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Chapter 3

SACOBRA: Self-Adjusting
Parameter Control

3.1 Outline

Constrained optimization of high-dimensional numerical problems plays an impor-
tant role in many scientific and industrial applications. The number of function
evaluations in many industrial applications are severely limited and often only lit-
tle analytical information about the objective function and constraint functions is
available. For such expensive black box optimization tasks, the constrained opti-
mization algorithm COBRA (Constrained Optimization By Radial Basis Function
Approximation) was proposed, making use of RBF (radial basis function) surrogate
modeling for both objective and constraint functions [141]. COBRA and its extended
version in R, the so-called COBRA-R [97], have shown remarkable success in solving
reliably complex benchmark problems in less than 500 function evaluations. Unfor-
tunately, COBRA-R requires careful adjustment of its parameters in order to do so.
To the best of our knowledge there is no algorithm available in the state-of-the art
that solves a diverse set of COPs both efficiently (in less than 1000 iterations) and
without parameter adjustment.

In this chapter we present a new algorithm, SACOBRA (Self-Adjusting COBRA),
which is an extension of COBRA-R and capable of achieving high-quality results
with very few function evaluations and no parameter tuning. It is shown with the
help of performance profiles on a set of benchmark problems (G-problems listed
in Appendix A and MOPTA08 explained in Sec. 3.6) that SACOBRA consistently
outperforms COBRA algorithms with different fixed parameter settings. We analyze
the importance of the new elements in SACOBRA and show that each element of
SACOBRA plays a role to boost up the overall optimization performance. In order
to keep this chapter as similar as possible to its relevant published work [19] we only
take the first 11 G-problems with inequality constraints into account. Therefore, the
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3.2. INTRODUCTION

3 G-problems with equality constraints among the first 11 problems are modified to
COPs with inequality constraints: G03mod, G05mod and G11mod. The other G-
problems with equality constraints are covered in Ch. 4. The analysis in this chapter
is based on the work of Bagheri et al. [19].

The rest of this chapter is organized as follows: Sec. 3.2 formulates the main
motivations of this chapter and poses several research questions. The related work
will be discussed in Sec. 3.3. In Sec. 3.5 we present common pitfalls in surrogate
modeling in Sec. 3.4. We describe the COBRA and SACOBRA algorithms in Sec. 3.5.
In Sec. 3.6, we perform a thorough experimental study on analytical test functions
and on MOPTA08 [92], which represents a real-world benchmark function from the
automotive domain. With the help of so-called data profiles, we analyze the impact
of the various SACOBRA elements on the overall performance. The results are
discussed in Sec. 3.7 and we give conclusive remarks in Sec. 3.8.

3.2 Introduction

Real-world optimization problems are often subject to constraints, restricting the
feasible region to a smaller subset of the search space. It is the goal of constraint
optimizers to avoid infeasible solutions and to stay in the feasible region, in order to
converge to the optimum. However, the search in constraint black box optimization
can be difficult, since we usually have no a-priori knowledge about the feasible region
and the fitness landscape. This problem turns out to be even harder, when only a
limited number of function evaluations is allowed for the search. However, in industry
good solutions are requested in very restricted time frames. An example is the well-
known benchmark MOPTA08 [92].

In the past, different strategies have been proposed to handle constraints, e. g., re-
pair methods try to guide infeasible solutions into the feasible area. Penalty functions
give a negative bias to the objective function value, when constraints are violated.
Many constraint handling methods are available in the scientific literature, but often
demand for a large number of function evaluations ( see, e. g., results in [150, 101]).

Up till now, only little work has been devoted to efficient constraint optimization
(i. e., using a severely reduced number of function evaluations). A possible solution in
that regard is to use surrogate models for the objective and the constraint functions.
While the real function might be expensive to evaluate, evaluations on the surrogate
functions are usually cheap. As an example for this approach, the solver COBRA was
proposed by Regis [141] and outperforms many other algorithms on a large number
of benchmark functions.
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Koch et al. [97, 98] have studied a reimplementation of COBRA in R [136], en-
hanced by a new repair mechanism, and reported its strengths and weaknesses. Al-
though good results were obtained, each new problem required tedious manual tuning
of the many parameters in COBRA. In this chapter we follow a more unifying path
and present SACOBRA (Self-Adjusting COBRA), an extension of COBRA which
starts with the same settings on all problems and adjusts all necessary parameters
internally1. This is an example of adaptive parameter control according to the ter-
minology introduced by Eiben et al. [53]. We present extensive tests of SACOBRA
and other algorithms on a well-known benchmark from the literature: The so-called
G-problem or G-function benchmark, which was initially introduced by Michalewicz
and Schoenauer [114], Floudas and Pardalos [60] and later extended by other au-
thors [150, 107], provides a set of constrained optimization problems with a wide
range of different conditions ( Appendix A). We define the following research ques-
tions for the constrained optimization experiments in this work:

Q3.1 Do numerical instabilities occur in RBF surrogates and is it possible
to avoid them?
Stable models are vital for the success of surrogate-assisted optimization al-
gorithms. It is important to detect reasons of possible instabilities in RBF
surrogates which are used in SACOBRA and also come up with efficient solu-
tions.

Q3.2 Is it possible with SACOBRA to start with the same initial pa-
rameters on all G-problems and to solve them by self-adjusting the
parameters on-line?
It is difficult to find any optimizer which can handle all G-problems with one
parameter configuration due to the diversity of the G-problems in properties.
We aim to handle all of G-problems by means of a self-adjusting parameter con-
trol embedded in a surrogate-assisted optimizer. In this chapter we investigate
the effectiveness of this method.

Q3.3 Is it possible with SACOBRA to solve all G-problems in a given,
small number of function evaluations (e. g., 1000) ?
Surrogate-assisted optimizers are mainly used to reduce the required number of
function evaluations for time and cost expensive optimization problems. The
effectiveness of SACOBRA is not only measured by its accuracy but also by
its efficiency.

1SACOBRA is available as open-source R-package from CRAN: https://cran.r-project.org/
web/packages/SACOBRA
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3.3. RELATED WORK

3.3 Related Work

Most optimization algorithms need their parameters to be set with respect to the
specific optimization problem in order to show good performance. Eiben et al. [53]
introduced a terminology for parameter settings for evolutionary algorithms: They
distinguish parameter tuning (before the run) and parameter control (online). Pa-
rameter control is further subdivided into predefined control schemes (deterministic),
control with feedback from the optimization run (adaptive), or control where the pa-
rameters are part of the evolvable chromosome (self-adaptive).

Several papers deal with adaptive or self-adaptive parameter control in
unconstrained or constrained optimization: Qin and Suganthan [134] propose a self-
adaptive differential evolution (DE) algorithm. Brest et al. [31] propose another
self-adaptive DE algorithm. But they do not handle constraints, whereas Zhang et
al. [187] describe a constraint-handling mechanism for DE. We will later compare our
results with the DE-implementation DEoptimR2 which is based on both works [31,
187]. Farmani and Wright [56] propose a self-adaptive fitness formulation and test
it on 11 G-problems. They show comparable results to stochastic ranking [150],
but require many function evaluations (above 300 000) as well. Coello Coello [39],
Eiben and van Hemert [52] and Tessema and Yen [173] propose self-adaptive penalty
approaches. A survey of self-adaptive penalty approaches is given in [53].

