Universiteit

4 Leiden
The Netherlands

Self-adjusting surrogate-assisted optimization techniques for expensive

constrained black box problems
Bagheri, S.

Citation
Bagheri, S. (2020, April 8). Self-adjusting surrogate-assisted optimization techniques for
expensive constrained black box problems. Retrieved from https://hdl.handle.net/1887/87271

Version: Publisher's Version
Licence agreement concerning inclusion of doctoral thesis in the

Institutional Repository of the University of Leiden
Downloaded from: https://hdl.handle.net/1887/87271

License:

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/87271

Cover Page

The handle http://hdl.handle.net/1887/87271 holds various files of this Leiden University
dissertation.

Author: Bagheri, S.
Title: Self-adjusting surrogate-assisted optimization techniques for expensive
constrained black box problems

Issue Date: 2020-04-08

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/87271
https://openaccess.leidenuniv.nl/handle/1887/1�

Chapter 6

Handling Equality Constraints in
SOCU

6.1 Outline

SOCU as described in Ch. 5 is a surrogate-assisted constrained optimizer which
takes advantage of Gaussian process modeling (GP) properties. Although GPs offer
a strong modeling tool, yet SOCU as well as other EGO-based constrained optimiz-
ers have some limitations discussed in Ch. 5. As mentioned earlier in Ch. 4, Sec. 4.3,
equality handling is a challenging task for surrogate-assisted optimizers. Sasena [154]
suggests using a fixed feasibility margin €y to transform each equality to two in-
equality constraints when applying an EGO-based constrained optimizer to COPs.
However he does not analyze and investigate the effectiveness of such algorithms.
To the best of our knowledge there is no paper which investigates the limitations
of Kriging-based constrained optimizers in dealing with equality constraints. Jiao
et al. [89] developed a new EGO-based constrained optimizer and showed some pre-
liminary results on a few of the G-problems with equality constraints. The authors
suggest the usage of the expected violation as a key statistical measure provided by
Kriging. The mentioned work converts each equality constraint to two inequality
constraints assuming a fixed feasibility margin €.

In Sec. 6.2, first we discuss the issues surrounding the transformation of equality
constraints to inequality constraints for the SOCU framework. Then, we explain the
suggested equality handling approach for SOCU in Sec. 6.3. After briefly describing
the experimental setup in Sec. 6.4, we report and discuss the results achieved by
SOCU on G-problems with equality constraints and d < 4 in Sec. 6.5. Additionally,
we compare SOCU with SACOBRA. Finally, in Sec. 6.6, we mention the limitations
of the introduced algorithm.

104

6.2. INTRODUCTION

Infeasible Region

Infeasible Region

= =category (a) 1
©] = category (c) !

Fi()

S P N S (N U L O P .

,IV 'L Q q, Iu
- H\(X)
oi(x)

Figure 6.1: Conceptualizing the feasibility function F' = [], F; in SOCU algorithm in the presence
of one equality constraints.

6.2 Introduction

In Ch. 4, Sec. 4.3 we categorized different equality handling approaches into five
different groups (a-e).

Category (a) which basically transforms each equality constraint into two in-
equality constraints without considering any feasibility margin can be used for the
applications where any slight violations should be strongly prohibited. In the SOCU
optimization framework a feasibility function (defined in Ch. 5) is used to handle
inequality constraints. This function is formed according to the probability of the
feasibility determined by means of GP models of constraint functions. Therefore it
should have value of one in the feasible region, values close to one in the neighbor-
hood of the feasible subspace and it fades to zero as it goes far from the feasible
subspace. Assuming each equality constraint as two inequality constraints results
in a feasibility function like the blue curve on the Fig. 6.1. This feasibility function
fades away to zero rapidly.

As already described in Ch. 4, Sec. 4.3, manually selecting one side of the equality
constraint, category (b), is not a viable approach for black-box equality constraint
handling, especially if the number of equality constraints is large. This fact is true
regardless of the choice of the optimizer.

105

As mentioned in Sec. 4.3, using a feasibility margin around each constraints
helps to relax the equality constraints. Applying the category (c) equality handling
approach for the SOCU framework for equality constraints results in a feasibility
function shown in Fig. 6.1 as the red curve.

