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Summary

 The maximum carboxylation rate of photosynthesis (Vcmax) is an influential plant trait 

that has multiple scaling hypotheses, which is a source of uncertainty in predictive 

understanding of global gross primary production (GPP).

 Four trait-scaling hypotheses (plant functional type, nutrient limitation, environmental

filtering, and plant plasticity) with nine specific implementations are used to predict 

global Vcmax distributions and their impact on global GPP in the Sheffield Dynamic 

Global Vegetation Model.  

 Global GPP varied from 108.1 to 128.2 PgC y-1, 65 % the range of a recent model 

intercomparison of global GPP. The variation in GPP propagated through to a 27% 

coefficient of variation in net biome productivity (NBP). All hypotheses produced 

global GPP highly correlated (r=0.85-0.91) with three proxies of global GPP.

 Plant functional type based nutrient limitation, underpinned by a core SDGVM 

hypothesis that plant nitrogen status is inversely related to increasing costs of N 

acquisition with increasing soil C, adequately reproduced global GPP distributions. 

Further improvement could be achieved with accurate representation of water 

sensitivity and agriculture in SDGVM. Mismatch between environmental filtering 

(the most data-driven hypothesis) and GPP suggested that greater effort is needed 

understand Vcmax variation in the field, particularly in northern latitudes.

Key Words:

Gross Primary Production, Modelling photosynthesis, Plant functional traits, Trait-

based modelling, Terrestrial carbon cycle, Co-ordination hypothesis, DGVM, Assumption 

centred modelling
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Introduction

Photosynthetic carbon assimilation is the largest flux in the global carbon cycle, and 

accurate future projections from terrestrial biosphere models (TBMs) rely upon accurate 

representations of photosynthesis. Rates of photosynthesis are most commonly simulated as 

the minimum carboxylation rate of two processes—the Calvin-Benson cycle and light 

activated electron transport—modelled using Michaelis-Menten principles of enzyme kinetics

(Farquhar & Wong, 1984; Collatz et al., 1991; Harley et al., 1992; von Caemmerer, 2000). 

These two realised rates are sensitive to their respective maximum rates—the maximum 

carboxylation rate (Vcmax) and the maximum electron transport rate (Jmax), and terrestrial 

carbon cycle models are highly sensitive to these parameters (Zaehle et al., 2005; Bonan et 

al., 2011; Sargsyan et al., 2014; Rogers, 2014; Rogers et al., 2017). Many methods are used 

across TBMs to calculate Vcmax and Jmax, and these methods represent competing hypotheses, 

formally or informally posed, on how these influential plant traits scale geographically. The 

diversity of hypotheses potentially leads to large, and previously unquantified, variation in 

the simulation of global photosynthetic carbon assimilation and poses the broader scientific 

question: what are the primary drivers of global Vcmax scaling?

Plant functional traits consist of a wide range of measurable plant phenotypic 

(chemical, physiological, and structural) properties that convey information pertaining to 

some aspect of plant function, and thus are used to describe plant function and functional 

diversity. Correlations between functional traits have been used to define common axes of 

plant strategies (Grime, 1974; Craine et al., 2002; Wright et al., 2004; Reich, 2014) and 

discrete plant functional types (PFTs), designed to simplify the diversity of plant life within a 

tractable modelling framework (Woodward & Cramer, 1996; Smith et al., 1998; Wullschleger

et al., 2014). The quantitative nature of plant functional traits lends their use to global 

simulation modelling, allowing functions that represent the multiple ecosystem processes 

encoded in TBMs to be parameterised using values of the relevant plant functional traits. 

Recently, much attention has been paid to acknowledging wider and continuous variation in 

plant functional traits within ecosystem modelling (van Bodegom et al., 2012, 2014; Scheiter 

et al., 2013; Pavlick et al., 2013; Verheijen et al., 2013; Fyllas et al., 2014; Fisher et al., 

2015; Kueppers et al., 2016). Modelling this trait variation requires spatial and temporal trait-
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scaling hypotheses that go beyond the implicit hypothesis for many traits in many TBMs—

that traits scale discretely across, and are static within, a limited set of broadly defined PFTs.

In the current study, multiple competing trait-scaling hypotheses for Vcmax and their 

impacts on global patterns of gross primary production (GPP) are assessed within a common 

modelling framework (the Sheffield Dynamic Global Vegetation Model—SDGVM). Broadly 

defined, four Vcmax scaling hypotheses are investigated: 1) discrete PFT variation, 2) nutrient 

limitation, 3) environmental filtering, and 4) plant plasticity allowing acclimation to 

environment. As discribed above, discrete PFT variation, is an hypothesis designed to 

represent key features of global diversity in plant function within a tractable modelling 

framework.

In more detail, nutrient, specifically nitrogen (N), limitation is hypothesised to affect 

Vcmax,25 due to the high concentrations of the enzyme RuBisCO in leaves which makes up a 

large portion of whole plant N demand. Empirically, Vcmax,25 and photosynthetic rates correlate

with leaf N (Field & Mooney, 1986; Wright et al., 2004; Kattge et al., 2009) and plant N 

uptake (Woodward & Smith, 1995). SDGVM incorporates the hypothesis that plant N status 

is based on the principle of costs associated with plant N uptake as soil C increases and 

across mycorhizal types (Read, 1991; Woodward et al., 1995). This hypothesis has been 

expanded on by recent model development efforts (Fisher et al., 2010; Brzostek et al., 2014). 

The environmental filtering hypothesis states that adaptation to local environment is the 

primary determinant of Vcmax,25 scaling. In our study, a data driven approach was taken to 

represent environmental filtering of Vcmax,25 following Verheijen et al., (2013). Plant plasticity,

which allows acclimation to environment, is based on the hypothesis that the process of 

natural selection has created plants able to respond to their environment at shorter timescales 

(e.g. days to weeks). These plant centric methods tend to consider an optimality perspective 

whereby plants adjust Vcmax to maximise the difference between costs and benefits (Chen et 

al., 1993; Maire et al., 2012; Prentice et al., 2014).