The area of efficient constrained optimization, that is optimization under
a severely limited budget of less than 1 000 function evaluations, is attracting more
and more attention in recent years: Regis proposed besides the already mentioned
COBRA approach [141] a trust-region evolutionary algorithm [142] which uses RBF
surrogates as well and which exhibits high-quality results on many but not all G-
functions in less than 1 000 function evaluations. Although many Kriging-assisted
efficient optimizers have been developed in the last years [8, 153, 51], these algorithms
often do not perform well on the G-problems due to the limitations of Kriging with
respect to high dimensional problems. Jiao et al. [88] propose a self-adaptive selection
method to combine special feasible and infeasible solutions and they formulate it as
a multi-objective problem. Their algorithm can solve some of the G-functions (G08,
G11) very fast in less than 500 evaluations, some others are solved in less than 10 000
evaluations, but the remaining G-functions (G01-G03, G07, G10) require 20 000 to
120 000 evaluations to be solved. Zahara and Kao [186] show similar results (1 000 –
20 000 evaluations) on some G-functions, but they investigate only G04 and G08. To
the best of our knowledge there is currently no black box constrained optimization

2R-package DEoptimR, available from https://cran.r-project.org/web/packages/DEoptimR
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approach which can solve all 11 G-problems in less than 1 000 evaluations. Tenne and
Armfield [172] present an interesting approach with approximating RBFs to optimize
highly multimodal functions in less than 200 evaluations, but their results are only
for unconstrained functions and they are not competitive in terms of precision.

3.4 Pitfalls in Surrogate-Assisted Optimization

The RBF models described in Sec. 2.4.2 are very fast to train, also for high di-
mensional search spaces. They often provide good approximation accuracy, even
when only few training points are given. This makes them ideally suited as sur-
rogate models for high-dimensional optimization problems with a large number of
constraints. SACOBRA which will be described in detail in Sec. 3.5, uses cubic RBF
with polynomial tail as surrogate. However, there are some pitfalls which should be
avoided in order to achieve good modeling results for any surrogate-assisted black
box optimization. These are introduced and discussed in the next sections.

3.4.1 Rescaling the Input Space

If a model is fitted with too large values in the input space, a striking failure may
occur. Consider the following simple example:

f(x) = 3
x

S
+ 1 (3.1)

where x ∈ [0, 2S]. If S is large, the x-values (which enter the RBF-model) will be
large, although the output produced by Eq. (3.1) is exactly the same. Since the
function f(x) to be modeled is exactly linear and the augmented RBF-model we
often use (as described in Sec. 2.4.2), contains a linear tail as well, one would expect
at first sight a perfect fit for each surrogate model. But – as Fig. 3.1 shows – this is
not the case for large S: The fit (based on the same set of five points) is perfect for
S = 1, weaker for S = 1000, and extremely bad in extrapolation for S = 10000.

The reason for this behavior is as follows: Large values for x lead to computa-
tionally singular (ill-conditioned) coefficient matrices, because the cubic coefficients
tend to be many orders of magnitude larger than the coefficients for the linear part.
Either the linear equation solver will stop with an error or it produces a result which
may have large RMSE (root mean square error), as it is demonstrated in the right
plot of Fig. 3.1. The solver sets the linear tail of the RBF model to zero in order
to avoid numerical instabilities. The RBF model thus attempts to approximate the
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Figure 3.1: The influence of scaling. From left to right the plots show the RBF model fit (cubic
RBF with polynomial tail, cf. Eq. (7.13)) for scale S = 1, 1 000, 10 000 (upper facet bar). RMSE:
root mean square error.

linear function with a superposition of cubic RBFs. This is bound to fail if the RBF
model has to extrapolate beyond the green sample points.

This effect exactly occurs in problem G10, where the objective function is a
simple linear function x1 + x2 + x3 and the range for the input dimensions is large
and different, e.g. [100, 10000] for x1 and [10, 1000] for x3.

The solution to this pitfall is simple: Rescale a given problem in all its input
dimensions to a small and identical range, e. g., either to [0,1] or to [-1,1] for all xi.

3.4.2 Logarithmic Transform for Large Output Ranges

Another pitfall are large output ranges in objective or constraint functions. As an
example consider the function

f(x) = ex
2

(3.2)

which has small values < 10 in the interval [-1,1] around its minimum, but quickly
grows to large values above 8000 at x = 3. If we fit the original function with a
cubic RBF model using the green sample points shown in Fig. 3.2, we see in the
left plot an oscillating behavior in the RBF function. This results in a large RMSE
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Figure 3.2: The influence of large output ranges. Left: Fitting the original function with a cubic
RBF model. Right: Fitting the plog-transformed function with an RBF model and transforming
the fit back to original space with plog−1.

(approximation error). The reason is that the RBF model tries to avoid large slopes.
Instead the fitted model is similar to a spline function. Therefore it is a useful
remedy to apply a logarithmic transform which puts the output into a smaller range
and results in smaller slopes. Regis and Shoemaker [145] define the function

plog(y) =

{
+ ln(1 + y), if y ≥ 0,

− ln(1− y), if y < 0,
(3.3)

which has – in contrast to the plain logarithm – no singularities and is strictly
monotonous for all y ∈ R. The RBF model can perfectly fit the plog-transformed
function. Afterward, we transform the fit with plog−1 back to the original space and
the back-transform takes care of the large slopes. As a result, we get a much smaller
approximation error RMSE in the original space, as the right-hand side of Fig. 3.2
shows.

We will apply the plog-transform only to functions with steep slopes in our
surrogate-assisted optimization SACOBRA. For functions with flat or constant slope
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(e. g. linear functions) our experiments have shown that – due to the nonlinear nature
of plog – the RBF approximation for plog(f) is less accurate.

3.5 Methods

A constrained optimization problem can be defined by the minimization of an ob-
jective function f subject to equality and inequality constraint functions as defined
in Eq. (4.1). In this chapter we only consider minimization problems with inequality
constraints:

Minimize f(~x), ~x ∈ [~l, ~u] ⊂ Rd (3.4)

subject to gj(~x) ≤ 0, j = 1, 2, . . . ,m,

where ~l is the lower bound of the search space S ⊆ Rd and the ~u is the upper
bound. Maximization problems can be transformed to minimization without loss of
generality.

3.5.1 COBRA

The COBRA algorithm has been developed by Regis [141] with the aim of solving
constrained optimization tasks with severely limited budgets. The main idea of CO-
BRA is to do most of the costly optimization on surrogate models (RBF models,
both for the objective function f(.) and the constraint functions gj(.)). This algo-
rithm was reimplemented in R [136] with a few modifications [97, 98]. A short review
of this algorithm is given in the following.

