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TRAVELING WAVES FOR SPATIALLY DISCRETE SYSTEMS OF
FITZHUGH-NAGUMO TYPE WITH PERIODIC COEFFICIENTS*

WILLEM M. SCHOUTEN-STRAATMAN' AND HERMEN JAN HUPKES!

Abstract. We establish the existence and nonlinear stability of traveling wave solutions for
a class of lattice differential equations (LDEs) that includes the discrete FitzHugh-Nagumo system
with alternating scale-separated diffusion coefficients. In particular, we view such systems as singular
perturbations of spatially homogeneous LDEs, for which stable traveling wave solutions are known to
exist in various settings. The two-periodic waves considered in this paper are described by singularly
perturbed multicomponent functional differential equations of mixed type (MFDEs). In order to
analyze these equations, we generalize the spectral convergence technique that was developed by
Bates, Chen, and Chmaj to analyze the scalar Nagumo LDE. This allows us to transfer several
crucial Fredholm properties from the spatially homogeneous to the spatially periodic setting. Our
results hence do not require the use of comparison principles or exponential dichotomies.
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singular perturbation
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1. Introduction. In this paper we consider a class of lattice differential equa-
tions (LDEs) that includes the FitzHugh-Nagumo system

(1.1) Uy = dj(ujpr +uj—1 — 2uy) + g(ujs a5) — wj,
w; = pjluj — ;]

with cubic nonlinearities
(1.2) g(u;a) = u(l —u)(u—a)

and two-periodic coefficients
(1.3)

(5727%,%70,%) for odd 7
(0,00) x (0,1) x (0,1) x (0,00) 3 (dj, a5, pj, ;) = .
(Laeweﬁe) for even j.

We assume that the diffusion coefficients are of different orders in the sense 0 < ¢ < 1.
Building on the results obtained in [29, 30] for the spatially homogeneous FitzHugh—
Nagumo LDE, we show that (1.1) admits stable traveling pulse solutions with separate
waveprofiles for the even and odd lattice sites. The main ingredient in our approach
is a spectral convergence argument, which allows us to transfer Fredholm properties
between linear operators acting on different spaces.

*Received by the editors August 2, 2018; accepted for publication (in revised form) July 1, 2019;

published electronically August 21, 2019.

https://doi.org/10.1137/18M1204942

Funding: The work of the authors was supported by the Netherlands Organization for Scientific
Research (NWO) grant 639.032.612.

fCorresponding author. Mathematisch Instituut—Universiteit Leiden, 2300 RA Leiden, The
Netherlands (w.m.schouten@math.leidenuniv.nl).

fMathematisch Instituut—Universiteit Leiden, 2300 RA Leiden, The Netherlands (hhupkes@
math.leidenuniv.nl).

3492

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.


https://doi.org/10.1137/18M1204942
mailto:w.m.schouten@math.leidenuniv.nl
mailto:hhupkes@math.leidenuniv.nl
mailto:hhupkes@math.leidenuniv.nl

Downloaded 04/23/20 to 81.207.207.201. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

TRAVELING WAVES FOR PERIODIC DISCRETE SYSTEMS 3493

Signal propagation. The LDE (1.1) can be interpreted as a spatially inhomoge-
neous discretization of the FitzHugh—-Nagumo partial differential equation (PDE)

U = Uge + g(u;a) —w,
(1.4) t TT
wy = p[u - fyw],

again with p > 0 and v > 0. This PDE was proposed in the 1960s [21, 22] as a
simplification of the four-component system that Hodgkin and Huxley developed to
describe the propagation of spike signals through the nerve fibers of giant squids [26].
Indeed, for small p > 0 (1.4) admits isolated pulse solutions of the form

(1.5) (u, w)(z,t) = (o, Wo)(x + cot),
in which ¢g is the wavespeed and the waveprofile (Tg, W) satisfies the limits

(1.6) \Qﬁinoo(”[” wo) (&) = 0.

Such solutions were first observed numerically by FitzHugh [23], but the rigorous
analysis of these pulses turned out to be a major mathematical challenge that is still
ongoing. Many techniques have been developed to obtain the existence and stability
of such pulse solutions in various settings, including geometric singular perturbation
theory [8, 25, 34, 33], Lin’s method [36, 10, 9], the variational principle [11], and the
Maslov index [13, 14].

It turns out that electrical signals can only reach feasible speeds when traveling
through nerve fibers that are insulated by a myelin coating. Such coatings are known
to admit regularly spaced gaps at the nodes of Ranvier [41], where propagating signals
can be chemically reinforced. In fact, the action potentials effectively jump from one
node to the next through a process caused saltatory conduction [37]. In order to
include these effects, it is natural [35] to replace (1.4) by the FitzHugh-Nagumo LDE

) U = E%(Uj+1 +uj_1 — 2uj) + g(uy; a) — wj,
wj = pluj — yw;l.

In this equation the variable u; describes the potential at the node j € Z node, while
w; describes the dynamics of the recovery variables. We remark that this LDE arises
directly from (1.4) by using the nearest-neighbor discretization of the Laplacian on a
grid with spacing € > 0.

In [30, 29], Hupkes and Sandstede studied (1.7) and showed that for a sufficiently
far from % and small p > 0, there exists a stable locally unique traveling pulse solution

(1.8) (uj, w;)(t) = (@,w)(j + ct).

The techniques relied on exponential dichotomies and Lin’s method to develop an
infinite-dimensional analogue of the exchange lemma. In [20] the existence part of
these results was generalized to versions of (1.7) that feature infinite-range discretiza-
tions of the Laplacian that involve all neighbors instead of only the nearest-neighbors.
The stability results were also recently generalized to this setting [44], but only for
small € > 0 at present. Such systems with infinite-range interactions play an impor-
tant role in neural field models [4, 3, 40, 45], which aim to describe the dynamics of
large networks of neurons.
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Fic. 1.1. (a) Simplified representation of the system (1.1) as an electrical circuit in a nerve
fiber, analogous to [4, Fig. 1.11]. In this paper, the resistances R, and Re, as well as the capacitances
Co and Ce in the cell membrane, alternate between the even and odd membranes. The resistivity of
the intracellular fluid R is constant. (b) Schematic representation of the u-component of a traveling
pulse for the system (1.1), which alternates between two waveprofiles.

Our motivation here for studying the 2-periodic version (1.1) of the FitzHugh—
Nagumo LDE (1.7) comes from recent developments in optical nanoscopy. Indeed, the
results in [49, 15, 16] clearly show that certain proteins in the cytoskeleton of nerve
fibers are organized periodically. This periodicity turns out to be a universal feature
of all nerve systems, not just those which are insulated with a myelin coating. Since
it also manifests itself at the nodes of Ranvier, it is natural to allow the parameters in
(1.7) to vary in a periodic fashion. This can be understood by considering the generic
circuit-models that are typically used to model nerve axons; see Figure 1.1(a).

The results in this paper are a first step in this direction. The restriction on the
diffusion parameters is rather severe, but the absence of a comparison principle forces
us to take a perturbative approach. We emphasize that the scale separation in the
diffusion coeflicients means that there is no natural continuum limit for (1.9) that can
be recovered by sending the node separation to zero.

Periodicity. Periodic patterns are frequently encountered when studying the be-
havior of physical systems that have a discrete underlying spatial structure. Examples
include the presence of twinning microstructures in shape memory alloys [2] and the
formation of domain-wall microstructures in dielectric crystals [46].

At present, however, the mathematical analysis of such models has predominantly
focused on one-component systems. For example, the results in [12] cover the bistable
Nagumo LDE

(1.9) i = dj(ujpr +uj—1 — 2u;) + g(uy; a;)

with spatially periodic coefficients (d;, a;) € (0,00) % (0,1). Exploiting the comparison
principle, the authors were able to establish the existence of stable traveling wave
solutions. Similar results were obtained in [24] for monostable versions of (1.9).

Let us also mention the results in [18, 19, 27], where the authors consider chains
of alternating masses connected by identical springs (and vice versa). The dynam-
ical behavior of such systems can be modeled by LDEs of Fermi—Pasta—Ulam type
with periodic coefficients. In certain limiting cases the authors were able to con-
struct so-called nanopterons, which are multicomponent wave solutions that have
low-amplitude oscillations in their tails.
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In the examples above the underlying periodicity is built into the spatial sys-
tem itself. However, periodic patterns also arise naturally as solutions to spatially
homogeneous discrete systems. As an example, systems of the form (1.9) with homo-
geneous but negative diffusion coefficients d; = d < 0 have been used to describe phase
transitions for grids of particles that have visco-elastic interactions [6, 7, 47]. Upon
introducing separate scalings for the odd and even lattice sites, this one-component
LDE can be turned into a 2-periodic system of the form

v = de(’w]' +wj—1 — 2Uj) - fe(vj)v

1.10
( ) w; = do<vj+1 +v; — 2wj) — fo(wj)

with positive coefficients d. > 0 and d, > 0. Systems of this type have been analyzed
in considerable detail in [5, 48], where the authors establish the co-existence of patterns
that can be both monostable and bistable in nature.

As a final example, let us mention that the LDE (1.9) with positive spatially
homogeneous diffusion coefficients d; = d > 0 can admit many periodic equilibria
[38]. In [28] the authors construct bichromatic traveling waves that connect spatially
homogeneous rest-states with such 2-periodic equilibria. Such waves can actually
travel in parameter regimes where the standard monochromatic waves that connect
zero to one are trapped. This presents a secondary mechanism by which the stable
states zero and one can spread throughout the spatial domain.

Wave equations. Returning to the 2-periodic FitzHugh—Nagumo LDE (1.1), we
use the traveling wave Ansatz

(T, Wo)(j + ct) when j is odd,

(111) =4 5
(Ue,We)(j + ct) when j is even

illustrated in Figure 1.1(b) to arrive at the coupled system

cu i)(g) (Ue(€ + 1) + Ue(g - 1) - 2ﬂo(§)) + g(ﬂo(£)§ao) _m0(§)7
(112) cw;(f) Po [ ( ) 'yowo(g)]

i, (€) = (Wo(€ + 1) +Wp(§ — 1) — 20e(€)) + 9(Te(€); ac) — We(£),

W, (&) = pelt ( ) YeWe (§)]-

Multiplying the first line by £2 and then taking € | 0, we obtain the direct relation

(113) ﬂo(f) = %[Ue(f + ) +Ee(£ - 1)]»

which can be substituted into the last two lines to yield
ety (§) = 5 (Te(€ +2) +Te(€ = 2) = 26e(§)) + 9(T@e(€); ac) — We(£),
C@/e (&) = pe [ae (€) — Vet (g)]

All the odd variables have been eliminated from this last equation, which in fact
describes pulse solutions to the spatially homogeneous FitzHugh-Nagumo LDE (1.7).
Plugging these pulses into the remaining equation we arrive at

(1.14)

(1.15) W, (&) + poYolWo(§) = %po [ﬂe(g +1) +ue(€ — 1)]

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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This can be solved to yield the remaining second component of a singular pulse solu-
tion that we denote by

(116) UO = (ﬂo;Oawo;Ovﬂe;vae;O)'

The main task in this paper is to construct stable traveling wave solutions to
(1.1) by continuing this singular pulse into the regime 0 < ¢ < 1. We use a functional
analytic approach to handle this singular perturbation, focusing on the linear operator
associated to the linearization of (1.12) with & > 0 around the singular pulse. We show
that this operator inherits several crucial Fredholm properties that were established
in [30] for the linearization of (1.14) around the even pulse (Te;o, Wey0)-

Our results are not limited to the two-component system (1.1). Indeed, we con-
sider general (n + k)-dimensional reaction diffusion systems with 2-periodic coeffi-
cients, where n > 1 is the number of components with a nonzero diffusion term and
k > 0 is the number of components that do not diffuse. We can handle both travel-
ing fronts and traveling pulses, but do impose conditions on the end-states that are
stronger than the usual temporal stability requirements. Indeed, at times we will
require (submatrices of) the corresponding Jacobians to be negative definite instead
of merely spectrally stable. We emphasize that these distinctions disappear for scalar
problems. In particular, our framework also covers the Nagumo LDE (1.9), but does
not involve the use of a comparison principle.

Spectral convergence. The main inspiration for our approach is the spectral con-
vergence technique that was developed in [1] to establish the existence of traveling
wave solutions to the homogeneous Nagumo LDE! (1.9) with diffusion coefficients
dj =1/? > 1. The linear operator

(L17)  Leo(®) = e/ (€) — Z[ol€ +2) + (6 —2) — 20()] — gu (@ () 0)0(€)

plays a crucial role in this approach, where the pair (cg, @) is the traveling front
solution of the Nagumo PDE

(1.18) Uy = Uy + g(u; a).

