
Self-adjusting surrogate-assisted optimization techniques for expensive
constrained black box problems
Bagheri, S.

Citation
Bagheri, S. (2020, April 8). Self-adjusting surrogate-assisted optimization techniques for
expensive constrained black box problems. Retrieved from https://hdl.handle.net/1887/87271

Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/87271

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/87271

Cover Page

The handle http://hdl.handle.net/1887/87271 holds various files of this Leiden University
dissertation.

Author: Bagheri, S.
Title: Self-adjusting surrogate-assisted optimization techniques for expensive
constrained black box problems
Issue Date: 2020-04-08

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/87271
https://openaccess.leidenuniv.nl/handle/1887/1�

Chapter 7

Radial Basis Function vs. Kriging
Surrogates

7.1 Outline

Radial basis function interpolation (RBF) and Kriging based on the Gaussian pro-
cesses models (GPs) are popular tools for surrogate modeling. These modeling tech-
niques can deliver accurate models for complicated nonlinear functions, even if only
a limited number of evaluated points are affordable. In this dissertation, two dif-
ferent surrogate-assisted optimizers, SACOBRA and SOCU are described. These
frameworks use RBF and GPs, respectively. Their different performance in terms
of computational time and optimization quality on various COPs motivates us to
compare them.

Although RBFs and GPs have very different origins, they share many fundamen-
tals in practice. Gaussian processes not only provide a model but also a stochastic
error term which indicates an estimation for the model uncertainty at each point.
The stochastic error term determined by GPs is dependent on the distribution of the
sample points in the input space. As expected, the uncertainty of the model is low
where the distribution is dense and large where the distribution is sparse.

In this chapter, we compare RBFs and GPs from the theoretical point of view.
We show how to calculate the model error for any arbitrary kernel, e.g. cubic RBF,
augmented cubic RBF and other types. Furthermore, we replace the Kriging model
from the DiceKriging R package used in the SOCU framework [19] with a vec-
torized RBF model and report some preliminary results. We show that the new
implementation of SOCU with RBF is faster than the older one and it delivers in
many cases equal or even better optimization accuracy. The results and analysis in
this chapter are mainly taken from [17].

The rest of this chapter is organized as follows: In Sec. 7.2 the main motivation
is explained and a research question is formulated. Sec. 7.3 gives a brief overview

114

7.2. INTRODUCTION

about the historical development of RBF and GP. In Sec. 7.4, we describe Gaussian
processes, radial basis function interpolation and their connection to each other.
Section 7.5 describes the experimental setup and the test functions. We compare
different versions of SOCU in Section 7.6. Section 7.7 concludes this chapter and
answers the research question.

7.2 Introduction

Up till now we have described two different surrogate-assisted constrained optimizers
in Ch. 3 and Ch. 5. These algorithms are designed to handle time-expensive COPs
in an efficient manner, as for the real-world applications often a limited number of
function evaluations is affordable. SACOBRA described in Ch. 3, uses RBF inter-
polations as surrogates of objective and constraint functions. SOCU described in
Ch. 5, however, uses another common approach in surrogate-assisted optimization,
the so-called Expected Improvement (EI) method based on Kriging models aka Gaus-
sian process. EI was originally developed for unconstrained optimization, but it got
modified for constrained optimization as well [19, 159].

Kriging has the big advantage of providing uncertainty information for surrogates,
which is necessary for determining EI. But Kriging – at least in most currently
available implementations – has also some disadvantages: In Ch. 5 we experienced
that SOCU often crashes if we do not introduce some form of regularization by setting
a nonzero value to the noise variance parameter. This, however, leads in turn to less
accurate models. Secondly, Kriging model calculations are often time-consuming, if
either the dimensionality, the number of design points or the number of constraints
becomes higher.

