
Self-adjusting surrogate-assisted optimization techniques for expensive
constrained black box problems
Bagheri, S.

Citation
Bagheri, S. (2020, April 8). Self-adjusting surrogate-assisted optimization techniques for
expensive constrained black box problems. Retrieved from https://hdl.handle.net/1887/87271

Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/87271

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/87271

Cover Page

The handle http://hdl.handle.net/1887/87271 holds various files of this Leiden University
dissertation.

Author: Bagheri, S.
Title: Self-adjusting surrogate-assisted optimization techniques for expensive
constrained black box problems
Issue Date: 2020-04-08

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/87271
https://openaccess.leidenuniv.nl/handle/1887/1�

Chapter 5

SOCU: EGO-based Constrained
Optimization

5.1 Outline

Real-world optimization problems are often subject to several constraints which are
expensive to evaluate in terms of cost or time. The SACOBRA optimization frame-
work introduced in Ch. 3 and Ch. 4, is an example for a strong surrogate-assisted
optimizer, developed to tackle such expensive optimization problems. SACOBRA
makes use of radial basis function interpolation as surrogates to save some expen-
sive function evaluations. Another modeling approach which is very popular as
surrogate for unconstrained optimization problems, is Kriging aka Gaussian pro-
cesses modeling. Efficient Global Optimization (EGO), a well-known Kriging-based
surrogate-assisted algorithm [90], is an example for such surrogate-assisted solvers.
This algorithm was originally proposed to address unconstrained problems but later
was modified to solve constrained problems [159].

Although the already existing Kriging-based constrained solvers [159, 51] have
some bottlenecks in handling constraints in an efficient manner, the attractive prop-
erty of the Kriging method, being able to determine an uncertainty level of the model
at each point, motivates us to invest on improvement of a constrained EGO-based
optimizer [159]. We are interested to know if an EGO-based constrained solver,
benefiting from the probabilistic modeling, can compete with SACOBRA in solving
challenging COPs. To do so, we try to develop an algorithm which overcomes some
common issues of EGO-based algorithms.

The common issues that many EGO-based optimizers suffer from are mainly:
(1) early stagnation, (2) problems with multiple active constraints and (3) frequent
crashes. In this chapter, a new EGO-based algorithm is introduced which tries
to overcome these common issues with Kriging-based optimization. We apply the
proposed algorithm on COPs subject to inequality constraints with dimension d ≤ 4

84

5.2. INTRODUCTION

from the G-function suite [107] and on an airfoil shape optimization example. The
analysis in this chapter is based on the work of Bagheri et al. [14].

The rest of this chapter is organized as follows: In Sec. 5.2 we explain our moti-
vation and also we pose two research questions which will be answered in Sec. 5.7.
The related work (Sec. 5.3) categorizes different Kriging-based constrained solvers.
After briefly describing Kriging surrogate models and EGO in Sec. 5.4, the constraint
handling approach is described and then the proposed plugin control algorithm for
preserving feasibility is explained in the same section. Sec. 5.5 explains the exper-
imental setup. Results are shown and analyzed in Sec. 5.6. Finally, this chapter is
concluded and the regarding research questions are addressed in Sec. 5.7.

5.2 Introduction

A constrained optimization problem (COP) can be defined as the minimization of
an objective function (fitness function) f subject to inequality constraint function(s)
g1, . . . , gm as described in Eq. (3.4).

Real-world COPs are often very expensive to evaluate which means only a very
limited number of function evaluations is allowed in practice. Giannakoglou [67]
presents an overview on efficient optimization approaches and shows indicative ex-
amples from aerodynamics. Therefore, a proper optimizer for this sort of problems
should be able to find optimal or near-optimal solutions with a low number of func-
tion evaluations. Many different surrogate-assisted techniques have been developed
to tackle expensive COPs [15, 127, 177, 29, 141]. The main idea adopted by nearly all
surrogate-assisted optimization algorithms is to use fast mathematical or statistical
models for the optimization process and only evaluate a new solution on the expen-
sive function when the model needs to be updated. Among the existing multitude
of surrogate modeling approaches with various properties, Kriging [103, 63] appears
to be one of the most attractive techniques. Kriging, aka Gaussian Processes, offers
a strong modeling tool which provides an estimate of the model uncertainty in addi-
tion to the model of the function. Although in recent years many studies have been
undertaken with different Kriging-based unconstrained and constrained optimizers,
there are still limitations associated with the use of Kriging models. One of the issues
that almost all Kriging-based strategies face is that frequent crashes occur during
the optimization process. The crashes usually happen when a new solution is located
very close to a former one. We find that adding a noise variance is an effective way
to handle such stability issues.