Our aims were to quantify and understand the causes of variability across these 

various scaling hypotheses of: 1) global Vcmax distributions; 2) simulated global distributions 

of GPP; and 3) temporal trends in global GPP and subsequent impacts on net biome 

productivity, the simulations of which is the primary purpose of global TBMs. To evaluate the

spatial patterns of global GPP predicted by the various methods to scale Vcmax we use a 
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number of global GPP observation proxies: the Max Plank Institute (MPI) upscaled eddy-flux

estimate of GPP (Jung et al., 2011); global solar induced fluorescence (SIF) from the GOME-

2 instrument (Joiner et al., 2013, 2016), and the CASA model calibrated using SIF data.
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Methods

The SDGVM was developed as a daily timestep, global biogeography and eco-

physiology model (Woodward et al., 1995; Woodward & Lomas, 2004) to predict the primary

biomes of Earth and their associated fluxes of carbon (C) and water in response to global 

change. SDGVM has been described and extensively evaluated at site and global scales 

(Woodward et al., 1995; Cramer et al., 2001; Woodward & Lomas, 2004; Picard et al., 2005; 

Sitch et al., 2008; Beer et al., 2010; De Kauwe et al., 2013, 2014; Friend et al., 2014; Walker 

et al., 2014b; Zaehle et al., 2014), so here we provide a brief description of the model and the

process simulation methods relevant to this paper.

In SDGVM, C and water cycles conserve mass, while canopy nitrogen (N) is 

simulated through an empirical relationship of N uptake to soil C (Woodward et al., 1995; 

Woodward & Lomas, 2004), based on the principle of costs associated with plant N uptake as

soil C increases and across mycorhizal types (Read, 1991). During the application of 

SDGVM to the FACE model data synthesis (FACE-MDS; Walker et al., 2014b; Medlyn et 

al., 2015) it was observed that SDGVM had low Vcmax,25 values (Vcmax,25 = 11Na; where Na is 

leaf N per unit leaf area) and that using realistic values of Vcmax,25 observed at the FACE sites 

led to over prediction of GPP. The default Vcmax,25 values in SDGVM were calibrated to 

compensate biases caused by the assumption that photosynthesis calculated at mean daily 

radiation can be scaled by daylength to calculate mean daily photosynthesis. This assumption 

over-estimates photosynthetic efficiency by effectively linearising the response of 

photosynthesis to light. We corrected this bias by developing a sub-daily downscaling of light

and photosynthesis calculations to 10 time periods during a half-day (described in more detail

in Notes S1). The sub-daily calculation of photosynthesis allowed realistic Vcmax,25 values to 

generate realistic values of GPP in the model. SDGVM scales Vcmax,25 and Jmax,25 by water 

limitation and leaf age. 

Due to their strong correlation, in this study we focus only on Vcmax scaling hypotheses

and employ a single relationship of Vcmax,25 to Jmax,25 (Walker et al., 2014a): 

. (1)

Each Vcmax scaling hypothesis—PFT, nutrient limitation, environmental filtering, and 

plant plasticity—for Vcmax scaling described in the introduction was implemented in the 
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SDGVM in multiple ways drawn from a number of datasets, empirical relationships, and 

specific mathematical representations (see below and Table 1).

Static traits (static_PFT): Static values of Vcmax,25 were derived by taking PFT means 

(using SDGVM PFT definitions; see SI for specific values) from the TRY database (www.try-

db.org; data accession on 16 Nov 2010) augmented to include data from the sparsely 

represented tropics (described below). This augmented TRY database was also used to derive 

the trait-environment relationships and is described in detail below. Each trait observation 

was linked to a PFT based on information on growth form (shrub, grass, tree), leaf habit 

(deciduous/evergreen) and photosynthetic pathway (C3/C4) (Verheijen et al., 2013, 2015).

Nutrient limitation hypotheses: We employ five implemetations of the nutrient 

limitation hypothesis. First (Ntemp_global), the original version of SDGVM calculated Vcmax 

from  the rate of N uptake (Nu) (Woodward & Smith, 1994, 1995). Nu was calculated as a 

function of soil C, N, and mean annual air temperature (for details see: Woodward et al., 

1995). We label the original SDGVM method according to the assumption that sets it apart 

from other nutrient limitation hypotheses, that Nu is a function of temperature.

In later versions of SDGVM, the temperature modifier of Nu was removed and canopy

N was calculated using a globally uniform, empirical scalar on Nu (Woodward et al., 1995; 

Woodward & Lomas, 2004). All of the remaining implementations of the nutrient limitation 

hypotheses use the temperature independent function of Nu and canopy N. The second 

nutrient limitation implementation (N_global) was:

 , (2)

where Na is leaf N, was taken from Walker et al., (2014a) and was implemented globally. 

Third (N_PFT), we used the PFT-specific, linear Vcmax,25 to Na relationships derived by Kattge

et al., (2009). Forth (N_oxisolPFT), to simulate an implicit P limitation, we used the N_PFT 

relationships but replaced the evergreen broadleaved PFT relationship with a relationship 

derived on P poor oxisols. Fifth (NP_global), to simulate a more explicit P limitation on 

Vcmax,25 a function of Vcmax,25 where P was influential in interaction with N derived from a 

database of field and lab grown plants (Walker et al., 2014a), was also simulated:

. (3)
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To simulate leaf P concentration we used a global relationship to total soil P derived 

by Ordonez et al., (2009), and a global total soil P map (Yang et al., 2014). 

Environmental filtering: Environmental filtering was represented by empirically 

deriving PFT specific trait-environment relationships (Environ_PFT) from the TRY database 

Vcmax,25 values at the accession date (Niinemets, 1999; Kattge et al., 2009) augmented by 

Verheijen et al., (2015) to include Vcmax,25 from the tropics (Deng et al., 2004; Meir et al., 

2007; Domingues et al., 2010; van de Weg et al., 2011; Cernusak et al., 2011; Azevedo & 

Marenco, 2012; Nascimento & Marenco, 2013) that were not well covered in the TRY 

database. Each species within the database was assigned to a PFT based on the specific 

SDGVM PFT definitions. 

Based on the global coordinates of the trait data, each trait entry was associated to a 

set of environmental conditions—mean annual temperature, mean temperature of the 

warmest month, mean temperature of the warmest month, temperature difference of warmest 

month and coldest month, total annual precipitation, total precipitation in the driest quarter, 

fraction of total precipitation that falls in the driest quarter, mean annual relative humidity, 

total annual down-welling shortwave radiation—taken from the CRU-NCEP dataset (the 

same as used to run the model simulations). For each PFT, a multiple regression with forward

selection was run to relate variation in Vcmax,25 to environmental drivers. To avoid correlation 

between explanatory variables, variables with a correlation over 0.7 were not used in the 

same regression model. 