COBRA starts by generating an initial population P with ninit points (i. e. a
random initial design3, see Fig. 3.3) to build the first set of surrogate models . The
minimum number of points is ninit = d + 1, but usually a larger choice ninit = 3d
gives better results, where d is the dimension of the problem.

Until the budget is exhausted, the following steps are iterated on the current
population P = {~x1, . . . , ~xn}: The constrained optimization problem is executed by
optimizing on the surrogate functions : That is, the true functions f, g1, . . . , gm are
approximated with RBF surrogate models s

(n)
0 , s

(n)
1 , . . . , s

(n)
m , given the n points in

the current population P . In each iteration the COBRA algorithm solves with any

3Usually a Latin hypercube sampling (LHS).
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Figure 3.3: COBRA flowchart.

standard constrained optimizer4 the constrained surrogate subproblem

Minimize s
(n)
0 (~x) (3.5)

subject to ~x ∈ [~l, ~u] ⊂ Rd,

s
(n)
j (~x) + δ(n) ≤ 0, j = 1, 2, . . . ,m

ρ(n) − ||~x− ~xp|| ≤ 0, p = 1, . . . , n.

4Regis [141] uses MATLAB’s fmincon, an interior-point optimizer, which is not available in
the R environment. In our COBRA implementation we use mostly Powell’s COBYLA, but other
constrained optimizer like ISRES are implemented in our R-package https://cran.r-project.

org/web/packages/SACOBRA as well.
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Compared to the original problem in Eq. (3.4) this subproblem uses surrogates and it
contains two new elements δ(n) and ρ(n) which are explained in the next subsections.
Before going into these details let us finish the description of the main loop: The
optimizer returns a new solution ~xnew = ~xn+1. If ~xn+1 is not feasible, a repair
algorithm RI2, described in [98], tries to replace it with a feasible solution in the
vicinity.5 In any case, the new solution ~xn+1 is evaluated on the true functions
f, g1, . . . , gm. It is compared to the best feasible solution found so far and replaces it
if it is better. The new solution ~xn+1 is added to the population P = {~x1, . . . , ~xn+1}
and the next iteration starts with n incremented by one.

Distance Requirement Cycle

COBRA [141] applies a distance requirement factor which determines how close the
next solution ~xn+1 ∈ Rd is allowed to be to all previous ones. The idea is to avoid
frequent updates in the neighborhood of already visited points. The distance require-
ment can be passed by the user as external parameter vector Ξ = 〈ξ(1), ξ(2), . . . , ξ(κ)〉
with ξ(i) ∈ R≥0. In each iteration n, COBRA selects cyclically the next element
ρn = ξ(i) of Ξ and adds the constraints ||~x − ~xj|| ≥ ρn, j = 1, ..., n, to the set of
constraints. This measures the distance between the proposed infill solution and all n
previous infill points. The so-called distance requirement cycle (DRC) Ξ is a key idea
of COBRA, since small elements in Ξ lead to more exploitation of the search space,
while larger elements lead to more exploration. If the last element of Ξ is reached,
the selection starts with the first element again. The size of Ξ and its individual
components can be chosen arbitrarily.

Uncertainty of Constraint Predictions

COBRA [141] aims at finding feasible solutions by extensive search on the surrogate
functions. However, as the RBF models are probably not exact, especially in the
initial phase of the search, a factor6 δ(n) is used to handle wrong predictions of the
constraint surrogates. Starting with δinit = 0.005 · l, where l is the length of the
smallest side of the search space, a point ~x is said to be feasible in iteration n if

s
(n)
j (~x) + δ(n) ≤ 0 ∀ j = 1, . . . ,m (3.6)

5RI2 is only rarely invoked on the G-problem benchmark but more often in the MOPTA08 case.
6The parameter used as a margin of uncertainty is originally called ε(n) in [141] but here we use

δ(n) to avoid confusion with equality margin parameter in Ch. 4.
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Table 3.1: Adaptive control elements of the SACOBRA algorithm that were in previous work
on the COBRA algorithm either manually adjusted for each problem or not present at all. In
contrast to this, SACOBRA always starts with the same settings and adjusts the elements either
automatically (once at the start) to the problem at hand or adaptively (specific to the problem and
changable during iterations).

Element [Regis14] [Koch14,15] SACOBRA
[141] [97, 98] [this work]

Input rescaling always never always
Constraint normalization manually manually automatic (Eq. (3.7))

DRC adjustment manually manually automatic (acc. to F̂R)
Random start probability never never adaptive (acc. to feasibility rate)
Objective transform plog manually manually adaptive (Q-value, Eq. (3.8))

holds. That is, we tighten the constraints by adding the factor δ(n) which is adapted
during the search. The δ(n)-adaptation is done by counting the feasible and infeasible
infill points Cfeas and Cinfeas over the last iterations. When these counters reach the
threshold for feasible or infeasible solutions, Tfeas or Tinfeas, respectively, we divide or
multiply δ(n) by 2 (up to a given maximum δmax). When δ(n) is decreased, solutions
are allowed to move closer to the real constraint boundaries (the imaginary boundary
is relaxed), since the last Tfeas infill points were feasible. Otherwise, when no feasible
infill point is found for Tinfeas iterations, δ(n) is increased in order to keep the points
further away from the real constraint boundary.

Repair Heuristic (RI2)

Sometimes the infill points returned by the internal optimizer are infeasible. A repair
algorithm is embedded in the COBRA-R optimization framework which intends to
repair infill points with a slight infeasibility by guiding them to the feasible region.
The repair algorithm RI-2 used in COBRA-R is described and discussed in detail by
Koch et al. [98]. It is worthwhile to mention that the repair algorithm is performed
on the surrogate models, so no real function evaluations are necessary for this repair.

3.5.2 SACOBRA

COBRA achieves good results on most of the G-problems and on MOPTA08 as
studies from Regis [141] and also studies from Koch et al. [97, 98] have shown.
However, it was necessary in all the mentioned works [141, 97, 98] to carefully adjust
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3.5. METHODS

Algorithm 1 SACOBRA. Input: Objective function f , set of constraint function(s)

g = (g1, . . . , gm) : [~a,~b] ⊂ Rd → R (see Eq. (4.1)), initial starting point ~xinit ∈ [~a,~b],
maximum evaluation budget Nmax. Output: The best solution ~xbest found by the
algorithm.