This front solutions satisfies the system

(1.19) cotig(§) =g (§) + g(u(€);a),  Wo(—00) =0,  Tp(+o0) =1,
to which we can associate the linear operator

(1.20) [Lov])(§) = cov' () — v" (&) — gu (u(€); a)v(€),

which can be interpreted as the formal € | 0 limit of (1.17). It is well-known that
Lo+ 6: H?> — L? is invertible for all § > 0. By considering sequences

(1.21) wj; = (ﬁsj -+ 5)1)]', ”ijHl =1, g5 — 0
that converge weakly to a pair

(1.22) wo = (Lo + 0)vo,

IThe power of the results in [1] is that they also apply to variants of (1.9) with infinite-range

interactions. We describe their ideas here in a finite-range setting for notational clarity.
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the authors show that also L. + 6 : H' — L? is invertible. To this end one needs to
establish a lower bound for ||wgl|, ., which can be achieved by exploiting inequalities
of the form

(1.23) (v(-+e)+v(-—e) — 2v(~),v(-)>L2 <0, (v, v)p2 =0,

and using the bistable structure of the nonlinearity g.

In [44] we showed that these ideas can be generalized to infinite-range versions of
the FitzHugh-Nagumo LDE (1.7). The key issue there, which we must also face in
this paper, is that problematic cross terms arise that must be kept under control when
taking inner products. We are aided in this respect by the fact that the off-diagonal
terms in the linearization of (1.1) are constant multiples of each other.

A second key complication that we encounter here is that the scale separation
in the diffusion terms prevents us from using the direct multicomponent analogue
of the inequality (1.23). We must carefully include e-dependent weights into our
inner products to compensate for these imbalances. This complicates the fixed-point
argument used to control the nonlinear terms during the construction of the traveling
waves. In fact, it forces us to take an additional spatial derivative of the traveling
wave equations.

This latter situation was also encountered in [31], where the spectral convergence
method was used to construct traveling wave solutions to adaptive-grid discretizations
of the Nagumo PDE (1.18). Further applications of this technique can be found in
[32, 42], where full spatial-temporal discretizations of the Nagumo PDE (1.18) and
the FitzHugh-Nagumo PDE (1.4) are considered.

Overview. After stating our main results in section 2 we apply the spectral con-
vergence method discussed above to the system of traveling wave equations (1.12) in
sections 3 and 4. This allows us to follow the spirit of [1, Thm. 1] to establish the
existence of traveling waves in section 5. In particular, we use a fixed point argument
that mimics the proof of the standard implicit function theorem.

We follow the approach developed in [44] to analyze the spectral stability of
these traveling waves in section 6. In particular, we recycle the spectral convergence
argument to analyze the linear operators L. that arise after linearizing (1.12) around
the newfound waves, instead of around the singular pulse Uy defined in (1.16). The
key complication here is that for fixed small values of ¢ > 0 we need results on the
invertibility of £, + A for all X in a half-strip. By contrast, the spectral convergence
method gives a range of admissible values for ¢ > 0 for each fixed A. Switching
between these two points of view is a delicate task, but fortunately the main ideas
from [44] can be transferred to this setting.

The nonlinear stability of the traveling waves can be inferred from their spectral
stability in a relatively straightforward fashion by appealing to the theory developed
in [30] for discrete systems with finite range interactions. A more detailed description
of this procedure in an infinite-range setting can be found in [43, sections 7-8].

2. Main results. Our main results concern the LDE
() = dyDujr (t) +uj—1(t) — 2ui(t)] + f (uy(t), wy(t)),

(2.1)
w;(t) = g5 (uy(t), w; (1)),

posed on the one-dimensional lattice j € Z, where we take u; € R" and w; € R* for
some pair of integers n > 1 and k > 0. We assume that the system is 2-periodic in

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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the sense that there exists a set of four nonlinearities
(2.2)
fo:RF SR f i RYF S RY g R RE g i RMTE S RY

for which we may write

( 727f07 o)fr dd /,
(2.3) <dj7fj,gj>={ T ool Tor et

(1, fe, ge) for even j.

Introducing the shorthand notation

(24) Fo(u7 w) = (fo(u7 ’LU), go(“’v ’LU)), Fe(u,w) = (fe(u’ w),ge(u, ’LU)),

we impose the following structural condition on our system that concerns the roots
of the nonlinearities F, and F,. These roots correspond with temporal equilibria
of (2.1) that have a spatially homogeneous u-component. On the other hand, the
w-component of these equilibria is allowed to be 2-periodic.

AssuMmPTION (HN1). The matriz D € R™*™ is a diagonal matric with strictly
positive diagonal entries. In addition, the nonlinearities F, and F, are C®-smooth
and there exist four vectors

(2.5) U = (ug,we) € R, Us = (ug,wy) € R™H,

o

for which we have the identities u;, = u_ and ul = u}, together with
(26) Fo(Uc:zt) = Fe(Uei) =0.

We emphasize that any subset of the four vectors UF and UF is allowed to be
identical. In order to address the temporal stability of these equilibria, we introduce
two separate auxiliary conditions on triplets

(2.7) (G, U, UT) € CH(R"FR™F) x R™HF 5 R,

which are both stronger? than the requirement that all the eigenvalues of DG(U¥)
have strictly negative real parts. As can be seen, the block structure of this matrix
plays an important role in (hf3), which is why we have chosen to state our results for
arbitrary values of n > 1 and k£ > 0.

ASSUMPTION (Ha). The matrices —DG(U™) and —DG(U™) are positive definite.
ASSUMPTION (Hf). For any U € R"** write DG(U) in the block form

G1a1(U) Gi2(U)
(2.8) DG(U) = < GQ,i(U) G;;(U) )

with G11(U) € R" ™. Then the matrices —G11(U™),—G11(U"), —G22(U™), and

—G2,2(U+) are positive definite. In addition, there exists a constant I' > 0 so that
G12(U) = —FGg,l(U)T holds for all U € R™*F,

As an illustration, we pick 0 < a < 1 and write
(2.9) Ghgm(u) = u(l —u)(u —a)

2See the proof of Lemma 4.6 for details.
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for the nonlinearity associated with the Nagumo equation, together with

u(l—u)(u—a)—w)

(2.10) Giin;p.y (1, w) = (
plu—yu]

for its counterpart corresponding to the FitzHugh—Nagumo system. It can be easily
verified that the triplet (Gngm,0,1) satisfies ((he), while the triplet (Genn;p,y,0,0)
satisfies (h3) for p > 0 and v > 0 with I' = p=!. When a > 0 is sufficiently small, the
Jacobian DGinn;p,,(0,0) has a pair of complex eigenvalues with negative real part. In
this case (ha) may fail to hold.

The following assumption states that the even and odd subsystems must both
satisfy one of the two auxiliary conditions above. We emphasize, however, that this
does not necessarily need to be the same condition for both systems.

AssumpTION (HN2). The triplet (F,, U, ,U}) satisfies either (ha) or (hB3). The
same holds for the triplet (F.,U; ,U}l).

We intend to find functions
(2.11) (e, we) : R — €2°(Z; R™) x £°(Z; R¥)
that take the form

(Wose, Weie)(j + cet)  for odd 7,
(2.12) (ue, we);(t) = ‘ ‘
(Uee, Weie)(J + cot)  for even j

and satisfy (2.1) for all t € R. The waveprofiles are required to be C'-smooth and
satisfy the limits
(2.13)

li o (€), 0, = (uF, w* 1i T, (&), W, — (uE. wE).
i (@,(6).(€)) = (v wd), Jim (@.(6),7.(6)) = ()
Substituting the traveling wave Ansatz (2.12) into the LDE (2.1) yields the cou-

pled system

CeTlpe (€) = 23 DAmix[Tose, Uese](€) + fo(Tose (€), Wore (€))
(214) cé‘wo;a(g) = Go (EO;E (g)a @0;5 (f)),

Ceﬂ/e;e(g) = DAIniX[ﬂe;EaﬂO;E](f) + fe (ﬂe;a(g)awe;e(f))a

CEmé;s(g) = Je (ﬂe;s(g)vwe;e(g))y

in which we have introduced the shorthand

(2.15) Amix[d, ¥](§) = (€ + 1) + (€ = 1) — 26(¢).

Multiplying the first line of (2.14) by 2 and taking the formal limit ¢ | 0, we
obtain the identity

(2.16) 0 = DAwix[To:0; Te:0] (€),

which can be explicitly solved to yield

(2.17) U0 (€) = $Te0(§+ 1) + TUeso(€ — 1).
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In the € | 0 limit, the even subsystem of (2.14) hence decouples and becomes

COH;;O(g) = %D[ﬂe;O(g + 2) + ﬂe;O(f - 2) - 2ﬂe;0(§)} + fe (ﬂe;0(£)7me;0(§))a
CO@;;O(S) = Ge (ﬂe;O (5))@6;0 (6))

We require this limiting even system to have a traveling wave solution that connects
U to US.

AssuMPTION (HW1). There exists co # 0 for which the system (2.18) has a
C*-smooth solution Ue.g = (Ue;0,Wes0) that satisfies the limits

(2.18)

(219) EEI:B)O (ﬂe;O(g)awe;O(g)) - (uf,w?).

Finally, taking £ | 0 in the second line of (2.14) and applying (2.17), we obtain
the identity

(220) COEZ);O(é-) = go(%ﬂe;o(f + 1) + %ﬂe;O(E - 1)?60;0(6))5

in which W, is the only remaining unknown. We impose the following compatibility
condition on this system.

AssumpTION (HW2). Egquation (2.20) has a C'-smooth solution W that satis-
fies the limits

: —_— I
(2.21) (A Woin(§) = wy
Upon writing
(222) UO = (UO;O>U6;O) = (60;07m0;07ﬂe;07@e;0)7

we intend to seek a branch of solutions to (2.14) that bifurcates off the singular
traveling wave (Ug, ¢g). In view of the limits

Ii U~ U.. — + +
(2.23) E—irinoo(UO’m Ue,O)(g) (Uo 7Ue )’
we introduce the spaces
(2.24)
H! = H. = H'(R;R") x H'(R;R¥), L? = L2 = L3(R;R") x L?(R;RF)

to analyze the perturbations from U. - B
Linearizing (2.18) around the solution Uy, we obtain the linear operator L. :

H! — L2 that acts as
D(S2—2) 0
)
in which we have introduced the notation

(2.26) [S20)(€) = P(€ +2) + &(§ — 2).

(2.25) Le=coge — DF(Ueyp) —

5

N

Our perturbation argument to construct solutions of (2.14) requires L. to have an
isolated simple eigenvalue at the origin.
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AssumMPTION (HS1). There exists 6, > 0 so that the operator Lo+6 is a Fredholm
operator with index 0 for each 0 < § < 6. It has a simple eigenvalue in § = 0, i.e.,
we have Ker(L,) = span(U;;O) and U;;O ¢ Range(L.).

We are now ready to formulate our first main result, which states that (2.14)
admits a branch of solutions for small ¢ > 0 that converges to the singular wave
(Uo, co) ase . 0. Notice that the e-scalings on the norms of ®. and &/ are considerably
better than those suggested by a direct inspection of (2.14).

THEOREM 2.1 (see section 5). Assume that (HN1), (HN2), (HW1), (HW2), and
(HS1) are satisfied. There exists a constant €, > 0 so that for each 0 < € < g, there
ezist c. € R and @, = (P, Pe.c) € HE x HL for which the function

(2.27) U.=Uo+ 9.

is a solution of the traveling wave system (2.14) with wave speed ¢ = c.. In addition,
we have the limit

(228) lalﬁ)l |:||5®/o/;EHL§ + ||q):-;>/;€| L2 + ||(I)IEHL{2,><L2 + ”(I)SHLgXLg + |CE - cO|i| =0

and the function U, is locally unique up to translation.

In order to show that our newfound traveling wave solution is stable under the
flow of the LDE (2.1), we need to impose the following extra assumption on the
operator L,. To understand the restriction on A, we recall that the spectrum of L.
admits the periodicity A — A + 2micy.

AssuMPTION (HS2). There exists a constant Ao > 0 so that the operator Lo+ \ :
H! — L2 is invertible for all X € C\ 2micoZ that have Re X > — .

Together with (HS1) this condition states that the wave (U.o, ¢g) for the limiting
even system (2.18) is spectrally stable. Our second main theorem shows that this can
be generalized to a nonlinear stability result for the wave solutions (2.12) of the full
system (2.1).

THEOREM 2.2 (see section 6). Assume that (HN1), (HN2), (HW1), (HW2),
(HS1), and (HS2) are satisfied and pick a sufficiently small € > 0. Then there exist
constants § > 0, C > 0, and 8 > 0 so that for all 1 < p < co and all initial conditions

(2.29) (u®,w®) € P(Z;R™) x £7(Z; RF)
that admit the bound
(2.30) Ey = Huo - U’E(O)”EP(Z;R") + ||w0 - ws(O)HZP(Z;Rk) <94,

there exists an asymptotic phase shift @ € R such that the solution (u,w) of (2.1) with

the initial condition (u,w)(0) = (u°,w®) satisfies the estimate

231 [fult) = uelt + 0)ll vz + [0(t) = we(t +0) |l snzey < CePLEG

for allt > 0.

