
Self-adjusting surrogate-assisted optimization techniques for expensive
constrained black box problems
Bagheri, S.

Citation
Bagheri, S. (2020, April 8). Self-adjusting surrogate-assisted optimization techniques for
expensive constrained black box problems. Retrieved from https://hdl.handle.net/1887/87271

Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/87271

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/87271

Cover Page

The handle http://hdl.handle.net/1887/87271 holds various files of this Leiden University
dissertation.

Author: Bagheri, S.
Title: Self-adjusting surrogate-assisted optimization techniques for expensive
constrained black box problems
Issue Date: 2020-04-08

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/87271
https://openaccess.leidenuniv.nl/handle/1887/1�

Chapter 9

SACOBRA for Functions with
High-Conditioning

9.1 Outline

Up till now, in this dissertation we introduced two different surrogate-assisted op-
timizers for handling black box constrained optimization problems in an efficient
manner with very few function evaluations. The analyses in the former chapters
show that the introduced surrogate-assisted algorithms, especially SACOBRA, can
efficiently find near-optimal solutions for a set of various COPs. However, almost all
the tested problems have objective and constraint functions with low or moderate
condition number. As will be shown in Sec. 9.3, a current roadblock for surrogate-
assisted optimizers is optimizing functions with a high condition number.

Although the main concern of this dissertation is tackling expensive constrained
optimization problems, in this chapter we study unconstrained optimization problems
with a high condition number, in order to reduce the complexity.

We give a brief introduction about this chapter in Sec. 9.2. In Sec. 9.3, we pro-
vide some illustrative insights why functions with high condition number are tricky
to optimize with surrogate-assisted solvers due to modeling difficulties. In Sec. 9.4,
we propose a new online whitening algorithm for the SACOBRA framework which
tries to improve SACOBRA’s performance on ill-conditioned functions. This algo-
rithm operates in the black box optimization paradigm and it adapts itself to new
function evaluations. The experimental setup and the results on a subset of the noise-
less single-objective BBOB benchmark [58] are described in Sec. 9.5 and 9.6, resp.
We show on a set of high-conditioning functions that online whitening reduces the
optimization error by a factor between 10 to 1012 as compared to the plain surrogate-
assisted optimizer. Covariance matrix adaptation evolution strategy (CMA-ES) has
for very high numbers of function evaluations even lower errors, whereas our ap-
proach performs better in the expensive setting (≤ 103 function evaluations). If

149

Initialization
phase I:
modeling

phase II:
optimization

Figure 9.1: Conceptualization flowchart of surrogate-assisted optimization in [141, 15, 14].

we count all parallelizable function evaluations (population evaluation in CMA-ES,
online whitening in our approach) as one iteration, then both algorithms have com-
parable strength even on the long run. This holds for problems with relatively low
dimension d ≤ 20.

9.2 Introduction and Related Work

Optimization problems can be defined as minimization of a black-box objective func-
tion f(~x) as in Eq. (2.1). Evolutionary algorithms including covariance matrix adap-
tation evolution strategy (CMA-ES) [76], genetic algorithm (GA) [156], differential
evolution (DE) [129], and particle swarm optimization (PSO) [94, 157] are among
strong derivative-free algorithms suitable for handling black-box optimization prob-
lems. All the mentioned optimization algorithms are inspired from the evolution
theory of Darwin and tend to evolve a randomly generated initial population by
means of different optimization operators (crossover, mutation, selection, estimating
distribution etc.) iteratively. Despite all the significant contributions of differen-
tial evolution, solving problems with high-conditioning remains a challenge, as it is
mentioned in [168]. In [155] a genetic algorithm is evaluated on a set of black box
problems and it is observed that the algorithm is weak in optimizing high condition-
ing problems. CMA-ES is very successful in tackling high-conditioning problems.
The advantage of CMA-ES when solving problems with high conditioning stems
from the fact that in each iteration the covariance matrix of the new distribution is
adapted according to the evolution path which is the direction with highest expected
progress. In other words, the covariance matrix adaptation aims to learn the Hessian
matrix of the function in an iterative way.