RBF surrogate models, which are used in other optimizers [97, 141, 19], can
be computed fast, in vectorized form, and robustly. They lack however the model
uncertainty. The motivation for this chapter is driven by the following research
question:

Q7.1 Can we determine an estimation for the model uncertainty for any
arbitrary kernel, e.g. cubic RBF, augmented cubic RBF, ...?
In this chapter we exploit the analogies between RBF and GP to measure
the model uncertainty for any arbitrary kernel. Furthermore, we investigate if
we can apply the determined model uncertainty to an EI-based optimization
scheme like SOCU and having one or several of these desirable properties:

– Avoiding crashes without regularization

115

– Providing more accurate models

– Better computation time (e. g. through vectorization)

– More variety in radial basis kernels (parameter-free, augmented, ...)

7.3 Related Work

Radial basis function (RBF) interpolation was first developed by Hardy in 1971 for
cartography purposes [79]. This technique was designed to model hills and valleys
with a reasonably high local and global accuracy. Shortly after Hardy introduced the
Multiquadric (MQ) RBFs in [79], he and many other researcher extended his work by
applying and investigating RBF interpolations in various scientific disciplines [119,
170, 78].

RBF interpolation approximates a function by fitting a linear weighted com-
bination of radial basis functions. Whilst many researchers were associated with
investigating different effective radial basis functions like Gaussian, cubic, thin plate
spline [50, 158], other researchers were working on the mathematical foundation and
proof of nonsingularity of RBFs [112, 65].

Kriging is named after a South African statistician who made use of Gaussian
stochastic processes to model the gold distribution in South Africa. D. G. Krige
developed an algorithm in his master thesis to estimate a model and a measure of
uncertainty for the model [103] based on the limited sampled information.

The mathematical foundation of Kriging was published about 10 years later
by Matheron [110]. Bayesian optimization [117] and efficient global optimization
(EGO) [90] based on the expected improvement concept are applications of Kriging
in the field of black-box optimization.

Forrester et al. [63] briefly discussed the ties between GPs and RBF interpola-
tion. They show that in some cases the mean value prediction by GP (without the
model uncertainty) is equivalent to the RBF’s prediction. Additionally, Emmerich
in his PhD thesis [54] compares Kriging and RBF network (RBFN). Emmerich also
shows similarities between RBF and GPs, however, the RBF interpolation does not
provide any model uncertainty measure. He concludes that RBFs are more efficient
because they skip the parameter tuning step which is often done for GPs by means
of maximum likelihood estimation.

116

7.4. METHODS

Table 7.1: Commonly used kernel functions for GP and radial basis functions for RBF interpola-
tion. r = ||~xi − ~xj ||.

Name GP RBF

cubic – ϕ(r) = r3

Gaussian σfe
− r2

2α2 ϕ(r, α) = e−
r2

2α2

multiquadric – ϕ(r, α) =
√

1− (r
α

)2

matern(3-2) σf (1 +
√
3r
α

) exp(−
√
3r
α

) –

7.4 Methods

7.4.1 Gaussian Process Modeling

Gaussian processes (GP) – also known as Kriging – is a probabilistic modeling
technique which applies Bayesian inferences over functions. Let us assume that
an unknown function f is evaluated on a finite set of n arbitrary points X =
{~x1, ~x2, · · · , ~xn} and fi = f(~xi) = yi. The Gaussian processes method assumes
that p(f1, f2, · · · , fn) belongs to a multivariate (jointly) Gaussian with a mean ~µ and
covariance matrix Σ:

f1
f2
...
fn

 ∼ N

µ1

µ2
...
µn

 ,

Σ11 Σ12 · · · Σ1n

Σ21 Σ22 · · · Σ2n
...

...
. . .

...
Σn1 Σn2 · · · Σnn

 ∼ N (~µ,Σ) (7.1)

where Σij = κ(~xi, ~xj). The covariance matrix contains the dependencies and simi-
larities of random variables, in this case the f(~xi). Suppose the unknown function
f is smooth, then it is very likely that two points which are located very close to
each other in the input space have very similar values in the output space too. This
explains why the κ is also known as the similarity function. The similarity func-
tion is often symmetric and a dependent on the distance between every two points
κ(~xi, ~xj) = κ(||~xi − ~xj||). Table 7.1 shows several commonly used kernel functions.