An empirical, linear decrease in Vcmax,25 with CO2 using the formulation of Verheijen 

et al., (2015) was also included as part of the response to environment (see Notes S1 for the 

relationships). Vcmax,25 is calculated at the beginning of each year for each PFT on each 

gridsquare based on mean environmental conditions of the past year. 

Vcmax data for C4 plants were only available for these trait-environment relationships. 

Therefore in the simulations for all hypotheses these relationships (or static values for 

static_PFT) were used to set Vcmax,25 and phosphoenolpyruvate carboxylase (PepC25) activity 

in C4 plants.  

Plant plasticity: We examined plant plastcity by using the co-ordination hypothesis 

(Co-ord_global), which states that plants adjust Vcmax such that the carboxylation limited rate 

of photosynthesis (wc) equals the electron transport limited rate of photosynthesis (wj) over 
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mean environmental conditions, commonly considered those of the past month (Chen et al., 

1993; Maire et al., 2012). Using the Harley et al., (1992) photosynthesis functions, the co-

ordination hypothesis to find Vcmax requires solving the following function (see Notes S1 for 

derivation):

(4)

where Ci is the internal CO2 partial pressure (Pa), Γ* is the photorespiratory CO2 

compensation point (Pa), αi is the intrinsic quantum efficiency of electron transport (mol e 

mol-1 absorbed photons), is the mean absorbed light intensity of the past month (μmolm-2s-

1), St,j and St,v are the temperature scalars for Jmax,25 and Vcmax,25 to scale to leaf-temperature 

from 25°C, e is the base of the natural logarithm, and Km is the effective Michaelis-Menten 

half-saturation constant for carboxylation when accounting for oxygenation (Pa). The 

denominator in the squared term, , represents Jmax at the mean 

temperature of the last month calculated using Eq 1 and considering temperature scaling.

The leaf nitrogen utilisation for assimilation (LUNA) (Xu et al., 2012; Ali et al., 2016)

hypothesis was also evaluated (LUNA_global). LUNA optimises leaf N investment in various

photosynthetic functions—light capture, electron transport, carboxylation—to maximise daily

net photosynthesis (assimilation – leaf respiration) given mean environmental conditions (Ali

et al., 2016). The LUNA optimisation also satisfies empirical environmental constraints and 

the constraint of co-ordination of wc and wj. Thus LUNA is a combination of plant plasticity, 

nutrient limitation, and environmental filtering hypotheses. 

In this study we use the mean environmental conditions of the past 30 days, consistent

with the averaging used for the co-ordination hypothesis (Ali et al., 2016 use the previous 10 

days).

Scaling of Vcmax,25 to leaf temperature: Being enzymatically controlled, at short 

timescales Vcmax is highly dependent on leaf temperature and is usually normalised to a 

reference temperature, commonly 25 ºC, adding the subscript 25 to the notation (Vcmax,25). 

Three methods used to scale Vcmax,25 to leaf temperature were investigated (Figure S1 and 

Notes S1 for more details): 1) a saturating exponential (the SDGVM model default, see 
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below); 2) the Arrhenius equation modified for enzymatic loss of function at high 

temperatures as presented in Medlyn et al., (2002); and 3) the modified Arrhenius with 

emprical acclimation of temperature optima to local environmental conditions (Kattge & 

Knorr, 2007).

Model Setup & Simulations

The model simulations were run using the CRU-NCEP meteorological dataset 1901-

2012 (Le Quéré et al., 2014; Figures S2-S4). PFT distributions were assumed static 

throughout the whole simulation period and were derived from land cover (LC) maps 

provided by the ESA CCI project (www.esa-landcover-cci.org; Figures S5-S12). The PFT 

fractions were derived from the LC maps using the LC to PFT conversion described in 

Poulter et al., (2015), and adjusted to account for the separation of C3 and C4 species that 

cannot be detected using MERIS wavebands (Poulter et al., 2015). The resultant PFT maps 

were then further categorised according to the SDGVM PFT classification. 

Atmospheric CO2 data were taken from the Scripps Ocean Institute merged ice-core 

and flask measurement global dataset (Keeling et al., 2005). The simulations were initialised 

with a 500 year spin-up that randomly selected meteorological years from the period 1901-

1920. A separate spin-up was conducted for each ensemble member. The ensemble consisted 

of the nine different trait based approaches to simulate Vcmax (Table 1) and a subset of these 

nine approaches—N_global, Co-ord_global, and LUNA_global—each run with the three 

temperature scaling assumptions, for a total of 17 simulations. N_global, N_PFT, Co-

ord_global, and LUNA_global were chosen to combine with the three temperature scaling 

approaches to represent a range of methods, and to see how the temperature scaling 

assumptions interacted with the dynamic spatial-scaling plant plasticity hypotheses (i.e. Co-

ord_global, and LUNA_global).

Evaluation datasets

The simulated spatial distributions of global GPP were used to evaluate the impacts of

the various Vcmax simulation methods. No method exists to measure GPP directly at the global

scale, all methods involve assumptions and models (Anav et al., 2015) that may introduce 
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bias or non-independence from the SDGVM simulations. We therefore compared modelled 

spatial distributions of GPP to three global GPP proxies—the empirically up-scaled flux 

tower estimates of GPP from the Max Plank Institute (MPI; Beer et al., 2010; Jung et al., 

2011); and two datsets based on GOME-2 solar induced fluorescence (SIF; Joiner et al., 

2013, 2016).

The two SIF based methods differed in their scaling of SIF radiance (Wm-2sr-1y-1) to 

GPP (gC m-2y-1). The first scaling method (SIF-CASA) scaled SIF using modelled GPP from 

the Carnegie Ames Stanford Approach (CASA) Global Fire Emissions Database version 3 

(GFED 3) model (ven der Werf et al., 2010). CASA primarily determined the spatial variation

in GPP while SIF determined the temporal variation: in each gridpoint monthly SIF data were

normalised by the gridpoint mean and then multiplied by the gridpoint mean CASA-GFED 

GPP (Eq 5, SIF-CASA). The second scaling method (scaled-SIF) was intended to allow SIF 

to determine both temporal and spatial variation in GPP: SIF were annually integrated in each

grid-cell, normalised by the global mean SIF ( ) and then multiplied by the global mean 

of the SIF-CASA dataset (Eq 6).

 , (5)

 , (6)

where CASA is the CASA GPP; cSIF is the CASA scaled GPP; sSIF is the simply scaled-SIF,

and subscripts are the gridpoint latitude, i; longitude, j; and time, t.