Although a category (c) transformation provides the possibility for the SOCU
optimizer to explore the area close to the feasible subspace with a constant feasibility
margin €, the optimizer tends to converge to the best point within the artificially
feasible region and not the real optimum. To tackle this dilemma, a decrementing
margin described in 4.3 as the category (d) can be beneficial.

6.3 Method Description

We use a decrementing margin scheme in the SOCU framework to reduce the equal-
ity feasibility margin iteratively, as described in Alg. 6. The feasibility margin for
each equality constraint is initialized with large enough values in a way that in the
first iteration all the search space is artificially feasible with respect to equality con-
straints. Afterward, in each iteration the modified expected improvement E1,,,q is
being maximized and the best solution within the margin is selected as the current
best solution. The equality constraint violations of the best solution is multiplied by
a margin decaying parameter in order to push the solutions to get closer to the
feasible subspace. This procedure is repeated as long as the budget allows.

6.4 Experimental Setup

In order to evaluate the performance of SOCU with an equality handling scheme we
apply Alg. 6 (SOCU+EH) on 4 of the G-problems [107] with equality constraints and
parameter space of d < 4. The algorithm is initialized with 4 - d randomly generated
points by means of LHS. The maximum number of iterations is fixed to 100 iterations
for all problems. As our preliminary results show and also stated in Ch. 5, SOCU
is not easily applied to higher dimensions and its performance aggravates as the
dimension grows. We use the dimensionally scalable G03 problem to investigate the
curse of dimensionality.

106

6.5. RESULTS & DISCUSSION

Algorithm 6 SOCU algorithm with equality handling

1: B: the decaying margin parameter

2: m: number of inequality constraints

3: n: number of equality constraints

4: n: number of evaluated points

5: d: dimension of the problem

6: pop™: population of n = 4 - d initial points generated by LHS

7: while n < Budget do

8: Build from pop(™ the Kriging models for objective function f: (ug,00), the m
inequality constraints g;: (u1,01),..., (4m,0m) and the r equality constraints hy:

(Hmt15Om+1)s - -+ (Hmers Ometr)
9: Obtain EI(x) from Eq. (5.2) with plugin corrector Eq. (5.9)
10: F(z) =[]}~ Inin(2<1>(- Zjég), 1) - TTk—; min (2@(76’;;7(’;’3(7”)), 1) - min (2@(%{;’3@)), 1)
11: Elyea(r) = El(x) - F(x)
12: Tnew = argmax(FEl,,q(x)) > Use simulated annealing
13: Add Ze, to pop™ and evaluate it on true f, g1,...,gm and hy, ..., h,
14: Update the best so-far solution xpes
15: € < €, > Update the equality margin
16: n+<n+1
17: end while

6.5 Results & Discussion

Fig. 6.2 shows the SOCU optimization procedure on the G11 problem which is a
2-dimensional problem subject to one equality constraint. As shown in Fig. 6.2, in
the early iterations the feasibility function has values close to one in a large area
around the equality constraint, this area becomes smaller as the equality margin
shrinks iteratively. SOCU locates a near optimal solution after evaluating very few
points in the search space.

6.5.1 Convergence Curves

Fig. 6.3 illustrates the SOCU optimization results on 4 of the G-problems with equal-
ity constraints. We investigated the performance of SOCU with an equality handling
scheme on a subset of low-dimensional G-problems. As shown in Fig. 6.3, SOCU can
find almost feasible infill points (max. violation < 10~*) within less than 100 evalua-

107

El(obj) El(obj) El(obj)