Although the contribution of the mentioned evolutionary-based algorithms is sig-
nificant, they often require too many function evaluations which are not affordable in
many real-world applications. That is because determining the value of the objective
functions at a specific point ~x (set of variables) often requires to conduct a time-
expensive simulation run. In order to solve expensive optimization problems in an

150

9.2. INTRODUCTION AND RELATED WORK

efficient manner, several algorithms were developed which aim at reducing the num-
ber of function evaluations through the assistance of surrogate models [20, 142, 90].

Many of the recently developed surrogate-assisted optimization algorithms in-
cluding SACOBRA and SOCU go – after an initialization step – through two main
phases shown in Fig. 9.1. Phase I builds a cheap and fast mathematical model (sur-
rogate) from the evaluated points. Phase II runs the optimization procedure on the
surrogate to suggest a new infill point. The algorithm is sequential: as soon as the
new infill point is evaluated on the real function, it will be added to the population
of evaluated points and the surrogate will be updated accordingly. The two phases
are repeated until a predefined budget of function evaluations is exhausted.

Clearly, the modeling phase has a significant impact on the performance of the
optimizer. The surrogate-assisted optimization algorithm can be of no use, if the
surrogate models are not accurate enough and do not lead the search to the inter-
esting region. Therefore, it is very important to have an eye on the quality of the
surrogates. Radial basis function interpolation (RBF) and Gaussian process (GP)
models are commonly used for efficient optimization [17, 90, 14, 19, 27, 108]. Al-
though the mentioned techniques are suitable for modeling complicated non-linear
functions, both may face challenges in handling other aspects of functions.

SACOBRA introduced in Ch. 3 and extended in Ch. 8 is an optimization frame-
work which uses RBFs as modeling technique. This algorithm is very successful in
handling the commonly used constrained optimization problems, the so-called G-
function benchmark [107]. However, it performs poorly when optimizing functions
with a large condition number. A function, that has a high ratio of steepest slope
in one direction to flattest slope in another direction, has a large condition number.
We call this a function with high conditioning. The condition number of a function
can be determined as the ratio of the largest to smallest singular value of its Hessian
matrix.

Shir et al.[161, 162] observe that in high-conditioning problems CMA-ES may
converge to the global optimum but fail to learn the Hessian matrix. They pro-
pose with FOCAL an efficient approach for determining the Hessian matrix even for
functions with high condition number.

The surrogate-assisted CMA-ES algorithms proposed in [108, 21] use surrogates
in a different way: Whole CMA-ES generations alternate between being generated on
the real function or on the surrogate function. Which function is used is determined
by the algorithm online during the optimization run, based on a certain accuracy
criterion. It turns out that for high-conditioning functions the algorithm effectively
uses mainly the real function. Thus it behaves equivalent to plain CMA-ES and does
not use surrogates in the high-conditioning case.

151

This chapter focuses on optimizing functions with moderate or high condition
numbers by means of the surrogate-assisted optimizer SACOBRA, extended with on
online whitening mechanism which will be introduced in Sec. 9.4.

9.3 Why Is High Conditioning An Issue for Sur-

rogates?

In order to investigate the behavior of the RBF interpolation technique for modeling
functions with high conditioning, we take a closer look at the function F02 from the
BBOB benchmark:

F02(~x) =
d∑
i=1

αiz
2
i =

d∑

i=1

106 i−1
d−1 z2i (9.1)

where ~z = Tosz(~x− ~x∗) and Tosz(~x) is a nonlinear transformation [58], used to make
the surface of F02(~x) uneven without adding any extra local optima. This function
can be defined in any d-dimensional space. The large difference between the weights
of the lowest variable x1 to the highest xd results in the high condition number of
106.

Fig. 9.2, left, shows how F02(~x) looks like for d = 2. It is easy to see that F02(~x)
has steep walls in one direction but looks pretty flat in the other direction. Fig. 9.2,
right, is the surrogate determined with a cubic RBF on 60 points (white dots). We
can see that the steep walls are reasonably well modeled but the surface is pretty
wiggled. At first glance, it is not clear where the weakness of such model is.

In order to have a closer insight and also to be able to visualize higher-dimensional
versions of F02(~x) we plot cuts of the function along each dimension. Fig. 9.3 shows
four cuts of the 4-dimensional F02(~x). In this example the optimum is at ~x∗ =
[−1,−1,−1,−1].