1: function SACOBRA(f,g, ~xinit, Nmax)
2: Rescale the input space to [−1, 1]d

3: Generate a random initial population: P ← {~x1, ~x2, · · · , ~x3·d}
4: (F̂R, ĜRi)← AnalyseInitialPopulation(P, f,g)

5: g← AdjustConstraintFunctions(ĜRi, g)

6: Ξ← AdjustDRC(F̂R)
7: Q← AnalysePlogEffect(f, P, ~xinit)
8: ~xbest ← ~xinit
9: while (budget not exhausted, |P | < Nmax) do

10: n← |P |
11: if (Q > 1) then
12: f()← plog(f()) . see function plog in Eq. (3.3)
13: end if
14: Build surrogate models ~s (n)=(s

(n)
0 , s

(n)
1 , · · · , s(n)m ) for (f, g1, · · · , gm)

15: Select ρn ∈ Ξ and δ
(n)
i according to COBRA base algorithm

16: ~xstart ← RandomStart(~xbest, Nmax)
17: ~xnew ← OptimCOBRA(~xstart, ~s

(n)) . see Eq. (3.5)
18: Evaluate ~xnew on the real functions f,g
19: if (|P | mod 10 == 0) then . every 10th iteration
20: Q← AnalysePlogEffect(f, P, ~xnew)
21: end if

22: ~xnew ← repairRI2(~xnew) .
see Koch et al. [98] for de-
tails on RI2 (repair algo)

23: (P, ~xbest)← updateBest(P, ~xnew, ~xbest)
24: end while
25: return ~xbest
26: end function

27: function updateBest(P, ~xnew, ~xbest)
28: P ← P ∪ {~xnew}
29: if (~xnew is feasible AND ~xnew < ~xbest ) then
30: return (P, ~xnew)
31: end if
32: return (P, ~xbest)
33: end function
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Algorithm 2 SACOBRA adjustment functions

1: function AnalyseInitialPopulation(P, f,g)

2: F̂R← max
P

f(P )− min
P

f(P ) . range of objective function

3: ĜRi ← max
P

gi(P )− min
P

gi(P ) ∀i = 1, . . . ,m

4: end function

5: function AdjustConstraintFunction(ĜRi,g)

6: gi()← gi() ·
avg(ĜRi)

ĜRi
∀i = 1, . . . ,m . see Eq. (3.7)

7: return g
8: end function

9: function AdjustDRC( F̂R)

10: if F̂R > FRl then . Threshold FRl = 1000
11: Ξ← Ξs ← 〈0.001, 0.0〉
12: else
13: Ξ← Ξl ← 〈0.3, 0.05, 0.001, 0.0005, 0.0〉
14: end if
15: end function

16: function AnalysePlogEffect(f, P, ~xnew) . ~xnew /∈ P
17: Sf ← surrogate model for f(.) using all points in P
18: Sp ← surrogate model for plog(f(.)) using all points in P . see Eq. (3.3)

19: E ← E ∪
{ |Sf (~xnew)− f(~xnew)|
|plog−1 (Sp(~xnew))− f(~xnew)|

}
.
E, the set of approxima-
tion error ratios, is initially
empty

20: return Q = log10 (median(E))
21: end function

38



3.5. METHODS

Rescale in-
put space

Generate
& evaluate

initial design

Adjust con-
straint

function(s)

Adjust DRC
Run repair
heuristic

~xnew
repaired or
feasible?

Update the
best solution

Budget
exhausted?

Online ad-
justment of

fitness function

Fit RBF
surrogates of
objective and
constraints

Select start
point (RS)

Run opti-
mization on
surrogates

Add ~xnew to
the population

Evaluate
~xnew on real

functions

Yes No

No

Yes

Figure 3.4: SACOBRA flowchart.

the parameters of the algorithm to each problem. Sometimes it was even required
to modify the problem (a) by applying a plog-transform (Eq. (3.3)) to the objective
function or linear transformations to the constraints or (b) by rescaling the input
space. In real black box optimization all these adjustments would probably require
knowledge of the problem or several executions of the optimization code otherwise.

The main contribution of the work of Bagheri et al. [19] which is described in
this chapter is to present with SACOBRA an enhanced COBRA algorithm which
has no needs for manual adjustment to the problem at hand. Instead, SACOBRA
during its execution extracts information about the specific problem (either after
initialization or online during iterations) and takes appropriate internal measures to
adjust its parameters or to transform functions. Table 3.1 lists the elements which
were manually adjusted in the former works [97, 98, 141] and which are now in
SACOBRA under adaptive or automatic control. These elements will be described
in more detail in the following subsections.
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Algorithm 3 RandomStart (RS). Input: ~xbest: the ever-best feasible solution.
Parameters: restart probabilities p1 = 0.125, p2 = 0.4. Output: New starting point
~xstart.

1: function RandomStart( ~xbest)
2: if (|Pfeas|/|P | < 0.05) then . if less than 5% of the population are feasible
3: p← p2
4: else
5: p← p1
6: end if
7: ε← a random value ∈ [0, 1]
8: if (ε < p) then
9: ~xstart ← a random point in search space

10: else
11: ~xstart ← ~xbest
12: end if
13: return (~xstart)
14: end function

Fig. 3.4 shows the flowchart of SACOBRA where the five new elements compared
to COBRA are highlighted as gray boxes. The complete SACOBRA algorithm is
presented in detail in Algorithm 1 – 3. In the following we describe the five new
elements in the order of their appearance:

Rescaling the Input Space

The search space [~l, ~u] in Eq. (3.4) is rescaled to [−1,+1]d. That is, the function

f(~x) is replaced with function f(~k(~x)) where ~k(~x) rescales from ~x ∈ [−1,+1]d to

[~l, ~u]. The same rescaling occurs for constraint functions gj(~x). This rescaling is
done before the initialization phase. It avoids numerical instabilities caused by high
values of ~x and ill-conditioning as shown in Sec. 3.4.1.

Adjusting Constraint Functions (aCF)

The function AdjustConstraintFunction in Algorithm 2 aims to normalize the
constraint functions in such a way that they have equal importance for the optimizing
algorithm. Firstly, each constraint is divided by ĜRi. The range ĜRi for the ith
constraint is estimated from the initial population in Algorithm 2. This transforms
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3.5. METHODS

the range of each constraint approximately to an interval of length one around the
zero point, of course without shifting the zero point, since this defines the boundary
between feasible and infeasible region. Secondly, every constraint is multiplied by
the average constraint range,

avg
(
ĜRi

)
=

1

m

m∑

i=1

ĜRi, (3.7)

in order to keep the balance between objective and constraint functions. To un-
derstand this second point, consider the following example: Assume an objective
function with FR = 1000 and two constraints with the ranges [−1000, 1000] and
[−800, 800]. After the first normalization step both constraints are in the range
[−0.5, 0.5]. The optimizer is in danger to pay little attention to the constraints since

their values are much smaller than the objective value. Multiplying by avg
(
ĜRi

)

brings both constraints to the range [−900, 900] and thus reconstitutes approximately
the relative balance between constraints and objective.

Adjusting DRC Parameter (aDRC)

DRC adjustment (aDRC) is done after the initialization phase. Our experimental
analysis showed that large DRC values can be harmful for problems with a very
steep objective function, because a larger move in the input space yields a very large
change in the output space. As shown in Sec. 3.4.2 already, the combination of points
with large change in output space and points with small change may result in oscil-
lating behavior of the RBF model. This leads in consequence to large approximation
errors. Therefore, we developed an automatic DRC adjustment which selects the
appropriate DRC set according to the information extracted after the initialization
phase. Function AdjustDRC in Algorithm 2 selects the ’small’ DRC Ξs if the es-
timated objective function range F̂R is larger than a threshold, otherwise it selects
the ’large’ DRC Ξl.

