
Self-adjusting surrogate-assisted optimization techniques for expensive
constrained black box problems
Bagheri, S.

Citation
Bagheri, S. (2020, April 8). Self-adjusting surrogate-assisted optimization techniques for
expensive constrained black box problems. Retrieved from https://hdl.handle.net/1887/87271

Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/87271

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/87271

Cover Page

The handle http://hdl.handle.net/1887/87271 holds various files of this Leiden University
dissertation.

Author: Bagheri, S.
Title: Self-adjusting surrogate-assisted optimization techniques for expensive
constrained black box problems
Issue Date: 2020-04-08

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/87271
https://openaccess.leidenuniv.nl/handle/1887/1�

Chapter 4

Handling Equality Constraints in
SACOBRA

4.1 Outline

SACOBRA optimizer as introduced in Ch. 3 has the drawback of being only able
to handle COPs with inequality constraints. However, real-world COPs are often
subject to equality and inequality constraints.

In this chapter SACOBRA is enhanced to handle equality constraints. The analy-
sis regarding SACOBRA’s modification for COPs with equality constraints are taken
from [16] and [18].

The rest of this chapter is organized as follows: After introducing the equal-
ity handling problem and its challenges in Sec. 4.2, we give an overview about the
already existing techniques for handling black-box equality constraints and we cat-
egorize them into 5 different types, in Sec. 4.3. In the same section we describe a
common dilemma of many equality handling approaches. In Sec. 4.4 we describe
the equality handling approach embedded in SACOBRA. Sec. 4.5 reports the de-
tails of the experimental setup used in this chapter. SACOBRA with the proposed
equality handling technique (SACOBRA+EH) is applied on a subset of G-problems
with equality constraints. In Sec. 4.6, we report and analyze the results achieved by
SACOBRA and we compare our results with several other constrained optimizers.
This chapter is concluded and summarized in Sec. 4.7.

4.2 Introduction

An optimization problem can be defined as the minimization of an objective func-
tion (fitness function) f subject to inequality constraint function(s) g1, . . . , gm and

62

4.2. INTRODUCTION

equality constraint function(s) h1, . . . , hr:

Minimize f(~x), ~x ∈ [~l, ~u] ⊂ Rd (4.1)

subject to gj(~x) ≤ 0, j = 1, 2, . . . ,m

hk(~x) = 0, k = 1, 2, . . . , r

where ~l and ~u define the lower and upper bounds of the search space (a hypercube).
By negating the fitness function f a minimization problem can be transformed into
a maximization problem without loss of generality.

Handling equality constraints in black-box COPs is a challenging task. The
presence of equality constraints causes the feasibility ratio ρ to be exactly zero1.
Also, it is really demanding and sometimes impossible to bring such a problem in
the feasible subspace formed by equality constraints; therefore, it is highly unlikely
for most of the numerical optimizers to find a fully feasible solution.

Throughout this chapter the following research questions are addressed:

Q4.1 How can SACOBRA be extended to handle COPs with equality
constraints efficiently and solve the common dilemma of margin-
based equality handling methods?
After embedding an equality handling extension in SACOBRA framework, we
evaluate them on a set of benchmarks with equality constraints from the G-
problem function suite. In this chapter it will be answered if SACOBRA with
equality handling (SACOBRA+EH) can be advised as an efficient surrogate-
assisted technique for handling COPs with equality constraints. The equality
handling approach in SACOBRA is a margin-based approach. After giving a
description about the different equality handling approaches in Sec. 4.3, we
describe the common dilemma of margin-based equality handling. Then we
will show how to handle this dilemma.

Q4.2 Is a gradually shrinking feasibility margin an important ingredient
for SACOBRA to produce high-quality results on COPs with equal-
ity constraints?
The equality handling approach designed for SACOBRA starts with a large ar-
tificially feasible area and the feasibility margin gradually shrinks to a narrow
belt around the feasible subspace. In this chapter we investigate the effective-
ness of this shrinking margin for SACOBRA.

1ρ : ratio between feasible volume and search space volume, described in Ch. 3.6.1

63

h(x) = 0

Figure 4.1: A simple 2D optimization problem with one equality constraint. The shaded (green)
contours depict the fitness function f (darker = smaller). The black curve shows the equality
constraint. Feasible solutions are restricted to this line. The black point shows the global optimum
of the fitness function which is different from the two optima of the constrained problem shown as
the gold stars. If we transform the equality constraint to an inequality by selecting the area below
the constraint line as the feasible region, we can expect to converge to one of the correct solutions.

