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surrogates. In: Hoffmann, F., Hüllermeier, E. (eds.) Proc. 27. Workshop Com-
putational Intelligence. pp. 243–259. Universitätsverlag Karlsruhe (November
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electrical submersible pump artificial lift system for extraheavy oils through
and analysis of bottom dilution scheme. CT& F Ciencia, Tecnoloǵıa y Futuro
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Appendix A

G-Problem Suite Description

In recent years a large number of optimization methods including constrained solvers
are developed to tackle real-world optimization problems efficiently. Suitable bench-
mark suites are necessary for evaluating new algorithms, comparing their perfor-
mances with each other and easing the algorithm development procedure.

G-problem suite is a challenging set of 24 constrained optimization problems used
as a benchmark for an optimization competition in the special session of constrained
real-parameter optimization at CEC 2006 conference. A subset of these problems,
G01 – G11, were initially suggested by Michalewicz and Schoenauer in 1996 [114]
as a handy reference test set for future methods. The test problems were mainly
taken from Floudas and Pardalos 1990 [60] and Michalewicz et al. 1996 [115]. Later,
Runarsson and Yao [150] extended the list to 13 problems by adding G12 [100] and
G13 [81]. The remaining 11 problems were added later to the list in [107].

A constrained optimization problem can be defined by the minimization of an
objective function f(.) subject to inequality constraint function(s) gj(.) and equality
constraint function(s) hk(.) :

Minimize f(~x), ~x ∈ [~l, ~u] ⊂ Rd (A.1)

subject to gj(~x) ≤ 0, j = 1, 2, . . . ,m

hk(~x) = 0, k = 1, 2, . . . , r,

where ~l is the lower bound of the search space S ⊆ Rd and the ~u is the upper
bound. ~x = [x1, x2, · · · , xd] is a vector with the length of the parameter space size
d. The xi refers to the i-th element of the vector ~x. The goal is to find ~x∗ which
minimizes the fitness function f(.) in the feasible space F ⊆ Rd′ ⊆ S ⊆ Rd, where
d′ ≤ d. Maximization problems can be transformed to minimization without loss of
generality.
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Figure A.1: Normalized radial visualization of G-problem’s properties.

Diversity in characteristics of G-problem suite makes this test set challenging, see
Tab. A.1. Due to different type and level of difficulty each G-problem has, finding
an optimizer which can solve the whole set efficiently remains a challenge. High
dimensionality, multimodality and being highly constrained are several challenges
that we should deal with, addressing these problems. Small or zero feasibility ra-
tio ρ = |F|

|S| is also another characteristics that makes many of G-problems hard to
solve. In Tab. A.1, the feasibility ratio ρ is determined experimentally by evaluating
106 random points in the search space. Furthermore, problems with low feasibility
subspace ratio η = d′

d
appear to be burdensome.

In this appendix we describe all 24 G-problems plus four modified problems
G03mod, G05mod, G11mod and G15mod, for which the equality constraints are
transformed to inequality constraints1. These problems are often addressed in lit-
erature. The 2-dimensional problems are followed with visualization. The active
constraints are highlighted in blue. For each problem the best known solution is
reported and the regarding challenges are mentioned.

1The implementation of these problems can be found at github link
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Table A.1: Characteristics of the G-functions: d: dimension, ρ: feasibility rate (%), η: feasibility
subspace ratio, FR: range of the fitness values, GR: ratio of largest to smallest constraint range,
LI/NI: number of linear/nonlinear inequalities, LE/NE: number of linear/nonlinear equalities, a:
number of constraints active at the optimum.

Fct. d ρ η FR GR LI / NI LE / NE a
G01 13 0.0003% 1 298.14 1.969 9 / 0 0 / 0 6
G02 20 99.997% 1 0.57 2.632 1 / 1 0 / 0 1
G03 20 0.0000% 0.95 9.27 · 1010 1 0 / 0 0 / 1 1
G03mod 20 2.46e-6% 1 9.27 · 1010 1 0 / 1 0 / 0 1
G04 5 26.9217% 1 9832.45 2.161 0 / 6 0 / 0 2
G05 4 0.0000% 0.25 8863.69 1788.74 2 / 0 0 / 3 3
G05mod 4 0.0919% 1 8863.69 1788.74 2 / 3 0 / 0 3
G06 2 0.0072% 1 1246828.23 1.010 0 / 2 0 / 0 2
G07 10 0.0000% 1 5928.19 12.671 3 / 5 0 / 0 6
G08 2 0.8751% 1 1821.61 2.393 0 / 2 0 / 0 0
G09 7 0.5207% 1 10013016.18 25.05 0 / 4 0 / 0 2
G10 8 0.0008% 1 27610.89 3842702 3 / 3 0 / 0 6
G11 2 0.0000% 0.5 4.99 1 0 / 0 0 / 1 1
G11mod 2 66.7240% 1 4.99 1 0 / 1 0 / 0 1
G12 3 0.0482% 1 0.72813 1 0 / 1 0 / 0 0
G13 5 0.0000% 0.4 1.91 · 1075 2.94 0 / 0 0 / 3 3
G14 10 0.0000% 0.7 1813.3 1.343 0 / 0 3 / 0 3
G15 3 0.0000% 0.3 586.0 1.034 0 / 0 1 / 1 2
G15mod 3 0.0337% 0.3 586.0 1.034 1 / 1 0 / 0 2
G16 5 0.0000% 1 811263.1 75.73 4 / 34 0 / 0 4
G17 6 0.0000% 0.3 42278.85 4.09 0 / 0 0 / 4 4
G18 9 0.0000% 1 5584.5 4.9 0 / 13 0 / 0 6
G19 15 0.33592% 1 55659.1 1.95 9 / 5 0 / 0 0
G20 24 0.0000% 0.42 28.99 858.19 0 / 6 2 / 12 16
G21 7 0.0000% 0.28 1000 23516.64 0 / 1 0 / 5 6
G22 22 0.0000% 0.14 2000 3.1 · 109 0 / 1 8 / 11 19
G23 9 0.0000% 0.55 13044.3 82.56 0 / 2 3 / 1 6
G24 2 0.44250% 1 6.97 1.82 0 / 2 0 / 0 2
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G01

This problem has a 13-dimensional parameter space and is restricted to 9 constraints
6 of which are active.