At the time of writing, SIF data were available for the period 2007-2012 and so for 

consistency we present analyses for all model output over the same period. A comparison of 

model results for the last full decade, 2001-2010, with 2007-2012 give quantitatively similar 

results. The MPI data were available only until 2011, but given the MPI data have little inter-

annual variability (Kumar et al., 2016) this was expected to have little effect.

GPP predicted by the trait-scaling hypotheses were compared against the three GPP 

proxies using standard deviation, correlation, and centered root mean square difference. 

Combining these metrics in polar co-ordinates allows comparison of gridded datasets against 

a reference. These plots are known as Taylor diagrams (Taylor, 2001). Datasets were also 

analysed using principle component analysis (PCA) to identify common principle axes of 
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variation across the datasets. As well as hypotheses and GPP proxies, climate variables 

(temperature, precipitation, and short wave radiation—SWR) were included to investigate 

climatic influence in the spatial patterns. Datasets were mean centred and scaled by standard 

deviation to give z-scores before conducting the PCA. The R (R Core Development Team, 

2011) package 'plotrix' (Lemon, 2006) was used to plot the Taylor diagrams and the function 

'prcomp' from the 'stats' package to perform the PCA.  
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Results

Global  Vcmax,25 distributions

Global distributions of top-leaf Vcmax,25 predicted by the various trait scaling 

assumptions had markedly different means, variances, and latitudinal distributions (Figure 1 

and S13). All but one (Ntemp_global) nutrient limitation hypothesis including LUNA_global 

(which is constrained by nutrient limitation) predicted relatively low variance in global 

Vcmax,25; with moderate values in the tropics, high values in the temperate zone, highest values 

in dry temperate regions, and lowest values in the Boreal zone before increasing in the high 

Arctic (Figure 1). The exception (Ntemp_global) showed relatively high Vcmax,25 variance with

the highest values in the tropics that broadly decrease with latitude. Inclusion of phosphorus 

(P), either implicitly (N_oxisolPFT; Kattge et al., 2009) for the evergreen broadleaf PFT in 

the simulation, or explicitly (NP_global; Walker et al., 2014a), reduced Vcmax,25  marginally in 

much of the tropics (compared with N_PFT and N_global respectively).

In contrast, non-nutrient based hypotheses (Static_PFT, Environ_PFT, and Co-

ord_global) tended to show the opposite pattern (Figure 1 and S13): more pronounced 

maximum  Vcmax,25 values in northern cool wet areas dominated by green needle-leaf PFTs 

(Scandinavia and the North-American Pacific coast) and dry areas dominated by C3 grasses 

(the North-American west and Central Asia). The static_PFT values and the Environ_PFT 

relationships were derived from the same Vcmax,25 dataset. Therefore the observed similar 

latitudinal pattern was expected, as was the more spatially homogenous distribution for the 

static values per PFT. The co-ordination hypothesis is independent of the datasets used to 

produce the static_PFT and Environ_PFT, and produces highest Vcmax,25  values in the coldest 

and driest regions—north-eastern Canada and Asia, and the Himalayan plateau.

Consequences for the simulated Carbon Cycle 

Across the nine Vcmax,25  scaling implementations, global mean annual GPP for the 

period 2007-2012 ranged from 108.1 to 128.2 PgC y-1 (Figure 2; Table 2). The ensemble 

mean ±s.d. annual GPP was 118.7±6.4 PgC y-1, giving a coefficient of variation of 5.4 % 

(Table 2). The variation was somewhat higher for vegetation and soil carbon stocks (12.0 % 

and 13.9 %). Most crucially for carbon sequestration from the atmosphere under global 

change was that net biome productivity (NBP) varied by 27.1 % across the hypotheses tested.
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The highest global GPP was simulated by the Ntemp_global implementation of 

nutrient limitation, closely followed by the static PFT hypothesis at 127.8 PgC y-1. The global

and PFT specific relationships of Vcmax,25 to leaf nitrogen simulated global GPP of 121.7 and 

116.5 PgC y-1. The inclusion of P as an additional limiting factor resulted in lower global GPP

by 3.7 and 5.9 PgC y-1 respectively than consideration of N limitation alone. The P related 

drop in GPP was a result of disproportionate GPP reduction by P in generally high 

productivity regions, i.e. the tropics (Figure 2 and S14). Environmental filtering 

(Environ_PFT) and plant placticity (Co-ord_global) simulated similar mean GPP at 118.1 and

119.2 PgC y-1. The constrained optimisation of functional leaf N allocation (LUNA 

hypothesis) yielded the lowest GPP at 108.1 PgC y-1.

For a subset of Vcmax,25 scaling hypotheses (N_global, LUNA_global, Co-ord_global), 

the more up-to-date modified Arrhenius temperature scaling (Medlyn et al., 2002; Kattge & 

Knorr, 2007) were used, both with and without acclimation of temperature optima to growth 

temperature. Using these temperature scaling functions generally increased global GPP 

(Figure S15), especially for the co-ordination hypothesis (119.1-131.2 PgC y-1). The increase 

in GPP for was primarily due to increasing GPP in the northern temperate and Boreal zones 

(Figure 3). 

The hypotheses and their implementations also influenced the temporal trend in GPP 

(1900-2012) in response to increasing CO2 and changing climate (Figure 4a). Ntemp_global 

resulted in the strongest change in GPP over the 20th century, the result of increasing 

temperatures stimulating N uptake. The LUNA hypothesis and the co-ordination hypothesis 

both predict shallower trajectories in GPP than any of the other scaling hypotheses. Scaling 

Vcmax,25 and Jmax,25 using the modified Arrhenius function with and without temperature 

acclimation made little difference to the relative trajectories of GPP when used in conjunction

with N_global, co-ordination, and LUNA hypotheses (Figure S16). Across the ensemble, 

NBP over the period 2007-2012 was strongly related to the change in global GPP over the 

time period 1901-2012 (Figure 4b). 

Evaluating spatial distributions of GPP

Overlying the general, climatically driven spatial distribution of GPP, the differences 

in the spatial distributions of Vcmax,25 are observable in the simulated GPP distributions (Figure
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2 and S3). To evaluate the various hypotheses, their global GPP predictions (mean annual 

GPP over 2007-2012) are compared in Taylor space (Figure 5 and Table S1) with several GPP

proxies (MPI, scaled-SIF, SIF-CASA; Figure 2 and S17). No matter which GPP proxy was 

taken as reference, all hypotheses clustered closely in Taylor space with correlation c. r=0.9 

(r=0.85-0.91), standard deviation within ±25% (with the exception of Ntemp_global when 

compared against both SIF based proxies and LUNA compared against MPI), and centred 

RMSD between 250 and 500 gC m-2y-1. All hypotheses were marginally less correlated to the 

scaled-SIF data (r=0.85-0.89) than the other two GPP proxies.