4.3 Taxonomy of Equality Handling Techniques

We categorize the existing numerical constraint handling techniques into 5 categories
(a)–(e). The last category assumes that constraint functions are not fully black-box.
In general, most of the existing constraint handling algorithms for black-box COPs
need to modify the equality constraints in order to be able to address them. The
different modifications used for equality constraints can be divided into five categories
of transforming equality constraints hk(~x) = 0 to:

(a) a pair of inequality constraints

{
hk(~x) ≥ 0,

hk(~x) < 0,
(4.2)

(b) one inequality constraint (manually chosen),

64

4.3. TAXONOMY OF EQUALITY HANDLING TECHNIQUES

h(x) = 0

Figure 4.2: A 2D optimization problem with a multimodal fitness function and one equality
constraint (thick black line). Feasible solutions are restricted to this line. The shaded (green)
contours depict the fitness function f (darker = smaller). The black points show the unconstrained
optima of the fitness function which are different from the optimal solution of the constrained
problem shown as the gold star. If we select for a category-(a)-type transformation the area below
the constraint line as the feasible region, the optimal choice is the black dot and if we select the
upper side of the equality constraint, the optimal solution is the black triangle. In both cases there
is no chance to converge to the correct solution on the equality constraint line (gold star).

(c) a tube-shaped region |hk(~x)|−ε0 ≤ 0 in order to expand the feasible space, where
ε0 is a small positive constant,

(d) a shrinking tube-shaped region |hk(~x)| − ε(n) ≤ 0, where ε(n) is decaying itera-
tively,

(e) a repair mutation.

The first category does not enlarge the feasible volume. Therefore, the problem
of zero feasibility rate remains as challenging as before. This category is used in [26]
for several constrained problems with inequalities and equalities. The approach fails
on problems with equality constraints.

Category (b) is used by Regis [141] and SACOBRA [97, 98, 20]. It chooses
manually one side of the equality constraint(s) as the feasible region. This approach
may work for simple problems (see Fig. 4.1) but it is problematic for two reasons: For
each new problem the user has to find manually the correct transformations which

65

can be difficult in the case of multiple equality constraints. Even worse, it is bound
to fail in cases where the fitness function has several local optima on both sides of
the equality constraint(s), as Fig. 4.2 shows for a concrete 2D example.

The third category (c) is widely used in different studies and embedded in var-
ious algorithms e.g. [151, 150, 45]. In this approach, a tube around each equality
constraint is considered as the feasible space. The size of this tube is controlled by a
(usually very small) parameter ε0. However, a very small ε0 makes it difficult to find
feasible solutions at all and a larger choice of ε0 makes it likely to return solutions
which violate the equality constraints by a large amount.

Therefore, a fourth category (d) is suggested in different studies [183, 187, 31]
which recommends to start with a large tube-shaped margin around each equality
constraint that gradually shrinks to a small final feasibility margin εf . The adaptive
relaxing rule proposed in [183] introduces six new parameters to control the changing
scheme of the margin. Later, Zhang [187] proposed a parameter-free adaptation rule
for equality handling which decays the margin proportional to the fraction of feasible
solutions in every iteration. Although the mentioned study reports good results for
solving the well-studied G-problems, the success is only achieved after many function
evaluations (thousands of evaluations).

Choosing a suitable feasibility margin is not a trivial task and it is a problem
dependent task. In addition, once there is a feasibility margin greater than zero, we
have the following dilemma: Each COP solver has a whole set of possible solutions
to choose from. Should we prefer a solution with better objective value but larger
violation of the true equality constraint over another one with worse objective value
but smaller violation? There is no clear answer to this, it is a multi-criteria problem.
Nonetheless, most of the numerical constrained optimizers are designed to search for
the solution with the best objective value ~x∗af inside the artificially feasible region
and they avoid approaching the true optimum ~x∗ (see Fig. 4.3). The distance be-
tween these two solutions ~x∗af and ~x∗ can be pretty large, both in input space and
objective space.2 Of course the dilemma would disappear if εf approaches zero, but
many optimizer have problems with too small margins (they may not find feasible
solutions).

Not all the equality handling approaches used by numerical optimizers modify
the equality constraints. There is a fifth equality handling category (e) that assumes
only the objective function is black-box and the equality constraints are known ex-
plicitly. As an example, RGA proposed by Chootinan [38] uses a gradient-based
repair method to adapt a genetic algorithm (GA) for constrained problems. Also,

2The distances depend on εf and the steepness of the equality functions hj(~x) and the objective
function f(~x).

66

4.3. TAXONOMY OF EQUALITY HANDLING TECHNIQUES

Figure 4.3: The shaded contours depict the objective function f (darker = smaller). The black
curve shows the equality constraint. Feasible solutions are restricted to this line. The black star
shows the global optimum of the objective function which is different from the optimum of the
constrained problem shown as the yellow star ~x∗. The area enclosed by the dashed curves is the
artificially feasible area, given a fixed feasibility margin ε0. The white square marks the optimal
solution ~x∗af in the artificial feasible region. Black dots mark some infill points.

Beyer and Finck [25] propose a CMA-ES algorithm which uses a problem-specific
repair mutation to assure that the solutions always fulfill the equality constraint(s).
[5] and [166] use different types of evolutionary strategies combined with a repairing
mechanism which projects the solution(s) to the feasible subspace of the problem.
The latter method is only applicable on linearly constrained problems. Since this
category of algorithms are not suitable for fully black-box problems, they might have
severe limitations in dealing with real-world COPs.