117

Suppose that we want to predict f∗ the value of function f at a new point x∗.
The joint Gaussian distribution including the new point is

f1
f2
...
fn
f∗

∼ N

µ1

µ2
...
µn
µ∗

,

Σ11 Σ12 · · · Σ1n Σ1∗
Σ21 Σ22 · · · Σ2n Σ1∗

...
...

. . .
...

...
Σn1 Σn2 · · · Σnn Σn∗
Σ∗1 Σ∗2 · · · Σ∗n Σ∗∗

(7.2)

which can be summarized as follows

[
~f
f∗

]
∼ N

([
~µ
µ∗

]
,

[
K ~K∗
~KT
∗ K∗∗

])
, (7.3)

where K = Σ is the n × n matrix of Eq. (7.1), ~K∗ = κ(X, ~x∗) is an n × 1

vector and K∗∗ = κ(~x∗, ~x∗) is a scalar and ~f = {f1, f2, · · · , fn} is an n × 1 vector.
X = {~x1, ~x2, · · · , ~xn} is the matrix of the data points. We look for the probability

of f∗ when the data X, their corresponding values ~f and the new point ~x∗ are given.
Based on the conditional probability theorem [121] and conducting long lines of heavy
algebra we can determine a distribution at every new point as follows:

p(f∗|~x∗,X, ~f) = N(~KT
∗ K−1 ~f,K∗∗ − ~KT

∗ K−1 ~K∗) = N(µ∗,Σ∗), (7.4)

where µ∗ and Σ∗ can be interpreted as the mean and the uncertainty of the Gaussian
processes model, respectively. Fig. 7.1 shows an example of a Gaussian process model
with a Gauss kernel function. Fig. 7.1-left illustrates several samples from the prior
p(~f |X) and Fig. 7.1-right shows samples from the posterior function p(f∗|X∗,X, ~f).
The dark black curve is the mean µ∗ and the shaded area is showing the 90% confi-
dence interval.

We can rewrite the prediction of the mean value as follows:

f∗ = ~KT
∗ K−1 ~f

f∗ = ~KT
∗
~θ

f∗ =
n∑
i=1

θiκ(~xi, ~x∗),

(7.5)

Eq. (7.5) shows that the mean of the GP model can be determined as a linear
summation of weighted kernel functions.

118

7.4. METHODS

-2

-1

0

1

2

-5.0 -2.5 0.0 2.5 5.0
x

f
(x

)

-1

0

1

2

-4 -2 0 2 4
x

f
(x

)

Figure 7.1: Left: prior function distribution using squared exponential kernel. Right: posterior
function distribution given the evaluated points using squared exponential kernel.

The uncertainty term in Eq. (7.4) can be rewritten as:

Σ∗ = − ~KT
∗ K−1 ~K∗ +K∗∗ (7.6)

It is important to mention that the uncertainty of the model estimated by
Eq. (7.6) is only a function of the distribution of points in the input space. Fig. 7.1
illustrates that the model uncertainty goes to zero at the given points and it becomes
larger as the distance from the evaluated points increases.

The GP modeling technique is easily extendable for fitting noisy data. Assuming
the presence of noise in the data, Eq. (7.5) changes to Eq.(7.7) as it is determined
in [121]. This change also known as regularization trick introduces one hyperparam-
eter σy.

f∗ = ~KT
∗ K−1y

~f,where Ky = K + σ2
yI (7.7)

The correct choice of hyperparameters for GPs, including the variance σf , the
noise variance σy and the shape parameter α is a problem-dependent task. The com-
mon practice to estimate the hyperparameters for GPs is to select a set of parameters
which maximizes the likelihood of p(~f |X, σf , σy, α). To do so, one should maximize
Eq. (7.8).

log p(~f |X, σf , σy, α) = logN(~f |0,Ky) = −1

2
~fK−1y

~f − 1

2
log |Ky| −

N

2
log(2π) (7.8)

119

0.0

0.2

0.4

0.6

0.0 0.2 0.4 0.6
x1

x
2

0.0 10−13 10−11 10−9 10−7

log10(|det(Φ)|)

Figure 7.2: Showcasing possible ill-conditioned or singular Φ for cubic RBF. The color gradient
shows the determinant of the Φ matrix at any point ~x = {x1, x2}, when the matrix is built based
on four points including the three black points and any arbitrary ~x. The thin purple curved lines
are where the determinant becomes exactly zero.