Random Start Algorithm (RS)

Normally, COBRA starts its internal optimization from the current best point. With
RS (Algorithm 3), the optimization starts with a certain constant probability p1
from a random point in the search space. If the rate of feasible individuals in the
population P drops below 5%, we replace p1 with a larger probability p2. RS is
especially beneficial when the search gets stuck in local optima or when it gets stuck
in a region where no feasible point can be found.
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Online Adjustment of Fitness Function (aFF)

The analysis in Sec. 3.4.2 has shown that a fitness function f with steep slopes poses
a problem for RBF approximation. For some problems, modeling plog(f) instead
of f and transforming the RBF result back with plog−1 boosts up the optimization
performance significantly. On the other hand, the tests have shown that the plog-
transform is harmful for other problems. Therefore, a careful decision whether to
use plog or not should be made. The idea of the online adjustment algorithm (Al-
gorithm 2, function AnalyzePlogEffect) is the following: Given the population
P , we build RBFs for f and plog(f), take a new point ~xnew not yet added to P , and
calculate the ratio of approximation errors on ~xnew (line 19 of Algorithm 2). We do
this in every kth iteration (usually k = 10) and collect these ratios in a set E. If

Q = log10 (median(E)) (3.8)

is above 0, then the RBF for plog(f) is better in the majority of the cases. Otherwise,
the RBF on f is better.7 Step 11 of Algorithm 1 decides on the basis of this criterion
Q which function f is used as RBF surrogate in the optimization step. Note that
the decision for f taken in earlier iterations can be revoked in later iterations, if the
majority of the elements in E shows that now the other choice is more promising.
This completes the description of the SACOBRA algorithm.

3.6 Experimental Evaluation

3.6.1 Experimental Setup

We evaluate SACOBRA by using a subset of a well-studied test suite of G-problems
described in [60, 114]. The diversity of the G-problem characteristics makes them
a very challenging benchmark for optimization techniques (see Fig. A.1 in Ap-
pendix. A). In Tab. 3.2 we show and explain features of these problems. The features
ρ, FR and GR (defined in Tab. 3.2) are measured by Monte Carlo sampling with
106 points in the search space of each G-problem.

For problems with equality constraints including G03, G05 and G11 the equal-
ity constraints are transformed to inequality constraints by replacing each equality
operator with an inequality operator of the appropriate direction [141]. The appro-

7Our experimental analysis on the G-problem test suite will show (Sec. 3.6.4) that a threshold 1
is slightly more robust than 0. We use this threshold 1 in step 11 of Algorithm 1, but the difference
to threshold 0 is only marginal.
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3.6. EXPERIMENTAL EVALUATION

Table 3.2: Characteristics of the G-functions with inequality constraints: d: dimension, type:
type of fitness function, ρ: feasibility rate (%), FR: range of the fitness values, GR: ratio of largest
to smallest constraint range, LI: number of linear inequalities, NI: number of nonlinear inequalities,
a: number of constraints active at the optimum.

Fct. d type ρ FR GR LI NI a

G01 13 quadratic 0.0003% 298.14 1.969 9 0 6
G02 10 nonlinear 99.997% 0.57 2.632 1 1 1
G03mod 20 nonlinear 2.46e-6% 92684985979.23 1.000 0 1 1
G04 5 quadratic 26.9217% 9832.45 2.161 0 6 2
G05mod 4 nonlinear 0.0919% 8863.69 1788.74 2 3 3
G06 2 nonlinear 0.0072% 1246828.23 1.010 0 2 2
G07 10 quadratic 0.0000% 5928.19 12.671 3 5 6
G08 2 nonlinear 0.8751% 1821.61 2.393 0 2 0
G09 7 nonlinear 0.5207% 10013016.18 25.05 0 4 2
G10 8 linear 0.0008% 27610.89 3842702 3 3 6
G11mod 2 linear 66.7240% 4.99 1.000 0 1 1

priate direction is that direction which makes this side of the hypersurface infeasible
that contains the unconstrained optimum. (The hypersurface is the set of all points
where the constraint value is zero.) For suitable objective functions this forces the
constrained optimum to be exactly on the hypersurface – the same as it would be
for the equality constraint.8 The modified problems G03mod, G05mod and G11mod
are described in Appendix. A. In Ch. 4 we introduce an equality handling approach
for SACOBRA.

The MOPTA08 benchmark by Jones [92] is a substitute for a high-dimensio-
nal real-world problem encountered in the automotive industry: It is a problem
with d = 124 dimensions and with 68 constraints. The problem should be solved
within 1860 = 15 · d function evaluations. This corresponds to about one month of
computation time on a high-performance computer for the real automotive problem
since the real problem requires time-consuming crash-test simulations.

8This approach (which differs from the approach taken in the CEC 2006 competition [107]) will
not work for every objective function. It will fail for objective functions with minima on both sides
of the constraint hypersurface. See Sec. 3.7.2 for further discussion on this. But the approach works
for the G-problems considered here.
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Table 3.3: The default parameter setting used for COBRA. l is the length of the smallest side of
the search space (after rescaling, if rescaling is done). The settings for Tfeas, Tinfeas proportional

to
√
d (d: problem dimension) are taken from [141].

parameter
value

COBRA SACOBRA

δinit 0.005 · l 0.005 · l
δmax 0.01 · l 0.01 · l
Tfeas b2

√
dc b2

√
dc

Tinfeas b2
√
dc b2

√
dc

Ξ {0.3, 0.05, 0.001, 0.0005, 0.0} adaptive
plog(.) never adaptive
aCF never always
RS never adaptive

The COBRA-R optimization framework allows the user to choose between sev-
eral initialization approaches: Latin hypercube sampling (LHS), Biased and Op-
timized [97]. While LHS initialization is always possible (and is in fact used for all
runs of the G-problem benchmark with ninit = 3d), the other algorithms are only
possible if a feasible starting point is provided. In Regis’ COBRA [141] the initial-
ization is always done randomly by means of Latin hypercube sampling for functions
without feasible starting point.

In the case of MOPTA08 a feasible point is known. We use the Optimized
initialization approach, where an initial optimization run is started from this feasible
point with the Hooke & Jeeves pattern search algorithm [83]. This initial run provides
a set of ninit = 500 points in the vicinity of the feasible point. This set serves as
initial design for MOPTA08.

Tab. 3.3 shows the parameter settings used for COBRA and SACOBRA in the
experiments reported here. All G-problems were optimized in SACOBRA with ex-
actly the same initial parameter settings. In contrast to that, the COBRA results
in Regis [141] and our previous work [97, 98] were obtained by manually activating
plog for some G-problems and by manually adjusting constraint factors and other
parameters. – We note in passing that SACOBRA has additionally about9 15 fixed
parameters, some of which are shown in Tab. 3.3, and some additional parameters

9It depends a bit how these parameters are counted, e. g. whether the 0.05 in Algorithm 3 is
counted as a fixed parameter or not.
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3.6. EXPERIMENTAL EVALUATION

like ninit, p1 and p2 are mentioned in the text. However, these parameters are kept
constant for all experiments shown below.