Here, we focus on solving fully black-box COPs efficiently with the assistance of
surrogate models. In the following sections we introduce a shrinking margin-based
equality handling method (category (d)) for SACOBRA. We use the well-known
G-problems suite benchmark to assess our algorithm in the context of the research
questions.

67

Initialize
population

Initialize
margin

Update
models

Solve
constrained
subproblem

Refine
solution

Reduce
margin

Figure 4.4: Main steps of SACOBRA with the equality handling mechanism.

4.4 Method

SACOBRA as described in Ch. 3 is an efficient surrogate assisted optimizer. The
idea behind SACOBRA is to train RBF interpolants for objective and constraint
functions and solve a constrained subproblem Eq.(4.3)–(4.5) in each iteration:

Minimize s
(n)
0 (~x), ~x ∈ [~l, ~u] ⊂ Rd (4.3)

subject to s
(n)
j (~x) + δ(n) ≤ 0, j = 1, 2, . . . ,m (4.4)

ρ(n) − ||~x− ~xp|| ≤ 0, p = 1, 2, . . . , n (4.5)

where s
(n)
0 is the fitness function surrogate model based on n points and s

(n)
j stands

for the model of the j-th inequality constraint in the n-th iteration. µ(n) and ρ(n) are
internal variables of the COBRA algorithm. More details can be found in Ch. 3.

SACOBRA’s contribution on a series of COPs shown in Ch. 3 is significant. But
a drawback of this algorithm is that it can only handle inequality constraints. If
problems with equality constraints are to be addressed, the user has to replace each
equality constraint by the appropriate inequality constraint (category (a) in Sec. 4.3).
However, as it is illustrated with the example in Fig. 4.2, this approach is not viable
in general. In the following section we show in detail how SACOBRA is extended to
handle equality constraints.

As depicted in Fig. 4.4 the proposed method has three ingredients: (1) initializing
the margin, (2) a decrementing feasibility margin, (3) a refine step which aims to
move the solutions towards the subspace of equality constraint(s).

4.4.1 The Proposed Equality Handling Approach

Algorithm 8 shows the proposed approach in pseudo code. In every iteration RBFs
are trained to model the objective function f and all constraint functions g and h.

68

4.4. METHOD

Finding the next infill point is done by solving an internal optimization problem
which minimizes the objective function (4.3) and tries to fulfill the constraints (4.4)
– (4.5). Additionally, the expanded equality constraints, Eqs. (4.6) – (4.7), should
be satisfied:

s
(n)
m+k(~x)− ε(n) ≤ 0, k = 1, 2, . . . , r (4.6)

−s(n)m+k(~x)− ε(n) ≤ 0, k = 1, 2, . . . , r. (4.7)

Before conducting the expensive real function evaluation of the new iterate ~x(n+1),
we try to refine the suggested solution: we eliminate the infeasibility caused by the
current margin ε(n) by moving ~x(n+1) towards the equality line(s).3 This is done to
prevent losing the best solution in the next iteration when the equality margin ε
is reduced (Fig. 4.5) and to produce solutions with low constraint violation. The
refined point is evaluated and the so-far best solution is updated. The best solution
is the one with the best fitness value which satisfies the inequality constraints and
lies in the intersection of the tube-shaped margins around the equality constraints.4

The proposed method benefits from having both feasible and infeasible solutions
in the population, by gradually reducing the equality margin ε.

4.4.2 Initializing the Margin ε

To find an appropriate initial value for the margin ε(n) we use the following procedure:
we calculate for each initial design point the sum of its constraint violations. ε(0)

is set to be the median of these constraint violations. In this way we can expect
to start with an initial design population containing roughly 50% artificially feasible
and 50% infeasible points.

4.4.3 Decrementing Margin

The zero-volume feasible space attributed to the k-th equality constraint hk(~x) = 0
is expanded to a tube-shaped region around it: |hk(~x)| − ε(n) ≤ 0 by the proposed
algorithm. By gradually reducing the margin ε(n) the solutions are smoothly guided

3More precisely: towards the intersection of the constraint model hypersurfaces s
(n)
m+k in the

case of multiple equality constraints.
4Theoretically, if inequalities are present, the refine step of Eq. (4.10) could make a former

feasible solution infeasible in some of the inequality constraints. But this is only true during the
initial iterations where ε(n) is large. As ε(n) approaches zero or the very small value εfinal, the
probability of inducing infeasible solutions tends to zero.

69

Algorithm 4 Constrained optimization with equality handling (EH). Parameters:
εfinal, β.