85

Another point is that most of the existing Kriging-based constrained optimization
strategies are evaluated only on simple 2-dimensional benchmark functions mostly
with only one active constraint [159, 51, 153, 152, 73]. However, real-world COPs are
often multi-constrained and are not limited to 2-dimensional problems. This moti-
vates us to develop a new Kriging-based optimization algorithm which avoids crashes
and is applicable on challenging COPs like G-problems. We evaluate the proposed
algorithm on all benchmarks with dimension d ≤ 4 taken from the challenging G-
function suite [107]. Throughout this chapter we try to answer the following research
questions:

Q5.1 Is it possible to modify existing Kriging-based optimization algo-
rithms to handle challenging COPs with multiple active constraints?
Good results achieved by Kriging-based constrained optimizers are limited to
COPs with one or none active constraints. In this chapter we will propose a
modification for the standard Kriging-based constraint optimizer [159] and test
whether this can help to tackle COPs with multiple active constraints.

Q5.2 Is it possible to balance the exploration of feasible and infeasible
infill points in a proper way?
Balancing the exploration of feasible and infeasible infill points is vital to
surrogate-assisted methods. However, Kriging-based constrained optimizers
often suffer in this matter. In this chapter we investigate the reasons behind
such unbalance and propose a treatment for it.

5.3 Related Work

Most Kriging-based constrained optimization algorithms make use of Kriging’s sta-
tistical property, the expected improvement function [116, 90], for efficiently solving
global COPs. We can categorize such algorithms into three main groups.

(a) The first group of algorithms transform a constrained problem into an un-
constrained problem. Schonlau et al. [159] is an example of type-(a) algorithm. This
algorithm suggests to maximize the multiplication of the expected improvement of
the objective function and the probability of feasibility, which are both statistical
measures determined from Kriging models of objective and constraint functions.
This algorithm fails if the number of active constraints are large or if the objective
function is very steep or flat around the feasibility boundary. Algorithms which tend
to maximize the penalized expected improvement [152, 124] also belong to the first
group.

86

5.4. METHODS

(b) Another approach to address COPs is to solve a constrained sub-problem.
As an example, we can name a work from Sasena et al. [153] in which the expected
improvement is maximized subject to the approximation of the constraint functions.
Audet et al. [8] maximize the expected improvement subject to the expected violation
of each constraint.

(c) Methods in the third category transform the constrained problems to multi-
objective unconstrained problems and then use multi-objective optimizers. These
methods often consider the expected improvement of the fitness function as one
objective and one or more statistical properties of the constraint functions as other
objective(s) [84, 125, 51]. Although Durantin et al. [51] show that the type-(c)
algorithms perform better than the existing algorithms from type (a) and (b), we
have to consider that solving a multi-objective problem is a complex task. An increase
in problem dimension or number of active constraints makes such algorithms very
time-consuming.

To the best of our knowledge the current state-of-the-art for solving the G-
problems is SACOBRA [15] (self adjusting COBRA). SACOBRA uses RBF sur-
rogate models. SACOBRA is not a Kriging-based COP and it does not use the EI
approach.

In this chapter a new type-(a) algorithm called SOCU (Surrogate-Assisted Opti-
mization encompassing Constraints and Uncertainties) is described and compared
with SACOBRA.

5.4 Methods

5.4.1 Kriging Surrogate Models

Kriging is a statistical modeling technique based on Gaussian processes. This algo-
rithm approximates the function f(~x) with the surrogate model

Y = µ+ e(~x), (5.1)

where µ is the average of the stochastic process and the error term e(~x) is normally
distributed with mean 0 and variance σ2(.). The estimation of µ and σ are the
heart of Kriging modeling and described in more detail in the standard Kriging
literature [103, 90].