As one can see, the highest dimension x4 with the largest coefficient α4 = 106

is very well modeled, but the model slices for lower dimensions do not follow the
real function and do not contain any useful information about the location of the
optimum. Optimizing the surrogate model shown in Fig. 9.3 will result in a point
~xnew, which has a near-optimal value for the steepest dimension but pretty much
random values in all other dimensions.

152

9.4. ONLINE WHITENING SCHEME FOR SACOBRA

Figure 9.2: F02 function from BBOB benchmark set (ellipsoidal function). Left: The real func-
tion. Right: RBF model built for F02 with 60 points shown as white points. The red point on
both plots shows the location of the optimal solution.

Algorithm 8 Online whitening algorithm. Input: Function f to minimize, pop-
ulation X =

{
~x(k)|k = 1, . . . , n

}
of evaluated points, ~xbest: best-so-far point from

SACOBRA.
1: H← Hessian matrix of function f(~x) at ~xbest
2: M← H−0.5 . see Eq. (9.4) and Sec. 9.4.2
3: Update ~xbest with the function evaluations from Hessian calculation
4: Transformation :
5: g(~x)← f(M(~x− ~xbest))
6: G←

{(
~x(k), g(~x(k))

)
|k = 1, . . . , n

}
. evaluate all the points in X on the new function

g(~x)
7: s (~x)← build surrogate model from G return s (~x) . surrogate model for next

SACOBRA step

9.4 Online Whitening Scheme for SACOBRA

This chapter was originally motivated by applying the SACOBRA optimizer, de-
scribed in Ch. 3, to the single-objective BBOB set of problems. We investigated the
underlying reason for the early stagnation of SACOBRA on ill-conditioned problems
and came up with a cure: the so-called online whitening scheme. In this chapter,

153

Figure 9.3: Four cuts at the optimum ~x∗ of the 4-dimensional function F02 (Eq. (9.1)) along each
dimension. The red curve shows the real function and the black curve is the surrogate model. The
black curve follows the the red curve only in dimension x4 (and to some extent in dimension x3)
where the function is very steep.

the used surrogate model in the SACOBRA framework is a ϕ(r) = r3 (cubic radial
basis functions) with a second order polynomial tail (k = 2), described in Ch. 2.

As shown in Sec. 9.3, functions with high conditioning are difficult to be modeled
by RBF or GP surrogates. Although the overall modeling error may be small, the
models often have spurious local minima along the ’shallow’ directions. This obvi-
ously hinders optimization. What we show here for RBF surrogate models holds the
same way for GP (or Kriging) surrogate models often used in EGO [90]: Problems
with a high condition number have a much higher optimization error than those
with low conditioning (differing by a factor of 107 after 500 function evaluations,

154

9.4. ONLINE WHITENING SCHEME FOR SACOBRA

as some preliminary experiments have shown that we undertook with EGO using a
Matern(3/2)-kernel).

In order to tackle high-conditioning problems with surrogate-assisted optimizers,
we propose the online whitening scheme described in Algorithm 8: We seek to trans-
form the fitness function f(~x) with high conditioning to another function g(~x) which
is easier to model by surrogates:

g(~x) = f(M(~x− ~xc)), (9.2)

where M is a linear transformation matrix and ~xc is the transformation center. The
ideal transformation center is the optimum point which is clearly not available. As a
substitute, we use in each iteration the best so-far solution ~xbest as the transformation
center. The transformation matrix M is chosen in such a way that the Hessian matrix
of the new function becomes the identity matrix:

∂2g(~x)

∂~x2
= I (9.3)

In Sec. 9.4.1 we derive that solving Eqs. (9.2) and (9.3) results in the following
equation:

M = H−0.5 (9.4)

where H denotes the Hessian matrix of the fitness function f .