The most correlated hypotheses to MPI and SIF-CASA were N_global and N_PFT, 

though the improvements in these correlations were marginal (r=0.91 vs 0.88-0.90). 

Ntemp_global was generally less well correlated to all three proxies with substantially higher 

standard deviation and which predicted the highest global GPP and strongest latitudinal 

gradient. The least correlated hypotheses to MPI were LUNA_global and Environ_PFT, 

though again only marginally. Environ_PFT was also less well correlated with both SIF based

proxies. N_PFT and N_oxisolPFT were the most correlated to scaled-SIF, marginally better 

than LUNA and N_global. The variance in the correlation across the hypotheses was greater 

when hypotheses were compared against the scaled SIF proxy (Figure 5c).

Difference plots between modelled GPP and GPP proxies (Figure 6 and S18-S19) 

showed that the N_oxisolPFT implementation tended to perform well against all three 

proxies, though there were some substantial under-predictions in tropical forests when 

compared against MPI (Figure S18). However, tropical GPP was consistently under-predicted

by many implementations when compared against MPI, particularly in the Amazon. Static 

values per PFT and Ntemp_global clearly showed the strongest mismatches with the GPP 

proxies. Environ_PFT performed poorly in northern latitudes, particularly Scandinavia, and 

southern China, where Vcmax was predicted to be higher than any other implementation 

(Figure 1). Co-ordination and LUNA  performed well, but tended to over-predict in nothern 

latitudes when compared against N_PFT and N_oxisolPFT. Across all implementations, GPP 

was under-predicted in Europe, eastern North America, and India while GPP was over-

predicted in grasslands, particularly in South America, western North America and sub-

Saharan Africa. 

16

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412



When the alternative, more realistic modified Arrhenius temperature response 

hypotheses were implemented, mismatches with scaled-SIF were unaffected for 

LUNA_global, slightly worsened in N_global, N_PFT, and noticeably worsened for Co-

ord_global (Figure 5d). Implemented within the LUNA model, the three different temperature

scaling assumptions made little difference to global GPP, presumably because the N 

constraint in LUNA was strong and the optimisation allowed flexibility around temperature 

responses to find a similar maximum assimilation rate across temperature scaling 

assumptions.

The SIF-CASA, scaled-SIF and MPI proxies were generally more correlated to each 

other than to any of the Vcmax hypothesis implementations, but only marginally. Arguably the 

proxies were as dissimilar from each other as the better model hypotheses were from the 

proxies, making it difficult to provide a definitive conclusion about which specific 

implementation of the various hypotheses was closest to GPP observation proxies.

Principal component (PC) analysis (PCA) was used to identify the common patterns 

and areas of divergence across both the models and the GPP proxies, and the potential cimatic

drivers of the commonalities and differences. PCA demonstrated that 82 % of the spatial 

variance across simulated GPP, GPP proxies, and climatic variables are explained by a single 

PC (Figure S20). All model assumptions are closely grouped with high loadings on PC1 

(Figure 7a), i.e. all model predictions are positively correlated with the spatial pattern of the 

first PC (Figure 7c). Closely grouped to the models on PC1 are all observed GPP proxies, as 

well as precipitation. Short wave radiation (SWR) and temperature were less strongly 

correlated with PC1, though the correlation was also positive, suggesting that precipitation is 

the primary driver of the dominant global pattern in GPP.

PC2 accounted for c. 11 % of spatial variance and segregates SWR and temperature 

(both positively correlated to PC2) from the model implementations, GPP proxies, and 

precipitation (Figure 7d). The remaining PCs combined account for 7 % of the spatial 

variation in the data and it is these remaining PCs that demonstrate the main areas of 

divergence between Vcmax implementations and GPP proxies. 

PC3 and PC4 account for 4 % of variation. Short wave radiation and modelled GPP 

were correlated with PC3 while the GPP proxies (MPI most strongly) and precipitation were 

anti-correlated. PC3 shows the regions where modelled GPP is stimulated by light (primarily 
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in natural grasslands; blue areas Figure 7e) or restricted by low light (red areas). By contrast, 

the GPP proxies appear to be stimulated by precipitation (red areas) or restricted by low 

precipitation (blue areas). PC4 segregates both SIF proxies from precipitation. PC4 shows 

high values almost exclusively in the worlds major agricultural regions—the North American 

cornbelt, the Northeast and South regions of Brazil and the area surrounding São Paulo, 

Europe and the Russian bread basket, India, particularly north India, central eastern China, 

and even smaller agricultural regions such as the Indus valley in Pakistan and alongside the 

Rift Valley in East Africa. 
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Discussion

We tested a series of plausible trait-scaling hypotheses for Vcmax,25 , many of which are 

implemented in terrestrial ecosystem models, and found that they led to substantial variability

in SDGVM simulated global GPP. Mean annual GPP ranged across the implementations of 

the hypotheses from 108.1 to 128.2 PgC y-1 (mean 118.7±6.4 PgC y-1). The range in global 

GPP demonstrates the large sensitivity of simulated GPP to Vcmax,25 and this range 

encompasses 65% of that from a set of three models run in coupled and uncoupled modes 

(1990-2009 mean annual GPP range of 130-161 PgC y-1, mean 145.6±12.6 PgC y-1; Anav et 

al., 2015). The simulations used by Anav et al., (2015) were drawn from two inter-

comparison projects, each with their own protocols, which is likely to inflate the range of 

simulated GPP compared to the simulations presented in this study which share a single 

protocol. Thus variation in simulated GPP caused by Vcmax,25 trait scaling hypotheses likely 

represents a substantial source of variation in GPP across models, which is currently 

unaccounted for in model intercomparisons (e.g. Anav et al., 2015).

Dynamic trait-scaling based on nutrient limitation, in which plant nutrient status is 

inversely related to the cost of N acquisition, performed better than other hypotheses when 

compared against three GPP observation proxies. PFT specific relationships of Vcmax to leaf N

resulted in the best performance. Static trait values per PFT were not supported by this study. 

The better performance of nutrient limitation implementations was most apparent when 

compared against the scaled-SIF GPP proxy and we argue that this is a more independent, 

thus more robust, comparison. 