08

1e+10 1e+10

1e+10 0.0- 08

1e+10

1e+10 0.0-
1e+10

1e+10 -05- 02
1e+10 00

! 04

1e+10 05
1e+10

F(co%0

0.75

F(copb0

0.75

F(co%o
0.75

0.50 0.50 0.50

0.25 0.25 0.25

0.00 0.00 0.00

I 05
750409
00 . G

5.0e+09 | 0.050

5 z Best Sol [18]: 0.75 | 0 z
I 05- ¥ T i
7.5¢409 ‘

5.0e+09

0.075
2.5e+09 2.5e+09 ~ 0.025

0.0e+00 0.0e+00 0.000

Figure 6.2: SOCU optimization process for G11 problem with an equality constraint. The shaded
green contours depict the expected improvement of the objective function, the darker green the
higher the expected improvement. Contours changing from yellow to red show the feasibility func-
tion F'(.), the darker the higher the probability of feasibility. The purple contours varying from
white to purple are the modified expected improvement F1,,,q. The black points are the already
evaluated infill points. The yellow square shows the optimum and the blue points show the current
best solution found by SOCU. First, second and the third column show the 8th, 11th and the 18th
iteration of a SOCU run on G11, respectively. It takes very few iterations until SOCU locates an
infill point very close to the optimum.

tions for GO3, G11 and G15 with reasonably small optimization error. However, the
4-dimensional GO5 with 3 active constraints appears to be a challenging problem for
SOCU, since the max. violation as well as the optimization error remains large (in
order of 10 — 10?).

6.5.2 SOCU+EH vs. SACOBRA+EH

In Ch. 4 we discussed that comparing results achieved by numerical solvers for COPs
with equality constraints is not straightforward. Since numerical optimizers cannot
locate a fully feasible solution, their performance should be evaluated in terms of
max. constraint violation and the objective value they find. To do so, we suggested

108

6.5. RESULTS & DISCUSSION

== == optim error = = = * max viol combined
GO03 GO05
Q1! W |
- rb-
SV V] "‘—
Y N L L O O
] Q]
~~ /b |
§ &1 -
5 7 AU |
£ ® & P
I3
o
N
S
S’ Q¢ 1
M o
M
o A
Qi] Fe 00
/ , , : : /b‘ , | ,'
iteration

Figure 6.3: SOCU optimization progress for G03, G05, G11, and G15. The dashed (red) curve
is the absolute optimization error |f(Zpest) — f(&*)| in every iteration. The dotted (blue) curve
is the maximum constraint violation V' of the the so-far best solution. The solid (green) line is
the combined sum |f(Zpest) — f(Z*)| + V of absolute optimization error and maximum constraint
violation V. Each of the three curves shows the median value from 30 independent runs. The green
bands around the green curves show the worst and the best runs for Combined.

reporting a set of solutions instead of one to be able to compare the algorithms’ per-
formance in a fair manner. Fig. 6.4 shows infill points generated by SACOBRA+EH
and SOCU+EH during the optimization process for 4 of G-problems in the interest-
ing region.

As depicted in Fig. 6.4, SOCU can densely populate the Pareto front solutions
for GO3 and G11 both being 2-dimensional problems with one active constraint.
Although SACOBRA finds many infill points with very small max. viol < 1076
for GO3 and G11, it does not cover the Pareto front as dense as SOCU in regions
with max. viol € [107%,107*]. SOCU performs well in approaching the optimum for

109

SACOBRA - SOCU

G03 G11
-0.9995 1 0.7505 {
y ,‘%J A
-1.0000 1(‘:!%‘ 0.7500
-1.0005 . 0.7495 1
c
RS 3
B :
S 100104 : : | "] 074901
S 9 7 5 3 -10 8 6 4
=
o
> G15 GO05
O 961.7160 5126.5001
L
e 5126.4991
96171551
o ;
M per e i O 5126.498 7
961.71501
5126.497 1
96171451 5126.496 1
9617140-| T T T T T T 5126495- T T T T T
9 8 -7 6 5 4 3 -8 7 - 5 4

logo(max. violation)

Figure 6.4: Comparing performance of SOCU+EH and SACOBRA+EH on a subset of low-
dimensional G-problems with equality constraints. Infill points were generated by SACOBRA+EH
and SOCU+EH during the optimization process. The results are taken from 30 independent runs
with each algorithm running for 100 iterations.

the low-dimensional problems, despite the fact that SOCU unlike SACOBRA does
not use any refine mechanism [16, 18], described in Ch. 4. The good performance of
SCOU on G03 and G11 without any refine step, can be due to the explorative nature
of SOCU, using the expected improvement concept.