Our final result shows that our framework is broad enough to cover the two-
periodic FitzHugh-Nagumo system (1.1). We remark that the condition on ~, en-
sures that (0,0) is the only spatially homogeneous equilibrium for the limiting even
subsystem (1.14). This allows us to apply the spatially homogeneous results obtained
in [29, 30).
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COROLLARY 2.3. Consider the LDE (1.1) and suppose that ~, > 0 and p, > 0
both hold. Suppose furthermore that a. is sufficiently far away fmm , that 0 < e <
4(1 — ae)2, and that p. > 0 is sufficiently small. Then for each suﬁciczently small
e > 0, there exists a nonlinearly stable traveling pulse solution of the form (2.12) that
satisfies the limits

(2.32) lim (ﬂo(g)ﬂEO(g)) = (070)7 lim (ﬂe(g)ﬂﬁe(f)) = (0,0).

§E—+oo §—+oo

Proof. Assumption (HN1) can be verified directly, while (HN2) follows from the
discussion above concerning the nonlinearity Gfnn;p,, defined in (2.10). Assumption
(HW1) follows from the existence theory developed in [29], while (HS1) and (HS2)
follow from the spectral analysis in [30]. The remaining condition (HW2) can be
verified by noting that the nonlinearity g, is in fact linear and invertible with respect
to Wo,o on account of Lemma 3.5 below. 0

3. The limiting system. In this section we analyze the linear operator that is
associated to the limiting system that arises by combining (2.18) and (2.20). In order
to rewrite this system in a compact fashion, we introduce the notation

(3.1) [Sig](§) = &(§ + i) + d(§ — i)
together with the (n 4+ k) x (n + k)-matrix Jp that has the block structure

(3.2) Jpz(é) 8)

This allows us to recast (2.25) in the shortened form

(33) L = Co5¢ d§ JD(SQ — 2) — DFE(UB;(]).
One can associate a formal adjoint f:dj : Hl — L? to this operator by writing

iad' J—
(3.4) LY = —coge — 5Jp(S2 —2) = DF(Uep)".

Assumption (HS1) together with the Fredholm theory developed in [39] implies
that

(3.5) ind(L,) = —ind(Z"")

holds for the Fredholm indices of these operators, which are defined as
(3.6) ind(L) = dim (ker(L)) — codim (Range(L)).

In particular, (HS1) implies that there exists a function

(3.7) U € Ker(Z2") ¢ H!

that can be normalized to have

(3.8) (U0, o)z = 1.

We also introduce the operator L, : HY(R;R*) — L?(R;RF) associated to the
linearization of (2.20) around U,., which acts as

(39) Lo = Cog¢ d{ DQgO(UO;O)'

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 04/23/20 to 81.207.207.201. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

TRAVELING WAVES FOR PERIODIC DISCRETE SYSTEMS 3503

In order to couple this operator with L., we introduce the spaces
(3.10) H! = HY(R;RF) x H}, L2 = L*(R;R¥) x L2,
together with the operator

(3.11) Los -HL — L2

that acts as

Lo+6 0
(3.12) Lo = _ .
0 L.+46

Our first main result shows that L. inherits several properties of L. + 6.

PROPOSITION 3.1. Assume that (HN1), (HN2), (HW1), (HW2), and (HS1) are
satisfied. Then there exist constants d, > 0 and Cy > 0 so that the following holds
true:

(i) For every 0 < & < 4, the operator L 5 is invertible as a map from H} to L2.

(ii) For any ©, € L2 and 0 < § < J, the function ®, = E;};@o € H! satisfies the

bound

—ad]j
(3.13) I @allery < Co 106z + (00, (0, 82012 ]

If (HS2) also holds, then we can consider compact sets A € M C C that avoid
the spectrum of L.. To formalize this, we impose the following assumption on M and
state our second main result.

ASSUMPTION (HM ), ). The set M C C is compact with 2mwicoZ N M = (. In
addition, we have Re A\ > —\g for all A € M.

PROPOSITION 3.2. Assume that (HN1), (HN2), (HW1), (HW2), (HS1), and (HS2)
are all satisfied and pick a sufficiently small constant Ay > 0. Then for any set M C C
that satisfies (hMy,) for Ao = Ao there exists a constant Co.pr > 0 so that the following
holds true:

(i) For every A\ € M, the operator L, » is invertible as a map from HY to L2.

(ii) For any ©, € L2 and X\ € M, the function ®, = E;i@o € H. satisfies the

bound

(3.14) [Polls < Com[|Os]|Lz-

3.1. Properties of L,. The assumptions (HS1) and (HS2) already contain the
information on L. that we require to establish Propositions 3.1 and 3.2. Our task
here is, therefore, to understand the operator L,. As a preparation, we show that
the top-left and bottom-right corners of the limiting Jacobians DF,(UZ) are both
negative definite, which will help us to establish useful Fredholm properties.

LEMMA 3.3. Assume that (HN1) and (HN2) are both satisfied. Then the matrices
le#(Ui) and Dgg#(Ui) are all negative definite for each # € {o,e}.

Proof. Note first that Dy fu and Dygy correspond with G 1, respectively, G2,
in the block structure (2.8) for DFy. We hence see that the matrices le#(Ui) and
Dgg#(Ui) are negative definite, either directly by (hf) or by the fact that they are
principal submatrices of DF#(U;;), which are negative definite if (ha) holds. d
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LEMMA 3.4. Assume that (HN1), (HN2), (HW1), and (HW?2) are satisfied. Then
there exists A, > 0 so that the operator L, + A is Fredholm with index zero for each
A € C with ReA > —),.

Proof. For any 0 < p <1 and A € C we introduce the constant coefficient linear
operator L, » : H'(R;RF) — L%(R;R¥) that acts as

(3.15) Lpx = coge = pD2go(Us) = (1= p)D2go(U5) + A
and has the characteristic function
(3.16) A, (2) = coz = pD2go(Uy ) — (1 = p)Dago(U7) + A.

Upon introducing the matrix
(3.17)
By = —pDago(Uy ) = (1 = p)D2go(US) = pD2go(U, )" — (1 = p) Dago(US)",

which is positive definite by Lemma 3.3, we pick A, > 0 in such a way that B, — 2},
remains positive definite for each 0 < p < 1. It is easy to check that the identity

(3.18) A, (iy) + Ar, , (iy)T = B, + 2Re A

holds for any y € R. Here we use the symbol { for the conjugate transpose matrix. In
particular, if we assume that Re A > —X, and that Ap_ , (iy)v, = 0 for some nonzero
v, € CF, y € R, and 0 < p < 1, then we obtain the contradiction

0 =Re [vl [ALP (iy) +Ar, (iy)T]vo]
(3.19) =Rev][B, +2Re v,
> 0.

Using [39, Thm. A] together with the spectral flow principle in [39, Thm. C], this
implies that L, + A is a Fredholm operator with index zero. 0

LEMMA 3.5. Assume that (HN1), (HN2), (HW1), and (HW2) are satisfied and
pick a sufficiently small constant A\, > 0. Then for any A € C with Re X > —\, the
operator L, + X is invertible as a map from H'(R;RF) into L2(R;R¥). In addition,
for each compact set
(3.20) Mc{A:Rex>-),}CC

there exists a constant Ky > 0 so that the uniform bound
(3.21) I[Zo + Al Xoll i rirey < KnallXoll L2 rimr)

holds for any x, € L*(R;RF) and any A € M.

Proof. Recall the constant A, defined in Lemma 3.4 and pick any A € C with
Re) > —)\,. On account of Lemma 3.4 it suffices to show that L, + X is injective.
Consider therefore any nontrivial ¢ € Ker(fo + /\)7 which necessarily satisfies the
ordinary differential equation (ODE)?

(3'22) 7/)/(5) = %DQQO (Uo,o(f))1/’(f) - % (6)

posed on CF. Without loss of generality we may assume that ¢y > 0.

3The discussion at https://math.stackexchange.com/questions/2668795/bounded-solution-to-
general-nonautonomous-ode gave us the inspiration for this approach.
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Since U 0(€) — UF as € — Fo0, Lemma 3.3 allows us to pick a constant m > 1
in such a way that the matrix nggo(Uo;o(g)) — 2), is positive definite for each
|€] > m, possibly after decreasing the size of A\, > 0. Assuming that Re A > —\, and
picking any £ < —m, we may hence compute

LIY(E)[2 = 2Re(t!(€), (€))er
(3.23) = 2 Re(D2go(Uo0(6))0(€), (€))cr — 2B (4(€), ¥ (€)) e

— 22 |y(¢)[%,

IN

which implies that

(3.24) (¢ <o) <o.

Since 1 cannot vanish anywhere as a nontrivial solution to a linear ODE, we have

2

O g (—m) P > 0

(3.25) [W(©O? = e

for £ < —m, which means that ¥(§) is unbounded. In particular, we see that ¥ ¢
H'(R; R¥), which leads to the desired contradiction. The uniform bound (3.21) follows
easily from continuity considerations. O

Proof of Proposition 3.1. Since the operator L. defined in (2.25) has a simple
eigenvalue in zero, we can follow the approach of [44, Lem. 3.1(5)] to pick two constants
8o > 0 and C > 0 in such a way that L. + ¢ : Hl — L2 is invertible with the bound

—adj

(3:26)  [Te+37 0 )l < CllI0er Xz + (0 ) Togre |

for any 0 < § < 0, and (6, x.) € L2. Combining this estimate with Lemma 3.5
directly yields the desired properties. 0

Proof of Proposition 3.2. These properties can be established in a fashion analo-
gous to the proof of Proposition 3.1. 0

4. Transfer of Fredholm properties. Our goal in this section is to lift the
bounds obtained in section 3 to the operators associated to the linearization of the
full wave equation (2.14) around suitable functions. In particular, the arguments we
develop here will be used in several different settings. In order to accommodate this,
we introduce the following condition.

ASSUMPTION (HFAM). For each € > 0 there is a function U. = (Uye,Ue.c) €
H! x H. and a constant ¢. # 0 such that U. — Uy — 0 in H! x H! and é. — ¢ as
e 1 0. In addition, there exists a constant K¢, > 0 so that

(4.1) el + le + | O

S K fam
9]

holds for all € > 0.

In section 5 we will pick U. = Uy and & = ¢y in (hFam) for all ¢ > 0. On
the other hand, in section 6 we will use the traveling wave solutions described in
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Theorem 2.1 to write U. =U. and é. = c.. We remark that (4.1) implies that there
exists a constant K > 0 for which the bound

(42)  |IDFo(Use)lloe + ID* Fo(Usie) oo + IDFe(Ueie)lloo + ID* Fe(Ueie)lloo < K

holds for all € > 0.
For notational convenience, we introduce the product spaces

(4.3) H!=H!xH!, L>=L2xL2

Since we will need to consider complex-valued functions during our spectral analysis,
we also introduce the spaces

w L2 ={®+iV: ¥ e L},
' H. = {®+iV: &, ¥ c H'}

and remark that any L € £L(H';L?) can be interpreted as an operator in £(Hg;LZ)
by writing

(4.5) L(® +iV) = LD +iLT.

It is well-known that taking the complexification of an operator preserves injectivity,
invertibility, and other Fredholm properties.

Recall the family (U.,é.) introduced in (hFam). For any ¢ > 0 and A € C we
introduce the linear operator

(4.6) L.y:Hg — LE
that acts as

~ d 2 7 1

. L4 2~ DF,(Upe) + A —5JpS

(@7) Loy= [ ok L E T DRGA —a ; .
—JpS1 CE(T5 +2Jp — DFe(Ue;g) + A

In order to simplify our notation, we introduce the diagonal matrices

ML = diag(e,1,1,1),
(4.8) M? = diag(1,¢,1,1),
ML? = diag(e,e,1,1).

In addition, we recall the sum S; defined in (3.1) and introduce the operator

o —2Jp JpSi
(4.9) i = ( s o )

which allows us to restate (4.7) as
(4.10) Loy =gt — My Jmix — DF(U) + A

Our two main results generalize the bounds in Propositions 3.1 and 3.2 to the current
setting. The scalings on the odd variables allow us to obtain certain key estimates
that are required by the spectral convergence approach.
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PROPOSITION 4.1. Assume that (hFam), (HN1), (HN2), (HW1), (HW2), and
(HS1) are satisfied. Then there exist positive constants Co > 0 and 69 > 0 together
with a strictly positive function €q : (0,00) — R, so that for each 0 < § < §y and
0 < e < ep(0) the operator 55,5 1s invertible and satisfies the bound

R d'
(4.11) [ME2®||mr < Co [ ME2O]|re + 5 [(O, (0,‘52;5))142”
for any ® € H' and © = L. 5.