Evaluation of Vcmax distributions

Discerning which is the most realistic trait-scaling hypotheses was non-trivial. 

Currently no independent, globally gridded estimates of Vcmax,25 distributions exist. Many 

regions in global Vcmax datasets are only sparsely represented and one of the most 

comprehensive global Vcmax datasets was employed to compile the Vcmax,25 relationships to 

environment (Environ_PFT) for the trait filtering hypothesis (Kattge et al., 2011; Verheijen et

al., 2013). The Environ_PFT prediction of the global Vcmax,25 distribution (Figure 1) is an 

empirical upscaling of Vcmax,25 point measurements using global climatic and land-cover 

information. Unlike other hypotheses tested, which additionally rely on either model process 
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representation (e.g. simulation of leaf N) or more theoretical assumptions (e.g. co-ordination),

Environ_PFT is data-driven and contingent only on the assumption that Vcmax,25 scales with 

environment (coefficient of determination 0.49-0.82 for C3 plants, see Notes S1; and Ali et 

al., [2015]; Verheijen et al., [2013]).

The data-driven Environ_PFT Vcmax,25 values are higher in northern latitudes relative 

to the tropics, as are Vcmax,25 distributions for the co-ordination hypothesis, which is in line 

with current literature (A. Rogers et al., unpublished). All the N based hypotheses in SDGVM

(including LUNA) generally showed higher Vcmax,25 in the tropics than in the Boreal and 

Tundra zones (Figure 1) which is not consistent with our data-driven estimate 

(Environ_PFT). N limitation hypotheses predictions of tropical Vcmax,25 were consistent with 

the literature, often reported in the range 20-80 μmolm-2s-1 (Domingues et al., 2010, 2015; 

Vårhammar et al., 2015; Norby et al., 2016), but were not consistent with values reported for 

the high Arctic, in the range 60-160 μmolm-2s-1 (A. Rogers et al., unpublished).

The primary cause of the zonal Vcmax,25  distribution for the implementations 

constrained by N is the core SDGVM hypothesis that plant nutrient status is inversely related 

to soil carbon. This hypothesis is based on observations that plant N uptake decreases as 

dependence on organic N supply (correlated with mycorrhizal N supply) increases, which in 

turn is hypothesised a consequence of increasing soil organic matter (Read, 1991; Woodward 

et al., 1995). The global distributions of Vcmax,25 predicted by the nutrient limitation hypothesis

are therefore generally the inverse of the distributions of soil carbon (Figure S21-S23), 

resulting in a broad latitudinal gradient in leaf N as soil decomposition rates slow with 

cooling temperatures. This cost-based hypothesis for plant N status reproduces the broad 

macro-ecological pattern of increasing N limitation as latitude increases suggested by leaf 

C:N and N:P stoichiometry (Reich & Oleksyn, 2004; McGroddy et al., 2004; Ordonez et al., 

2009).

The original LUNA study at the global scale showed lower Vcmax,25 in the tropics and 

global distributions of top-leaf Vcmax,25 that were more similar to those predicted by 

Environ_PFT and Co-ord_global (Ali et al., 2016) than the N limitation hypotheses to which 

LUNA was more similar in this study. The defining difference is that Ali et al., (2016) 

assumed a constant top-leaf N of 2 gm-2, while in SDGVM leaf N varies as a function of soil 
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carbon. The results in SDGVM suggest that LUNA is more sensitive to variability in leaf N 

than to variability in environment.  

 

Evaluation of GPP distributions

Principal components analysis (PCA) demonstrated that precipitation was the primary

driver of the dominant mode of global GPP distributions in both the GPP proxies and all 

model simulations, and was therefore responsible for the strong correlation (0.85-0.91) of all 

hypotheses to the proxies. PCA indicated that the model simulations diverged from the 

observation proxies for two reasons: 1) a relative GPP stimulation by PAR in dry grasslands 

in SDGVM opposing a relative GPP reduction by low precipitation in the proxies (and vice 

versa; PC3); and 2) a relative stimulation of GPP in SIF based proxies in agricultural areas of 

the planet that was anti-correlated with precipitation and that was not apparent in the 

SDGVM nor MPI (PC4). 

The stimulation of GPP by PAR without a counteracting reduction from low 

precipitation in SDGVM is most likely due to the relative insensitivity of SDGVM to low soil

water avaialability when compared against other models (Medlyn et al., 2016). On the other 

hand, the ubiquity of the under-prediction in all of Earth's major agricultural regions is likely 

due to agricultural improvement that was not represented by SDGVM—e.g. improved seed, 

fertilisation, and irrigation. The negative correlation of precipitation to PC4 and positive SIF 

proxy correlation in these agricultural areas (Figure 7) demonstrates the independence of GPP

from precipitation in these regions., perhaps This independence implies that irrigation may be

the primary driver of the under-prediction of GPP while recognising that irrigation levels are 

highly heterogeneous within these regions (Siebert et al., 2010).

GPP proxies (MPI, SIF-CASA, and scaled-SIF) were as dissimilar to each other as the

better performing hypotheses were to the proxies. PCA showed that the SIF based proxies 

had relatively higher GPP in dry, agricultural regions of the planet compared with MPI. 

Relatively higher SIF based GPP in cropland areas compared against MPI has been 

previously observed (Guanter et al., 2014). This dissimilarity indicates an uncertain constraint

from observations. 

SIF is linearly related to MPI estimates of GPP at the temporal and spatial scales 

typically simulated by global TEMs (Guanter et al., 2014; Parazoo et al., 2014). SIF 
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accurately reproduces seasonality in GPP (Joiner et al., 2014), though the coefficients of the 

linear relationships between SIF and GPP may vary with vegetation type (Frankenberg et al., 

2011; Guanter et al., 2012; Parazoo et al., 2014). By assuming that the scaled-SIF proxy 

follows the same linear relationship to GPP across all terrestrial ecosystems, systematic errors

(epistemic uncertainties in the classification of Beven, [2016]) are likely in the scaled-SIF 

estimate of the global GPP distribution. However, it is also extremely likely that epistemic 

uncertainties are common in the system of global GPP estimation in the MPI dataset—eddy-

covariance flux estimates of NEE, empirical flux partitioning to derive GPP, derivation of 

empirical relationships of GPP with climate variables, scaling of point estimated GPP using a 

gridded climate dataset. The scaled-SIF data are a relatively direct, global-scale signal from 

the photobiochemical photosynthetic pathway and their spatial distribution is entirely 

independent of the model output, in contrast with the MPI product and SIF-CASA, both of 

which use climate data in their calculation.