The likelihood function in Eq. (7.8) is not always a convex function and can have
multiple local optima. Maximum likelihood estimation (MLE) can suffer from getting
stuck in such a local optimum. An example for such a scenario is illustrated by
Rasmussen and Williams [138].

7.4.2 Radial Basis Function Interpolation

RBF interpolation approximates a function by fitting a linear weighted combination
of radial basis functions. A radial basis function is by definition any function ϕ(|| · ||)
which is dependent on the distance of the points ~x from some fixed centers ~c. When
RBFs are used for interpolation tasks, it is common that all the evaluated points ~xi

120

7.4. METHODS

are considered as centers.

f̂(~x) =
n∑

i=1

θiϕ((||~x− ~xi||) (7.9)

In order to compute the weights θi we need to address the following linear system:

[Φ]
[
~θ
]

= [~f], (7.10)

where Φ ∈ Rn×n: Φij = ϕ(||~xi − ~xj||), i, j = 1, . . . , n and ~f = {f1, f2, · · · , fn}.
Therefore, the weights will be determined as follows

~θ = Φ−1 ~f (7.11)

Now that we have the weight vector ~θ, we can compute f∗ at any point ~x∗:

f∗ =
n∑

i=1

θiϕ(|| ~x∗ − ~xi||) = ~ΦT
∗
~θ = ~ΦT

∗Φ
−1 ~f (7.12)

where ~ΦT
∗ = [ϕ(||~x∗ − ~x1||), ϕ(||~x∗ − ~x2||), · · · , ϕ(||~x∗ − ~xn||)].

Augmented RBF

It is proven that Φ in Eq. 7.10 is not guaranteed to be positive definite for several
radial basis functions [112] like cubic r3. Fig. 7.2 showcases a possible scenario where
the determinant of Φ can be equal to zero. As shown in Fig. 7.2 the area with exact
zero determinant is very small.

In order to assure that the Eq. 7.10 has a unique solution with all radial ba-
sis functions, Micchelli introduced augmented RBFs [112]. Augmented RBFs are
actually RBF functions with a polynomial tail.

f̂(x) =
n∑

i=1

θiϕ(||~x− ~xi||) + p(~x), ~x ∈ Rd, (7.13)

where p(~x) = µ0 + ~µ1 ~x + ~µ2 ~x
2 · · · + ~µk ~x

k is a k-th order polynomial in d variables
with kd+ 1 coefficients.

The augmented RBF model requires the solution of the following linear system
of equations: [

Φ P
PT 0(kd+1)×(kd+1)

] [
~θ
~µ ′

]
=

[
~f

0(kd+1)

]
(7.14)

121

Here, P ∈ Rn×(kd+1) is a matrix with (1, ~x(i), ~x
2
(i)) in its ith row, 0(kd+1)×(kd+1) ∈

R(kd+1)×(kd+1) is a zero matrix, 0(kd+1) is a vector of zeros. In this work we use the
augmented cubic radial basis function with a second order polynomial tail.

7.4.3 GP vs. RBF

Although GP and RBF interpolation have two very different origins, the comparison
of Eq. (7.12) and Eq. (7.5) shows that the mean of GP is identical to the RBF result,
if the kernel function κ is identified with the basis function ϕ. In addition to the
prediction of the mean, GPs determine a prediction of the model uncertainty Σ∗
(Eq. (7.6)). Although radial basis functions by definition do not have any sort of
uncertainty measure, we can determine the model uncertainty for any radial basis
function in a similar way as GP does.

Σrbf = ϕ(||~x∗ − ~x∗||)− ~ΦT
∗Φ
−1~Φ∗, (7.15)

where ϕ(||~x∗ − ~x∗||) = ϕ(0) is a scalar value.

Fig. 7.3 illustrates that RBF and Kriging with the same kernel type and parame-
ters give almost the same results. The minimal differences in the first three columns
are due to different matrix inversion techniques which the two implementations use.
As shown in Fig. 7.3 the choice of kernel parameter has a large impact on the quality
of the models. In this example, small values of α resulted in a very non-informative
spiky model.