87

5.4.2 Expected Improvement with Constraints

Efficient global optimization (EGO) is an algorithm developed by Jones et al. [90] for
unconstrained optimization based on Kriging. The main idea of the EGO algorithm
– originally introduced by Močkus et al. [116] – is to balance between exploration
and exploitation by maximizing the expected improvement in Eq. (5.2) during a
sequential optimization process:

EI(x) = E [max(fmin − Y, 0)]

= (fmin − µ(~x))Φ
(fmin − µ(~x)

σ(~x)

)
+ σ(~x)ϕ

(fmin − µ(~x)

σ(~x)

)
,

(5.2)

where the plugin fmin is the fitness value of the best-so-far solution and Φ and ϕ are
the cumulative and probability density function of the standard normal distribution.
Schonlau et al. [159] extended the EGO algorithm to handle inequality constraints.
Their algorithm maximizes the penalized expected improvement function EIp shown
in Eq. (5.3) which is the product of the expected improvement (now with plugin fmin
being the best feasible fitness value) and the feasibility function F (x)

EIp(~x) = EI(~x) · F (~x) = EI(~x) ·
m∏

j=1

P (gj(~x) < 0), (5.3)

where P (gj(~x) < 0) is the probability of gj(~x) to be feasible, measured with the help
of the Kriging model for the jth constraint:

P (gj(~x) < 0) = Φ
(−µj(~x)

σj(~x)

)
. (5.4)

This algorithm often faces difficulties in solving COPs with two or more active con-
straints, because the product of feasibility probabilities approaches zero near the
feasibility border where the optimum is located1. Therefore, the penalized expected
improvement may have very small values in the interesting region. Furthermore,
this algorithm is unlikely to sample infeasible solutions. Others have shown that
existence of the infeasible solutions in the population can often be helpful [151, 150].
In order to give solutions around the boundary a higher chance to be selected, we
modify the feasibility function introduced by Schonlau et al. [159] and formulate a

1In presence of a active constraints the feasibility function is F (~x∗) = (1
2)a at the optimum,

which goes rapidly to zero as the number of active constraints grows.

88

5.4. METHODS

Infeasible Region Feasible Region

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

−4 −2 0 2 4
− µi(x)
σi(x)

F
i(.

)

Schonlau
SOCU

Figure 5.1: Feasibility function for the i-th constraint Fi(~x). The total feasibility function is
F (~x) =

∏
Fi(~x)

modified expected improvement function EImod as follows:

EImod(~x) = EI(~x) · F (~x) = EI(~x) ·
m∏

i=1

min

(
2Φ
(−µi(~x)

σi(~x)

)
, 1

)
. (5.5)

Fig. 5.1 shows the different feasibility functions used in Schonlau algorithm (blue
dashed line) and our proposed algorithm (red line) for one constraint.

The proposed algorithm SOCU, shown in Alg. 5, initially maximizes the feasibility
function in order to find at least one feasible solution. As soon as one feasible solution
is found, the algorithm proceeds by maximizing the modified expected improvement
(Eq. 5.5) in each iteration. Since the EImod function is highly multimodal, we decided
to use a simulated annealing method as the internal optimizer.

5.4.3 Plugin Control (PC): Preserving Feasibility

In our first experiments with EImod we observed a strange behavior depicted in
Fig. 5.2: Initially, the surface plot of EImod looks as expected (left plot), but the best
feasible solution is still far away from the true solution. When finding better solutions
near the true optimum, the EImod surface would suddenly change (right plot) and
the maximum of EImod shifts far away into infeasible area. Now the EImod infill