3.6.2 Convergence curves

Figures 3.5 – 3.7 show the SACOBRA convergence plots for all G-problems. The
red square is the result reported by Regis [141] after 100 iterations. If no red square
is shown, this function was not covered in [141]. The blue horizontal lines show two
different success thresholds. The solid blue line shows the success threshold τ = 0.05
considered here and the dashed blue line shows the success threshold τCEC = 0.0001
suggested in CEC 2006 [107]. It is clearly visible that all problems except G02 are
solved in the majority of runs, if we define solved as a target error below τ = 0.05
in comparison to the true optimum. In some cases (G03mod, G05mod, G09, G10)
the worst error does not meet the target, but in the other cases it does. In most
cases, as indicated by the red squares, there is a clear improvement to Regis’ COBRA
results [141].

3.6.3 Performance profiles

The main result is shown in Fig. 3.8 which analyzes the impact of different elements
of SACOBRA on the G-problems. It shows the data profiles for different SACO-
BRA variants in comparison with the data profile for COBRA-R. COBRA-R is the
COBRA implementation from [97], i. e. SACOBRA with all extensions switched
off. These algorithms are performed on 330 different problems (11 test problems
from G-function suite which are initialized with 30 different initial design points).
COBRA-R was run with a fixed parameter set for all G-problems.10 We note in
passing that many fixed parameter settings were tested for COBRA from which the
one with the overall best results is reported. Other fixed parameter settings were
perhaps better on some of the runs but inevitably worse on other runs. In the end
a similar or slightly worse data profile for COBRA would emerge. We cannot be
absolutely sure that there might be another parameter setting with better results,
but the probability for such an event is from our experience pretty low. SACOBRA
increases significantly the success rate on the G-problem benchmark suite.

In addition, in Fig. 3.8 the effect of the five elements of SACOBRA is analyzed:
The data profiles with a

”
\“present the SACOBRA results when one specific of the

five SACOBRA elements is switched off. We see that the strongest effects occur

10In the previous work [97, 98] good results with COBRA are reported, but this was with varying
parameters and with tedious parameter tuning on each specific G-problem.
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Figure 3.5: SACOBRA optimization process for G01, G03mod, G04, and G05mod. The gray
curve shows the median of the error for 30 independent trials. The error is calculated with respect
to the true minimum f(~x∗). The gray shade around the median is showing the worst and the best
error. The error bars mark the 25% and 75% quartile. See text for explanation of red square and
blue horizontal lines.
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Figure 3.6: SACOBRA optimization process for G06–G11mod. The gray curve shows the median
of the error for 30 independent trials. The error is calculated with respect to the true minimum
f(~x∗). The gray shade around the median is showing the worst and the best error. The error bars
mark the 25% and 75% quartile. See text for explanation of red square and blue horizontal lines.
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Figure 3.7: SACOBRA optimization process for G02 in 10 and 20 dimensions. The gray curve
shows the median of the error for 30 independent trials. The error is calculated with respect to the
true minimum f(~x∗). The gray shade around the median is showing the worst and the best error.
The error bars mark the 25% and 75% quartile. See text for explanation of red square.

when rescaling is switched off (early iterations) or when aFF is switched off (later
iterations).

Fig. 3.9 shows that each of these elements has its relevance for some of the
G-problems: The full SACOBRA method is compared with other SACOBRA- or
COBRA-variants on 30 runs. Full SACOBRA is significantly better than each re-
duced SACOBRA or COBRA-variant at least for some G-problems (each column
has a dark cell). In addition, each G-problem benefits from one or more SACOBRA
extensions (each row has a dark cell). The only exception to this rule is G11mod, but
for a simple reason: G11mod is an easy problem which is solved by all SACOBRA
variants in each run, so none is significantly better than the others.

3.6.4 Fitness Function Adjustment

By comparing the convergence curves of G-functions we realized that applying the
logarithmic transform is strictly harmful for three of the G-functions, significantly
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Figure 3.8: Data profile of SACOBRA, SACOBRA\rescale (SACOBRA without rescaling the
input space), and other

”
\“-algorithms are with a similar meaning. The performance factor α is

the budget divided by d+ 1 where d is the individual dimension of each test problem (see Sec. 2.5
and Tab. 3.2).

beneficial for two other problems, and with negligible effect on the other problems.
Therefore, a careful selection should be done. Although we demonstrated in Sec. 3.4.2
that steep functions can be better modeled after the logarithmic transformation, it
is not trivial to define a correct threshold to classify steep functions. Also, there
is no direct relation between steepness of the function and the effect of logarithmic
transformation on optimization. We defined in Sec. 3.5.2 and Algorithm 2, function
AnalyzePlogEffect, a measure called Q in order to quantify online whether RBF
models with and without plog transformation are better or worse.

Here we test by experiments whether the Q-value does a good job. Fig. 3.10
shows the Q-value for all G-problems. The G-problems are ranked on the horizontal
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COBRA (Ξ = Ξs)

SACOBRA\aCF

SACOBRA\aFF

SACOBRA\aDRC

SACOBRA\RS

SACOBRA\rescale

G01
G02

G03mod
G04

G05mod
G06

G07
G08

G09
G10

G11mod
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Figure 3.9: Wilcoxon rank sum test, paired, one sided, significance level 5%. Shown is the p-value
for the hypothesis that for a specific G-problem the full SACOBRA method at the final iteration
is better than one of the other solvers shown along the y-axis. See Fig. 3.8 and Sec. 3.5.2 for
our naming conventions ’SACOBRA\rescale’ and similar. Significant improvements (p ≤ 5%) are
marked as cells with dark blue color.

axis according to the impact of logarithmic transformation of the fitness function on
the optimization outcome. This means that applying the plog-transformation has
the worst effect for modeling the fitness of G01 and the best effect for G03mod. We
measure the impact on optimization in the following way: For each G-problem we
perform 30 runs with plog inactive and with plog active. We calculate the median
of the final optimization error in both cases and take the ratio

R =
median(Eopt)

median(E
(plog)
opt )

. (3.9)
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Figure 3.10: Q-value (Eq. (3.8)) at the end of optimization for all G-problems. The G-problems
are ordered along the x-axis according to the R-value defined in Eq. (3.9) which measures the impact
of plog on the optimization performance. Any threshold for Q in [−1, 1] will clearly separate the
harmful from the beneficial problems. This figure shows that Q, which is available online, is a good
predictor of the impact of plog on the overall optimization performance.

Note that R is usually not available in normal optimization mode. If R is { close
to zero / close to 1 / much larger than 1 } then the effect of plog on optimization
performance is { harmful / neutral / beneficial }. It is a striking feature of Fig. 3.10
that the Q-ranks are very similar to the R-ranks.11 This means that the beneficial
or harmful effect of plog is strongly correlated with the RBF approximation error.