The Kriging implementation in R from the DiceKriging package tunes the
kernel parameter(s) based on the maximum likelihood estimation (MLE) approach
which has a computational complexity of approximately O(1

3
n3 + 1

2
dn2).

The kernel parameters for the RBF interpolation are often set manually. In Ch. 8,
an online selection algorithm for choosing the best kernel type and parameters during
an optimization process is suggested. In this chapter we use a parameter-free radial
basis function.

The plots in the last column of Fig. 7.3 are generated with the default configu-
ration of RBF and Kriging. RBF’s default configuration uses an augmented cubic
kernel function with no need for parameter tuning. Kriging uses a Gauss kernel and
the kernel parameters are assigned by MLE. We can see that the augmented cubic
RBF model produces smaller errors than the default Kriging model (with MLE).
Furthermore, we can observe that the Kriging model with MLE is not as good as
Kriging with fixed parameters σ = 1, α = 10 for the example shown in Fig. 7.3.

122

7.5. EXPERIMENTAL SETUP

Model = RBF

Kernel = Gauss

σ = 1, α=0.1

Model = RBF

Kernel = Gauss

σ = 1, α=0.1

Model = RBF

Kernel = Gauss

σ = 1, α=0.1

Model = RBF

Kernel = Gauss

σ = 1, α=0.1

Model = RBF

Kernel = Gauss

σ = 1, α=0.1

Model = RBF

Kernel = Gauss

σ = 1, α=0.1-2

-1

0

1

2

-5.0 -2.5 0.0 2.5 5.0

x

f(
x)

Model = Kriging

Kernel = Gauss

σ = 1, α=0.1

Model = Kriging

Kernel = Gauss

σ = 1, α=0.1

Model = Kriging

Kernel = Gauss

σ = 1, α=0.1

Model = Kriging

Kernel = Gauss

σ = 1, α=0.1

Model = Kriging

Kernel = Gauss

σ = 1, α=0.1

Model = Kriging

Kernel = Gauss

σ = 1, α=0.1-2

-1

0

1

2

-5.0 -2.5 0.0 2.5 5.0

x

f(
x)

Model = RBF

Kernel = Gauss

σ = 1, α=1

Model = RBF

Kernel = Gauss

σ = 1, α=1

Model = RBF

Kernel = Gauss

σ = 1, α=1

Model = RBF

Kernel = Gauss

σ = 1, α=1

Model = RBF

Kernel = Gauss

σ = 1, α=1

Model = RBF

Kernel = Gauss

σ = 1, α=1-2

-1

0

1

2

-5.0 -2.5 0.0 2.5 5.0

x

f(
x)

Model = Kriging

Kernel = Gauss

σ = 1, α=1

Model = Kriging

Kernel = Gauss

σ = 1, α=1

Model = Kriging

Kernel = Gauss

σ = 1, α=1

Model = Kriging

Kernel = Gauss

σ = 1, α=1

Model = Kriging

Kernel = Gauss

σ = 1, α=1

Model = Kriging

Kernel = Gauss

σ = 1, α=1-2

-1

0

1

2

-5.0 -2.5 0.0 2.5 5.0

x

f(
x)

Model = RBF

Kernel = Gauss

σ = 1, α=10

Model = RBF

Kernel = Gauss

σ = 1, α=10

Model = RBF

Kernel = Gauss

σ = 1, α=10

Model = RBF

Kernel = Gauss

σ = 1, α=10

Model = RBF

Kernel = Gauss

σ = 1, α=10

Model = RBF

Kernel = Gauss

σ = 1, α=10-2

-1

0

1

2

-5.0 -2.5 0.0 2.5 5.0

x

f(
x)