Minimize f(~x) = 5
4∑

i=1

xi − 5
4∑

i=1

x2i −
13∑

i=5

xi,

subject to g1(~x) = 2x1 + 2x2 + x10 + x11 − 10 ≤ 0,

g2(~x) = 2x1 + 2x3 + x10 + x12 − 10 ≤ 0,

g3(~x) = 2x2 + 2x3 + x11 + x12 − 10 ≤ 0,

g4(~x) = −8x1 + x10 ≤ 0,

g5(~x) = −8x2 + x11 ≤ 0,

g6(~x) = −8x3 + x12 ≤ 0,

g7(~x) = −2x4 − x5 + x10 ≤ 0,

g8(~x) = −2x6 − x7 + x11 ≤ 0,

g9(~x) = −2x8 − x9 + x12 ≤ 0.

The lower bound is at ~l01 =
#»
0 and the upper bound is at ~u01 = [1, 1, 1, 1, 1, 1, 1, 1, 1,

100, 100, 100, 1]. The global optimal solution is at ~x∗01 = [1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 1]
and f(~x∗01) = −15.
Challenges: High-dimensionality, highly constrained.

G02

This problem is scalable in dimension. G02 problem is commonly investigated with
d = 20 in different related research works.

Minimize f(~x) = −

∣∣∣∣∣∣∣∣

n∑
i=1

cos4(xi)−
n∏
i=1

cos2(xi)

√
n∑
i=1

ix2i

∣∣∣∣∣∣∣∣
,

subject to g1(~x) = 0.75−
n∏

i=1

xi ≤ 0,

g2(~x) =
n∑

i=1

xi − 7.5n ≤ 0,
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Figure A.2: G02 problem description. A 2d optimization problem with two inequality constraints.
The shaded (green) contours depict the fitness function f (darker = smaller). The black curves show
the borders of the inequality constraints. The infeasible area is shaded gray. The black point shows
the global optimum of the fitness function which is different from the optimum of the constrained
problem shown as the gold star.

where n is the size of the parameter space d. As the problem is scalable size of the
parameter space can be any arbitrary integer larger than 1n = d > 2. The lower
bound is at ~l02 =

#»
0 and the upper bound is at ~u02 =

#»
10. The optimal solution

for d = 20 is at ~x∗02 = [3.16246061, 3.12833142, 3.09479213, 3.06145059, 3.02792916,
2.99382607, 2.95866872, 2.92184227, 0.49482511, 0.48835711, 0.48231643, 0.47664475,
0.47129551, 0.46623099, 0.46142005, 0.45683665, 0.45245877, 0.44826762, 0.44424701,
0.44038286]. Fig. A.2 shows G02 problem in the 2-dimensional space. As shown in
Fig. A.2 only one of constraint function is active and the problem has a pretty large
feasible region. The multimodality of the fitness function, makes this problem very
challenging for surrogate-assisted optimizers. The complexity of this problem grows
as the dimension grows.
Challenges: High-dimensionality, multimodality.

G03

This problem is scalable in dimension and has only one equality constraint. G03 is
commonly investigated with d = 20 in different related research works.
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Minimize f(~x) = −(
√
n)n

n∏

i=1

xi,

subject to h1(~x) =
n∑

i=1

x2i − 1 = 0,

where n is the size of parameter space d. As the problem is scalable n = d ≥ 2. The
lower bound is ~l03 =

#»
0 and the upper bound is ~u03 =

#»
1 . The optimal solution can

easily be calculated analytically for any arbitrary dimension n. ~x∗03 = 1√
n

#»

I =
#  »
1√
n

which means the optimal value is −1 for any n.

f(~x∗03) = f(

#    »
1√
n

) = −(
√
n)n · ( 1√

n
)n = −1

The solution suggested in CEC2006 [107] is not fully feasible and has a value better
than the optimal value. Fig. A.3 shows G03 problem in the 2-dimensional space.
Challenges: High-dimensionality, small feasible space (ρ = 0 due to existence of an
equality constraint).

G03mod

This problem is a modified version of G03 which transforms the equality constraint
to an inequality constraint by assuming one side of the constraint being feasible.

Minimize f(~x) = −(
√
n)n

n∏

i=1

xi,

subject to g1(~x) =
n∑

i=1

x2i − 1 ≤ 0

The optimum is calculated exactly same as the G03 problem. Several papers address
G03mod instead of G03 due to difficulties that many optimizers have in handling
equality constraints. Fig. A.4 shows G03mod problem in the 2-dimensional space.
Challenges: High-dimensionality.

194



h(~x) = 0

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
x1

x
2

-2.0

-1.5

-1.0

-0.5

0.0

G03 problem, d = 2

Figure A.3: G03 problem description. A 2d optimization problem with only one equality con-
straint. The shaded (green) contours depict the fitness function f (darker = smaller). The black
curve shows the equality constraint. Feasible solutions are restricted to this line. The black point
shows the global optimum of the fitness function which is different from the optimum of the con-
strained problem shown as the gold star.
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Figure A.4: G03mod problem description. A 2d optimization problem with one inequality con-
straint. The shaded (green) contours depict the fitness function f (darker = smaller). The black
curve shows the borders of the inequality constraint. The infeasible area is shaded gray. The black
point shows the global optimum of the fitness function which is different from the optimum of the
constrained problem shown as the gold star.
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G04

G04 is a 5-dimensional COP subject to 6 constraints two of which are active.

Minimize f(~x) = 5.3578547x23 + 0.8356891x1x5 + 37.293239x1 − 40792.141,

subject to g1(~x) = 85.334407 + 0.0056858x2x5 + 0.0006262x1x4 − 0.0022053x3x5 − 92 ≤ 0,

g2(~x) = −85.334407− 0.0056858x2x5 − 0.0006262x1x4 + 0.0022053x3x5 ≤ 0,

g3(~x) = 80.51249 + 0.0071317x2x5 + 0.0029955x1x2 + 0.0021813x23 − 110 ≤ 0,

g4(~x) = −80.51249− 0.0071317x2x5 − 0.0029955x1x2 − 0.0021813x23 + 90 ≤ 0,

g5(~x) = 9.300961 + 0.0047026x3x5 + 0.0012547x1x3 + 0.0019085x3x4 − 25 ≤ 0,

g6(~x) = −9.300961− 0.0047026x3x5 − 0.0012547x1x3 − 0.0019085x3x4 + 20 ≤ 0.