PROPOSITION 4.2. Assume that (hFam), (HN1), (HN2), (HW1), (HW2), (HS1),
and (HS2) are all satisfied and pick a sufficiently small constant A\g > 0. Then for any
set M C C that satisfies (hM),), there exist positive constants Cpy > 0 and epy > 0
so that for each A € M and 0 < € < epr the operator £~57>\ is invertible and satisfies
the bound

(4.12) IM22®ly < Crr[MZ?OIz

for any ® € HE and © = L. ,®.

By using bootstrapping techniques it is possible to obtain variants of the estimate
in Proposition 4.1. Indeed, it is possible to remove the scaling on the first component
of ® (but not on the first component of ®').

CoOROLLARY 4.3. Consider the setting of Proposition 4.1. Then for each 0 < <
do and 0 < £ < g9(9), the operator L. s satisfies the bound

—adj
(413) M2+ M| e < Co[IME2O e + 3[(O, (0. Tz |

for any ® € H! and © = ﬁgﬁfb, possibly after increasing Coy > 0.

Proof. Write ® = (¢, %0, e, Ve) and © = (0o, Xo, e, Xe). Note that the first
component of the equation © = L, 5P yields
(4.14)

2D¢, = DS1¢e — 525€¢/o + 52D1f0(Uo;s)¢o + 52D2fo(00;5)w0 - 652¢)o + 5290-
Recall the constants Kgam and Kp from (4.1) and (4.2), respectively, and write

(4.15) dmin = i D;,i; Amax = oax D;;.

We can now estimate
(4.16)
2dmin||¢o||L2(R;]R") < 2||D¢o||L2(R;R")

< IDS1ellL2mirn) + €lée|lledoll L2 rirn)
+ el|D1fo(Uosie) oo lledoll 2 mimm)
+ €l D2fo(Uoie)lloollewoll L2 mimry
+ €d|ledoll L2 (mirn) + €ll€bo || L2 (R;R7)
< [Qdmax + e(Kpam + 2K 5 + 50)} | M220|,, + | MLE20).

The desired bound hence follows directly from Proposition 4.1. 0
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The scaling on the second components of ® and ® can be removed in a similar
fashion. However, in this case one also needs to remove the corresponding scaling on

.

COROLLARY 4.4. Consider the setting of Proposition 4.1. Then for each 0 <4 <
do and 0 < £ < g9(9), the operator L. s satisfies the bound

—ad]
(4.17) IME®' ||z + [[@]lr2 < Co |[[MEO]r2 + 5[(6. (0, ‘Pe-,é))m”

for any ® € H! and © = /3575@, possibly after increasing Cy > 0.

Proof. Writing ®, = (¢, %,) and ©, = (0,, o), we can inspect the definitions
(4.7) and (3.12) to obtain

(418) (EO + 5)1/}0 = Dlgo(ﬁo;s)(bo + Xo-

Using Lemma 3.5 we hence obtain the estimate

(4.19) %ol mirry < C1 [IIDlgo(Uo;a)||oo||¢o||L2<R;Rn) + [Xoll L2 ims)

for some C] > 0. Combining this with (4.13) yields the desired bound (4.17). 0

Our final result here provides information on the second derivatives of ®, in the
setting where © is differentiable. In particular, we introduce the spaces

(4.20) H2 = H2 = H2(R;R") x H2(R;RF), H? = H2 x H2.

We remark here that we have chosen to keep the scalings on the second components
of ®” and ©’ because this will be convenient in section 5. Note also that the stated
bound on ||®||¢. can actually be obtained by treating 55,5 as a regular perturbation
of L, 5. The point here is that we gain an order of regularity, which is crucial for the
nonlinear estimates.

COROLLARY 4.5. Consider the setting of Proposition 4.1 and assume furthermore
that ||U,||oo is uniformly bounded for e > 0. Then for each 0 < § < &y and any
0 < e <eo(0), the operator L. s H? — H' is invertible and satisfies the bound
(4.21)

—ad]
|ME20" gz + |@]l: < Co[ 1MLz + [ ME26 [z + 3[(, (0, B0

for any ® € H? and © = /:'5,5(1), possibly after increasing Coy > 0.

Proof. Pick two constants 0 < d < §p and 0 < & < €9(d) together with a function
¢ = (9,,0.) € H! and write © = L. ;P € L% If in fact ® € H?, then a direct
differentiation shows that

(4.22) ® = L. s® — D2F(U.)[UL, @],

which due to the boundedness of ® implies that © € H!. In particular, 5575 maps H?
into H!. Reversely, suppose that we know that © € H!. Rewriting (4.22) yields

(4.23) &P =0 — 60 + Mj > Juix® + DF(U.)®' + D*F(U.) [UL, ®].

Since ® is bounded, this allows us to conclude that ¢ € H?2. On account of Proposi-
tion 4.1 we hence see that L. 5 is invertible as a map from H? to H!.
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Fixing dyef = 300, a short computation shows that
(4.24) L.s5..8 =0 + D?F[U., ®] + (6t — 0)'.
By (4.17) we obtain the bound

—ad]
(425) M lge + | 2]ice < Co[MIO]ke + 2(©, (0, Fr0 e |

On the other hand, (4.13) yields the estimate
(4.26)

[ ME20" 2 + M0 12 < Co [ ME26) 2 + | ME2D2FIOL, ® 12
+ (M2 (Oret — 0) |2
~ ~ —adj
+ 52 [(© = D*F(U.)[UL, ®] = (drer — 6)®', (0, Bc0)) 12|
Since U, and Ué are uniformly bounded by assumption, we readily see that

(4.27) IME2D>F(U:)[UL, ®]lle= < |D*F(U) (UL, @]z < Cf| Pl

for some C}] > 0. In particular, we find

IM22®"|[L2 + | M2D" L2 < C3 [IIMi’Q@’IILa +I@llge + M2

2]
for some C4 > 0. Exploiting the estimates

L2 < [[ME2 |2 < IMEDge, 10L]IL2 < [[MLE?O]|Le,

(4.28
+ 92z + (2]

(4.29) |||

together with

(4.30) 127ge < [|ME@" gz + [MER s

the bounds (4.25) and (4.28) can be combined to arrive at the desired inequality
(4.21). 0

4.1. Strategy. In this subsection we outline our broad strategy to establish
Propositions 4.1 and 4.2. As a first step, we compute the Fredholm index of the
operators L. » for X in a right half-plane that includes the imaginary axis.

LEMMA 4.6. Assume that (hFam), (HN1), (HN2), (HW1), and (HW2) are satis-
fied. Then there exists a constant Ao > 0 so that the operators L. x are Fredholm with
index zero whenever Re X > —X\g and € > 0.

Proof. Upon writing
Fi) = pDF(Us) + (1= p) DE,(U),

(4.31) @
Fep = pDFe(U;) + (1 - p)DFe(UeJr)

for any 0 < p < 1, we introduce the constant coefficient operator L,..  : H%: — L(QC
that acts as

(4.32) Lo ( G+ ZJp—Fi)+Xx —%JpSi )
' piEN —

—JpS Cedk +2Jp — FS) + A
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and has the associated characteristic function

Gzt ZJp—FD e A —LJp [ez Yot
(4.33) Ap,..\(2)= ) ~ : (1)
—Jp [ez + e*z] Cez+2Jp — Feip + A

Upon writing
1
(4.34) Y = Fip 0
P o FY

together with

(4.35) Aly) = ( i?]D cos(y) ;7;71) cos(y) ) ’

we see that

(4.36) MIEAL | (iy) = (Eiy + M 4+ 24(y) — MBPESY.
For any y € R and V € C2(»*+*) we have

(4.37) ReViciyML*V =0,

together with

(4.38) ReVTA(y)V > 0.

In particular, we see that
(4.39)

ReVIMUZAL, |\ (iy)V = —<?Re [V (Fig) — \Vo] = Re [VI(ES) - VVe].

Let us pick an arbitrary Ao > 0 and suppose that Az , (iy)V = 0 holds for some
V e C2(+k)\ {0} and Re A > —)¢. We claim that there exist constants ¥; > 0 and
Y2 > 0 that do not depend on Ag, so that

(4.40) —ReV(FL) — Vg > (92 — 9100) Vg

for # € {o,e}. Assuming that this is indeed the case, we pick A\g = 219721 and obtain
the contradiction

0=ReVIML AL _, (iy)V
(4.41) > 105 [E2Vo 2 + |[Vel?]
> 0.

The desired Fredholm properties then follow directly from [39, Thm. C].
In order to establish the claim (4.40), we first assume that Fiy satisfies (he). The

negative-definiteness of F;geli; then directly yields the bound

(4.42) Re VL(F) — \Vi < (Ao — 92)|Vg|?

for some 99 > 0.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 04/23/20 to 81.207.207.201. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

TRAVELING WAVES FOR PERIODIC DISCRETE SYSTEMS 3511

On the other hand, if Fy satisfies (h3), then we can use the identity

(4.43) (Geiy + Nwy — [Fi) o 2wy = [F) |2 104
to compute
0 [F(l.) 12
Re V] PO #ip Vi
[ #;/)]2’1 0
0 Wt
=ReV] @ [Feplin Vi
[Fypl2n 0
(4.44) =Re [ — Fv;& [F;l;z)};lw# + wL [Fqgﬁl;)p]gjlv#]

= (1 - D) Rewl [Fy) ]2 10y
=(1-T)Re w;é [éeiy + Awy — (1-T) Rew;é[ﬁﬁ;i)]zgw#

(1 -T)ReXwgl? — (1 - T)Rewl, [F) |2 sws.

In particular, Lemma 3.3 allows us to obtain the estimate

ReVi(F) — \Vg = T ReAlwg[? + T Rewl, [Fi) |5 wy
(4.45) —ReAvg|? + Re UL [F#{L]QQU#

< (T4 DAV [* — 92|V |?
for some J2 > 0, as desired. ]

For any € > 0 and 0 < § < d, we introduce the quantity

(4.46) A(€7 6) = inf HM?%CNE 5(I)HLZ + %|<£~€ 59, (076:(:3»1:2 :|7
BEH!, | MLE2P|| 1 =1 ’ ' ’
which allows us to define
A(6) = liminf A .
(4.47) (0) = lim inf Az, 0)

Similarly, for any € > 0 and any subset M C C we write

Ale, M) = inf ME2L \®|pe,
(4.48) (e, M) @eHl’AeM’”M;%HHI:lll 2L P|L

together with

(4.49) A(M) = hr?ibnf A(e, M).

The following proposition forms the key ingredient for proving Propositions 4.1
and 4.2. Tt is the analogue of [1, Lem. 6].

PROPOSITION 4.7. Assume that (hFam), (HN1), (HN2), (HW1), (HW2), and
(HS1) are satisfied. Then there exist constants g > 0 and Cy > 0 so that

(4.50) A) > &

holds for all 0 < 6 < dp.
Assume furthermore that (HS2) holds and pick a sufficiently small \g > 0. Then
for any subset M C C that satisfies (hMy,), there exists a constant Cps so that

(4.51) A(M) > c%,-
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Proof of Proposition 4.1. Fix 0 < § < Jg. Proposition 4.7 implies that we can
pick €¢(6) > 0 in such a way that A(e,d) > C%) for each 0 < € < g¢(d). This means

that 25’5 is injective for each such ¢ and that the bound (4.11) holds for any ® € H'.
Since L. s is also a Fredholm operator with index zero by Lemma 4.6, it must be
invertible. |

Proof of Proposition 4.2. The result can be established by repeating the argu-
ments used in the proof of Proposition 4.1. 0

4.2. Proof of Proposition 4.7. We now set out to prove Proposition 4.7. In
Lemmas 4.8 and 4.9 we construct weakly converging sequences that realize the in-
fima in (4.46)—(4.49). In Lemmas 4.10-4.15 we exploit the structure of our operator
(4.10) to recover lower bounds on the norms of the derivatives of these sequences
that are typically lost when taking weak limits. First recall the constant J, from
Proposition 3.1.

LEMMA 4.8. Consider the setting of Proposition 4.7 and pick 0 < § < d,. Then
there exists a sequence

(4.52) {(gj,®;,0;)};>1 C (0,1) x H! x L2
together with a pair of functions
(4.53) d € H, 0cL?
that satisfy the following properties:
(i) We have lim;_, o €; = 0 together with
—adj

. 1
(4.54) Jim [[|M2265 1z + 5](0,. (0.820)ns || = A9).

(ii) For every j > 1 we have the identity
(4.55) Le, s, =0;
together with the normalization
(4.56) M2, s = 1.

(iii) Writing ® = (po, Yo, Pe, te), we have ¢, = 0.