89

 obj maxViol

 Best Sol [25]: −4977.9 | 0

−0.98325

−0.98320

−0.98315

−0.98310

−0.98305

−0.97495 −0.97490 −0.97485 −0.97480 −0.97475

x

y

1500

1600

1700

1800

1900

EImod

●●

 obj maxViol

 Best Sol [26]: −6961.78 | 0

−0.98325

−0.98320

−0.98315

−0.98310

−0.98305

−0.97490 −0.97485 −0.97480 −0.97475

x

y

1

2

3

4

5

EImod

Figure 5.2: EImod shift towards the infeasible area for a 2-dimensional test problem (G06). The
thick lines in form of a pointed triangle show the feasible area, the blue square is the true solution.
The yellow circle is the best feasible solution (being outside the plot area in the left plot).

criterion will always suggest infeasible infill points and thus the algorithm stagnates.
What is the reason for this behavior? A closer analysis revealed that the plugin
fmin in Eq. (5.2) is responsible for this. Usually, the plugin fmin is taken as the best
feasible objective found so far. A new value for fmin does not change the maxima
locations of EI, but it changes the intercept. This has a large effect on the maxima
locations of EImod(x) = EI(~x) · F (~x). We explain this with a 1D example.

The 1D-Case

Consider the following simple 1D-model, where ~x = x:

EI(x) = max(ax+ b, 0), (5.6)

F (x) = min
(
2Φ
(
kx
)
, 1
)
. (5.7)

We assume k > 0, so that x < 0 is the infeasible area, and a < 0, i. e. the
(unconstrained) EI(x) has better values towards x < 0. This makes the constraint
active, meaning that the constrained optimum is on the border x = 0.

What happens now for EImod as a function of the intercept b? As Fig. 5.3 depicts,
large b have the optimum for EImod correctly at x = 0, but too small values for b
lead to a false shift of EImod’s maximum towards the infeasible area. A short Taylor

90

5.4. METHODS

−0.4 0.0 0.2 0.4

0
5

10
15

20

a= −20.0, b=20.00

x

E
Im

od

−0.4 0.0 0.2 0.4

0.
0

0.
5

1.
0

1.
5

a= −20.0, b= 0.20

x
E

Im
od

Figure 5.3: EI (green), F (red), and EImod (black) in the 1D-case. Right: For small intercepts b
the optimum of EImod is shifted towards the infeasible area x < 0.

expansion shows that the critical intercept is

bcrit =
a
√

2π

2k
. (5.8)

Smaller intercepts have the maximum of EImod shifted to the infeasible area.

To correct this, we simply have to change the plugin in Eq. (5.2):

EI(x) = E [max(bcrit + fmin − Y, 0)] (5.9)

This ensures that at the active border, where Y is not larger than fmin, the value of
EI(x) is at least bcrit. – If we have multiple constraints, we calculate bcrit for each of
them.

The 2D- and nD-Case

In the higher-dimensional case (d > 1) we have to find the direction ~g of slowest
descent of EImod at the current best feasible point. This is for example in the case
of G06 the bisecting line of the two constraints. The slopes a and k for EI and the

91

Algorithm 5 SOCU algorithm

1: m: number of constraints
2: n: number of evaluated points
3: d: dimension of the problem
4: pop(n): population of n = 5d initial points generated by LHS
5: while n ≤ Budget do
6: Build from pop(n) the Kriging models for objective function f : (µ0, σ0) and the m

constraints gj : (µ1, σ1), . . . , (µm, σm)
7: Obtain EI(~x) from Eq. (5.2) with plugin corrector Eq. (5.9)

8: F (~x) =
∏m
j=1 min

(
2Φ
(
− µj(~x)

σj(~x)

)
, 1

)

9: EImod(~x) = EI(~x) · F (~x)
10: if a feasible solution has been found then

11: ~xnew = arg max(EImod(~x)) . Use simulated annealing

12: else
13: ~xnew = arg max(F (~x))
14: end if
15: Add ~xnew to pop(n) and evaluate it on true f and g1, . . . , gm
16: n← n+ 1
17: end while

constraint(s) in Eq. (5.8) have to be replaced by the respective slopes along direction
~g.

5.5 Experimental Setup

5.5.1 General Setup

Initially we test the proposed algorithm on a toy problem Sphere4 of steerable dif-
ficulty: This problem has a sphere as objective function and 4 linear constraints, 2
of them being active, 2 inactive. The constraints enclose a feasible region with a
triangular tip of angle φ (see Fig. 5.4).