The lower bound is at ~l04 = [78, 33, 27, 27, 27] and the upper bound is at ~u04 = [102,
45, 45, 45, 45]. The optimal solution is at ~x∗04 = [78, 33, 29.99525602, 45, 36.77581290]
and f(~x04) = −30665.53867178332.
Challenges: Highly constrained.

G05

G05 is a 4-dimensional COP subject to 5 constraints including 3 equality constraints.

Minimize f(~x) = 3x1 + 0.000001x31 + 2x2 + (0.000002/3)x32,

subject to g1(~x) = −x4 + x3 − 0.55 ≤ 0,

g2(~x) = −x3 + x4 − 0.55 ≤ 0,

h1(~x) = 1000 sin(−x3 − 0.25) + 1000 sin(−x4 − 0.25) + 894.8− x1 = 0,

h2(~x) = 1000 sin(x3 − 0.25) + 1000 sin(x3 − x4 − 0.25) + 894.8− x2 = 0,

h3(~x) = 1000 sin(x4 − 0.25) + 1000 sin(x4 − x3 − 0.25) + 1294.8 = 0.

The lower bound is at ~l05 = [0, 0,−0.55, 0.55] and the upper bound is at ~u05 = [1200,
1200, 0.55, 0.55]. The optimal solution is at ~x∗05 = [679.94531749, 1026.06713513,
0.11887637,−0.39623355] and f(~x05) = 5126.498109. The solution suggested in
CEC2006 [107] is not feasible and all equality constraints have a violation of size
10−4, that’s why the result reported in CEC2006 is better than the real optimal
value.
Challenges: Highly constrained, zero feasible ratio.
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G05mod

G05mod is a 4-dimensional COP subject to 5 inequality constraints.

Minimize f(~x) = 3x1 + 0.000001x31 + 2x2 + (0.000002/3)x32,

subject to g1(~x) = −x4 + x3 − 0.55 ≤ 0,

g2(~x) = −x3 + x4 − 0.55 ≤ 0,

g3(~x) = 1000 sin(−x3 − 0.25) + 1000 sin(−x4 − 0.25) + 894.8− x1 ≤ 0,

g4(~x) = 1000 sin(x3 − 0.25) + 1000 sin(x3 − x4 − 0.25) + 894.8− x2 ≤ 0,

g5(~x) = 1000 sin(x4 − 0.25) + 1000 sin(x4 − x3 − 0.25) + 1294.8 ≤ 0.

The lower bound is at ~l05 = [0, 0,−0.55, 0.55] and the upper bound is at ~u05 = [1200,
1200, 0.55, 0.55]. The optimal solution is at ~x∗05 = [679.94531749, 1026.06713513,
0.11887637,−0.39623355] and f(~x05) = 5126.498109. The solution suggested in
CEC2006 [107] is not feasible and all equality constraints have a violation of size
10−4, that’s why the result reported in CEC2006 is better than the real optimal
value.
Challenges: Highly constrained, zero feasible ratio.

G06

A 2-dimensional COP with two active inequality constraints.

Minimize f(~x) = (x1 − 10)3 + (x2 − 20)3,

subject to g1(~x) = −(x1 − 5)2 − (x2 − 5)2 + 100 ≤ 0,

g2(~x) = (x1 − 6)2 + (x2 − 5)2 − 82.81 ≤ 0.

The lower bound is at ~l06 = [13, 0] and the upper bound is at ~u06 = [100, 100]. The
optimal solution is at ~x∗06 = [14.095, 0.8429608], where f(~x06) = −6961.813875580.
Fig. A.5 shows the G06 problem with three different zoomed in level. As shown in
Fig. A.5 it is difficult to spot the feasible region in the original large space. As we
zoom in about 10 times into the interesting region, the feasible area appears as a
moon-shaped. G06 is a challenging COP due to its small feasible region, a very steep
fitness function and two active constraints.
Challenges: Small feasible ratio ρ.
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Figure A.5: G06 problem description. A 2d optimization problem with two inequality constraints.
The shaded (green) contours depict the fitness function f (darker = smaller). The black curves
show the borders of the inequality constraints. The infeasible area is shaded gray. The optimum
of the constrained problem is shown as the gold star. The plots from left to right show the G06
problem with different zoom-in levels. Left: the original search space. Most of the search space
seems to be infeasible and the interesting region is hardly detectable. Middle: ≈ 10× zoomed in
the interesting region. In the middle plot a tiny moon-shaped feasible region is observable. Right:
≈ 1000× zoomed in.

G07

A 10-dimensional problem subjected to 8 inequality constraints 6 of which are active.

Minimize f(~x) = x21 + x22 + x1x2 − 14x1 − 16x2 + (x3 − 10)2 + 4(x4 − 5)2 + (x5 − 3)2

+ 2(x6 − 1)2 + 5x27 + 7(x8 − 11)2 + 2(x9 − 10)2 + (x10 − 7)2 + 45,

subject to g1(~x) = −105 + 4x1 + 5x2 − 3x7 + 9x8 ≤ 0,

g2(~x) = 10x1 − 8x2 − 17x7 + 2x8 ≤ 0,

g3(~x) = −8x1 + 2x2 + 5x9 − 2x10 − 12 ≤ 0,

g4(~x) = 3(x1 − 2)2 + 4(x2 − 3)2 + 2x23 − 7x4 − 120 ≤ 0,

g5(~x) = 5x21 + 8x2 + (x3 − 6)2 − 2x4 − 40 ≤ 0,

g6(~x) = x21 + 2(x2 − 2)2 − 2x1x2 + 14x5 − 6x6 ≤ 0,

g7(~x) = 0.5(x1 − 8)2 + 2(x2 − 4)2 + 3x25 − x6 − 30 ≤ 0,

g8(~x) = −3x1 + 6x2 + 12(x9 − 8)2 − 7x10 ≤ 0.

198



The lower bound is at ~l07 = − #»
10 and the upper bound is at ~u07 =

#»
10. The

optimal solution is at ~x∗07 = [2.17199783, 2.36367936, 8.77392512, 5.09598421,
0.99065597, 1.43057843, 1.32164704, 9.82872811, 8.28009420, 8.37592351]. f(~x∗07) =
24.3062090689
Challenges: High-dimensionality, highly constrained.

G08

A 2-dimensional problem subjected to 2 inequality constraints none of which are
active at the optimum.