(iv) The sequence M;;?(I’j converges to ® strongly in L2

loc

and weakly in H'. In
addition, the sequence Méf@j converges weakly to © in L2,

Proof. Ttems (i) and (ii) follow directly from the definition of A(J). The nor-
malization (4.56) and the limit (4.54) ensure that ||M;;2<I>j|\H1 and HM;;QGJ-HLz are
bounded, which allows us to obtain the weak limits (iv) after passing to a subsequence.

In order to obtain (iii), we write ®; = (do,j, Vo j, Pe.j, We,j) together with ©; =
(00,5, Xo.,j, Oe.j, Xe,j) and note that the first component of (4.55) yields

2Dy, — DS16e j = —€3¢c; 8l ; + €3 D1 fo(Uoie, ) o,
+ E§D2f0(ﬁ0§5j)¢07j - 555(?5073’ + €§907J"
The normalization condition (4.56) and the limit (4.54) hence imply that

(4.57)

(4.58) Jim [[2Do;j — DS16e jll L2 i) = 0.

In particular, we see that {¢,.;},;>1 is a bounded sequence. This yields the desired
identity ¢, = lim; o0 €5¢0,; = 0. O
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LEMMA 4.9. Consider the setting of Proposition 4.7 and pick a sufficiently small
Ao > 0. Then for any M C C that satisfies (hM.,), there ezists a sequence

(4.59) {(Nj,gj,®;,0;)}j>1 € M x (0,1) x H' x L2
together with a triplet

(4.60) ®cH', 0 e L? AeM

that satisfy the limits

(4.61) e =0, A=A [IME2O)]|e — A(M)

as j — oo, together with the properties (ii)—(iv) from Lemma 4.8, with & replaced by

Proof. These properties can be obtained by following the proof of Lemma 4.8 in
an almost identical fashion. ]

In the remainder of this section we will often treat the settings of Lemmas 4.8
and 4.9 in a parallel fashion. In order to streamline our notation, we use the value
Ao stated in Lemma 4.6 and interpret {\;};>1 as the constant sequence \; = § when
working in the context of Lemma 4.8. In addition, we write A,a.x = d in the setting
of Lemma 4.8 or A\pax = max{|A| : A € M} in the setting of Lemma 4.9.

LeEmMA 4.10. Consider the setting of 4.8 or 4.9. Then the function ® from
Lemma 4.8 satisfies

(4.62) [Pl < CoA(6),
while the function ® from Lemma 4.9 satisfies
(4.63) 1Pl < CoprA(M).

Proof. In order to take the € | 0 limit in a controlled fashion, we introduce the
operator

(4.64) Loy = lim M‘%Eej,A,--

j—o0

Upon introducing the top-left block

. 2D 0
4.65 Loolii = _ _
(16 s = ( _poii) 7,60 )
we can explicitly write
- [Loplia  —JDS:
(4.66) Lo = _ .
—JDS, cod% +2JD — DF.(Uep) + A

Note that Lo,y and its adjoint igdj\ are both bounded operators from H! to L2.
In addition, we introduce the commutators

(467) BJ = Eaj7/\jM51j72 - MEIJ?Z‘ZEJ',)\J"
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)JDS1 )
in which the top-left block is given by

o) Bha=0-5)( _pgg, 0 )

A short computation shows that

(4.68) B; = ( Bl (G-
(1 — e’:‘j)JDSl

o \-mw‘ =

Pick any test-function Z € C°°(R; R?"+2k) and write
(4.70) I = (M%Esj,ijQ;?@j, Z)L2
Using the strong convergence
(4.71) TN MLZ IS VASS vl
we obtain the limit

T = (ML 2<1>J,LadJ M%Z}Lz
dj
(4.72) = (@, Ly Z) e
= (Lo ®, Z)12

as j — oo.
In particular, we see that

1= <Mi§M§;2£ej,Aj‘I’ja Z)e + <M%qu)jvz>L2
(4.73) = <M;?M;f@j, Z)y2 + <M;?qu>j, Z)p»
— (MO, Z)12 + (= DS16e, =D190(Uo0)$0, DS160,0), Z) 2
It hence follows that
(4.74) Los® = MEO + (— DS1¢e, —D190(Uosi0) b0, DS1¢5,0).
Introducing the functions
(4.75) Do = (Y0, e, Ve), B0 = (Xo, e, Xe),
the identity ¢, = 0 implies that
(4.76) Lo ®o = O,.
In the setting of Lemma 4.8, we may hence use Proposition 3.1 to compute
1 lazs < Co [105 1z + 4 (©o, (0,20 s

(4.77) i
<0, {H@HLZ + 10, (0,3 H.

The lower semicontinuity of the L2-norm and the convergence in (iv) of Lemma 4.8
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imply that

(4.78) IOllL: + 1[(©, (0, B20))r2| < A(5).

In particular, we find

(4.79) [@llar = [|Pollmy < CoA(6),
as desired. In the setting of Lemma 4.9 the bound follows in a similar fashion. 0
We note that
(4.80) M0, = &, M®) + M (= DF(Us;) + ) @) — Jui®j,
J J J

in which Jyix is given by (4.9) and in which
- DF,(U,.) 0

4. 1 DF = b .

s @=( ooy )

LEMMA 4.11. Assume that (HN1) is satisfied. Then the bounds

Re _Jmixq)y(b/ 2 = O7

(4.82) < ks
Re <—Jmixq), (I)>L2 >0

hold for all ® € HE..
Proof. Pick ® € H} and write ® = (®,,®.). We can compute

Re <*JmiX(I), @/>L2 = Re <2JD(I)O, @Q>Lg — Re <J951(I)e, (I)/0>L?,

(4.83) — Re (JpS1®, )12 + 2 Re (Jpde, &)z

= 0’
since we have Re (JpS; P, @;)Lg = —Re(JpS51P,, ‘I’;>Lg- Moreover, we can estimate
(4.84)

Re (= Jmix®, )12 = Re (2Jp®P,, ,)12 — Re (JpS1Pe, Pp)12
— Re (JpS1®,, Pe)12 + 2Re (JpPe, Pe)1e
> 9|V Tp@0l2, + 2T lI2: — 41T, IV Tp2. 12
2 2Vl + 2T I 4 (3ol + IV Ioe I )
= 0. o
LEMMA 4.12. Consider the setting of Lemma 4.8 or 4.9. Then the bound

(4.85)
[ Re(MLE (= DF(T,) + A0) 5, 8] < AR+ M) |ME20 2 | ME2

holds for all j > 1.
Proof. We first note that
(4.86) ) }
Re <Mi;22( - DF(U€J> + )\])(b]7 (b_/j>L2 = Re<5j(_DF0(UO§EJ) + )\j)q)o:j’ qu):),j>L?,

+ Re<(_DFe(Ue;Ej) + )‘j)q)e,jv (I)/e,j>L§~
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Using Cauchy—Schwarz we compute
(4.87)
| Re (ML*( = DF(Us,) +X7) @5, )| < (K + Amas) ll£@o.5 ez lle; 5 1
| + (Kp + Amax) e 122 19% 5|1z
< 2(Kp + Amax) [MLE2®; |2 | ML20 |12,
as desired. O

LEMMA 4.13. Consider the setting of Lemma 4.8 or 4.9, possibly decreasing the
size of A\g > 0. Then there exist strictly positive constants (a,m,g) together with a
constant 3 > 0 so that the bound
(4.88)

Re <Mi%2( — DF(Us,) + X))@, %), > a MU P72 — g [, <, IME2D;?

— BIMZ0;lIz-
holds for all j > 1.
Proof. We first note that

(4.89) Re (Mi;f( — DF(U.;) + Xj)®j,®;) 1, = €2Noyj + Neyj,
in which we have defined

(4.90) Niyj=Re((— DFyu(Uge,) + Aj)®s 5, ‘I’#7j>L;
for # € {o,e}.

Let us first suppose that Fy satisfies (h8) and let I'x be the proportionality

constant from that assumption. We start by studying the cross-term
(4.01) C4j=—Re <D2f# (U#;aj)¢#,j, ¢#7j>L2(R;Rn)
— Re (D1gy (Uptie, ) D5 V#t.5) L2 imn )

Recalling that

(4.92) Xotj = e, Wl 5 — D Ugpee, )05 — Do (Uspic Y j + At 5,
we obtain the identity
(4.93) ~

oy — 1) Re(D19#(Ugie,; ) .j» Yt.5) L2 (RiF)

= Iy
= (T — D Re(@, ¥y ; — Dogu (U, g + Nttt s — Xt Vi) L2 (i)
= Ce; (T — 1) Re(ly ;. ¥ j) L2 (mirr)

+ (T — D Re(=Dagy (Upe, )i + \jthspj — Xehj» Vo) 12 (mim¥)
= (1 —=T4) Re(Dagy (Usse, )5, Vst ) 2 (Rim5)

+ (T = 1) [ReAlwsll7, — s Ui o

In particular, we see that
(4.94)

Ny =TuRe Ay j, Vs i) L2mr) — T Re(Dagy (Upie, )p s Uit ) 12 (rime)
+ Re Mg j, dw.i)r2mmn) — Re(D1fu(Usie, )bt 5> ds.5) L2z

- (T% - 1)<X#7J7w#7j>L2(R;Rk)-
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Recall that U. — Ug in L®, Uy, (€) — UZF, and U, (€) — UF for £ — £o0.

o
Using Lemma 3.3 and decreasing A if necessary, we see that there exist a > (I'y +

1)Ao > 0 and m > 1 so that
3al Py ;(€)> < —Re (D1 fu(Usie, (€)) ds. 5 (€), 0.5 (€)) gn
— Ty Re (Dagy (Upse, ()5 (€), 5 (6) D
for all [¢] > m. We hence obtain
N#,j > 2a f|£|2m |(I)#7j(£)|2 df - (F# =+ 1)([(F + )\max) flﬁlSm |(I)#7j(£)|2 dg
= (T + Dlixgill 2 1945
> 2a]| Py lzs — (Tp +1) (20 + Kp 4 Anax) Jigj<m [P (€)1 d€
— (T + Dlixgill 2 1945

(4.95)

Rk
(4.96) FHEED

L2 (R;RF) -

Using the standard identity zy < imz + zy? for z,y € R and z > 0, we now find

(4 97) N#,j > qu)#’jHii — (F# + 1) (2a + f(p + )\max) fl&lgm |(I)#,j(f)|2 d¢
o ﬁ(r# + 1)2HX#,]'”%2(R;R1¢)7

which has the desired form.
In the case where Fl satisfies (ha), a similar bound can be obtained in an anal-
ogous, but far easier fashion. ]

LEMMA 4.14. Consider the setting of Lemma 4.8 or 4.9. Then there exists a
constant k > 0 so that the bound

(4.98) RIME? D72 > ML |7 — 252, | ME26;7
holds for all j > 1.

Proof. For convenience, we assume that ¢, > 0 for all j > 1. Recalling the
decomposition (4.80), we can use Lemmas 4.11 and 4.12 to compute
(4.99)
Re(./\/l;f@j, M;;_Q‘I);>Lz =C; Re(./\/l;]’?@;-, M;;?(I);-}Lz + Re(—Jmix®j, ®))12
+ Re (ML (= DF(U:) + 1) 25, %),

> —2(Kp + Amax) ML @ |z ME® e + &, ML ..

We hence see that
(4.100) R
Ce, [IME2 (122 < 2(KF + Amax) [ME2®;| 12 [|ME2 ) [z + MOz [ ML) | Lo

Dividing by ||M§;2<I>;-||Lz and squaring, we find
- = 2
(4.101) 2 M2 E2 < 8(Kp + Amax) " [ME2)[E2 + 2| M2E26;] 1L,

as desired. 0

Recall the constants (g, m, a, 5) introduced in Lemma 4.13. Throughout the re-
mainder of this section, we set out to obtain a lower bound for the integral

(4.102) Ii=g [ IMZ20;(8)*de.
¢[<m
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LEMMA 4.15. Consider the setting of Lemma 4.8 or 4.9. Then the bound
(4.103) Zj > §IME2;15. — (ﬁ +5)||M§;-2@j||iz

holds for all j > 1.

Proof. Recall the decomposition (4.80). Combining the estimates in Lemmas 4.11
and 4.13 and remembering that Re(./\/lifi;, M}:;Q(I)j)Ip =0, we find

(4.104) I, > al| ML2®; (2, — Re(ML20,, ML20;) 12 — B M6, 2,
> | ML2D, 12, — [ ML20), e ML, | — BIML26, 2,

Using the standard identity zy < %xQ + iyg for z,y € R and z > 0 we can estimate
(4.105) I, > §IML20, 2 — (5 + 8) IML26; 2.,

as desired. 0

Proof of Proposition 4.7. Introducing the constant v =
(4.98) to (4.103) and find

m7 we add ~ times

T o MR 2, > §IMER0 2, — (5 + 8) IML26, 12,

}7(2
ME2E s — B | 220, 2,

(4.106)

+ 2(;@—',—1) H

We hence obtain

K2
T > ey M0 — (& + 6+ b )| ML205 2.