1: Choose initial population P by drawing n = 3d points randomly from the search space,
evaluate them on the real functions and select best point ~x(b)

2: Initialize EH margin ε(n)

3: Adapt SACOBRA parameters according to P
4: while n < budget do

5: Build surrogates s
(n)
0 , s

(n)
1 , . . . , s

(n)
m+r for f, g1, . . . , gm, h1, . . . , hr

6: Perform SACOBRA optimization step: Minimize Eq. (4.3) subject to Eqs. (4.4) –
(4.7), starting from the current best solution ~xbest. Result: ~x(n+1)

7: ~x(n+1) ← refine(~x(n+1))
8: Evaluate ~x(n+1) on real functions
9: P ← P ∪

{
~x(n+1)

}

10: ~xbest ← Select the best solution so far from P
11: ε(n+1) ← max

{
ε(n)β, εfinal

}

12: n← n+ 1
13: end while
14: return (~xbest, the best solution)

15: function Refine(~xnew)
16: Starting from ~xnew, minimize Eq. (4.10), the squared sum of all equality constraint

violations.
17: return (~xr, the minimization result)
18: end function

towards the real feasible area. It is difficult to model the triangular shaped | · |-
function accurately with RBFs. Therefore we translate every equality constraint to
two inequality constraints as follows:

{
hk(~x)− ε(n) ≤ 0, k = 1, 2, . . . , r

−hk(~x)− ε(n) ≤ 0, k = 1, 2, . . . , r.

The equality margin ε can be reduced in different fashions. Zhang [187] proposes
an adaptive scheme: in every iteration the equality margin is multiplied by a factor
βZ ∈ [0, 1] which is proportional to the ratio of current infeasible solutions Pinf

70

4.4. METHOD

within the set of all solutions P :

ε(n+1) = ε(n) · βZ = ε(n) · |Pinf ||P | (4.8)

That is, if there are no feasible solutions, no reduction of the margin takes place. On
the other hand, if 50% of the population is feasible, the margin is halved in every
iteration, i. e. a very rapid decrease. This scheme may work well for algorithms
having a population of solutions and infrequent updates at the end of each generation
as in [187]. But for our algorithm with only one new solution in each iteration this
scheme may decay too rapidly. Therefore, we use an exponential decay scheme shown
in Step 11 of Algorithm 8

ε(n+1) = max(εf , ε
(n)β), (4.9)

with decay factor β > 0.5. The decay factor β is constant for all problems, inde-
pendent of the problem dimension d. The equality margin ε(n) is bounded below by
εf .

4.4.4 Refine Mechanism

The refine step is done by minimizing the squared sum of all equality constraint
violations by means of a conjugate-gradient (CG) method. This minimization step
as described in Eq. (4.10) is done based on the surrogates of the equality constraints
and not the real equality functions; therefore, no extra real function evaluations are
imposed by this step.

Minimize
∑r

k=1 (s
(n)
m+k(~x))2, ~x ∈ [~l, ~u] ⊂ Rd, (4.10)

where s
(n)
m+k is the surrogate model for the k-th equality constraint hk. Although

in black-box COPs we do not have access to the feasible subspace formed by the
equality constraints, the refine step tries to move the best found solution in each
iteration towards the feasible subspace with assistance of the estimated models of
the equality constraints. Furthermore, as visualized in Fig. 4.5, the refine step can be
helpful in not losing a good feasible solution after shrinking the margin iteratively.

71

Figure 4.5: Refine step. The shaded (green) contours, golden star and solid (black) line have the
same meaning as in Fig. 4.1 and 4.2. In iteration n the dotted lines mark the current feasible tube.
The optimization step will result in a point on the tube margin (rightmost blue triangle). The
refine step moves this point to the closest point on the equality line (lower red square). In iteration
n + 1 the tube shrinks to the feasible region marked by the dashed lines. Now the optimization
step will result in a point on the dashed line (leftmost blue triangle), and so on. If the refine steps
were missing, we would lose the best feasible point when shrinking the margin.

4.5 Experimental Setup

The G-problem suite, described in [107], includes 11 problems with equality con-
straints. In this chapter, all 11 G-problems with equality constraints are considered,
while problems containing only inequality constraint(s) are left out. The characteris-
tics of these problems are listed in Tab. 4.1. Just the first four of the eight G-problems
(named

’
training‘ in Tab. 4.1) were used during EH algorithmic development and for

tuning the only free parameter β, the decay factor introduced in Sec. 4.4.3. Only
after fixing all algorithmic details and parameters, SACOBRA+EH was run on the
other seven G-problems (named

’
test‘ in Table 4.1) and the results were taken ’as-is’.

This provides a first indication of the algorithm’s performance on unseen problems.

We run the optimization process for every problem with 30 independent randomly
initialized populations (using LHS) to have statistically sound results. The size of
the initial population is 4 · d. The equality margin ε(n) has the lower bound set to
εf = 10−8.

72

4.5. EXPERIMENTAL SETUP

Table 4.1: Characteristics of G-problems with equality constraints: d: dimension, LI: the number
of linear inequalities, NI: the number of nonlinear inequalities, LE: the number of linear equalities,
NE: the number of nonlinear equalities, a: the number of active constraints.