Model = Kriging

Kernel = Gauss

σ = 1, α=10

Model = Kriging

Kernel = Gauss

σ = 1, α=10

Model = Kriging

Kernel = Gauss

σ = 1, α=10

Model = Kriging

Kernel = Gauss

σ = 1, α=10

Model = Kriging

Kernel = Gauss

σ = 1, α=10

Model = Kriging

Kernel = Gauss

σ = 1, α=10-2

-1

0

1

2

-5.0 -2.5 0.0 2.5 5.0

x

f(
x)

Model: RBF

 Kernel: Cubic

Model: RBF

 Kernel: Cubic

Model: RBF

 Kernel: Cubic

Model: RBF

 Kernel: Cubic

Model: RBF

 Kernel: Cubic

Model: RBF

 Kernel: Cubic
-2

-1

0

1

2

-5.0 -2.5 0.0 2.5 5.0

x

f(
x)

Model: Kriging

 Kernel: Gauss

Model: Kriging

 Kernel: Gauss

Model: Kriging

 Kernel: Gauss

Model: Kriging

 Kernel: Gauss

Model: Kriging

 Kernel: Gauss

Model: Kriging

 Kernel: Gauss
-2

-1

0

1

2

-5.0 -2.5 0.0 2.5 5.0

x

f(
x)

Figure 7.3: Comparing RBF and GP from the DiceKriging package in R. The examples in
the first row are all generated by RBF and in the second row with GP. The dashed blue curve
f = x3 is the target curve to be modeled. The circles are the evaluated points. The thick red
curve is the delivered model. The thin green curve is the model’s absolute error. The gray areas
indicate the 90% model uncertainty. For the same kernel function and same parameters, RBF and
GP produce almost the same results. The minimal differences are due to different matrix inversion
techniques used by the two implementations. The plots in the last column are generated by the
default configuration of RBF and GP.

7.5 Experimental Setup

In this chapter we compare two versions of the SOCU optimization framework namely
SOCU-Kriging and SOCU-RBF. The SOCU algorithm developed in [19] and also
described in Ch. 5 is a surrogate-assisted constrained optimization method. SOCU-
Kriging uses the Kriging model from the R packages DiceKriging and DiceOp-
tim, while SOCU-RBF uses our own implementation of RBF interpolation. The
first major difference between the two versions of SOCU is the choice of the kernel
functions. SOCU-Kriging uses matern3-2 which is a relatively stable kernel function
according to our initial experiments. SOCU-RBF makes use of an augmented cubic

123

Table 7.2: Characteristics of the G-functions: d: dimension, ρ∗: feasibility rate (%), LI/NI:
number of linear / nonlinear inequalities, a: number of constraints active at the optimum. Here,
we only selected those G-functions without equality constraints.

Fct. d ρ∗ LI / NI a

G01 13 0.0003% 9 / 0 6
G04 5 26.9217% 0 / 6 2
G06 2 0.0072% 0 / 2 2
G07 10 0.0000% 3 / 5 6
G08 2 0.8751% 0 / 2 0
G09 7 0.5207% 0 / 4 2
G10 8 0.0008% 3 / 3 6
G12 3 0.04819% 0 / 1 0
G24 2 0.44250% 0 / 2 2

basis function with a second order polynomial tail which is a parameter-free kernel
function.

DiceKriging uses a maximum likelihood estimation (MLE) algorithm to tune
the two parameters of the matern3-2 kernel. The second important difference be-
tween SOCU-RBF and SOCU-Kriging is the numerical approach used by them for the
required matrix inversion. The DiceKriging package [149] uses Cholesky decom-
position but we found singular value decomposition used for RBF to be a more stable
approach. In our experiments described in [19] we experienced frequent crashes of
Kriging models. It was possible to cure this problem by using a non-zero regulariza-
tion factor that can be assigned as the noise variance parameter. In this chapter we
present SOCU-Kriging results with two regularization factors of σy = {10−3, 10−4}.
The third major difference is an implementation detail which is the underlying reason
for SOCU-RBF being much more time-efficient than SOCU-Kriging. The DiceK-
riging package does not support modeling several functions simultaneously which
means that for a problem with m constraints, we have to run through a loop m+ 1
times in each iteration, while SOCU-RBF uses vectorization and performs training
and prediction of all models within one pass. The main differences between SOCU-
RBF and SOCU-Kriging are summarized in Table. 7.3.