9.4.1 Derivation of the Transformation Matrix

Let us assume that the fitness function f(~x) is continuous and at least two times

differentiable. Its Hessian (matrix of second derivatives) at ~xc is ∂2f(~x)
∂~x2

= H. Let us
assume ~xc = 0 without loss of generality. We show that there is a transformation
matrix M in such a way that the new function g(~x) = f(M~x) becomes spherical, so

that its Hessian is ∂2g(~x)
∂~x2

= I. We calculate the derivatives as:

155

∂g(~x)

∂~x
=

∂f(~u)

∂~x
(9.5)

=
∂f(~u)

∂~u
· ∂~u
∂~x

(9.6)

=
∂f(~u)

∂~u
·MT , (9.7)

where ~u = M~x and hence ∂~u
∂~x

= ∂(M~x)
∂~x

= MT .

∂2g(~x)

∂~x2
=

∂(∂f(~u)
∂~u
·MT)

∂~x
(9.8)

=
∂(∂f(~u)

∂~u
·MT)

∂~u
· ∂~u
∂~x

(9.9)

=
∂(∂f(~u)

∂~u
·MT)

∂~u
·MT (9.10)

We abbreviate ∂f(~u)
∂~u

= ~P (~u) and can derive

∂2g(~x)

∂~x2
=

∂ ~PMT

∂ ~P
· ∂

~P

∂~u
·MT (9.11)

= M · ∂
2f(~u)

∂~u2
·MT (9.12)

= M ·H ·MT (9.13)

We want to ensure that ∂2g(~x)
∂~x2

= I:1

1Strictly speaking, this can only be guaranteed if g(~x) is convex in ~xc. If g(~x) is concave in
one or all dimensions, we have a saddle point or local maximum at ~xc. In this case, I has to be
replaced by a diagonal matrix with some elements being −1 instead of 1. But the overall whitening
argument remains the same.

156

9.4. ONLINE WHITENING SCHEME FOR SACOBRA

I = M ·H ·MT (9.14)

M−1 = H ·MT (9.15)

M−1(MT)−1 = H (9.16)

MTM = H−1 (9.17)

A possible solution for the last equation is M = H−0.5.

After determining the transformation matrix, we evaluate all points in the pop-
ulation X on the new function g(~x) and store the pairs

(
~x(k), g(~x(k))

)
in G (steps

4 and 5). Then we build the surrogate model for g(~x) by passing the input-output
pairs of G to the RBF model builder.

The Hessian matrix is determined numerically by means of Richardson’s extrapo-
lation [23] which requires 4d+4d2 function evaluations. Initial tests have shown that
an update of the Hessian matrix in each iteration of SACOBRA is not necessary.
Thus, to reduce the number of function evaluations, the online whitening scheme is
called usually every 10 iterations.

9.4.2 Calculation of Inverse Square Root Matrix

In this section we show how M is calculated in a numerically stable way. The
transformation matrix M used in our proposed algorithm is similar to the so-called
Mahalanobis whitening or sphering transformation, which is commonly used in sta-
tistical analysis [95]. A whitening or sphering transformation aims at transforming
a function in such a way that it has the same steepness in every direction, e. g. the
height map of an ellipsoidal function will become spherical.

The stable calculation of the inverse square root matrix is done with the help of
singular value decomposition (SVD) [132]. The symmetric matrix H has the SVD
representation

H = UDVT (9.18)

with orthogonal matrices U,V and diagonal matrix D = diag(di) containing only
non-negative singular values di. The inverse square root of D is

D−0.5 = diag(ei) with ei =

{ 1√
di

if di > 10−25

0 else
(9.19)

157

If we define
M = D−0.5VT (9.20)

and use the fact that a positive-semidefinite H has U = V, then it is easy to show
that plugging this M into Eq. (9.14) fulfills the equation.

9.5 Experimental Setup

In this chapter, we investigate the effectiveness of the online whitening scheme
by comparing the standard SACOBRA algorithm and SACOBRA with the online
whitening scheme (SACOBRA+OW). To do so, we apply them to 12 problems from
the three first BBOB benchmark categories, where we exclude two highly multimodal
problems (F03 and F04), since they cannot be solved by surrogate modeling. Most of
these benchmark functions have moderate to high condition numbers (see Table 9.1).