Next, we apply SOCU to all G-problems from the G-problem suite having 4 or less
dimensions (see Tab. 7.2).2 This is because it is well known that Kriging algorithms

2G02 and G03mod are problems scalable in their dimension d. We use here d = 2.

92

5.5. EXPERIMENTAL SETUP

Table 5.1: Characteristics of the G-functions: d: dimension, ρ: feasibility rate (%), FR: range of
the fitness values, GR: ratio of largest to smallest constraint range, LI: number of linear inequalities,
NI: number of nonlinear inequalities, a: number of constraints active at the optimum.

Fct. d ρ FR GR LI NI a

G02 2 99.997% 0.57 2.632 1 1 1
G03mod 2 21.5% 1.99 1.000 0 0 1
G05mod 4 0.0919% 8863.69 1788.74 2 3 3
G06 2 0.0072% 1246828.23 1.010 0 2 2
G08 2 0.8751% 1821.61 2.393 0 2 0
G11mod 2 66.724% 4.99 1.000 0 0 1
G15mod 3 0.0337 % 586.0 1.034 1 1 2
G24 2 0.44250% 6.97 1.82 0 2 2
XFOIL 4 0.1349 % 0.99 1.34 0 3 1

are viable only for not too large dimensions. Equality constraints are translated to
inequality constraints in the same way as Ch. 3.3

For each algorithm we run 30 independent trials with different n = 5d initial
points. Constraint violations smaller than 10−5 are tolerated. We consider a fixed
budget of 100 function evaluations for all problems. The Kriging models are built
by R [137] packages DiceKriging and DiceOptim. In order to optimize EImod we
use Generalized Simulated Annealing (R package GenSA). The time limit for this
internal optimizer is set to 10 seconds in each iteration, allowing for several thousand
Kriging model evaluations (depending on problem size). Additionally, we run SOCU
on an application example from aerodynamics described in the next section.

5.5.2 Aerodynamic Shape Design Problem

The benchmarks related to aerodynamic shape design problems represent an ideal
platform to test optimization systems and algorithms that make use of surrogate
methods for the evaluation of the objective functions and the constraints [87]. This
is for two main reasons, namely that the evaluation of objectives and constraints very
often requires a significant computational effort, and that both objectives and con-
straints may have a degree of non-linearity which is a function of the computational

3The inequality sign is chosen in such a way that the constrained optimum stays at the same
location.

93

optimum

φ

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x1

x
2

Sphere4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2
·105

Figure 5.4: Sphere4 problem. The colored contour levels show the objective function 105 ·(x21+x22)
(2D sphere function). The thick black lines depict 4 linear constraints enclosing the feasible region.
The difficulty of this problem is scalable by changing the feasibility angle φ.

model used, the operating conditions considered and the shape parametrization cho-
sen. The problem presented here is a simple subsonic airfoil section design exercise
derived from [135], but with some special features in terms of ease of implementa-
tion, flexibility, reproducibility and availability of the analysis codes that allow its
use even in contexts not specialized to aerodynamic design.

Problem Setup

The goal of this optimization problem is the reduction of the aerodynamic drag of
a given airfoil changing its shape. A generic airfoil shape is parametrized as linear
combination of an initial geometry, defined parametrically by (x0(s), y0(s)), and a
number of functions yi(s) that may be defined analytically or by point distributions

94

5.6. RESULTS

[80]:

y(s) = k

(
y0(s) +

n∑

i=1

wiyi(s)

)
, x(s) = x0(s) (5.10)

where the airfoil shape is controlled by the design parameters wi and by the scale
factor k. The operating conditions are Mach number equal to 0.0 (incompressible
flow) and Reynolds number equal to 3000000. The starting airfoil is the NACA
2412 [1]. The Mach and Reynolds numbers that characterize the specified regime of
operation are sufficiently low to allow an extended laminar bucket that can have a
beneficial effect on a large part of the flight envelope. The design goals are translated
into the following optimization problem:





minCD
subject to: CL = 0.5

CM ≥ −0.07
CDp ≥ 0
t/c = 0.12
`R ≥ 0.006

(5.11)

where CD, CDp, CL and CM are the drag, pressure drag, lift and pitching moment
coefficient of the airfoil; t/c denotes the thickness to chord ratio. The two equality
constraints defined in (5.11) are here satisfied by explicitly changing two free problem
parameters and therefore they are not considered by the optimization algorithm. In
particular, the constraint on t/c is satisfied by changing properly the free parameter
k, while the constraint on CL is satisfied by changing the second free parameter,
namely the airfoil angle of attack α.