Minimize f(~x) = −sin3(2πx1) sin(2πx2)

x31(x1 + x2)

subject to g1(~x) = x21 − x2 + 1 ≤ 0,

g2(~x) = 1− x1 + (x2 − 4)2 ≤ 0.

The lower bound is at ~l08 =
#»
0 and the upper bound is at ~u08 =

#»
10. The optimal

solution is at ~x∗08 = [1.2279713, 4.2453732]and f(~x∗08) = −0.095825041418. Fig. A.6
shows the G08 problem in two zoomed in levels. As shown in Fig. A.6 the fitness
function of G08 is highly multimodal, therefore this COP is challenging to solve with
surrogate-assisted optimizers.
Challenges: Multimodality.

G09

A 7-dimensional problem subjected to 4 inequality constraints 2 of which are active.

Minimize f(~x) = (x1 − 10)2 + 5(x2 − 12)2 + x43 + 3(x4 − 11)2 + 10x65 + 7x26
+ x47 − 4x6x7 − 10x6 − 8x7

subject to g1(~x) = −127 + 2x21 + 3x42 + x3 + 4x24 + 5x5 ≤ 0,

g2(~x) = −282 + 7x1 + 3x2 + 10x23 + x4 − x5 ≤ 0,

g3(~x) = −196 + 23x1 + x22 + 6x26 − 8x7 ≤ 0,

g4(~x) = 4x21 + x22 − 3x1x2 + 2x23 + 5x6 − 11x7 ≤ 0.

The lower bound is at ~l09 = − #»
10 and the upper bound is at ~u09 =

#»
10. The opti-

mal solution is at ~x∗09 = [2.33049949323300210, 1.95137240,−0.47754042, 4.36572613,
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Figure A.6: G08 problem description. A 2d optimization problem with two inequality constraints.
The shaded (green) contours depict the fitness function f (darker = smaller). The black curves
show the borders of the inequality constraints. The infeasible area is shaded gray. The optimum of
the constrained problem is shown as the gold star. The plots show the G08 problem with different
zoom-in levels. Left: the original search space. Right: ≈ 2× zoomed in. G08’s fitness function has
a large range. The local minima and maxima of G08’s fitness function (out of the feasible area)
have large values in the order of 1000 and -1000. For the visualization purposes we restricted the
fitness range to [−40; 40].

−0.62448707, 1.03813092, 1.59422663] and f(~x∗09) = 680.63005737440.
Challenges: Small feasibility ratio ρ.
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G10

An 8-dimensional COP subjected to 6 constraints 3 of which are active.

Minimize f(~x) = x1 + x2 + x3

subject to g1(~x) = −1 + 0.0025(x4 + x6) ≤ 0,

g2(~x) = −1 + 0.0025(x5 + x7 − x4) ≤ 0,

g3(~x) = −1 + 0.01(x8 − x5) ≤ 0,

g4(~x) = −x1x6 + 833.33252x4 + 100x1 − 83333.333 ≤ 0,

g5(~x) = −x2x7 + 1250x5 + x2x4 − 1250x4 ≤ 0,

g6(~x) = −x3x8 + 1250000 + x3x5 − 2500x5 ≤ 0.

The lower bound is at ~l10 = −[100, 1000, 1000, 10, 10, 10, 10, 10] and the upper bound
is at ~u10 = [10000, 10000, 10000, 1000, 1000, 1000, 1000, 1000]. The optimal solution is
at ~x∗10 = [579.29340270, 1359.97691009, 5109.97770901, 182.01659025, 295.60089166,
217.98340974, 286.41569858, 395.60089165] and f(~x∗10) = 7049.2480218071796
Challenges: Small feasibility ratio ρ, highly constrained.

G11

A 2-dimensional COP subject to an equality constraint.

Minimize f(~x) = x21 + (x2 − 1)2,

subject to h1(~x) = x2 − x21 = 0.

The lower bound is at ~l11 = − #»
1 and the upper bound is at ~u11 =

#»
1 . The optimal

solution is at ~x∗11 = [−0.7071068, 0.5] or ~x∗11 = [0.7071068, 0.5] and f(~x∗11) = 0.75
Challenges: Zero feasibility ratio ρ = 0.

G11mod

This problem is the modified version of G11 which transforms the equality constraint
to an inequality constraint by assuming one side of the constraint being feasible.

Minimize f(~x) = x21 + (x2 − 1)2,

subject to g1(~x) = x2 − x21 ≤ 0.
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Figure A.7: G11 problem description. A 2d optimization problem with only one equality con-
straint. The shaded (green) contours depict the fitness function f (darker = smaller). The black
curve shows the equality constraint. Feasible solutions are restricted to this line. The black point
shows the global optimum of the fitness function which is different from the optimum of the con-
strained problem shown as the gold star.
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Figure A.8: G11 problem description. A 2d optimization problem with only one inequality
constraint. The shaded (green) contours depict the fitness function f (darker = smaller). The black
curve shows the inequality constraint. The infeasible area is shaded gray. The black point shows
the global optimum of the fitness function which is different from the optimum of the constrained
problem shown as the gold star.
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The lower and upper bounds and the optimum are exactly same as the G11 prob-
lem. Several papers address G11mod instead of G11 due to difficulties that many
optimizers have in handling equality constraints. Fig. A.8 shows G11mod problem.

G12

A 3-dimensional COP subject to 1 constraint. This problem has a disjoint feasible
region.

Minimize f(~x) = −0.01(100− (x1 − 5)2 − (x2 − 5)2 − (x3 − 5)2)

subject to g1(~x) = (x1 − p)2 − (x2 − q)2 − (x3 − r)2 − 0.0625 ≤ 0

The lower bound is ~l12 =
#»
0 and the upper bound is ~u12 =

#»
10. p, q, r = 1, 2 · · · 9.

These are 729 disjoint spheres and a solution is feasible if it is within one of the 729
spheres. Therefore we take the min over g1(.). The optimal solution is at ~x∗12 = [5,
5, 5] and f(~x∗12) = −1
Challenges: Disjoint feasible region

G13

A 5-dimensional COP subject to 3 equality constraints.

Minimize f(~x) = e

d∏
i=1

xi
,

subject to h1(~x) =
d∑

i=1

x2i − 10 = 0,

h2(~x) = x2x3 − 5x4x5 = 0,

h3(~x) = x31 + x32 + 1 = 0.