Furthermore, our algorithm is compared to a differential evolution (DE) al-
gorithm [133] and a covariance matrix adaptation evolutionary strategy (CMA-
ES) [76] using the DEoptim and rCMA packages in R. Both optimizers are used
with their standard parameters. The two surrogate-assisted algorithms (SACOBRA
and SACOBRA+OW) have an initial population size of 4 · d individuals. A max-
imum population size of 50 · d is permitted for both SACOBRA algorithms. It is
important to mention that SACOBRA+OW may evaluate more than one point per
iteration. The online whitening scheme in SACOBRA+OW is first called after 20 · d
iterations and it will be updated after each 10 iterations. The numerical calculation
of the Hessian matrix is performed with the numDeriv package in R. In this chapter
we mainly study and present results for the 10-dimensional problems. In the end,

Table 9.1: Condition numbers for all the investigated problems. The condition number is defined
as the ratio of largest to smallest singular value of the Hessian matrix [77].

Function Condition number Function Condition number

F01 1 F09 102

F02 106 F10 106

F05 1 F11 106

F06 103 F12 106

F07 102 F13 102

F08 102 F14 104

158

9.6. RESULTS & DISCUSSION

we compare the performance of all algorithms for 5- and 20-dimensional problems as
well.

In order to compare the overall performance of different optimization algorithms
on a set of problems we use data profiles [118], also described in Sec. 2.5.

9.6 Results & Discussion

9.6.1 Convergence Curves

Fig. 9.4 compares the optimization results achieved by SACOBRA, SACOBRA+OW,
CMA-ES and DE algorithms on the three first categories of the BBOB benchmark
problems (excluding the multimodal problems F03 and F04). Both SACOBRA and
SACOBRA+OW become computationally expensive as the population size grows.
Therefore, we apply them for at most 50d iterations on each problem. This is the rea-
son why all SACOBRA curves in Fig. 9.4 end at 1.7 = log10(500/10) corresponding to
a population size of 500. But SACOBRA+OW makes use of more real function eval-
uations when it starts to do the online whitening scheme described in Algorithm 8.

SACOBRA solves problems with low conditioning like F01 (sphere function) and
F05 (linear slope) after very few function evaluations (< 10d) with a very high
accuracy. CMA-ES and DE require 10 to 1000 times more function evaluations
to find solutions as accurate as SACOBRA for these two problems. This strong
performance of SACOBRA for F01 and F05 is probably due to the near-perfect
models that can be built with RBFs for such simple functions from just a few points.
However, for more complicated functions with high conditioning, SACOBRA often
stagnates at a mediocre solution.

Observing SACOBRA’s behavior on high-conditioning functions in Fig. 9.4 in-
dicates that, although SACOBRA has fast progress in the first 100 iterations, it
gradually becomes very slow and eventually stagnates. This is because the surro-
gates model only the steep walls reasonably well. Therefore, after being down in the
valley between the steep walls, SACOBRA is effectively blind for the correct direc-
tion, and it suggests random points within the valley. This picture makes it clear –
and experimental results confirm this – that it is of no use to add more points to the
SACOBRA population, because the surrogate model stays wrong in all directions
but the steepest ones.

SACOBRA+OW, which uses online whitening as a remedy for the modeling
issues, can boost SACOBRA’s optimization performance significantly. As it is shown
in Fig. 9.4, SACOBRA+OW finds solutions whose optimization errors are between
10 times (in the case of F07) and 1012 times (in the case of F02) smaller than in

159

F12 F13 F14

F09 F10 F11

F06 F07 F08

F01 F02 F05

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4
-10

-8

-6

-4

-2

0

2

-4

-2

0

2

4

6

0

2

4

6

8

-4

-2

0

2

4

-10

-5

0

5

-4

-2

0

2

4

-4

-2

0

2

4

6

8

-4

-2

0

2

4

-10

-8

-6

-4

-2

0

2

-10

-5

0

5

-4

-2

0

2

4

6

8

2

4

6

8

10

12

log10(feval/dimension)

lo
g
1
0
(f
(~x
)
−
f
(~x

∗)
)

SACOBRA SACOBRA+OW CMA DE

Figure 9.4: Comparing the performance of SACOBRA, SACOBRA+OW, CMA-ES and DE
algorithms on 12 of the BBOB optimization problems (d = 10).