We apply SOCU-Kriging and SOCU-RBF to the subset of G-problems having
only inequality constraints (see Table 7.2). G02 is a scalable problem in its dimension
d. We use here d = 2. For each algorithm we run 10 independent trials with

124

7.6. RESULTS AND DISCUSSION

Table 7.3: Differences between SOCU-Kriging and SOCU-RBF

SOCU-Kriging SOCU-RBF

kernel matern3-2 cubic
parameter assignment MLE parameter free
matrix inversion cholesky decomposition svd
noise variance 0.001 0.0
vectorization no yes

different initial population fo size 3·d. In order to optimize EImod we use Generalized
Simulated Annealing (R package GenSA).

7.6 Results and Discussion

Performance on G-problems

Fig. 7.4 shows the optimization results over iterations for SOCU-Kriging and SOCU-
RBF. For most of the problems, SOCU-RBF performs better than or comparable to
SOCU-Kriging except for G12 and G24. G12 and G24 are the only problems where
SOCU-RBF has a larger median error. However, several optimization runs for G12
conducted by SOCU-RBF perform better than the best runs of SOCU-Kriging.

Computational Time

Fig. 7.5 clearly shows that SOCU-Kriging is computationally more expensive than
SOCU-RBF for all G-problems. SOCU-Kriging’s computational time varies strongly
in a range of (0.5-2.5) minutes per iteration for different G-problems, while SOCU-
RBF’s computational time per iteration is under 0.75 minutes regardless of the prob-
lem. The difference between computational time of SOCU-Kriging and SOCU-RBF
is dependent on the number of constraint functions. For example, the largest gap
between SOCU-Kriging and SOCU-RBF appears to be for G01 and G07 which have
9 and 8 constraint functions, respectively. We can observe that solving G12 with
one constraint has almost the same computational cost for SOCU-Kriging and for
SOCU-RBF.

125

G10 G12 G24

G07 G08 G09

G01 G04 G06

40 80 120 160 0 50 100 150 200 0 25 50 75 100

40 80 120 160 0 50 100 150 40 80 120 160

50 70 90 50 100 150 200 0 25 50 75 100

-4

-2

0

2

4

0
1
2
3
4
5
6

-8

-6

-4

-2

0

-2

0

2

-6
-5
-4
-3
-2
-1

-12
-10
-8
-6
-4
-2
0

-8

-6

-4

-2

0

-1

0

1

2

3

1.5
2.0
2.5
3.0
3.5
4.0

function evaluations

lo
g
1
0
(f

(~x
)
−
f

(~x
∗)

)

SOCU-Kriging SOCU-RBF

SOCU optimization process

Figure 7.4: Comparing optimization performance of SOCU-Kriging and SOCU-RBF on G-
problems. The curves are showing the median error out of 10 trials. The error bars indicate
the best and the worst results out of 10 trials.

126

7.6. RESULTS AND DISCUSSION

0.0

0.5

1.0

1.5

2.0

2.5

G01 G04 G06 G07 G08 G09 G10 G12 G24

op
ti

m
iz

at
io

n
t

ti
m

e
(m

in
)

SOCU-Kriging SOCU-RBF

Figure 7.5: Average computational time in minutes, required by SOCU-Kriging and SOCU-RBF
to run one iteration of each G-problem.

Noise Variance

We have already shown that SOCU-RBF outperforms SOCU-Kriging in Fig. 7.4. The
SOCU-Kriging algorithm used for generating Fig. 7.4 has a non-zero noise variance
σy = 10−3. One possible reason behind the weaker performance of SOCU-Kriging
in comparison to SOCU-RBF can be that SOCU-Kriging generates less accurate
models due to the non-zero noise variance value. In order to investigate the impact
of the noise variance we applied the SOCU-Kriging framework to all G-problems in
Table. 7.2 with two different noise variance values σy = 10−3 and σy = 10−4. SOCU-
Kriging with the smaller noise variance σy = 10−4 crashed on the G06 problem.
Fig. 7.6 compares the SOCU-Kriging optimization results with two different noise
variance values for all problems excluding G06.