Our experiments have shown that for all problems with Q ∈ [−1, 1] the opti-
mization performance is only weakly influenced by the logarithmic transformation of
the fitness function. Therefore, in Step 19 of function AdjustFitnessFunction in
Algorithm 2, any threshold in [−1, 1] will work. We choose the threshold 1, because
it has the largest margin to the colored bars in Fig. 3.10.

11The only notable difference, namely the switch in the order of G07 and G10, can be seen as an
imperfection of measure R. Although G10 has rank 3 in R, it has weaker worst-case behavior than
G07 because two G10 runs never produce a feasible solution if plog is active.
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The G-problems for which plog is beneficial are G03mod and G09: These are ac-
cording to Tab.3.2 the two problems with the largest fitness function range FR, thus
strengthening our hypothesis from Sec. 3.4.2: For such functions a plog-transform
should be used to get good RBF-models. The G-problems for which plog is harmful
are G01, G07, and G10: Looking at the analytical form of the objective function in
those problems12 we can see that these are the only three functions being of quadratic
type (Table 3.2) and having no mixed quadratic terms. Those functions can be fitted
perfectly by the polynomial tail (Eq. (2.9)) in SACOBRA, if plog is inactive. With
plog they become nonlinear and a more complicated approximation by the radial
basis functions is needed. This results in a larger approximation error.

3.6.5 Comparison with Other Optimizers

Tab. 4.2 shows the comparison with different state-of-the-art optimizers on the G-
problem suite. While ISRES (Improved Stochastic Ranking [151]) and DE (Differen-
tial Evolution [31]) are the best optimizers in terms of solution quality, they are cited
in the relevant papers with a high number of function evaluations.13 SACOBRA has
on most G-problems (except G02) the same solution quality, only G09 and G10 are
very slightly worse. At the same time SACOBRA requires only a small fraction of
function evaluations (fe): roughly 1/1000 as compared to ISRES and RGA and 1/300
as compared to DE (row average fe in Table 4.2).

G02 is marked in grey cell color in Tab. 4.2 because it is not solved to the same
level of accuracy by most of the optimizers. ISRES and RGA (Repair GA [38]) get
close, but only after more than 300 000 fe. DE performs even better on G02, but
requires more than 200 000 fe as well. SACOBRA and COBRA cannot solve G02.

The results in column SACOBRA, DE and COBYLA are from our own calcu-
lation in R. The results in column COBRA, ISRES, RGA and CMA-ES were taken
from the papers cited. In two cases (red italic numbers in Table 4.2) the reported
solution is better than the true optimum, possibly due to a slight infeasibility. This
is explicitly stated in the case of ISRES [150, p. 288], because the equality con-

12The analytical form is available in the appendices of [150] or [151].
13Strictly speaking we do not know what the results of ISRES or other optimizers after 500

iterations would be, since such
’
early‘ results are not given in the papers. It is however well-known

that those algorithm usually need a larger number of iterations to get high-quality results. For two
algorithms, DE and COBYLA, we make a comparison with limited budgets in Fig. 3.11 below and
find this hypothesis confirmed.
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Table 3.4: Different optimizers: median (m) of best feasible results and (fe) average number of
function evaluations. Results from 30 independent runs with different random number seeds. Num-
bers in boldface (blue): distance to the optimum ≤ 0.001. Numbers in italic (red): reportedly
better than the true optimum. COBYLA sometimes returns slightly infeasible solutions (number
of infeasible runs in brackets).

Fct. Optimum
SACOBRA COBRA ISRES RGA 10% COBYLA DE CMAES
[this work] [141] [151, 150] [38] [131] (infeas) [31, 187] [6]

G01 -15.0
m -15.0 NA -15.0 -15.0 -13.83 -15.0 NA
fe 100 NA 350000 95512 12743 59129 NA

G02 -0.8036
m -0.3466 NA -0.7931 -0.7857 -0.197 (5) -0.8036 NA
fe 400 NA 349600 331972 97391 226994 NA

G03mod -1.0
m -1.0 -0.09 -1.001 -0.9999 -1.0 (3) -0.9999 NA
fe 300 100 349200 399804 31069 211966 NA

G04 -30665.539
m -30665.539 -30665.15 -30665.539 -30665.539 -30665.539 -30665.539 NA
fe 200 100 192000 26981 418 33963 NA

G05mod 5126.497
m 5126.498 5126.51 5126.497 5126.498 5126.498 (7) 5126.498 NA
fe 200 100 195600 39459 194 13375 NA

G06 -6961.81
m -6961.81 -6834.48 -6961.81 -6961.81 -6961.81 (3) -6961.81 -6961.81
fe 100 100 168800 13577 134 2857 1060

G07 24.306
m 24.306 25.32 24.306 24.471 24.306 (6) 24.306 24.306
fe 200 100 350000 428314 13072 94313 11283

G08 -0.0958
m -0.0958 -0.1 -0.0958 -0.0958 -0.0282 -0.0958 NA
fe 200 100 160000 6217 553 990 NA

G09 680.630
m 680.761 3953.97 680.630 680.638 680.630 (2) 680.630 680.630
fe 300 100 271200 388453 8973 34836 4106

G10 7049.248
m 7049.253 18031.74 7049.248 7049.566 7064.8 (22) 7049.248 7049.248
fe 300 100 348800 572629 270840 74875 18781

G11mod 0.75
m 0.75 NA 0.75 0.75 0.75 0.75 NA
fe 100 NA 137200 7215 11788 2190 NA

average fe 218 100 261127 210012 40652 68681 8807
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Figure 3.11: Comparing the performance of the algorithms SACOBRA, COBRA (with rescale),
Differential Evolution (DE), and COBYLA on optimizing all G-problems G01-G11mod (30 runs
with different initial random populations).

straint h(x) = 0 of G03 is transformed into an approximate inequality |h(x)| ≤ ε
with ε = 0.0001.

COBRA [141] comes close to SACOBRA in terms of efficiency (function evalua-
tions), but it has to be noted that [141] does not present results for all G-problems
(G01 and G11mod are missing and G02 results are for 10 dimensions, but the com-
monly studied version of G02 has 20 dimensions). Furthermore, for many G-problems
(G03mod, G06, G07, G09, G10) a manual transformation of the original fitness func-
tion or the constraint functions was done in [141] prior to optimization. SACOBRA
starts without such transformations and proposes instead self-adjusting mechanisms
to find suitable transformations (after the initialization phase or on-line).

COBYLA often produces slightly infeasible solutions, these are the numbers in
brackets. If such infeasible runs occur, the median was only taken over the remaining
feasible runs, which is in principle too optimistic in favor of COBYLA.