160

9.6. RESULTS & DISCUSSION

SACOBRA. Although SACOBRA and SACOBRA+OW have the same population
sizes, the latter requires significantly more function evaluations due to the Hessian
calculation in the whitening procedure. This makes SACOBRA+OW no longer
suitable for expensive optimization benchmarks, if the real world restrictions do
not permit any form of parallelisation of the Hessian matrix computation. But
it shows how to utilize surrogate models in cases with medium to high function
evaluation budgets, which usually cannot be consumed completely by the surrogate
model population.

Although SACOBRA+OW outperforms DE in 10 of 12 problems, it can compete
with CMA-ES only when the function evaluation budget is 103 or less. Beyond this
point, CMA-ES is usually the best algorithm.

9.6.2 Parallel Computation

Numerical calculation of the Hessian matrix of a function is not a sequential proce-
dure and can be performed in parallel. Therefore, if enough computational resources
are available, the Hessian matrix can be determined in the same time that a SACO-
BRA iteration needs. We call this the ’optimistic parallelizable’ case. In this case, the
efficiency of the SACOBRA+OW optimizer should be measured by its improvement
per iteration (which need to be done one at a time). In the evolutionary strategies
DE and CMA-ES, the evaluation of populations in each generation can be paral-
lelized as well. So we count similarly all function evaluations needed to evaluate one
DE- or CMA-ES-generation as one iteration, in order to establish a fair comparison.

Fig. 9.5 depicts the optimization error per iteration2 determined by SACOBRA,
SACOBRA+OW, DE and CMA-ES for the BBOB problems, listed in Tab. 9.1. We
compare the performances of the mentioned algorithms within the first 500 iterations.
As illustrated in Fig. 9.5, SACOBRA+OW appears to be the leading algorithm in
terms of speed of convergence for 8 of the problems. F07 and F14 are the only prob-
lems for which CMA-ES can find significantly better solutions than SACOBRA+OW
within the limit of 500 iterations. F05 and F13 can be optimized by CMA-ES and
SACOBRA+OW similarly well. In general, SACOBRA+OW outperforms DE, al-
though DE finds better solutions for F02 and F10 in the early iterations 1, . . . , 250
before SACOBRA+OW overtakes.

2Each OW call is counted as one iteration, as well as each SACOBRA call. OW is first called
at iteration 20d and then after each 10 SACOBRA iterations, one OW call is performed.

161

F12 F13 F14

F09 F10 F11

F06 F07 F08

F01 F02 F05

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
-10

-8

-6

-4

-2

0

2

-6

-4

-2

0

2

4

6

0

2

4

6

8

-6

-4

-2

0

2

4

-10

-5

0

5

-10

-5

0

-10

-5

0

5

-4

-2

0

2

4

-10

-8

-6

-4

-2

0

2

-10

-5

0

5

-4

-2

0

2

4

6

8

-10

-5

0

5

10

iteration/dimension

lo
g
1
0
(f
(~x
)
−
f
(~x

∗)
)

SACOBRA SACOBRA+OW CMA DE

Figure 9.5: Comparing the performance of SACOBRA, SACOBRA+OW, CMA-ES and DE
algorithms on 12 of the BBOB optimization problems (d = 10).

162

9.6. RESULTS & DISCUSSION

9.6.3 Data Profile

Figs. 9.6 and 9.7 compare the overall performance of the four investigated algorithms
by means of data profiles (Sec. 2.5). Fig. 9.6 shows that surrogate-assisted opti-
mization is superior for low budgets (up to 20d function evaluations), and Fig. 9.7
reveals that this advantage continues up to 100d. Additionally, Fig. 9.7 indicates

τ = 0.1 τ = 100

5 10 15 20 5 10 15 20
0.0

0.2

0.4

feval/dimension

%
of

so
lv
ed

p
ro
b
le
m
s

SACOBRA

SACOBRA+OW

CMA

DE

Figure 9.6: Comparing the overall performance of SACOBRA, SACOBRA+OW, DE and CMA-
ES algorithms on the 12 studied problems with dimension d = 10 and for a very limited number of
function evaluations.

that SACOBRA can only solve 25% of the problems with accuracy τ = 0.01, while
SACOBRA+OW increases this ratio to about 62%. With the same accuracy level,
our proposed algorithm can solve 25% more problems than DE but also about 25%
less than CMA-ES.