Fig. 7.6 indicates that a smaller noise variance value can lead to slightly better
optimization results. For all the problems illustrated in Fig. 7.6 except G07, SOCU-

127

G12 G24

G08 G09 G10

G01 G04 G07

0 50 100 150 200 25 50 75 100

0 50 100 150 40 80 120 40 80 120

40 60 80 100 50 100 150 200 40 80 120
-1

0

1

2

3

1.5
2.0
2.5
3.0
3.5
4.0

-1

0

1

2

3

2.0

2.5

3.0

3.5

4.0

-8

-6

-4

-2

0

-3

-2

-1

0

1

-6
-5
-4
-3
-2
-1

-6
-5
-4
-3
-2
-1

function evaluations

lo
g
1
0
(f

(~x
)
−
f

(~x
∗)

)

SOCU-Kriging(σy = 10−3) SOCU-Kriging(σy = 10−4)

SOCU optimization process

Figure 7.6: Comparing the results of SOCU-Kriging with two different noise variance values
σy. The curves are showing the median optimization error of the 10 independent trials for each
algorithm. The error bars are indicating the best and worst case results.

128

7.7. CONCLUSION

Kriging σy = 10−4) has a smaller median or min. error. It is not possible to set the
noise variance to zero because this would produce frequent crashes for SOCU-Kriging.

Model Accuracy

SOCU-Kriging and SOCU-RBF are only distinct in the modeling approach. There-
fore, we hypothesize that the different optimization results observed in Fig. 7.4 are
due to the different model quality. The performance of SOCU-Kriging and SOCU-
RBF is significantly different especially on the G01 problem. In order to validate our
hypothesis, we show the approximation error determined during the optimization
process with various SOCU configurations in Fig. 7.7. As it is shown in Fig. 7.7,
the approximation error of SOCU-RBF is significantly smaller than both SOCU-
Kriging versions for objective and constraint functions. This shows that Kriging with
matern3-2 kernel and optimized parameters through MLE cannot compete with our
implementation of RBF with the parameter free augmented cubic kernel for G01.
A large part of SOCU-RBF’s better performance can probably be attributed to the
augmented part. This advantage may depend on the type of the function to be
modeled.

Comparing different versions of SOCU-Kriging in Fig. 7.7, we can also observe
that SOCU-Kriging with a smaller noise variance σy = 10−4 has slightly smaller
approximation error in the last iterations.

7.7 Conclusion

In this chapter we explored the similarities and differences between Kriging- and
RBF-based surrogate models. As a new point from this comparison we could imple-
ment an uncertainty measure for RBFs which is needed for EI-optimization. RBFs
allow a greater variety of kernel functions, notably in the form of augmented RBF
variants introduced in Sec. 7.4. This helps to avoid crashes in the model-building pro-
cess, which are otherwise encountered from time to time in Kriging modeling. RBF
models have shown to provide a higher modeling accuracy and higher robustness
(they do not produce crashes in any of our experiments).

The new RBF surrogate models including uncertainties were tested on certain
optimization benchmarks (a subset of the G-problems). The overall results were
better, both in terms of solution quality and computational time. Probably a large
part of the quality improvement may be attributed to the ability of augmented
RBF models to include a polynomial tail. This may be a large or small advantage,
depending on the type of functions to be modeled.

129

con.1 obj

40 60 80 100 40 60 80 100

-10

-5

0

-8

-4

0

function evaluations

lo
g
1
0
(|f

(~x
(n

))
−
f̂

(~x
(n

))
|)

SOCU-Kriging(σy = 10−3)

SOCU-Kriging(σy = 10−4)

SOCU-RBF[non-aug]

SOCU-RBF

Approximation error for G01 problem

Figure 7.7: Approximation error for the objective and constraint functions of the G01 problem.
G01 has 9 constraints but due to lack of space we just show the approximation error of the objective
(a quadratic function) and one of its constraint functions (a linear function), see Appendix A.
Since all 9 constraints are of the same type, their approximation error curves look similar. The
approximation error is the error in predicting at the new infill point before this point is added to
the population.

130