Fct. d type LI NI LE NE a
tr

ai
n
in

g G03 20 nonlinear 0 0 0 1 1
G05 4 nonlinear 2 0 0 3 3
G11 2 nonlinear 0 0 0 1 1
G13 5 quadratic 0 0 0 3 3

te
st

G14 10 nonlinear 0 0 3 0 3
G15 3 quadratic 0 0 1 1 2
G17 6 nonlinear 0 0 0 4 4
G20 24 nonlinear 0 6 2 12 16
G21 7 nonlinear 0 1 0 5 6
G22 22 nonlinear 0 1 8 11 19
G23 9 nonlinear 0 2 0 0 2

The internal COPs are addressed by cobyla() from the nloptr package in
R [137]. The refine step is done with assistance of the optim() function from the
stats package in R, the method parameter is set to L-BFGS-B and the maximum
number of refine iterations is set to 104.

Fig. 4.6 shows initial runs on the training problems to find a good choice for
the decay factor β. Three of the training G-problems (G03, G05 and G11) show
good performance for all values of β. The algorithm performs well on G13 with
β ∈ [0.90, 0.94]. Larger values result in slower convergence, they would converge if
the number of iterations were increased, but we allow here only a maximum of 400
iterations. For all subsequent results we fix the decay factor to β = 0.92.

Additionally, we compare our results with a differential evolution (DE) that also
uses a decrementing equality margin. For DE results, we run our experiments using
the DEoptimR package. The JDEoptim() in DEoptimR applies the same adaptive
equality margin found in [187] but with a more aggressive updating scheme. We set
the final feasibility margin to εf = 10−8.

73

●●
●

●
●

●
●

●
●●

●
●

●

●

●●●●●

−9

−8

−7

−6

−5

−4

−3

−2

−1

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

β

lo
g 1

0(
op

tim
 e

rr
or

)
● G03

G05

G11

G13

Figure 4.6: Impact of varying parameter β (Eq. (4.9)). Shown is the median of the final opti-
mization error for all training G-problems. The black horizontal line depicts the threshold 10−3.
For β ∈ [0.90, 0.94] all problems have a significantly smaller error than this threshold.

4.6 Results & Discussion

4.6.1 Convergence Curves

Visualizing the optimization process for optimization problems with equality con-
straints is not always straightforward because early or intermediate solutions are
usually never strictly feasible. If we artificially increase the feasible volume with the
help of a (shrinking) margin ε, two things will happen: (a) There can be intermediate
solutions which are apparently better than the optimum.5 To avoid

’
negative‘ errors

we use the absolute value

Eabs = |f(~xbest)− f(~x∗)| (4.11)

as a measure to evaluate our algorithm where ~x∗ is the location of the true optimum
in the input space. (b) Secondly, when the margin ε shrinks, former feasible solutions
become infeasible and new feasible solutions often have larger optimization errors.

5They are on the side of the tube where f is lower than the constrained optimum.

74

4.6. RESULTS & DISCUSSION

To make the former and the new solutions comparable we form the sum

Ecombined = |f(~xbest)− f(~x∗)|+ V (4.12)

where V = maxj,k{gj(x), |hk(x)|, 0} is the maximum violation. This sum Ecombined
is shown as Combined curve in the plots of Fig. 4.7 and 4.8.

Fig. 4.7 shows the optimization process for G03, G05, G11 and G13. It is clearly
seen that the median of the optimization error as well as the median of the maxi-
mum violation reaches very small values for all four problems within less than 400
function evaluations. The final maximum violation is less than 10−4 for all of these
problems, i. e. the infeasibility level is negligible according to [107]. The optimiza-
tion error converges to 10−6 or smaller. This means that the algorithm is efficient in
locating solutions very close to the true optimum after only a very limited number
of evaluations.

Fig. 4.8 shows the optimization process on the five of the
’
test‘ G-problems (G14,

G15, G17, G21 and G23) which were not taken into account during the algorithmic
development and tuning. We choose a maximum budget of 500 function evaluations.

The decreasing trend for the Optim error and Combined curves is clearly seen
in Fig. 4.8 for all five problems. The G14 convergence curve in Fig. 4.8 shows that
the solutions in early iterations are often almost feasible (max. violation = 10−8,
due to the refine step) but they have large objective values. The maximum violation
increases in later iterations but at the same time the objective value is reduced by a
factor of more than 100 and the final solution has a reasonable low objective value
and also a small level of infeasibility. Our algorithm can find almost feasible solutions
(max. violation < 10−4) for all

’
test‘ G-problems shown in Fig. 4.8 with a reasonably

small optimization error except for G21 where the best maximum violation is in
order of 10−2. In Fig. 4.8 we can see that the initial solutions of G21 have a very
high maximum violation (in the order of 103) and after 500 iterations, although the
maximum violation is reduced by a large factor 105, still did not reach a desired small
violation. In this case a faster decaying scheme could be useful. It has to be noted
that the worst-case errors for the

’
test‘ problems are worse than for the training

problems. This has to be expected since the parameters were not explicitly tuned to
the

’
test‘ problems. As shown in Fig. 4.9, G20 and G22 are the only problems where

our algorithm has difficulties to find solutions with a small constraint violation.