Fig. 9.8 shows the data profiles for the ’optimistic parallelizable’ case. Here
SACOBRA+OW is consistently better than all other algorithms if we spent a budget
of at most 50d iterations.

9.6.4 Curse of Dimensionality

Fig. 9.9 compares the overall performances of the studied algorithms for the 5- and
20-dimensional cases. As the dimension grows, SACOBRA and SACOBRA+OW as

163

τ = 0.01 τ = 1

0 1 2 3 4 0 1 2 3 4
0.00

0.25

0.50

0.75

log10(feval/dimension)

%
of

so
lv
ed

p
ro
b
le
m
s

SACOBRA

SACOBRA+OW

CMA

DE

Figure 9.7: Comparing the overall performance of SACOBRA, SACOBRA+OW, DE and CMA-
ES algorithms on the 12 studied problems with d = 10.

well as DE deteriorate notably. However, CMA-ES stays robust and performs best
regardless of the dimensionality.

9.7 Conclusion

Surrogate-assisted optimizers are very fast solvers for linear or non-linear functions
with low condition number. But they have severe difficulties when the function to
optimize has a high condition number. Although we investigated here in detail only
RBFs as surrogate models, we have given theoretical arguments that this holds as
well for most types of surrogate models, namely for GP models3.

We have proposed with SACOBRA+OW a new surrogate-assisted optimization
algorithm with online whitening (OW) which aims at transforming online a high-
conditioning into a low-conditioning problem. The method OW is applicable to all
types of surrogates, not only to RBFs.

3and we have experimental evidence for GP from other runs not shown here

164

9.7. CONCLUSION

τ = 0.01 τ = 1

0 10 20 30 40 50 0 10 20 30 40 50
0.0

0.2

0.4

0.6

iteration/dimension

%
of

so
lv
ed

p
ro
b
le
m
s

SACOBRA+OW

DE

CMA

SACOBRA

Figure 9.8: Same as Fig. 9.7, but now for the ’optimistic parallelizable’ case: We show on the
x-axis the number of iterations (or generations), divided by d.

The results are encouraging in the sense that SACOBRA+OW finds better so-
lutions than SACOBRA with the same population size. The percentage of solved
problems on a subset of the BBOB benchmark is more than doubled when enhancing
SACOBRA with OW.

Although for large budgets (1000d function evaluations and more) SACO-
BRA+OW outperforms DE, it can no longer be considered as an optimizer for truly
expensive problems because of the large number of function evaluations needed for
determining the Hessian matrix. While SACOBRA is better for less than 100d
function evaluations, CMA-ES finds consistently better solutions beyond this point,
if we compare by number of function evaluations. But if we have the possibility
for parallel computing of the Hessian matrix, then, if we compare by number of
iterations, SACOBRA+OW appears to be the most efficient optimizer among the
tested ones. In theory it is always possible to compute a Hessian matrix in parallel
but in practice parallelizing this procedure is restricted to the amount of available
resources. For example, if the objective function to optimize is evaluated through a
time-expensive simulation run, then 4d+4d2 computational cores running in parallel

165

dimension = 5 dimension = 20

0 1 2 3 4 0 1 2 3 4
0.00

0.25

0.50

0.75

1.00

log10(feval/dimension)

%
of

so
lv
ed

p
ro
b
le
m
s

SACOBRA
SACOBRA+OW

CMA
DE

Figure 9.9: Data profiles for all 12 studied problems in the 5-dimensional and 20-dimensional
case. The accuracy level is set to τ = 0.01.

will be required for determining the Hessian matrix in one call. This can be an
unrealistic demand when the number of dimensions d is higher.

Another limitation of SACOBRA+OW is that it currently only works well for
dimensions d < 20.

Investigating whether a combination of CMA-ES and surrogate-assisted optimiz-
ers could lead to an optimizer which combines ’the best of both worlds’ could be
a possible future work in this field of research. The efficient Hessian estimation of
FOCAL [161, 162] might be an interesting starting point for this.

166