(4.107) Art1)
= 01 - 02”-/\/1;;2(—:)]“%2

Letting j — oo in the setting of Lemma 4.8 yields
(4.108) C1—CA(0) <g [ |2(&)dE < gCoA(d).

|§|<m

As such, we can conclude that
(4.109) A > &

for some Cy > 0, as required. An analogous computation can be used for the setting
of Lemma 4.9. 0

5. Existence of traveling waves. In this section we follow the spirit of [1,
Thm. 1] and develop a fixed point argument to show that (2.1) admits traveling wave
solutions of the form (2.12). The main complication is that we need e-uniform bounds
on the supremum norm of the waveprofiles in order to control the nonlinear terms.
This can be achieved by bounding the H'-norm of the perturbation, but the esti-
mates in Proposition 4.1 feature a problematic scaling factor on the odd component.
Fortunately Corollary 4.5 does provide uniform H!-bounds, but it requires us to take
a derivative of the traveling wave system.

Throughout this section we will apply the results from section 4 to the constant
family

(5.1) (ﬁE)éE) = (UO7CO);
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which clearly satisfies (hFam). In particular, we fix a small constant 6 > 0 and write
L. s for the operators given by (4.7) in this setting. We set out to construct a branch
of wavespeeds c. and small functions

(52) (I’e = ((I)o;ea (I)e;a) € H2

in such a way that Uy + ®. is a solution to (2.14). A short computation shows that
this is equivalent to the system

(5.3) Les(Pc) = Fslce, @),
which we split up by introducing the expressions
R(c,®) = (co — )0 (Uo + @),
(5.4) & = (= Jeol + TFo(U00),0)),
Nip(P) = Fy(Ugio + @) — DFy(Uspio) P — Fi(Ue0)
for # € {o,e} and writing
(5.5) Folee,®2) = Rlce, o) + E + (No(@ose), No(Pese)) + 69.

Notice that R contains a derivative of ®. It is hence crucial that E;; gains an order
of regularity, which we obtained by the framework developed in section 4.
For any € > 0 and ® € H? we introduce the norm

2 2 2
(5.6) lelk. = |Mmioze| , + el .

which is equivalent to the standard norm on H2. For any n > 0, this allows us to
introduce the set

(5.7) Xoe = {®e H? [®]x. <n}

For convenience, we introduce the constant 7, = [2||<I>3%||Lg]71, together with the
formal expression

—adj — —adj —adj
(5:8)  cs(®e) = co+ [1+ (e, Trig)re] " [0(0e, Trighrz + (Mo (®e), Biigrz .

LEMMA 5.1. Assume that (HN1), (HN2), (HW1), (HW2), and (HS1) are satisfied
and pick a constant 0 < 1 < n.. Then the expression (5.8) is well-defined for any
e >0 and any & = (0o, ®.) € X,;c. In addition, the equation

(59) <]:5(C’ (I))> (O762i)j)>1‘2 =0

has the unique solution ¢ = cs(®Pe).

Proof. We first note that

—ad]
(5.10) <6£(I)ea (I)e;(§>L§ > - ||a§q)e||Lg

—adj
(I)e;O ‘

L?
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which implies that (5.8) is well-defined. The result now follows by noting that
(€0, (0,®559))12 = 0 and that

(R(e, @), (0,820)) g = (c0 — ) (T, Trighnz + (06 Toig)rz)

(5.11) ad]
= (co — ) (1 + (0: P, <I>e%>Lz)7

which implies that

(5.12)
adj

(Fs(e.®), (0,820))g = (co—0) (140 e, iy adi

)00,

>L2+<N ((I)e)a 66;6>L(23 :

d

Consider the setting of Corollary 4.5 and pick 0 < 6 < §p and 0 < £ < g9(d). Our
goal here is to find solutions to (5.3) by showing that the map T; 5 : X,;;c — H? that
acts as

(5.13) Te5(P) = (Les) ' Fs(cs(Pe), @)

admits a fixed point. For any triplet (&, ®4, ®B) ¢ X% .
imply that

(5.14)  |ITo5(®)llx, < Co[|[MLF5(cs(®e), ®)| 2 + [ ME20cFs(cs(Pe), @)|[ 12 ]

the bounds in Corollary 4.5

together with
(5.15)

|T5(2%) — To 5(95)] | <00HM§(}'5(C5(<I>;4),<I>A)f]-'(;(c(;(CI)eB),cI)B))’

L2

+Co HM;»’Za5 (]-'5 (cs(@4), D4) — Fs (cs(DF), @B))]

L2’

In order to show that 7} 5 is a contraction mapping, it hence suffices to obtain suitable
bounds for the terms appearing on the right-hand side of these estimates.

We start by obtaining pointwise bounds on the nonlinear terms. To this end, we
compute

16 DN, (D) = (DFO(UO;O + @) — DF,(Uoo) — DQFO(UO;O)tbo)U;;O
5.16
+ (DFO(UO;O +®,) — DF,(U, ))85<I>

and note that a similar identity holds for ¢ N, (®.). In addition, we remark that there
is a constant K > 0 for which the bounds
(5.17)

IDFy(Upo + @)oo + ID*Fy(Ugo + P )lloo + 1D?Fe(Uggo + P)lloe < Kp

hold for # € {0, e} and all ® = (®,, ®.) that have || Py < 7.

LEMMA 5.2. Assume that (HN1), (HN2), (HW1), and (HW2) are satisfied. There
exists a constant K, > 0 so that for each ® = (®,,®.) € H' with ||®|gm: < 7., we
have the pointwise estimates

Vo (®,)] < Kp|@ol?,

(5.18) ,
Ne(@e)| < K| D,
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Proof. Using [17, Thm. 2.8.3] we obtain
(5.19) No(®,)| < 3K p|®,]*.

The estimate for A, follows similarly. 0

LEMMA 5.3. Assume that (HN1), (HN2), (HW1), and (HW2) are satisfied. There
exists a constant K, > 0 so that for each ® = (®,,®.) € H' with ||®|g: < 1., we

have the pointwise estimates
(5.20) |0eNo(Do)| < Ky (|06 Pol| Dol + o),
|0eNe(@e)| < Kp (|0 @e|Pe| + |Dc?).

Proof. We rewrite (5.16) to obtain

85-/\/'0((1)0) = DFo(ﬁo;O + ‘I)o)aﬁ(ﬁo;o + (I)o) - DFo(ﬁo;O)af(ﬁo;O + (bo)

(5.21) _ _ -
- DQFO(UO;O)[(I)W 8€(U0;0 + (I)O)] + DZFO(UO;O)[CDW 6€¢0]-

This allows us to use [17, Thm. 2.8.3] and obtain the pointwise estimate

5.2 9N (®0)] < 3K I ol (IT ool + [0 Pol) + K |6]|0 |
< KP(|85(D0H‘I)O| + |(I’o|2)'

The estimate for A, follows similarly. 0

LEMMA 5.4. Assume that (HN1), (HN2), (HW1), and (HW2) are satisfied. There
exists a constant K,, > 0 so that for each pair

(5.23) o4 = (04, 04) e HY, oP = (08 o8 c H!
that satisfies ||l gn < 1. and || @8 || < 14, we have the pointwise estimates
5o N (@) = NL(@F)] < K, [|02] + [02]] [0 — 9],

Ne(@F) = Ne(@F)] < K [|2)] + [@7]][@2 — 7).

Proof. We first compute

No(@?) - No(q)f) = FO(UO;O + (I)OB + ((bf — @OB)) - FO(UO;O + (I)OB)
(5.25) — DF,(Ugo + @) (25 — @F)
+ [DF,(Uoyp + ®F) — DF,(Uoy0)] (25 — 0F).

Applying [17, Thm. 2.8.3] twice yields the pointwise estimate

520 No(@2) = No(@2)| < K [3]07 — @] + [0 [0} - 27
< 2Kp[|@)]+|27]]|2] — @7

The estimate for N, follows similarly. ]

LEMMA 5.5. Assume that (HN1), (HN2), (HW1), and (HW2) are satisfied. There
exists a constant K, > 0 so that for each pair

(5.27) o4 = (04, 04) e HY, o8 = (08 oB) c H!
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that satisfies |4 |lgr < 1. and || @8 ||gr < 1. we have the pointwise estimates
(5.28)

DN (@) — DN (BR)] < 15, [|0c04] + [0 + [0:BF| + ||| 04 — @]

+ K, |04 + [0F]]|0e(@4 — @)

for # € {o,e}.

Proof. Differentiating (5.25) line by line, we obtain
(5.29) OeNG(P2) — OeNL(PE) = dy + do + d3
with
(5.30)

dy = DF, (U + 08 + (02 — ©8)) (U, + 0cDB + 0 (02 — 0B))

— DF,(Uogyp + ®5)0¢ (Uoyp + @F),
dy = —D*F, (U + ®F) [0 — ®F,0:(Uoyo + ®F)] — DF, (U, + 2)0: (92 — @5),
ds = [DF,(Uo + @) = DF,(Uoi)] 0 (7 — @F)

+ D2F, (U0 + 8) [0 (U + ®F), @2 — 05| — D2F, (U 10) [T, D2 — 05,

Upon introducing the expressions
(5.31)

di = DF, (Too+ B + (22 — 88)) 0 (Toio + F) — DF, (Torg + BB) 0 (T o + 25

— D*Fy(Uoio + @7) [(I)f — @5, 0:(Ugyo + ©5)],
drr = [DFO(UO;O + @7 + (25 = 7)) — DF,(Uopo + @f)}(’)g(@f - o)),
we see that
(5.32) dy +de =dy +dyy.
Applying [17, Thm. 2.8.3] we obtain the bounds
(5.3 di| < 3Kl = OF 2 ([Tl + 007,
ldir| < Kp|®; — @F|0:(25 — ©)].

In addition, the expressions
dirr = [DF,(Uop + ®F) — DF,(Us0)]0¢ (22 — @F),
(5:34)  dry = D?F,(Ugg + 9F) [Ty, 04 — OF] = D2F,(U0) [T 0, @2 — ®F],
dy = D>F,(Ugp + F)[0: 02, @ — 7]
allow us to write
(5.35) ds =drr +drv +dy.
Applying [17, Thm. 2.8.3] we may estimate
|dirr| < Kp|®F]|0:(25 — @),
(5.36) ldiv| < Kr|®F||® — ®7],
ldv| < Kp|0g®2]|02 — 9],
These bounds can all be absorbed into (5.28). The estimate for N, follows similarly. O
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With the above pointwise bounds in hand, we are ready to estimate the non-
linearities in the appropriate scaled function spaces. To this end, we introduce the
notation

(5.37) N(®) = (No(®o), Ne(®e))

for any ® = (®,,®.) € H.

LEMMA 5.6. Assume that (HN1), (HN2), (HW1), and (HW2) are satisfied. There
exists a constant Ky > 0 so that for each 0 < n < 1y, each € > 0, and each triplet
(@, 24, 0F) € X3._ we have the bounds

€

(5.38)
IMIN(@)]|ez < Kn?,
||M1 Qazf\/ D)l < Knm?,
ML (@4) — N (@P)) [lLe < Kam| B4 — @5]|gz,
| ME20e (N (@4) = N (@) [z < Ky (|04 = @1z + 06(@4 — @) |z ).

Proof. All bounds follow immediately from Lemmas 5.2 and 5.5 upon using the
Sobolev estimate ||¢|loc < C1l|@|| g1 to write

(5:39) [®olloc < C1m, [0e®ol0e < C1L,
”(I)eHoo < 0{77’ ”afq)e”oo < 0{77
with identical bounds for &4 and ®5. 0

LEMMA 5.7. Assume that (HN1), (HN2), (HW1), and (HW2) are satisfied. Then
there exists a constant Kg > 0 so that for each € > 0 we have the bound

(5.40) IM2&ollLe + M2 0¢&ollre < K.

Proof. The structure of the matrix J allows us to bound

(5.41) M|y < ell€ollge | ME20:E]| . < € ll0eolly -
L L

The result hence follows from the inclusions

(5.42) U,, € H., F,(Uuyo) € HL.

The first of these can be obtained by differentiating (2.18) and (2.20). The second
inclusion follows from the fact that U, converges exponentially fast to its limiting
values, which are zeroes of F,. ]

LEMMA 5.8. Assume that (HN1), (HN2), (HW1), (HW2), and (HS1) are satis-
fied. Then there exists a constant K. > 0 in such a way that for each 0 < n < 75,

each € > 0, each § > 0, and each triplet (&, d4, ®B) ¢ X% . we have the bounds

lcs(®e) — ol < K. [on+n?],

(5.43) A 5 A 5
les(@2) — cs(RF)] < Ko (6 +n)[| 2 — F||pe.