The aerodynamic analysis code here selected to evaluate the airfoil performance
is Drela’s XFOIL code [47]. This code is based on a second order panel method
interactively coupled to a boundary layer integral module. Laminar-to-turbulent
flow transition is predicted using the method described in [48].

5.6 Results

5.6.1 Demonstration on Sphere4

The Sphere4 problem illustrated in Fig. 5.4 is a constrained optimization problem
of steerable difficulty. It is used here to demonstrate the difference between the
Kriging-based algorithms. Fig. 5.5 shows the results on Sphere4. As expected, the

95

-4

-2

0

π
40

π
30

π
20

π
10

π
4

π
2

Feasibility angle φ

lo
g
1
0
(f

(~x
)
−
f

(~x
∗)

)
Schonlau SOCU w/o PC SOCU

Figure 5.5: Comparing the final optimization error determined by different algorithms for optimiz-
ing Sphere4 problems with different feasibility angles. The results are taken from 30 independent
runs and 100 function evaluations.

problem gets harder for all algorithms as the feasibility angle φ decreases. This is
because the feasible region becomes smaller and the optimum is surrounded by a
neighborhood containing more and more infeasible points. – Interestingly, also the
gap between Schonlau and SOCU gets larger as φ decreases. This is understandable
as well: For SOCU the probability of feasibility is 1 along both active constraint
lines for all φ. For Schonlau the probability of feasibility is 0.25 at the optimum (2
active constraints, both 0.5). If φ is large, the probability quickly rises to 0.5 as we
move along one of the active constraint lines, because the distance to the other line
increases. But if φ is small and we move along one constraint line, the probability
according to Schonlau stays longer near 0.25, because the second constraint line is
not far away. Thus the solution found by Schonlau will be farther from the optimum
since the maximum of the product EI ·F moves farther into the feasible region. This
is exactly what we see in Fig. 5.5.

96

5.6. RESULTS

G15mod G24

G08 G11mod

G05mod G06

G02 (d=2) G03mod (d=2)

0 25 50 75 100 0 25 50 75 100

0 25 50 75 100 0 25 50 75 100

0 25 50 75 100 0 25 50 75 100

0 25 50 75 100 0 25 50 75 100

-8

-6

-4

-2

0

-4

-2

0

2

4

-6

-4

-2

0

-8

-5

-2

0

-6

-4

-2

-5

-2

0

2

-4

-3

-2

-1

-4

-2

0

function evaluations

lo
g
1
0
(f

(~x
)
−
f

(~x
∗)

)

Schonlau SOCU

Figure 5.6: Comparing the performance of SOCU and Schonlau [159] on G-problems from Tab. 7.2.
The solid curves show the median of the error for 30 independent trials. The error is calculated
with respect to the true minimum f(~x∗). The colored shade around the median is showing the
worst and the best error.

97

5.6.2 Noise Variance

In our first experiments we experienced frequent crashes of the Kriging modeling
software due to numeric instabilities. This is a well-known but cumbersome obser-
vation about Kriging shared by many researchers, especially if the modeling points
are unevenly spaced, as it is inevitably the case in optimization tasks. To avoid too
strong oscillations of the Kriging model due to nearby points, it is a common cure to
switch from interpolating to approximating Kriging models, either with the so-called
nugget-effect or with a noise variance parameter, which assumes a certain noise or
uncertainty related with every modeling point. Since the nugget effect leads to a
complicated structure for the variance σ2(x), it turned out to be not well-suited for
our case.