G20 and G22

The G20 and G22 problems are known as very challenging COPs in the litera-
ture [179, 171, 88]. Both problems are high-dimensional (d > 20) with many equality

75

G11 G13

G03 G05

25 50 75 10
0

10
0

20
0

30
0

40
0

10
0

12
5

15
0

17
5

20
0 0 10

0
20

0
30

0
40

0

−6

−4

−2

0

2

−8

−6

−4

−2

0

−7
.5

−7
.0

−6
.5

−6
.0

−5
.5

−7
−6
−5
−4
−3
−2
−1

iteration

lo
g 1

0(
op

tim
 e

rr
or

)

combined
optim error
max viol

Figure 4.7: Optimization progress for G03, G05, G11, and G13. The dashed (red) curve is
the absolute optimization error |f(~xbest) − f(~x∗)| in every iteration. The dotted (blue) curve is
the maximum constraint violation V of the the so-far best solution. The solid (black) line is
the combined sum |f(~xbest) − f(~x∗)| + V of absolute optimization error and maximum constraint
violation V . Each of the three curves shows the median value from 30 independent runs. The gray
bands around the black curves show the worst and the best runs for Combined.

76

4.6. RESULTS & DISCUSSION

G21 G23

G14 G15 G17

10
0

20
0

30
0

40
0

50
0

10
0

20
0

30
0

40
0

50
0

10
0

20
0

30
0

40
0

50
0 0 10

0
20

0
30

0
40

0
50

0
10

0
20

0
30

0
40

0
50

0

−4

−2

0

2

−4

−2

0

−4

−2

0

2

−8
−6
−4
−2

0

−2
−1

0

1

2

3

iteration

lo
g 1

0(o
pt

im
 e

rr
or

)

combined

optim error

max viol

Figure 4.8: Optimization progress for G14, G15, G17, G21, G22 and G23. The dashed (red)
curve is the absolute optimization error |f(~xbest) − f(~x∗)| in every iteration. The dotted (blue)
curve is the maximum constraint violation V of the the so-far best solution. The solid (black) line
is the combined sum |f(~xbest)− f(~x∗)|+V of absolute optimization error and maximum constraint
violation V . Each of the three curves shows the median value from 30 independent runs. The gray
bands around the black curves show the worst and the best runs for Combined.

constraints (r > 10). These problems are especially challenging because the feasible
subspace formed by the equality constraints is significantly smaller than the original
search space of the problem. For example, G22 has a 3-dimensional feasible subspace,
while the original problem is defined in 22 dimensions. If we modify G22 under the
assumption that equality constraints are not black-box, then SACOBRA can find
fully feasible solutions (see Appendix B for G22 derivations). We find a fully feasible
solution with the fitness value of 241.609, while the best known solution reported
in CEC2006 [107] has a fitness value of 236.431 and a constraint violation in order
of 10−4. It is important to mention that often it possible to find the feasible sub-

77

G20 G22

10
0

20
0

30
0

40
0

50
0

10
0

20
0

30
0

40
0

2

4

6

8

−1
.5

−1
.0

−0
.5

0.
0

iteration

lo
g 1

0(o
pt

im
 e

rr
or

)
combined

optim error

max viol

Figure 4.9: Optimization progress for G20, G22. The dashed (red) curve is the absolute op-
timization error |f(~xbest) − f(~x∗)| in every iteration. The dotted (blue) curve is the maximum
constraint violation V of the the so-far best solution. The solid (black) line is the combined sum
|f(~xbest) − f(~x∗)| + V of absolute optimization error and maximum constraint violation V . Each
of the three curves shows the median value from 30 independent runs. The gray bands around the
black curves show the worst and the best runs for Combined.

space formed by equality constraints, even if the equality constraints are analytically
described. No feasible solution is known so-far for the G20 problem.

4.6.2 Analyzing Update Scheme for Margin ε

In order to investigate the effectiveness of the gradual shrinkage of the equality
margin ε compared to the other update schemes, we have embedded the Zhang update
scheme, Eq. (4.8), and a constant scheme with a small equality margin ε0 = 10−6 in
our algorithm. In Fig. 4.10, the final optimization results achieved by the different
schemes are compared.

Fig. 4.10 shows that the adaptive update scheme proposed by Zhang [187] appears
to have a similar behavior as the constant scheme on 3 G-problems (G05, G11, G13).
This is because the Zhang decay factor in Eq. (4.8) usually results in a fast decay
(β ≈ 0.5), i. e. the margin ε gets small in early iterations. Therefore, infeasible
solutions with good objective values have a smaller chance to be found. This may
result in less accurate surrogate models, especially for problems with a nonlinear
objective function and several local optima. G13 is such an example with several
local optima. Here, Zhang’s fast shrinking equality margin or a constant small margin

78

4.6. RESULTS & DISCUSSION

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

G11 G13

G03 G05

EH Zhang ε0=10−6 EH Zhang ε0=10−6

EH Zhang ε0=10−6 EH Zhang ε0=10−6

−8

−7

−6

−5

−4

−3

−8

−7

−6

−5

−4

−3

−2

−1

−1
0

−8

−6

−4

−2

0

−1
4

−1
2

−1
0

−8

−6

−4

equality margin

lo
g 1

0(e
rr

or
)