Proof. Since we only need to use regular L2-norms for these estimates, the proof
of [43, Lem. 4.4] also applies here. d
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LEMMA 5.9. Assume that (HN1), (HN2), (HW1), (HW2), and (HS1) are satis-
fied. Then there exists a constant Kr > 0 in such a way that for each 0 < n < 1,4,
each 0 < e < 1, each § > 0, and each triplet (&, ®4, ®B) € X3 _ we have the bound

€
(5.44) [MEIR(c5(De), @)Lz + [ME2eR(cs(De), @)Lz < Kr[dn + 17
Writing
(5.45) AABR = R(cs(®1), ®4) — R(cs(DE), dB),

we also have the bound
(5.46)
IMIAABR|Le + [[MIP0cAupR L < Kr (6 +n)||@* — &7 ||

+ nKr(n+06)]0: (24 — ®F)| L2
+ KR (n+ 0)| ML?0Z (24 — ©F)| 2.

Proof. Using Lemma 5.8 we immediately obtain the bound
—/
oam ROl < Kelpn 7] (1M1l + |MT o)
. —/
< Ke[on+ 2] (n+ [Tllee ).

together with
—
IME20eR (e5(®e), ®)ns < Ke[on + 7] (| ME2020] s + [ ME2TG s )

(5.48) _
< Ke[n+ 2] (n+ TG 2 ).

In addition, we may compute

(5 49) AsBR = (C,;(@E) — 65((1)?))85 (Uo + (I)A)
' + (co — c5(DB)) 0 (@A — B),

which allows us to estimate
IMEA BRI < Ko(8 +n)]|@4 — @82 (| MLITlez + [| ML B4 .2 )
+ K. [5n + n?] [| ML (D4 — ©B)| 1
< Ko (6 +1)]|84 — @22 ([T Iz + n)
+ K [0n + n?][|0g (@4 — 7)1z,

(5.50)

together with
(5.51)
—//
[ML20:AapR|L> < Ko (0 +n)[|[@4 — @ L2 (IME2TUg [l + [ MLI20:04|2)

+ K [on+ n?][ME202 (@4 — BF)||L
—/
< Ke(5+n) |94 — 8|2 (1T |2 + )
+ Kc[on + n?][|ME20e (@4 — ®P)| e

These terms can all be absorbed into (5.46). d
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Proof of Theorem 2.1. Using Lemmas 5.6, 5.7, and 5.9, together with the decom-
position (5.5) and the estimates (5.14)—(5.15), we find that there exists a constant
K7 > 0 for which the bounds
I725(@) I, < Koo+ +e],

(5.52)
|725(@%) = T2 s(@P)| < Kr[5+n] |04 - 07 |x,

hold for any n < 7., any 0 < € < £0(6), and any triplet (®, 4, &) X737;5~ As such,
we fix

(5.53) 0= ﬁ 1 = min{n,, ﬁ}

Finally, we select a small positive e, such that e, < £¢(0) and e, < ﬁn. We
conclude that for each 0 < ¢ < €., T, 5 maps X,,,c into itself and is a contraction.
This completes the proof. 0

6. Stability of traveling waves. Introducing the family

(6'1) (ﬁEaéE) = (ﬁg,cs)y

which satisfies (hFam) on account of Theorem 2.1, we see that the theory developed
in section 4 applies to the operators

(6.2) L.y:H' — L2
that act as
(6.3) Loy = cege = M2 Jmix — DF(Uc) + A

We emphasize that these operators are associated to the linearization of the traveling
wave system (2.14) around the wave solutions (U.,c.). For convenience, we also
introduce the shorthand

(6.4) Zg = ZS,O == CE% - M%/EZ mix — DF(UE).
We remark that the spectrum of L. is 2mic.-periodic on account of the identity
(6.5) (Lc+ N)e*™ =™ (L. 4 X + 2mice).

As a final preparation, we note that there exists a constant K > 0 for which the
bound
(6.6)

IDEy(Uoie)lloo + 1D Fo(Usie)lloo + [DFe(Ueie)lloo + | D?*Fe(Uese) oo < K

holds for all 0 < € < ¢,.

Our main task here is to reverse the parameter dependency used in section 4.
In particular, for a fixed small value of € > 0 we study the behavior of the map
A= 287 ». This allows us to obtain the main result of this section, which lifts the
spectral stability assumptions (HS1) and (HS2) to the full system (2.14).

PROPOSITION 6.1. Assume that (HN1), (HN2), (HW1), (HW2), (HS1), and (HS2)
are satisfied. Then there exists a constant €. > 0 so that the following properties hold
for all 0 < e < g,s.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 04/23/20 to 81.207.207.201. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

3526 W. M. SCHOUTEN-STRAATMAN AND H. J. HUPKES

(i) We have
(6.7) Ker(L.) = span(T)

together with ﬁ; ¢ Range(L. ).
(ii) For each A € C\ 2wic.Z with Re A > —\,, the operator 257,\ s invertible.

These spectral stability properties can be turned into a nonlinear stability result
by applying the theory developed in [30]. The main idea is to consider a temporal
Green’s function for the LDE (2.1) and spatial Green’s functions for the traveling
wave equation (2.14). These Green’s functions can be related to each other using an
integral representation. Our detailed knowledge of the spectrum of the operator L.
allows us to shift the integration path and split the temporal Green’s function for the
linearization of (2.1) around the wave U, into two components. The first corresponds
to the neutral part of the flow along the eigenfunction U;, while the second encodes
the exponentially decaying stable part of the flow. The full orbital neighborhood of
the traveling wave U. can now be spanned by the family of stable manifolds for the
shifted waves U, (- + ), which all have codimension one. In particular, every initial
condition in this neighborhood converges exponentially to a shifted version of U..

Proof of Theorem 2.2. For j € Z we introduce the new variables
(6.8) (Ujior Wjios Ujse, W) = (U241, Wajt1, Uzj, waj),

which allows us to reformulate the 2-periodic system (2.1) as the equivalent 2(n + k)-
component system

aj;O(t) = E%D[ujﬁ-l;e(t) + uj;e(t) - 2uj;0(t)] + fo(uj;O(t)ij;O(t»v
Ujio(t) = go(Uji0(t), wiio(1)),
uj;e(t) = D[“J’;O(t) + Uj—l;O(t) - 2“]’;6@)] + fe (uj;e(t)v wj;e(t))v
wj;e(t) = e (uj;e(t)v wj;e(t))a
which is spatially homogeneous.
On account of Theorem 2.1 and Proposition 6.1, it is clear that (6.9) satisfies the

conditions (HV), (HS1)—(HS3) from [30]. An application of [30, Prop. 2.1] immediately
yields the desired result. 0

6.1. The operator £.. Observe first that L. is a Fredholm operator with index
zero on account of Lemma 4.6. Our goal in this subsection is to establish the charac-
terization of the kernel and range of this operator given in item (i) of Proposition 6.1.
We note that this statement implies that the zero eigenvalue of L. is simple.

At times, our discussion closely follows the lines of [44, sects. 4-5]. The novel
ingredient here, however, is that we do not need to modify the spectral convergence
argument from section 4 to ensure that it also applies to the adjoint operator. Indeed,
we show that all the essential properties can be obtained from the following quasi-
inverse for L., which can be constructed by mimicking the approach of [32, Prop.
3.2].

LEMMA 6.2. Assume that (HN1), (HN2), (HW1), (HW2), (HS1), and (HS2) are
satisfied and pick a sufficiently small constant e, > 0. Then for every 0 < € < g,
there exist linear maps

(6.9)

WE:LQ—HR,

—qinv

L,

(6.10)
L2 - H',
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so0 that for all © € L? the pair

_ —qinv
(6.11) (7,9) = (7.0, 22™0)
is the unique solution to the problem
(6.12) L.V =0 +40,
that satisfies the normalization condition
(6.13) ((0,224), W)y2 = 0.

In addition, there exists C > 0 such that for all 0 < € < £,, and all © € L? we have
the bound

(6.14) 7.0] + [MULZO) Lz + L2782 < O MOz
Proof. The proof of [44, Lem. 4.9] remains valid in this setting. d

We can now concentrate on the kernel of £.. The quasi-inverse constructed above
allows us to develop a Liapunov—Schmidt argument to exclude kernel elements other

than ﬁlg
LEMMA 6.3. Assume that (HN1), (HN2), (HW1), (HW2), (HS1), and (HS2) are
satisfied. Then for all sufficiently small € > 0 we have
— —
(6.15) ker(L.) = span{U_}.
Proof. This result can be obtained by following the procedure used in the proof
of [44, Lems. 4.10-4.11]. O

We now set out to show that the eigenfunction ﬁ; is in fact simple. As a technical

preparation, we obtain a lower bound on 7,(U,), which will help us to exploit the
quasi-inverse constructed in Lemma 6.2.

LEMMA 6.4. Assume that (HN1), (HN2), (HW1), (HW2), (HS1), and (HS2) are
satisfied. Then there exists a constant v, > 0 so that the inequality

(6.16) 7Tl > 7.
holds for all sufficiently small € > 0.

Proof. We note first that the limit U; — Ug in L? and the inequality (U;O, ‘I):i)jhg
# 0 imply that there exists a constant v, > 0 so that

(6.17) (T, (0, 820)) 12| > v

for all small € > 0.
We now introduce the function

—qinv=—/
(6.18) v.=L U..
The uniform bound (6.14) shows that we may assume an a priori bound of the form

(6.19) [Wellp. <G

for some C] > 0.
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For any sufficiently small § > 0 and 0 < £ < £¢(d), the explicit form of 7, given
in [44, eq. (4.47)] implies that

o7 = (0 (Ee) " (Trows))
o (002, (Z-45) " Th),.,

6.20
(0:20)  {0,02%) 67 T+ (Zets) ow.)

o {0e(zr0) T,

.2

Since (ZE + 5)716\116 is uniformly bounded in L? for all sufficiently small § > 0 and
0 < e < g9(d) on account of Corollary 4.4 and (6.19), we can use the lower bound
(6.17) to assume that 6 > 0 is small enough to have

(6.21) 1€(0,2%), 61U + (L +0) 00.) .| > Cho!

for all such (e, ). Moreover, the uniform bound in Corollary 4.4 also yields the upper
bound

(6.22) (0, @28, (L. +6) " Tp)pa| < C41+071)
for all such (e, d). This gives us the lower bound

R c! s—1
(6.23) 7.Uel 2 G it 2 %

for some 7y, > 0 that can be chosen independently of § > 0. 0

LEMMA 6.5. Assume that (HN1), (HN2), (HW1), (HW2), (HS1), and (HS2) are
satisfied. Then for all sufficiently small € > 0 we have U; ¢ Range(L.).

Proof. Arguing by contradiction, let us suppose that there exists ¥, € H! for
which the identity

(6.24) LU, =T.
holds. The observation above allows us to add an appropriate multiple of U; to U,
to ensure that (¥, (0,24))r2 = 0. In particular, Lemma 6.2 implies that

—qinv—/

]
(6'25) fYaUa =0, ‘Ce Ue =V,
which immediately contradicts Lemma 6.4. ]

6.2. Spectral stability. Here we set out to establish the statements in Propo-
sition 6.1 for A ¢ 27ic.Z. In contrast to the setting in [44], the period 2mic. can be
uniformly bounded for € | 0. In particular, we will only consider values of £ > 0 that
are sufficiently small to ensure that

(6.26) %CO < < %co

holds. Recalling the constant A\g introduced in Proposition 4.2, this allows us to
restrict our spectral analysis to the set

(6.27) R:={A€C:ReX> -y, |ImA| < 3mco} \ {0}.
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ImA

Fic. 6.1. Illustration of the decomposition of the spectrum into e-independent regions.

On account of Lemma 4.6, the operators Ze, » are all Fredholm with index 0 on this
set. We hence only need to establish their injectivity.

It turns out to be convenient to partition this strip into three e-independent parts,
which we illustrate in Figure 6.1. The first part (red) contains values of A that are
close to 0, which can be analyzed using the theory developed in subsection 6.1. The
second part (blue) contains all values of A for which Re ) is sufficiently large. Such
values can be excluded from the spectrum by straightforward norm estimates. The
remaining part (green) is compact, which allows us to appeal to Proposition 4.2.

LEMMA 6.6. Assume that (HN1), (HN2), (HW1), (HW2), (HS1), and (HS2) are
satisfied. There exists constants Ay > 0 and €r > 0 so that the operator L. y : H' —
L? is injective for all A € C with 0 < [\ < A; and 0 < e < e;.

Proof. We argue by contradiction. Pick a small A\; > 0 and 0 < & < €, and
assume that there exists ¥ € H! and 0 < |A| < Ay with ¥ # 0 and

(6.28) LU =\T.