However, as the problems become more challenging, SOCU often fails to find so-
lutions close to the Pareto front. As shown in Fig. 6.4 and Tab. 6.1, SOCU finds rel-
atively few infill points in the neighborhood of the Pareto front for the 3-dimensional
G15 with 2 active constraints. Only 30% of the SOCU runs for G15 can find at
least an infill point with objective and max. violation values in the interesting range,
shown in Fig. 6.4. SOCU cannot locate any infill point in the interesting region
for the 4-dimensional G05 with 3 active constraints, while SACOBRA can densely
populate the Pareto front, see Fig. 6.4.

110

6.5. RESULTS & DISCUSSION

Table 6.1: Success rate of SACOBRA and SOCU in handling COPs with equality constraints.
The success rate in this table is defined as the percentage of the runs finding at least one solution
in the interesting region of each problem shown in Fig. 6.4.

Success rate (%)
Fct. SACOBRA SOCU

GO03 100 93.3
GO05 100 0.0
G11 100 100
G15 100 30

6.5.3 Curse of Dimensionality

Although EGO-based constrained and unconstrained optimizers are efficient and suc-
cessful in addressing low-dimensional problems, they are often not scalable to higher
dimensions. When the dimension increases, SOCU becomes very time expensive and
more important is that the performance deteriorates significantly. In this section we
show the performance of SOCU with equality handling on the GO3 problem which
can be scaled in dimension. Fig. 6.5 shows the infill points populated by SOCU for a
set of GO3 problems with different dimensions. To ease the visualization of the infill
points, instead of showing the objective value on the y-axis we show the distance
of each infill point to the optimum in the objective space y = |f(Z) — f(&*)| scaled
by a logarithmic function plog;o(.) defined in Eq (6.1). As illustrated in Fig. 6.5,
SOCU is only able to approach the optimum of the GO3 problems in low dimensions.
Although SOCU locates many infill points with small maximum violation for G03
problems with d > 8, these infill points are very far from the Pareto optimum with
an optimization error of | f(7) — f(a*)| = 1.

plog(y) = {Hog”(l ty) i y20 (6.1)

—log; »(1 —y) if y<0

111

[F(@) — f@) =1
% » comgrr ”
— T
—~ XTI
* A
8 > 7+
~— e e’
L‘\ * © ‘..
| S LRy
~—~ opti oo St WY
T& % - evemteaieteh Saliti R S0 & S it
— dimension 5 A
N .
N 2 %,
S 4
o8 °
S S
) :
S 8 “
e 10
12
T4
0

75 50 25 0.
log(max. violation)

Figure 6.5: Infill points generated by SOCU for GO3 problems with different dimensions d =
{2,4,8,10,12}. Each point indicates one infill point generated by SOCU. The x-axis indicates the
maximum violation in the logarithmic scale. The y-axis is the distance of each infill point to the
optimum in the objective space which are scaled by logarithmic function plog; 2() defined in Eq (6.1)
to ease the visualization of values varying in a larger range.

6.6 Conclusion

Being aware of the limitations of EGO-based algorithms on high-dimensional prob-
lems, we only took a subset of G-problems with equality constraints and d < 4 to
benchmark the SOCU with equality handling (SOCU+EH).

Evaluating SOCU+EH and SACOBRA+EH on a subset of G-problems showed
that SOCU can compete with SACOBRA in solving low-dimensional COPs tested
in this work (G03 and G11). Although SOCU outperforms SACOBRA in terms of
covering the Pareto front for GO3 and G11, its performance appears to be very weak
comparing to SACOBRA on more complex COPs like G15 and GO05.

As already discussed in Ch. 5, SOCU’s performance as well as many other EGO-
based optimizers deteriorates as the number of dimensions grows. We used a scalable
problem (G03) to investigate this matter. For GO3 with d > 8, SOCU has difficulties

112

6.6. CONCLUSION

to find the optimum. Although it can place many infill points with small maximum
violation, these infill points are far from the real optimal solution.

113