The lower bound is at ~l13 = [−2.3,−2.3,−3.2,−3.2,−3.2] and the upper bound is

at ~u13 = −~l13. One of the optimal solution is at ~x∗13 = [−1.71714359, 1.59570973,
1.82724569,−0.76364228,−0.76364390] and f(~x∗13) = 0.05394984069520585. The so-
lution is invariant against a sign flip in both x4 and x5, a sign flip in both x3 and x4,
a sign flip in both x3 and x5 or exchanging x4 and x5.
Challenges: Multimodality, zero feasibility ratio ρ = 0.
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G14

A 10-dimensional COP subject to 3 equality constraints.

Minimize f(~x) =
10∑

i=1

xi

(
ci + ln

xi∑1
j=1 0xj

)
,

subject to h1(~x) = x1 + 2x2 + 2x3 + x6 + x10 − 2 = 0,

h2(~x) = x4 + 2x5 + x6 + x7 − 1 = 0,

h3(~x) = x3 + x7 + x8 + 2x9 + x10 − 1 = 0,

The lower bound is at ~l14 =
#»
0 , the upper bound is at ~u14 =

#»
10 and ~c =

[−6.089,−17.164,−34.054,−5.914,−24.721,−14.986,−24.1,−10.708,−26.662,
−22.179]. The optimal solution is at ~x∗14 = [0.04066841, 0.14772124, 0.78320573,
0.00141434, 0.48529364, 0.00069318, 0.02740520, 0.01795097, 0.03732682, 0.09688446]
and f(~x∗14) = −47.764888459491459.
Challenges: High dimensionality, zero feasibility ratio ρ = 0.

G15

A 3-dimensional COP subject to 2 equality constraints.

Minimize f(~x) = 1000− x21 − 2x22 − x23 − x1x2 − x1x3,

subject to h1(~x) =
3∑

i=1

x2i − 25 = 0,

h2(~x) = 8x1 + 14x2 + 7x3 − 56 = 0.

The lower bound is at ~l15 =
#»
0 and the upper bound is at ~u15 =

#»
10. The optimal solu-

tion is at ~x∗15 = [3.51212813, 0.21698751, 3.55217855. f(~x∗15) = 961.71502228996087
Challenges: Zero feasibility ratio ρ = 0.
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G15mod

A 3-dimensional COP subject to 2 inequality constraints.

Minimize f(~x) = 1000− x21 − 2x22 − x23 − x1x2 − x1x3,

subject to g1(~x) =
3∑

i=1

x2i − 25 ≤ 0,

g2(~x) = 8x1 + 14x2 + 7x3 − 56 ≤ 0.

The lower bound is at ~l15 =
#»
0 and the upper bound is at ~u15 =

#»
10. The optimal solu-

tion is at ~x∗15 = [3.51212813, 0.21698751, 3.55217855. f(~x∗15) = 961.71502228996087

G16

A 5-dimensional problem subject to 38 constraints 4 of which are active.

Minimize f(~x) = 0.000117y14 + 0.1365 + 0.00002358y13 + 0.000001502y16 + 0.0321y12
+0.004324y5 + 0.0001 c15

c16
+ 37.48 y2

c12
− 0.0000005843y17,

subject to g1(~x) = 0.28
0.72

y5 − y4 ≤ 0, g2(~x) = x3 − 1.5x2 ≤ 0,
g3(~x) = 3496 y2

c12
− 21 ≤ 0, g4(~x) = 110.6 + y1 − 62212

c17
≤ 0,

g5(~x) = 213.1− y1 ≤ 0, g6(~x) = y1 − 405.23 ≤ 0,
g7(~x) = 17.505− y2 ≤ 0, g8(~x) = y2 − 1053.6667 ≤ 0,
g9(~x) = 11.275− y3 ≤ 0, g10(~x) = y3 − 35.03 ≤ 0,
g11(~x) = 214.228− y4 ≤ 0, g12(~x) = y4 − 665.585 ≤ 0,
g13(~x) = 7.458− y5 ≤ 0, g14(~x) = y5 − 584.463 ≤ 0,
g15(~x) = 0.961− y6 ≤ 0, g16(~x) = y6 − 265.916 ≤ 0,
g17(~x) = 1.612− y7 ≤ 0, g18(~x) = y7 − 7.046 ≤ 0,
g19(~x) = 0.146− y8 ≤ 0, g20(~x) = y8 − 0.222 ≤ 0,
g21(~x) = 107.99− y9 ≤ 0, g22(~x) = y9 − 273.366 ≤ 0,
g23(~x) = 922.693− y10 ≤ 0, g24(~x) = y10 − 1286.105 ≤ 0,
g25(~x) = 926.832− y11 ≤ 0, g26(~x) = y11 − 1444.046 ≤ 0,
g27(~x) = 18.766− y12 ≤ 0, g28(~x) = y12 − 537.141 ≤ 0,
g29(~x) = 1072.163− y13 ≤ 0, g30(~x) = y13 − 3247.039 ≤ 0,
g31(~x) = 8961.448− y14 ≤ 0, g32(~x) = y14 − 26844.086 ≤ 0,
g33(~x) = 0.063− y15 ≤ 0, g34(~x) = y15 − 0.386 ≤ 0,
g35(~x) = 71084.33− y16 ≤ 0, g36(~x) = −140000− y16 ≤ 0,
g37(~x) = 2802713− y17 ≤ 0, g38(~x) = y17 − 12146108 ≤ 0,
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where,

y1 = x2 + x3 + 41.6, c1 = 0.024x4 − 4.62,
y2 = 12.5

c1
+ 12, c2 = 0.0003535x21 + 0.5311x1 + 0.08705y2x1,

y3 = c2
c3
, c3 = 0.052x1 + 78 + 0.002377y2x1,

y4 = 19y3, c5 = 100x2,

c4 = 0.04782(x1 − x3) + 0.1956(x1−y3)2
x2

+ 0.6376y4 + 1.594y3,

y5 = c6c7, c6 = x1 − y3 − y4
y6 = x1 − y5 − y4 − y3, c7 = 0.950− c4

c5
,

y7 = c8
y1
, c8 = (y5 + y4)0.995,

y8 = c8
3798

, c9 = y7 − 0.0663y7
y8

− 0.3153,

y9 = 96.82
c9

+ 0.321y1 c10 = 12.3
752.3

,

y10 = 1.29y5 + 1.258y4 + 2.29y3 + 1.71y6, c11 = (1.75y2)(0.995x1),
y11 = 1.71x1 − 0.452y4 + 0.580y3, c12 = 0.995y10 + 1998,
y12 = c10x1 + c11

c12
, c14 = 2324y10 − 28740000y2,

y13 = c12 − 1.75y2, c15 = y13
y15
− y13

0.52
,

c13 = 0.995y10 + 60.8x2 + 48x4 − 0.1121y14 − 5095,
y14 = 3623 + 64.4x2 + 58.4x3 + 146312

y9+x5
, c16 = 1.104− 0.72y15,

y15 = y13
c13
, c17 = y9 + y5,

y16 = 148000− 331000y15 + 40y13 − 61y15y13,
y17 = y9 + x5.