The noise variance, on the other hand, turned out to be very effective: As Tab. 5.2
shows, the interpolating Kriging models had frequent crashes. By adding the noise
variance ν = 0.01 to the model, we could completely avoid any crashes in our exper-
iments.

Table 5.2: Effect of noise variance.

SOCU w/o noise variance SOCU

problem crashed (%) iteration crashed (%) iteration
G06 100 19 0 –
G02 96 40 0 –

5.6.3 Performance on G-Problems

In Fig. 5.6 we compare the two different variants of Kriging-based EGO, namely
the original version of Schonlau et al. [159] and our SOCU algorithm [14], which
we applied to all G-problems in Tab. 7.2. SOCU reaches lower optimization errors
in most cases. In the case of G08, both algorithms have the same median curve.
This is perfectly understandable, since G08 is the only problem without any active
constraints. Absence of an active constraint is a convincing reason for similar per-
formance of both algorithms, since the different feasibility functions (Fig. 5.1) have
no effect. For problems with active constraints, the high value of SOCU’s Fi(x) at
the border of the feasible region helps to find better solutions. In Fig. 5.7 we show
additionally the effect of switching off the plugin control (Sec. 5.4.3) in SOCU. It
can be seen that the plugin control is beneficial for G02, G03mod, G06 and G24.

98

5.6. RESULTS

G15mod problem (d=3, m=2) G24 problem (d=2, m=2)

G08 problem (d=2, m=2) G11mod problem (d=2, m=1)

G05mod problem (d=4, m=5) G06 problem (d=2, m=2)

G02 problem (d=2, m=2) G03mod problem (d=2, m=1)

-8

-6

-4

-4

-2

0

2

-8

-6

-4

-8
-7
-6
-5
-4
-3

-6

-4

-2

-4

-2

0

2

-4

-3

-2

-1

-3.5

-3.0

-2.5

-2.0

lo
g
1
0
(f

(~x
)
−
f

(~x
∗)

)

Schonlau SOCU w/o PC SOCU

Figure 5.7: Comparing the final optimization error from 30 independent runs determined with
different algorithms.

99

G15mod G24

G08 G11mod

G05mod G06

G02 (d=2) G03mod (d=2)

0 25 50 75 100 0 25 50 75 100

0 25 50 75 100 0 25 50 75 100

0 25 50 75 100 0 25 50 75 100

0 25 50 75 100 0 25 50 75 100

-10

-5

0

-8

-6

-4

-2

0

2

4

-15

-10

-5

0

-8

-6

-4

-2

0

-8

-6

-4

-2

-4

-2

0

2

4

-10

-8

-6

-4

-2

-4

-2

0

2

function evaluations

lo
g
1
0
(f

(~x
)
−
f

(~x
∗)

)

SACOBRA SOCU

Figure 5.8: Comparing the performance of SOCU and SACOBRA on G-problems from Tab. 7.2.
The solid curves show the median f the error for 30 independent trials. The error is calculated with
respect to the true minimum f(~x∗). The colored shade around the median is showing the worst
and the best error.

100

5.6. RESULTS

We compare in Fig. 5.8 the results of SOCU with SACOBRA [15], to the best
of our knowledge the current state-of-the-art for solving the G-problems. It is ev-
ident that SACOBRA is slightly better in most cases, except for the case of G24,
where SACOBRA converges more slowly than SOCU. Additionally, three problems
(G05mod, G15mod, G24) show a better performance of SOCU in the early stages
(between iteration 25 and 75), although SACOBRA catches up at iteration 100.

0.25

0.300.300.300.300.30

0.350.350.350.350.35

0.400.400.400.400.40

0.450.450.450.450.45

0.500.500.500.500.50

0.550.550.550.550.55

0.600.600.600.600.60

0.650.650.650.650.65

0.700.700.700.700.70

0.750.750.750.750.75

0.800.800.800.800.80

0.850.850.850.850.85

10 20 30 40
performance factor α

%
so

lv
ed

p
ro

b
le

m
s

SACOBRA

SOCU

SOCU w/o PC

Schonlau

G-problems, τ = 0.01

Figure 5.9: Data profile of SACOBRA, Schonlau, SOCU and SOCU w/o PC on G-problems and
Sphere4 The performance factor α is the budget divided by d+1 where d is the individual dimension
of each test problem.