While the Environ_PFT had the most data-driven and thus what we believe to be 

more accurate Vcmax,25 distributions, Taylor plots (Figure 5) and difference plots (Figures 6, 

S7, and S8) showed that their relative global GPP distributions had a larger mismatch to GPP 

proxies than the N limitation implementations in the northern latitudes. This difference was 

most apparent when compared against scaled-SIF. The latitudinal gradient in leaf N generated

by the nutrient limitation implementations, and thus Vcmax,25, redistributes global GPP towards 

the tropics compared with other hypotheses (Figure 2, 6 and S14), yielding global GPP 

distributions more similar to global GPP proxies. 

The mismatch of the data-driven estimates of Vcmax,25 from Environ_PFT indicates 

latitudinal variability in the relationship of Vcmax,25 with GPP. The reason for this mismatch is 

unclear. SDGVM may over-predict LAI in northern latitudes, and it may be that lower Vcmax 

in nutrient limitation is compensating for high LAI. However, using a multi-scale state 

estimation procedure to combine GPP estimates from TEMs, SIF, and flux-towers; Parazoo et

al., (2014) noted a redistribution of GPP from northern latitudes to the tropics in the 

optimised GPP state compared with the prior estimates from the TEMs. Similar decoupling 

between Vcmax,25 and GPP at high latitude has also been observed in preliminary simulations of

the Community Land Model (CLM version 5.0) using satellite phenology (i.e. data-driven 

LAI), LUNA, and observed leaf N (Fisher, pers. Comm.). Alternatively, there may be 
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insufficient Vcmax data for high-latuitude systems and normalising Vcmax to 25 ºC in regions 

that experience these temperatures only in extreme cases and with generic temperature 

scaling functions could be introducing a bias in the Vcmax data.

Recent evidence has suggested that leaf phosphorus may modify, co-limit, or replace 

the Vcmax,25 to N relationship (Reich & Oleksyn, 2004; Domingues et al., 2010; Walker et al., 

2014a; Norby et al., 2016); though the physiological link to photosynthesis is more complex. 

Considering P limitation either implicitly (N_oxisolPFT) or explicitly (NP_global) did not 

clearly improve the fit to the GPP proxies (compared against their N only counterparts) based

on the quantitative comparison. However, a visual comparison of the difference plots 

suggests that the N_oxisolPFT implementation produced the least over-all difference to GPP 

proxies, indicating perhaps a role for P limitation of photosynthesis in the tropics. A map of 

oxisols vs non-oxisols to segregate evergreen broadleaved PFTs would likely improve the 

simulation. 

GPP trend and NBP

Most importantly for projections of the global carbon cycle under environmental 

change, the response of GPP to global change (1901-2012) across the Vcmax hypotheses was 

different, with plant-centric acclimation hypotheses showing a lower response of GPP to 

increasing CO2. NBP variability over 2007-2012 was strongly related to the change in GPP 

over the 20th century and the 5.4% coefficient of variation in GPP to propagate through to 

29% variation in NBP. 

Projecting the trajectory of land carbon uptake is the major purpose of global 

terrestrial ecosystem models and the 'acclimation' of Vcmax,25 to increasing CO2, and perhaps 

other factors of global change, predicted by these hypotheses has consequences for the 

projected terrestrial carbon sink. Consequences we cannot currently evaluate with data due to 

the difficulty in measuring GPP and terrestrial NBP, especially the 20th century trends; though

coupled Earth-System models are thought to under-estimate the global carbon sink (Hoffman 

et al., 2014).

Co-ord_global and LUNA_global predict the shallowest, and almost indentical, GPP 

trends over the 20th century (Figure 4a). The co-ordination hypothesis (also embedded within 

LUNA) restricts CO2 fertilisation of GPP to the effect of CO2 on light-limited photosynthesis. 
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Assuming all else is equal, increasing CO2 increases both the carboxylation limited 

photosynthetic rate, wc, and the electron transport limited rate, wj, but wc is increased in 

greater proportion (the degree of which is dependent on the choice of model for wj). Thus co-

ordination reduces Vcmax,25 at the higher CO2 concentration to balance wc with wj. Thus, under 

co-ordination, the CO2 fertilisation of GPP is primarily driven by the CO2 response of light-

limited photosynthesis, which is lower than the CO2 response of carboxylation limited 

photosynthesis. The decline in Vcmax driven by the co-ordination hypothesis is stronger than 

the decline in Environ_PFT (Figure S24) which was the only hypothesis to have an explicit 

reduction of Vcmax in response to CO2. We assumed a fixed relationship between Jmax and Vcmax

for the implementation of co-ordination in this analysis (Eq 5). Given that these plant 

plasticity hypotheses are founded within the concept of optimality (Xu et al., 2012; Prentice 

et al., 2014; Wang et al., 2014), the restriction of the CO2 response to the smaller electron 

transport (light) limited under co-ordination suggests that the optimal solution would include 

a variable response of the Jmax to Vcmax relationship to changing CO2 concentration.

In summary, the analysis of multiple Vcmax trait scaling hypotheses on simulated GPP 

suggested that nutrient limitation was the more likely driver of global Vcmax distributions. N 

limitation was implemented via a relationship of decreasing leaf N with increasing soil C 

based on increasing costs of N uptake. Of the nutrient limitation implementations, the PFT 

specific relationships to leaf N that implicitly accounted for P limitation in broadleaved 

evergreens (Noxisol_PFT; Kattge et al., 2009) were found to most closely match the GPP 

proxies. Incorporating a global map of oxisols would likely help to further refine this 

implementation. For SDGVM and other global carbon cycle models we recommend the 

Noxisol_PFT relationships to leaf N, particularly for models that can simulate N cycling or 

spatially dynamic leaf N. For carbon-cycle only models, the static_PFT hypothesis did not 

reproduce spatial distributions of global GPP as well and we suggest that the scaled 

relationship of N uptake to soil C (Woodward et al., 1995) without the temperature modifier 

could be a relatively straight forward way to implement dynamic leaf N allowing the use of 

the Noxisol_PFT relationships. These recommendations are contingent on the GPP proxies 

used, which are uncertain. We suggest that further measurements of Vcmax in Boreal and Arctic
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ecosystems, that include the Vcmax response to temperature in these ecosystems, will help to 

discriminate among alternate hypotheses.
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Figure Captions

Figure 1. Mean growing season top-leaf  Vcmax,25 (μmol m-2s-1) over the period 2007-2012 for 

the nine implementations of the four Vcmax trait-scaling hypotheses. Growing season defined 

as periods during which LAI was greater than one. Values are reported prior to scaling of 

Vcmax by water-stress or leaf-age.