The lower bound is at ~l16 = [704.4148, 68.6, 0.0, 193, 25 and the upper bound is
at ~u16 = [906.3855, 288.88, 134.75, 287.0966, 84.1988]. The optimal solution is at
~x∗16 = [705.17454, 68.6, 102.9, 282.32493, 37.58412] and f(~x∗16) = −1.905155
Challenges: Highly constrained

G17

A 6-dimensional problem subject to 4 equality constraints.
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Minimize f(~x) = f1(x1) + f2(x2)

f1(x1) =

{
30x1, if 0 ≤ x1 < 300

31x1, if 300 ≤ x1 ≤ 400

f2(x2) =





28x2, if 0 ≤ x2 < 100

29x2, if 100 ≤ x2 ≤ 200

30x2, if 200 ≤ x2 ≤ 1000

subject to h1(~x) = −x1 + 300− x3x4
131.078

cos(1.48477− x6) +
0.90798x23
131.078

cos(1.47588) = 0,

h2(~x) = −x2 −
x3x4

131.078
cos(1.48477 + x6) +

0.90798x24
131.078

cos(1.47588) = 0,

h3(~x) = −x5 −
x3x4

131.078
sin(1.48477 + x6) +

0.90798x24
131.078

sin(1.47588) = 0,

h4(~x) = 200− x3x4
131.078

sin(1.48477− x6) +
0.90798x23
131.078

sin(1.47588) = 0.

The lower bound is at ~l17 = [0, 0, 340, 340,−1000, 0] and the upper bound is at~u17 =
[400, 1000, 420, 420, 1000, 0.5236]. The optimal solution is at ~x∗17 = [201.78446721,
99.99999999, 383.07103485420,−10.90765845, 0.07314823] and f(~x∗17) = 8853.534.
Challenges: Zero feasibility ratio ρ = 0.

G18

A 9-dimenstional problem subject to 13 constraints 6 of which are active.
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Minimize f(~x) = −0.5(x1x4 − x2x3 + x3x9 − x5x9 + x5x8 − x6x7),
subject to g1(~x) = x23 + x24 − 1 ≤ 0,

g2(~x) = x29 − 1 ≤ 0,

g3(~x) = x25 + x26 − 1 ≤ 0,

g4(~x) = x21 + (x2 − x9)2 − 1 ≤ 0,

g5(~x) = (x1 − x5)2 + (x2 − x6)2 − 1 ≤ 0,

g6(~x) = (x1 − x7)2 + (x2 − x8)2 − 1 ≤ 0,

g7(~x) = (x3 − x5)2 + (x4 − x6)2 − 1 ≤ 0,

g8(~x) = (x3 − x7)2 + (x4 − x8)2 − 1 ≤ 0,

g9(~x) = x27 + (x8 − x9)2 − 1 ≤ 0,

g10(~x) = x2x3 − x1x4 ≤ 0,

g11(~x) = −x3x9 ≤ 0,

g12(~x) = x5x9 ≤ 0,

g13(~x) = x6x7 − x5x8 ≤ 0.

The lower bound is at ~l18 = [−10,−10,−10,−10,−10,−10,−10,−10, 0] and the
upper bound is at ~u18 = [10, 10, 10, 10, 10, 10, 10, 10, 20]. The optimal solution
is at ~x∗18 = [−0.98900055, 0.14791184,−0.62428976,−0.78118417,−0.98761593,
0.15047783,−0.62259598,−0.78254342, 0.0] and f(~x∗18) = −0.86573533494888033.
Challenges: Highly constrained.

G19

A 15-dimensional problem subject to 5 constraints.

Minimize f(~x) =
5∑

j=1

5∑

i=1

cijx(10+i)x(10+j) + 2
5∑

j=1

djx
3
(10+j) −

10∑

i=1

bixi

subject to gj(~x) = −2
5∑

i=1

cijx(10+i) − 3djx
2
(10+j) − ej +

10∑

i=1

aijxi ≤ 0 j = 1, · · · , 5
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,where
#»

b = [−40,−2,−0.25,−4,−4,−1,−40,−60, 5, 1],
#»

d = [4, 8, 10, 6, 2] and #»e =

[−15,−27,−36,−18,−12]. The lower bound is at ~l19 =
#»
0 and the upper bound is

at ~u19 =
#»
10.

a =




−16 2 0 1 0
0 −2 0 0.4 2
−3.5 0 2 0 0

0 −2 0 −4 −1
0 −9 −2 1 −2.8
2 0 −4 0 0
−1 −1 −1 −1 −1
−1 −2 −3 −2 −1
1 2 3 4 5
1 1 1 1 1




c =




30 −20 −10 32 −10
−20 39 −6 −31 32
−10 −6 10 −6 −10
32 −31 −6 39 −20
−10 32 −10 −20 30




The optimal solution is at ~x∗19 = [0, 6.08597252436373e − 033, 3.94600628013917,
−2.35103745208393e−032, 3.28318162727873, 10, 5.74431051614192e−033,−1.15517863716213e−
032,−2.6336322104807e − 032,−3.50389001765656e − 033, 0.370762125835098,
0.278454209512692, 0.523838440499861, 0.388621589976956, 0.29815843730292] and
f(~x∗19) = 32.655592950349401.
Challenges: High-dimensionality.
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G20

A 24-dimensional problem subject to 20 constraints 16 of which are active.

