from the different samples prior to the
OTU annotation. This allows to preserve the data, that would be lost for the OTUs
marked as ’unknown’ during the annotation procedure. This dissimilarity measure,
however, does not take into account the phylogeny of compared OTUs, which is
provided, for example, by UniFrac (see section 1.3.1.1).
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1.4 The outline of this thesis

As mentioned in the previous sections, the current field of metagenomics can be
summarised by:

• Three main questions: "Who is in metagenome?" (or "How complex the meta-
genome is?"), "What are they doing?" and "What is the difference between two
metagenomes?";

• Two popular techniques to generate metagenomic sequencing libraries: 16S
and WGS;

• Two general approaches to analyse metagenomic data: reference-dependent
and reference-free.

This research was dedicated to a better understanding of the limits of each of the
analysis methods regarding different types of sequencing data. We also tried to
perform the sequencing experiments using distinct sequencing platforms and proto-
cols. To understand how far the boundaries of most popular analysis techniques, in
combination with various data types, can be set we performed a number of studies.
In Chapter 2 we discuss the taxonomic profiling quality obtained using 16S and WGS
metagenomic data. During that research, we created a series of artificial bacterial
mixes, each with a different distribution of species. These mixes were used to
estimate the resolution of two different metagenomic experiments - 16S and WGS
- and to evaluate several different bioinformatics approaches for taxonomic read
classification.
We also tried to improve the analysis of metagenomics data in both directions: with
and without using reference databases using both 16S rRNA and WGS data.
For the reference-free analysis of different NGS datasets, we developed a k-mer
based method (kPal). We have shown that our approach can be used for two types
of metagenomics analysis: to perform de novo reads binning within a single meta-
genome (Chapter 3) and to resolve the level of relatedness between microbiomes
(Chapter 4).
Our approach in reference-based metagenomics was targeted to perform fast and
accurate analysis for clinical samples that might contain more than one pathogen.
We developed BacTag, a distributed bioinformatics pipeline for fast and accurate
bacterial gene and allele typing using clinical WGS sequencing data. The reader
can find more details about the algorithm behind this tool and its testing results in
Chapter 5.
A general discussion, including a review on future perspectives in the field of
metagenomics, can be found in Chapter 6.