   

Figure 2. Mean annual GPP GPP (gC m-2y-1) for the period 2007-2012 for the nine 

implementations of the four Vcmax trait-scaling hypotheses and the three global GPP proxies. 

Global mean annual GPP shown in each panel (PgC).

Figure 3. Mean annual zonal GPP (PgC) over the period 2007-2012 for three of the Vcmax 

trait-scaling implementations in combination with the three temperature scaling assumptions.

Figure 4. Variability in GPP trends and NBP for the nine implementations of the four Vcmax 

trait-scaling hypotheses. (a) Trends in the absoute change in global GPP over the period 

1901-2012; and (b) the relationship between mean annual NBP 2007-2012 and the change in 

GPP 1901-2012 across the nine hypotheses.

Figure 5. Taylor plots of GPP (2007-2012) for the nine implementations of the four Vcmax 

trait-scaling hypotheses compared against the three GPP proxies: (a) MPI, (b) SIF-CASA, (c) 

scaled-SIF; annd (d) including the two additional temperature scaling hypotheses (modA and 

tacc) for N_global, N_PFT, LUNA_global and co-ord_global. Taylor plots compare datasets 

against a reference dataset using correlation (grey radial isolines), standard deviation (blue 

circular isolines, zero at the origin), and root mean difference (green circular isolines, zero at 

the reference dataset on the x-axis).

Figure 6. Difference plot of GPP simulated by the nine implementations of the four Vcmax 

trait-scaling hypotheses minus the scaled-SIF GPP proxy.
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Figure 7. Principle components analysis of the nine implementations of the four Vcmax trait-

scaling hypotheses with the three GPP proxies and three climatic variables: precipitation, 

temperature, and short-wave radiation. Loadings of variables on (a) PC1 and PC2, (b) PC3 

and PC4; maps of (c) PC1 pattern (d) PC2 pattern (e) PC3 pattern, and (f) PC4 pattern. Break 

points on the colour scale are at quantiles (0.025, 0.1, 0.2, 0.35, 0.65, 0.8, 0.9, 0.975) in the 

gridpoint scores on each PC to give even representation of the data. 
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Table 1.  Summary of Vcmax,25 and Vcmax temperature scaling hypotheses. 

Hypothesis Label Specific method PFT
specifi

c

Description Reference Papers/Models Dataset

Static static_PFT Static Y Augmented TRY
database means

Verheijen et al.,
2015

Most CMIP5 
models 

Literature search 
augmented TRY 

Nutrient limitation Ntemp_global empirical f(Nu) N Woodward et 
al., 1995

Original 
SDGVM

Woodward et al., 
1995

N_global empirical f(Na) N Power law Walker et al., 
2014

Literature search
Walker et al., 2014

NP_global empirical 
f(Na,Pa)

N Power law 
including leaf 
phosphorus

Walker et al., 
2014

Literature search
Walker et al., 2014

N_PFT empirical f(Na) Y Linear from 
TRY database 

Kattge et al., 
2009

O-CN, other N 
cycle models,  

TRY

N_oxisolPFT empirical f(Na) Y As above but 
with oxisol 
relationship for 
evergreen 
broadleaf PFT

Kattge et al., 
2009

TRY

Environmental 
filtering

Environ_PFT empirical f(env.) Y Augmented TRY
relationship to 
…  

Verheijen et al.,
2015

Literature search 
augmented TRY

Plant plasticity Co-ord_global Theoretical f(Q, 
T, VDP)

N Vcmax adjusted 
so wc = wj given
mean 
environment 
over the past 30 
days

Chen et al., 
1993; Maire et 
al., 2012

First principles 
Wang et al

na

Plant plasticity & 
nutrient limitation

LUNA_global 4. Theoretical 
f(Na, Q, T, RH)

N Constrained 
optimisation of 
leaf N allocation
given mean 
environment 
over the past 30 
days

Xu et al., 2012; 
Ali et al., 2016

CLM5.0 Literature search
Ali et al., 2015

Temperature 
scaling 

Static * SDGVM default N Saturating 
exponential

SDGVM

Static *_modA Modified 
Arrhenius

Y Temperature 
optimum

Medlyn et al., 
2002

Plant plasticity *_tacc Modified 
Arrhenius with 
acclimation

Y
(modA
only)

Temperature 
optimum varies 
with growth 
temperature

Kattge & 
Knorr, 2007

Nu—N uptake, Na—N per unit leaf area, Pa—P per unit leaf area, Q—incident PAR per unit 

leaf area, T—leaf temperature, VPD—vapour pressure deficit, RH—relative humidity. * 
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represents the label for one of four Vcmax scaling hypotheses (N_global, N_PFT, 

LUNA_global, or Co-ord_global) used in conjunction with these three temperature scaling 

hypotheses. 
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Table 2. Carbon cycle variables for the nine Vcmax scaling hypotheses (means over the 

period 2007-2012). Net primary productivity, NPP; soil carbon stocks, Csoil; vegetation 

carbon stocks, Cveg; total terrestrial carbon stocks, Ctotal; standard deviation, sd; coefficient 

of variation, CV. All variables are in gC m-2 y-1.

39

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723



Supplemental Material 

Figure S1. Temperature responses of Vcmax.

Figure S2-S4. Climate data used to run the model. 

Figure S5-S12. Land-cover data used to run the model. 

Figure S13. Zonal plot of Vcmax,25.

Figure S14. Zonal plot of GPP.

Figure S15. Global GPP for various Vcmax temperature scaling assumptions.

Figure S16. 20th and 21st change in GPP for various Vcmax temperature scaling assumptions.

Figure S17. GPP observation proxies.

Figure S18. Difference plot of model GPP to MPI GPP proxy.

Figure S19. Difference plot of model GPP to SIF-CASA GPP proxy.

Figure S20. Variance explained by each principal component.

Figure S21-S23. Modelled relationships between leaf N and Vcmax,25 with soil carbon.

Figure S24. 20th and 21st change in modelled Vcmax,25. 

Figure S25. 20th and 21st change in modelled LAI. 

Notes S1. Additional methods description.

Table S1. Metrics for Taylor plots. 
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