Minimize f(~x) =
24∑

i=1

aixi,

subject to gj(~x) =
(xj + x(j+12))∑24

i=1 xi + ej
≤ 0, j = 1, 2, 3,

gj(~x) =
(x(j+3) + x(j+15))∑24

i=1 xi + ej
≤ 0, j = 4, 5, 6,

hk(~x) =
x(k+12)

b(k+12)

∑24
k=13

xk
bk

− ckxk

40bk
∑12

k=1
xk
bk

= 0, k = 1, · · · , 12,

h13(~x) =
24∑

i=1

xi − 1 = 0,

h14(~x) =
12∑

i=1

xi
di

+ α
24∑

i=13

xi
bi
− 1.671 = 0.

The lower bound is at ~l20 =
#»
0 and the upper bound is at ~u20 =

#»
10.

α = (0.7302)(530)(14.7
40

).
#»a = [0.0693, 0.0577, 0.05, 0.2, 0.26, 0.55, 0.06, 0.1, 0.12, 0.18, 0.1, 0.09, 0.0693, 0.0577,
0.05, 0.2, 0.26, 0.55, 0.06, 0.1, 0.12, 0.18, 0.1, 0.09]
#»

b = [44.094, 58.12, 58.12, 137.4, 120.9, 170.9, 62.501, 84.94, 133.425, 82.507, 46.07,
60.097, 44.094, 58.12, 58.12, 137.4, 120.9, 170.9, 62.501, 84.94, 133.425, 82.507, 46.07,
60.097]
#»c = [123.7, 31.7, 45.7, 14.7, 84.7, 27.7, 49.7, 7.1, 2.1, 17.7, 0.85, 0.64]
#»

d = [31.244, 36.12, 34.784, 92.7, 82.7, 91.6, 56.708, 82.7, 80.8, 64.517, 49.4, 49.1]
#»e = [0.1, 0.3, 0.4, 0.3, 0.6, 0.3]

The optimal solution is at ~x∗20 = [9.53E − 7, 0, 4.21e− 3, 1.039e− 4, 0, 0, 2.072e− 1,
5.979e−1, 1.298e−1, 3.35e−2, 1.711e−2, 8.827e−3, 4.657e−10, 0, 0, 0, 0, 0, 2.868e−4,
1.193e− 3, 8.332e− 5, 1.239e− 4, 2.07e− 5, 1.829e− 5].

Challenges: High-dimensionality, highly constrained, zero feasibility ratio ρ = 0.
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G21

A 7-dimensional COP subject to 6 active equality and inequality constraints.

Minimize f(~x) = x1,

subject to g1(~x) = −x1 + 35x0.62 + 35x0.63 ≤ 0,

h1(~x) = −300x3 + 7500x5 − 7500x6 − 25x4x5 + 25x4x6 + x3x4 = 0,

h2(~x) = 100x2 + 155.365x4 + 2500x7 − x2x4 − 25x4x7 − 15536.5 = 0,

h3(~x) = −x5 + ln(−x4 + 900) = 0,

h4(~x) = −x6 + ln(x4 + 300) = 0,

h5(~x) = −x7 + ln(−2x4 + 700) = 0.

The lower bound is at ~l21 = [0.0, 0.0, 0.0, 100, 6.3, 5.9, 4.5] and the upper bound
is at ~u21 = [1000, 40, 40, 300, 6.7, 6.4, 6.25]. The optimal solution is at ~x∗21 =
[193.724510070034967, 5.56944131553368433e−27, 17.3191887294084914, 100.047897801386839,
6.68445185362377892, 5.99168428444264833, 6.21451648886070451] and f(~x∗21) =
193.72451007003497.
Challenges: Highly constrained, zero feasibility ratio ρ = 0.

G22

A 22-dimensional COP subject to 20 constraints 19 of which are active equality
constraints.
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Minimize f(~x) = x1,

subject to g1(~x) = −x1 + x0.62 + x0.63 + x0.64 ≤ 0,

h1(~x) = x5 − 105x8 + 107 = 0,

h2(~x) = x6 + 105x8 − 105x9 = 0,

h3(~x) = x7 + 105x9 − 5 · 107 = 0,

h4(~x) = x5 + 105x10 − 3.3 · 107 = 0,

h5(~x) = x6 + 105x11 − 4.4 · 107 = 0,

h6(~x) = x7 + 105x12 − 6.6 · 107 = 0,

h7(~x) = x5 − 120x2x13 = 0,

h8(~x) = x6 − 80x3x14 = 0,

h9(~x) = x7 − 40x4x15 = 0,

h10(~x) = x8 − x11 + x16 = 0,

h11(~x) = x9 − x12 + x17 = 0,

h12(~x) = −x18 + ln(x10 − 100) = 0,

h13(~x) = −x19 + ln(−x8 + 300) = 0,

h14(~x) = −x20 + ln(x16) = 0,

h15(~x) = −x21 + ln(−x9 + 400) = 0,

h16(~x) = −x22 + ln(x17) = 0,

h17(~x) = −x8 − x10 + x13x18 − x13x19 + 400 = 0,

h18(~x) = x8 − x9 − x11 + x14x20 − x14x21 + 400 = 0,

h19(~x) = x9 − x12 − 4.60517x15 + x15x22 + 100 = 0,

The lower bound is at ~l22 = [0, 0, 0, 0, 0, 0, 0, 100.100, 100.01, 100, 100, 0, 0, 0, 0, 0.01,
−4.7,−4.7,−4.7,−4.7,−4.7] and the upper bound is at ~u22 = [2e + 04, 1e + 06,
1e + 06, 1e + 06, 4e + 07, 4e + 07, 4e + 07, 3e + 02, 4e + 02, 3e + 02, 4e + 02, 6e + 02,
5e+02, 5e+02, 5e+02, 3e+02, 4e+02, 6.25, 6.250, 6.25, 6.25, 6.25]. The best solution
found is at ~x∗22 = [2.416091e + 02, 1.354324e + 02, 9.159755e + 02, 4.850804e + 03,
3.000000e + 06, 1.223014e + 07, 2.476986e + 07, 1.300000e + 02, 2.523014e + 02,
3.000000e + 02, 3.176986e + 02, 4.123014e + 02, 1.845939e + 02, 1.669005e + 02,
1.276585e + 02, 1.876986e + 02, 1.600000e + 02, 5.298317e + 00, 5.135798e + 00,
5.234837e+ 00, 4.995174e+ 00, 5.075174e+ 00]

212



and f(~x∗22) = 241.609 The optimal value that we find is about larger than what
is reported in CEC2006 [107] but fully feasible.
Challenges: High-dimensionality, zero feasibility ratio ρ = 0, highly constrained,
small feasible subspace ratio η = 3

22
≈ 0.14.