Figure 4.10: Impact of different update schemes for the equality margin ε.The circle points (red)
are the median of Eabs and the triangle points (blue) are the median of the final maximum constraint
violations V for 30 independent runs. The box-plots depict the combined sum Ecombined acc. to
Eq. (4.12) for different margin update schemes: (I) our algorithm (EH), (II) Zhang update scheme
described in Eq. (4.8), and (III) constant margin ε0 = 10−6. In case of G13, both other cases (II)
and (III) have more than a quarter of runs worse than the threshold 10−3 (black horizontal line).

are problematic and more than 25% of the runs would not converge to the optimum
(Fig. 4.10). For two of the tested problems the EH decrementing scheme is clearly
the best and for the other two problems is not significantly worse. As illustrated,
with the EH decrementing scheme, SACOBRA framework finds solutions with an
optimization error smaller than 10−3 for all runs of each problem.

In Table 4.2, we compare the proposed algorithm with other state-of-the-art con-
strained optimization solvers. We show the results from the efficient differential
evolutionary algorithm by Zhang [187], an evolutionary algorithm with a novel selec-
tion scheme by Jiao [88], the repair genetic algorithm (RGA) by Chootinan [38] and

79

Table 4.2: Different optimizers: median (m) of best feasible results and (fe) average number of
function evaluations. Results from 30 independent runs with different random number seeds. Num-
bers in boldface (blue): distance to the optimum ≤ 0.001. Numbers in italic (red): reportedly
better than the true optimum. Numbers in (brackets): solution violates some constraints.

Fct. Optimum
SACOBRA+EH Zhang ISRES RGA 10% Jiao DE

[this work] [187] [151] [38] [88] [31]

G03 -1.0
m -1.0 -1.0005 -1.001 -0.9999 -1.0005 -0.8414
fe 100 25493 349200 399804 19534 13325

G05 5126.498
m 5126.498 5126.497 5126.497 5126.498 5126.497 5126.498
fe 300 21363 195600 39459 2050 8108

G11 0.750
m 0.750 0.749 0.750 0.750 0.749 0.750
fe 100 6609 137200 7215 135 2099

G13 0.0539
m 0.0539 0.0539 0.0539 – 0.0539 0.068
fe 300 19180 223600 – 3103 23637

G14 -47.763
m -47.759 -47.765 – – -47.765 -47.761
fe 500 34825 – – 6093 72015

G15 961.715
m 961.715 961.715 – – 961.715 961.715
fe 500 11706 – – 757 5666

G17 8853.534
m 8855.519 8868.539 – – 8853.534 8867.606
fe 500 43369 – – 3203 37532

G20 (0.0721)
m (0.124) – – – – –
fe 500 – – – – –

G21 193.724
m (194.270) 193.735 – – 193.724 193.790
fe 500 23631 – – 46722 35559

G22 241.09
m (457.71) – – – – –
fe 500 – – – – –

G23 -400
m -400 -400.055 – – -400.055 ?
fe 500 41000 – – 9410 ?

average fe 350 23272 226400 148826 10200 24742

the improved stochastic ranking evolutionary strategy (ISRES) by Runarsson [151].
The results shown in column 2–5 of Table 4.2 are taken from the original papers.
We present in the last column results for differential evolution (DE) [167] with au-
tomatic parameter adjustment as proposed by Brest [31]. This was done by running
own experiments using the DEoptimR package in R [137]. DE does not perform
well on G03 and G13. This being said, 25 of the 30 runs for G13 did not terminate
by reaching a tolerance threshold but reached the maximum of allowed iterations.
Note that DE has on G17 after 37 500 function evaluations an error larger than ours
after 500 function evaluations.

Zhang [187] and DE use an adaptive equality margin to tackle equality con-
straints. RGA [38] applies a gradient based repair technique to handle equality and

80

4.6. RESULTS & DISCUSSION

Figure 4.11: Pareto-optimal solutions for G05, minimizing both fitness function and maximum
violation, generated by different optimizers. Each point indicates a solution generated by one of
the three algorithms SACOBRA, SACOBRA w/o refine and DE for the G05 problem. This plot
shows only a subset of solutions generated by each algorithm which are very close to the optimal
solution. The gray points are generated by SACOBRA with the exact same configuration described
in Sec. 4.5. The red points are the solutions generated by SACOBRA without the refine mechanism
and the blue points show the solutions found by DE. The real optimal solution of G05 has a fitness
value of 5126.4981. SACOBRA unlike the other two methods, is able to approach the real optimum
and generates many solutions on the Pareto front with very limited number of function evaluations.

inequality constraints. Jiao and ISRES make use of a constant and small equality
margin ε0.