Finally Fig. 5.9 shows the overall performance comparison for all algorithms on
all test problems in form of a data profile described in 2.5. The larger the data profile
(ratio of solved problems), the better the relevant algorithm. The performance factor
α on the x-axis is the number of iterations divided by d+ 1.

5.6.4 Performance on XFOIL

Fig. 5.10 shows our results for the XFOIL case. SOCU is slightly better than Schon-
lau in the median, but the difference is not statistically significant. The similarity
is understandable, since problem XFOIL has only one active constraint. In such a
case we do not expect the differences between Schonlau and SOCU to be very large.
SOCU and SACOBRA produce nearly identical results.

101

1 2

0 50 100 150 200 0 50 100 150 200

0.
00

1
0.

00
2

function evaluations

f
(~x

)
−
f

(~x
∗)

SACOBRA SOCU Schonlau

Figure 5.10: Comparing the performance of SOCU, Schonlau [159], and SACOBRA [15] on the
XFOIL real world optimization problem (30 independent runs).

5.7 Conclusion

In order to answer the first research question Q5.1, the developed Kriging-based
constrained optimizer was evaluated on a set of problems listed in Tab. 7.2. As
shown in Fig. 5.9, SOCU is able to solve more than 75% of the problems with a
limited number of function evaluations of 100. The problems have d = 2 . . . 4 and
the number of active constraints vary from 0 to 3. Therefore, we can give a positive
answer to Q5.1. The introduced algorithm could overcome the challenges associated
with multiple active constraints in low dimension. However, we are aware of SOCU’s
limitation in handling COPs in higher dimensions.

The modified expected improvement suggested in Eq. (5.5) does not always direct
the search towards the feasible region or even close to the feasible border. An example
of EImod leading the search toward the infeasible region was showcased in Fig. 5.2.
Plugin control is the proposed cure for balancing the exploration of feasible and
infeasible infill points and redirecting the search toward the feasibility border. The
10% boost contributed by using the plugin control shown in Fig. 5.9 can be considered
as a positive answer to Q5.2.

102

5.7. CONCLUSION

We applied Kriging surrogate models to constrained optimization. We could show
that a small number of evaluations is sufficient to obtain good optimization results.
This work is not the first to do so, but three important conclusions for Kriging-based
optimization could be drawn in this chapter:

1. Interpolating Kriging models often suffer from numerical instabilities and sub-
sequent crashes, especially when the population points are unevenly distributed
in the search space. This will be nearly always the case when applying Kriging
for optimization. We have shown that these crashes can be completely avoided
(at least in our test cases) when we add a small noise variance to the Kriging
models. This leads to approximating Kriging models and to a variance always
larger than zero. Both effects are beneficial for numeric stability of the Kriging
models.

2. Many Kriging-based COP-solvers use in one form or the other a product of
expected improvement EI and probability of feasibility F . We could show
that if the additive plugin in EI gets very small (which is no problem for
the optima of EI themselves), this can have adversarial effects for the optima
of EI · F . A method called plugin control was proposed, which successfully
counteracts such adversarial effects.

3. Having this plugin control in effect, we could show that a probability curve of
SOCU being 1 at the border of feasibility is clearly superior to an approach
where the probability is 0.5 at the border [159]. The benefits are - as expected
- more clearly seen for problems with two or more active constraints (G05mod,
G06, G15mod, G24).

SOCU was tested on a variety of benchmark problems with dimension of d = 4
and below. We could perform better than the Kriging-based algorithm of Schonlau
et al. [159], but were in most cases worse than the non-Kriging-based SACOBRA
algorithm [15]. In some cases (G05mod, G15mod, G24) SOCU showed a better per-
formance (median, best and worst case) in early iterations (< 75) than SACOBRA.
We suppose that this is due to the better exploration of the EGO approach. A draw-
back for Kriging-based models is however that they become very slow and ineffective
for larger dimensions. In the future, a closer investigation into the causes of the
observed performance differences would be desirable.

103