G23

A 9-dimensional problem subject to 6 active constraints.

Minimize f(~x) = −9x5 − 15x8 + 6x1 + 16x2 + 10(x6 + x7),

subject to g1(~x) = x9x3 + 0.02x6 − 0.025x5 ≤ 0,

g2(~x) = x9x4 + 0.02x7 − 0.015x8 ≤ 0,

h1(~x) = x1 + x2 − x3 − x4 = 0,

h2(~x) = 0.03x1 + 0.01x2 − x9(x3 + x4) = 0,

h3(~x) = x3 + x6 − x5 = 0,

h4(~x) = x4 + x7 − x8 = 0.

The lower bound is at ~l23 = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.01] and the upper
bound is at ~u23 = [300, 300, 100, 200, 100, 300, 100, 200, 0.03].

The optimal solution is at ~x∗23 = [0, 100, 0, 100, 0, 0, 100, 200, 0.01]. f(~x∗23) =
−400.0

Challenges: Highly constrained, zero feasibility ratio ρ = 0.

G24

A 2-dimensional COP subject to 2 active inequality constraints.

Minimize f(~x) = −x1 − x2,
subject to g1(~x) = −2x41 + 8x31 − 8x21 + x2 − 2 ≤ 0,

g2(~x) = −4x41 + 32x31 − 88x21 + 96x1 + x2 − 36 ≤ 0.

The lower bound is at ~l24 =
#»
0 and the upper bound is at ~u24 = [3, 4]. The optimal

solution is at ~x∗24 = [2.329520197477607, 3.17849307411768] and f(~x∗24) = −5.508.
Fig. A.9 shows G24 problem.
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Figure A.9: G24 problem description. A 2d optimization problem with two inequality constraints.
The shaded (green) contours depict the fitness function f (darker = smaller). The black curves
show the borders of the inequality constraints. The infeasible area is shaded gray. The optimum of
the constrained problem is shown as the gold star.
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Appendix B

Transforming G22

Minimize f(~x) = x1,

subject to g1(~x) = −x1 + x0.62 + x0.63 + x0.64 ≤ 0,

h1(~x) = x5 − 105x8 + 107 = 0,

h2(~x) = x6 + 105x8 − 105x9 = 0,

h3(~x) = x7 + 105x9 − 5 · 107 = 0,

h4(~x) = x5 + 105x10 − 3.3 · 107 = 0,

h5(~x) = x6 + 105x11 − 4.4 · 107 = 0,

h6(~x) = x7 + 105x12 − 6.6 · 107 = 0,

h7(~x) = x5 − 120x2x13 = 0,

h8(~x) = x6 − 80x3x14 = 0,

h9(~x) = x7 − 40x4x15 = 0,

h10(~x) = x8 − x11 + x16 = 0,

h11(~x) = x9 − x12 + x17 = 0,

h12(~x) = −x18 + ln(x10 − 100) = 0,

h13(~x) = −x19 + ln(−x8 + 300) = 0,

h14(~x) = −x20 + ln(x16) = 0,

h15(~x) = −x21 + ln(−x9 + 400) = 0,

h16(~x) = −x22 + ln(x17) = 0,

h17(~x) = −x8 − x10 + x13x18 − x13x19 + 400 = 0,

h18(~x) = x8 − x9 − x11 + x14x20 − x14x21 + 400 = 0,

h19(~x) = x9 − x12 − 4.60517x15 + x15x22 + 100 = 0,
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By solving the first three equality constraints we get rid of three variables x5, x6
and x7, so that we write them as a function of x8 and x9 as follows.

h1(~x)→ x5 = 105(x8 − 10)

h2(~x)→ x6 = 105(x9 − x8)
h3(~x)→ x7 = 105(500− x9)

Now that we have x5, x6 and x7 we can substitute them in h4, h5 and h6 in order
to write x10, x11 and x12 dependent on x8 and x9 as follows.

h4(~x)→ x10 =
3.3 · 107 − x5

105
= 430− x8

h5(~x)→ x11 =
4.4 · 107 − x6

105
= 440− x9 + x8

h6(~x)→ x12 =
6.6 · 107 − x7

105
= 160 + x9

We can find 5 more variables (x16, x17, x18, x19, x20) based on x8 and x9 by simply
substitution of x10, x11 and x12 in the following equality constraints. It turns out
that one parameter x17 = 160 is equal to a constant.

h10(~x)→ x16 = x11 − x8 = 440− x9
h11(~x)→ x17 = x12 − x9 = 160

h12(~x)→ x18 = ln(x10 − 100) = ln(330− x8)
h13(~x)→ x19 = ln(300− x8)
h15(~x)→ x21 = ln(400− x9)

Now that we have x16 and x17 with the help of h14 and h15 equality constraints
we can find x20 and x21, where x21 has a constant value.

h14(~x)→ x20 = ln(x16) = ln(440− x9)
h16(~x)→ x22 = ln(x17) = ln(160)
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Reformulating the h17, h18 and h19 equality constraints will give us x13, x14, x15.

h17(~x)→ x13 =
x8 + x10 − 400

x18 − x19
= 30/ ln

(
330− x8
300− x8

)

h18(~x)→ x14 =
x9 − x8 + x11 − 400

x20 − x21
= 40/ ln

(
160

400− x9

)

h19(~x)→ x15 =
x12 − x9 − 100

x22 − 4.60517
= 60/ ln

(
160

100

)

The last step is to reformulate h7, h8 and h9 equality constraints in order to find
x2, x3 and x4.

h7(~x)→ x2 =
x5

120 · x13
=

103

36
· (x8 − 100) · ln

(
330− x8
300− x8

)

h8(~x)→ x3 =
x6

80 · x14
=

103

32
· (x9 − x8) · ln

(
160

400− x9

)

h9(~x)→ x4 =
x7

40 · x15
=

103

24
· (500− x9) · ln

(
160

100

)

As we have seen, it is possible to describe 19 dimensions of the G22 problem only
based on two parameters x8 and x9. This means that in presence of the analytical
information for the equality constraints we can transform this 22-dimensional prob-
lem with one inequality and 19 equality constraint to a 3-dimensional problem (x1,
x8 and x9) with a single inequality constraints.
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