4.6.3 Pareto Set of Solutions or a Single Solution?

Table 4.2 shows that sometimes the other algorithms find solutions which are slightly
infeasible and have a better objective value than the real optimum. These algorithms
use the category (c) or (d) equality handling approaches (Sec. 4.3) for searching the
best solution within a given margin, so basically they solve an inequality constrained
problem. The main dilemma with most of the margin-based equality handling tech-
niques is the fact that often solutions with a fitness value better than the optimum
and a violation in order of ε, are preferred over the feasible ground truth solution. We
tend to partly overcome this problem with applying the refine step. Our algorithm
first solves an inequality optimization problem within a margin but this solution is

81

not evaluated on the real function before refine step tries to project this solution on
the feasible subspace.

Although the refine step is a very simple step, it is essential for our algorithm.
As shown in Fig. 4.11, SACOBRA with refine is doing a better job in reducing the
constraint violation in comparison with the SACOBRA without the refine step. On
the one hand, the refine step helps us to move the best solution found in each margin
towards the real feasible subspace in each iteration. Although a wrong approximation
of the equality constraints in the early iterations can cause a shift towards more
violated regions, the model(s) of equality constraint(s) gradually improve by learning
about these regions and eventually the refine step can guide the solutions towards the
correct direction. On the other hand, since only one new point will be added to the
population in each iteration, usually this point will sit at the border of the artificial
feasible region after the optimization step. If we now shrink the artificial feasible
region without refining, we would lose this point and jump to another feasible point,
if any, probably with a much larger objective value.

It is almost impossible to compare our results with the state-of-the-art in a fair
way with the information from Tab. 4.2. Therefore, we suggest reporting a Pareto set
of solutions minimizing the objective function and the constraint violation, instead of
one single solution. Fig. 4.11 shows the infill points found for the G05 problem in the
neighborhood of the real optimum in terms of maximum violation and fitness value.
We can see that SACOBRA, unlike SACOBRA without refine, is able to approach
the real optimum. Combining the results achieved from SACOBRA and SACOBRA
w/o refine, we can generate many solutions on the Pareto front with very limited
real function calls.

Comparing SACOBRA with DE on Fig. 4.11 shows that SACOBRA is remarkably
better in approaching optimum with only 400 fe (function evaluations). SACOBRA
and SACOBRA w/o refine together can populate the Pareto front nicely, with in total
800 fe. DE needs more function evaluations (3300 fe, Fig. 4.11-left) to come into the
vicinity of the Pareto front, however, many DE points have a constraint violation
larger than 10−4. Only if we add more fe to DE (7800 fe, Fig. 4.11-right), then the
DE points will more or less densely populate the region near the Pareto front. A
more detailed discussion in this regards and similar figures for other G-problems can
be found in [18].

It is important to mention that comparing a set of found solutions instead of
only the final one as done in Fig. 4.11, helps us to have a better comparison for the
performance of the equality constrained algorithms. Additionally, providing a set of
solutions for COPs with equality constraints can be beneficial in practice, because
the user then can decide to take a solution which fits best to his/her application.

82

4.7. CONCLUSION

4.7 Conclusion

The results in Sec. 4.6 show that our extended algorithm SACOBRA+EH with a
shrinking equality margin (category (d)) can provide reasonable solutions for 8 out
of 11 G-problems with equality constraints, while most of these problems were not
solvable with the older version of SACOBRA which used the equality-to-inequality
transformation scheme (category (b)). SACOBRA+EH cannot solve G20, G21 and
G22 problems. To the best of our knowledge these COPs are challenging problems
for all constrained optimizers. No other constrained can find feasible solutions for
G20 and G22.

SACOBRA benefits from a gradual shrinking of the expanded feasible region as
discussed in Sec. 4.6.2. The gradual shrinking smoothly guides the infeasible solutions
toward the feasible subspace. Although a small constant equality margin may work
well for very simple problems, we found that for other cases, where the objective
function is nonlinear or multimodal, a constant equality margin often causes early
stagnation of the optimization process as illustrated in Fig. 4.10. Therefore, the
second research question Q4.2 can be answered positively.

We showed that SACOBRA is capable of approaching the true solution of many
equality-constrained optimization problems in less than 500 function evalua-
tions, this is remarkably more efficient than other optimizers we compared with.
Moreover, SACOBRA avoids – at least to a large extent – the often seen dilemma
of equality-constraint optimization that a margin leads to solutions ’better than the
optimum’ by violating some of the equality constraints. We have seen that the refine
step – which may be also a useful building block for other optimization schemes –
is essential for achieving this goal. As illustrated in Fig. 4.11, SACOBRA finds bet-
ter solutions for G05 in terms of constraint violation, vicinity to the optimum and
efficiency, compared to DE, a well-known algorithm from evolutionary strategies.
This being said, we can answer the first research question Q4.1 and conclude that
SACOBRA can be advised as an efficient solver for COPs with equality constraints.

In this chapter we indicated why showing a set of best solutions minimizing
both, maximum constraint violation and objective function, is helpful to have a fair
comparison of different algorithms. Furthermore, reporting the Pareto front solutions
is more practical for real-world applications because the user has a chance to select
the solution which suits the application best.

83