Aiming to exploit the quasi-inverse in Lemma 6.2, we use (6.17) to decompose ¥ as
(6.29) U =kU. + 0t

for some k € R and U+ € H! that satisfies the normalization condition

(6.30) ((0,028), L)z = 0.

In view of Lemma 6.2, the identity (6.28) implies that

—qinv

(6.31) 3. [RAUL + A01] =0, LI [RATL + 2] =

On account of the uniform bound (6.14), we can assume that A; is small enough to
have

(6.32) MIEE sy < 5.
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Since |A| < Az, this means that we can rewrite (6.31) to obtain

(6.33) Ut = [T = ALI™) T (kAT

£ €
In particular, the first identity in (6.31) allows us to write

—qinv

0=7. [H)\U/E AT = AL T [mﬁ’eﬂ

(634) — —qinvy —1—qinv
= T[T+ Al - 222 T2 [01)).

We note that the restriction (6.32) ensures that the second identity in (6.31) has no
nonzero solutions W+ for x = 0. In particular, (6.34) implies that we must have

(635) WEU/E — _)\75 |:|:I _ )\Zginv] 7lz(€1inv I:U/E:I] .
On account of (6.14) we hence obtain the estimate
(6.36) 7.0 < CiA < Ol

for some C] > 0. However, Lemma 6.4 shows that the left-hand side remains bounded
away from zero, which yields the desired contradiction after restricting the size of
AL d

LEMMA 6.7. Assume that (HN1), (HN2), (HW1), (HW2), (HS1), and (HS2) are
satisfied. There exist constants Ay > 0 and err > 0 so that the operator L.  : H' —
L2 is injective for all A € R with ReA > A\ and 0 < € < €17.

Proof. The identity Z& 2P = 0 implies that
(6.37) c:®' = M} )2 Jmix® + DF(Uc)® — \D.
Taking the inner product with M;f@, we may use Lemma 4.11 to obtain
0 < —Re(Jmix®, P)r2
(6.38) =Re(DF(U.)®, ML ®)r2 —Re X | ML2B]|,
< (Kp—Red) [MI2®|| ..

For Re A > K this hence implies ® = 0, as desired. 0

Proof of Proposition 6.1. On account of Lemmas 6.3, and 6.5-6.7, it remains to
consider the set

(639) M:{)\ER |>\| EA[,RG)\S)\]]}

Since this set satisfies (hM,,), we can apply Proposition 4.2 to show that for each

sufficiently small € > 0, the operators L,  are invertible for all A € M. ]
REFERENCES

[1] P. W. Bates, X. CHEN, AND A. CHMAJ, Traveling waves of bistable dynamics on a lattice,
SIAM J. Math. Anal., 35 (2003), pp. 520-546.

[2] K. BHATTACHARYA, Microstructure of Martensite: Why it Forms and How it Gives Rise to the
Shape-Memory Effect, Vol. 2, Oxford University Press, Oxford, 2003.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 04/23/20 to 81.207.207.201. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

P
P

TRAVELING WAVES FOR PERIODIC DISCRETE SYSTEMS 3531

. C. BRESSLOFF, Spatiotemporal dynamics of continuum neural fields, J. Phys. A, 45 (2011).
. C. BRESSLOFF, Waves in Neural Media: From Single Neurons to Neural Fields, Lect. Notes
Math. Model. Life Sci., Springer, New York, 2014.

M. BRUCAL-HALLARE AND E. S. VAN VLECK, Traveling wavefronts in an antidiffusion lattice

J.

J.

> > w» o = " 3 =3 0«

Q § = = I =@

Nagumo model, SIAM J. Appl. Dyn. Syst., 10 (2011), pp. 921-959.

W. CAHN AND A. Novick-COHEN, Fvolution equations for phase separation and ordering in
binary alloys, J. Stat. Phys., 76 (1994), pp. 877-909.

W. CAuN AND E. S. VAN VLECK, On the co-existence and stability of trijunctions and
quadrijunctions in a simple model, Acta Mater., 47 (1999), pp. 4627-4639.

. CARPENTER, A geometric approach to singular perturbation problems with applications to
nerve impulse equations, J. Differential Equations, 23 (1977), pp. 335-367.

. CARTER, B. DE RUJK, AND B. SANDSTEDE, Stability of traveling pulses with oscillatory tails
in the FitzHugh—Nagumo system, J. Nonlinear Sci., 26 (2016), pp. 1369-1444.

. CARTER AND B. SANDSTEDE, Fast pulses with oscillatory tails in the FitzHugh—Nagumo
system, SIAM J. Math. Anal., 47 (2015), pp. 3393-3441.

. CHEN AND Y. CHOI, Traveling pulse solutions to FitzHugh—Nagumo equations, Calc. Var.
Partial Differential Equations, 54 (2015), pp. 1-45.

. CHEN, J. S. Guo, anND C. C. Wu, Traveling waves in discrete periodic media for bistable
dynamics, Arch. Ration. Mech. Anal., 189 (2008), pp. 189-236.

. CORNWELL, Opening the Maslov Box for Traveling Waves in Skew-Gradient Systems, pre-
print, arXiv:1709.01908, 2017.

. CorNWELL AND C. K. R. T. JONES, On the existence and stability of fast traveling waves
in a doubly diffusive FitzHugh—Nagumo system, SIAM J. Appl. Dyn. Syst., 17 (2018),
pp. 754-787.

. D’EsTE, D. KaMIN, F. GOTTFERT, A. EL-HADY, AND S. E. HELL, STED nanoscopy reveals
the ubiquity of subcortical cytoskeleton periodicity in living neurons, Cell Rep., 10 (2015),
pp. 1246-1251.

. D’EstE, D. Kamin, C. VELTE, F. GOTTFERT, M. SIMONS, AND S. E. HELL, Subcortical
cytoskeleton periodicity throughout the nervous system, Sci. Rep., 6 (2016), 22741.

. J. DUISTERMAAT AND J. A. KoLK, Multidimensional Real Analysis I: Differentiation, Cam-

bridge Stud. Adv. Math. 86, Cambridge University Press, Cambridge, 2004.

. E. FAVER, Nanopteron-sTegoton Traveling Waves in Spring Dimer Fermi-Pasta-Ulam-
Tsingou Lattices, preprint, arXiv:1710.07376, 2017.

. E. FAVER AND J. D. WRIGHT, Ezact Diatomic Fermi—Pasta—Ulam—Tsingou Solitary Waves
with Optical Band Ripples at Infinity, STAM J. Math. Anal., 50 (2018), pp. 182-250.

. FAYE AND A. SCHEEL, FEuxistence of pulses in excitable media with nonlocal coupling, Adv.
Math., 270 (2015), pp. 400-456.

. FrrzHuGH, Impulses and physiological states in theoretical models of nerve membrane,
Biophys. J., 1 (1966), pp. 445-466.

. FirzHUGH, Mathematical models of excitation and propagation in nerve, in Biological En-
gineering, McGraw Hill, New York, 1969.

. FrrzHucH, Motion picture of nerve impulse propagation using computer animation, J. Appl.
Physiology, 25 (1968), pp. 628—630.

. S. Guo AND C.-C. Wu, Uniqueness and stability of traveling waves for periodic monostable

lattice dynamical system, J. Differential Equations, 246 (2009), pp. 489-525.

. HAsTINGS, On travelling wave solutions of the Hodgkin-Huzley equations, Arch. Ration.

Mech. Anal., 60 (1976), pp. 229-257.

. L. HODGKIN AND A. F. HUXLEY, A quantitative description of membrane current and its
application to conduction and excitation in nerve, J. Physiology, 117 (1952).

. HorFMAN AND J. D. WRIGHT, Nanopteron solutions of diatomic Fermi—Pasta—Ulam—
Tsingou lattices with small mass-ratio, Phys. D, 358 (2017), pp. 33-59.

. J. HuPkES, L. MORELLI, AND P. STEHLIK, Bichromatic Travelling Wawves for Lattice Nagumo
FEquations, preprint, arXiv:1805.10977, 2018.

. J. HUPKES AND B. SANDSTEDE, Travelling pulse solutions for the discrete FitzHugh-Nagumo
system, SIAM J. Appl. Dyn. Syst., 9 (2010), pp. 827-882.

. J. HUPKES AND B. SANDSTEDE, Stability of pulse solutions for the discrete FitzHugh-Nagumo
system, Trans. Amer. Math. Soc., 365 (2013), pp. 251-301.

. J. HupkEs AND E. S. VAN VLECK, Travelling Waves for Adaptive Grid Discretizations of
Reaction-Diffusion Systems, preprint.

. J. HUuPKES AND E. S. VAN VLECK, Travelling waves for complete discretizations of reaction
diffusion systems, J. Dynam. Differential Equations, 28 (2016), pp. 955-1006.

. K. R. T. JONES, Stability of the travelling wave solutions of the FitzHugh-Nagumo system,
Trans. Amer. Math. Soc, 286 (1984), pp. 431-469.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 04/23/20 to 81.207.207.201. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

3532 W. M. SCHOUTEN-STRAATMAN AND H. J. HUPKES

34]

C. K. R. T. JonEs, N. KOPELL, AND R. LANGER, Construction of the FitzHugh-Nagumo pulse
using differential forms, in Patterns and Dynamics in Reactive Media, H. Swinney, G. Aris,
and D. G. Aronson, eds., IMA Vol. Math. Appl. 37, Springer, New York, 1991, pp. 101-116.

J. KEENER AND J. SNEED, Mathematical Physiology, Springer, New York, 1998.

M. KRuUPA, B. SANDSTEDE, AND P. SZMOLYAN, Fast and slow waves in the FitzHugh-Nagumo
equation, J. Differential Equations, 133 (1997), pp. 49-97.

R. S. LILLIE, Factors affecting transmission and recovery in the passive iron nerve model, J.
General Physiology, 7 (1925), pp. 473-507.

J. MALLET-PARET, Spatial patterns, spatial chaos and traveling waves in lattice differential
equations, in Stochastic and Spatial Structures of Dynamical Systems, Royal Netherlands
Academy of Sciences, Amsterdam, 1996, pp. 105-129.

J. MALLET-PARET, The Fredholm alternative for functional differential equations of mized
type, J. Dynam. Differential Equations, 11 (1999), pp. 1-48.

D. J. PINTO AND G. B. ERMENTROUT, Spatially structured activity in synaptically coupled neu-
ronal networks: 1. Traveling fronts and pulses, SIAM J. Appl. Math., 62 (2001), pp. 206—
225.

L. A. RANVIER, Leéons sur l’Histologie du Systéme Nerveuz, par M. L. Ranwvier, recueillies
par M. Ed. Weber, F. Savy, Paris, 1878.

W. M. SCHOUTEN-STRAATMAN AND H. J. HUPKES, Travelling Pulse Solutions for Completely
Discrete FitzHugh-Nagumo Type Equations with Infinite-Range Interactions, in prepara-
tion.

W. M. SCHOUTEN-STRAATMAN AND H. J. HUPKES, Nonlinear Stability of Pulse Solutions for the
Discrete Fitzhugh-Nagumo Equation with Infinite-Range Interactions, http://pub.math.
leidenuniv.nl/~hupkeshj/fhninfr.pdf, 2017.

W. M. SCHOUTEN-STRAATMAN AND H. J. HUPKES, Nonlinear stability of pulse solutions for
the discrete Fitzhugh-Nagumo equation with infinite-range interactions, Discrete Contin.
Dyn. Syst. Ser. A, 39 (2019), pp. 5017-5083.

J. SNEYD, Tutorials in Mathematical Biosciences 1I, Mathematical Modeling of Calcium Dy-
namics and Signal Transduction, Lecture Notes in Math. 187, Springer, New York, 2005.

A. K. TAGANTSEV, L. E. CrRoOss, AND J. FOUSEK, Domains in Ferroic Crystals and Thin Films,
Springer, New York, 2010.

A. VAINCHTEIN AND E. S. VAN VLECK, Nucleation and propagation of phase mixtures in a
bistable chain, Phys. Rev. B, 79 (2009), 144123.

A. VAINCHTEIN, E. S. VAN VLECK, AND A. ZHANG, Propagation of periodic patterns in a discrete
system with competing interactions, SIAM J. Appl. Dyn. Syst., 14 (2015), pp. 523-555.

K. Xu, G. ZHONG, AND X. ZHUANG, Actin, spectrin, and associated proteins form a periodic
cytoskeletal structure in azons, Science, 339 (2013), pp. 452-456.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.


http://pub.math.leidenuniv.nl/~hupkeshj/fhninfr.pdf
http://pub.math.leidenuniv.nl/~hupkeshj/fhninfr.pdf

	Introduction
	Main results
	The limiting system
	Properties of Lo

	Transfer of Fredholm properties
	Strategy
	Proof of Proposition 4.7

	Existence of traveling waves
	Stability of traveling waves
	The operator Leps
	Spectral stability

	References