CMA-ES [6] has only results for the subset of 4 unimodal objective functions
within the set of 11 G-problems. On this subset it shows the best results of all non-
COBRA optimizers in terms of function evaluations, although COBRA and SACO-
BRA are even better. It has to be noted that the algorithm of [6] has the freedom to
take a different number of objective and constraint function evaluations. Table 4.2
shows the bigger of those values (the number of constraint function evaluations). The
number of objective function evaluations is smaller by a factor of 3–5. In addition,
the results in [6] were obtained under stricter

”
solved“-thresholds τ ′ ∈ [10−7, 10−4]

while SACOBRA used τ = 0.05 (see Sec. 2.5).
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3.6. EXPERIMENTAL EVALUATION

Table 3.5: Number of infeasible runs among 330 runs returned by each method on the G-problem
benchmark. A run is infeasible if the final best solution is infeasible.

method infeasible runs functions

SACOBRA 0 –
SACOBRA\ rescale 4 G05mod
SACOBRA\ RS 13 G03mod, G05mod, G07,G09,G10
SACOBRA\ aDRC 0 –
SACOBRA\ aFF 1 G10
SACOBRA\ aCF 0 –
COBRA (no rescale) 37 G03mod,G05mod,G07,G09,G10
COBRA (rescale) 23 G05mod,G07,G09,G10
COBYLA 48 G02,G03mod,G05mod,G06,G07,G09,G10
DE 0 –

Fig. 3.11 shows the comparison of SACOBRA and COBRA with other well-known
constraint optimization solvers available in R, namely DE14 and COBYLA.15 The
right plot in Fig. 3.11 shows that DE achieves very good results after many function
evaluations (α > 800), in accordance with Table 4.2. But the left plot in Fig. 3.11
shows that DE is not really competitive if very tight bounds on the budget are set.
This result proves only that DE has inferior results to SACOBRA on the G-problem
suite for low budgets, but we believe that similar results would also emerge for ISRES,
the other high-quality optimizer.

Table 3.5 shows that SACOBRA significantly reduces the number of infeasible
runs as compared to COBRA. Most of the SACOBRA variants have less than 2%
infeasible runs whereas COBRA has 7-11%. The full SACOBRA method has no
infeasible runs at all.

3.6.6 MOPTA08

Fig. 3.12 shows that we get good results with SACOBRA on the high-dimensional
MOPTA08 problem (d = 124) as well. A problem is said to be solved in the data

14R-package DEoptimR, available from https://cran.r-project.org/web/packages/DEoptimR
15R-package nloptr, available from https://cran.r-project.org/web/packages/nloptr
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Figure 3.12: Data profile for MOPTA08: Same as Fig. 3.8 but with 10 runs on MOPTA08 with
different initial designs. The curves for SACOBRA without rescale, aDRC, aFF, or aCF are identical
to full SACOBRA, since in the case of MOPTA08 the objective function and the constraints are
already normalized.

profile of Fig. 3.12 if it is not more than τ = 0.4 away from the best value obtained
in all runs by all algorithms.

Table 3.6 shows the results after 1000 iterations for Regis’ recent trust-region
based approach TRB [142] and our algorithms. We can improve the already good
mean best feasible results of 227.3 and 226.4 obtained with COBRA [98] and
TRB [142], resp., to 223.3 with SACOBRA. The reason that SACOBRA\RS is
slightly better than COBRA [98] is that SACOBRA uses an improved DRC.

3.7 Discussion

3.7.1 SACOBRA and Surrogate Modeling

SACOBRA is an algorithm capable of self-adjusting its parameters to a wide-ranging
set of problems in constraint optimization. We analyzed the different elements of
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Table 3.6: Comparing different algorithms on optimizing MOPTA08 after 1000 function evalua-
tions.

Algorithm best median mean worst

COBRA [98] 226.3 227.0 227.3 229.5
TRB [142] 225.5 226.2 226.4 227.4
SACOBRA\RS 222.4 223.1 223.6 224.8
SACOBRA 223.0 223.3 223.3 223.8

SACOBRA and their importance for efficient optimization on the G-problem bench-
mark. It turned out that the two most important elements are rescaling (especially
in the early phase of optimization) and automatic fitness function adjustment (aFF,
especially in the later phase of optimization). Exclusion of either one of these two
elements led to the largest performance drop in Fig. 3.8 compared to the full SACO-
BRA algorithm.

We may step back for a moment and ask why these two elements are important.
Both of them are directly related to accurate RBF modeling, as our analysis in
Sec. 3.4 has shown. If we do not rescale, then the RBF model for a problem like
G10 will have large approximation errors due to numeric instabilities. If we do not
perform the plog-transformation in problems like G03mod with a very large fitness
range FR (Table 3.2) and thus very steep regions, then such problems cannot be
solved. This can be attributed to large RBF approximation errors as well.

We diagnosed that the quality of the surrogate models is in relationship with the
correct choice of the DRC parameter, which controls the step size in each iteration.
It is more desirable to choose a set of smaller step sizes for functions with steep
slopes. An automatic adjustment step in SACOBRA can identify steep functions
after a few function evaluations and decide whether to use a large DRC or a small
one.

For the G-problem suite the constraint functions vary in number, type and range.
Our experiments showed that handling all constraints can be challenging, especially
when the constraint functions have widely different ranges. For that reason, we
considered an automatic adjustment approach to normalize all the constraints by
using the information gained about the constraints after the evaluation of the ini-
tial population. The SACOBRA algorithm also benefits from using a random start
mechanism to avoid getting stuck in a local optimum of the fitness surrogate.
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3.7.2 Limitations of SACOBRA

Highly Multimodal Functions

Surrogate models like RBF are a great technique for efficient optimization and of-
ten (not always) it is only with their help possible to solve constrained optimization
problems in less than, say, 1000 iterations. But a current limitation for surrogate
modeling are highly multimodal functions. G02 is such a function, it has a large
number of local minima. Those functions have usually many ’ups and downs’ (infor-
mally speaking). If a surrogate model interpolates isolated points of such a function,
it tends either to overshoot in other parts of the function (if the isolated points are
close to each other) or it puts a smooth but inaccurate surface through the points
(if the isolated points are sparsely scattered over the search volume). To the best
of our knowledge, highly multimodal problems cannot be solved so far by surrogate
models, at least not for higher dimensions with high accuracy. This is also true for
SACOBRA. Usually the RBF model has a good approximation only in the region
of one of the local minima and a bad approximation in the rest of the search space.
Further research on highly multimodal function approximation is required to solve
this problem.

G02 is one of the few problems in the G-problem suite which is scalable. Our
algorithm has severe difficulty to solve the 20-dimensional G02 (which is the standard
version). We were curious to see if SACOBRA can handle G02 in lower dimensions
where the complexity of the fitness function is dramatically reduced. That’s why
we applied our algorithm on the 10-dimensional G02 as well (Fig. 3.7). But Fig. 3.7
shows that there is only very small improvement when scaling down to 10 dimensions.

Non-smooth or Noisy Functions

The G-problem test suite – although challenging due to the very diverse characteris-
tics of the problems – is idealizing or too simplicistic with respect to one feature: The
functions in the problems are all relatively smooth and noise-free. Real-world prob-
lems are often a) non-smooth (locally garbled) or b) noisy or c) the sample points
can only be set with a certain uncertainty. Any of these three factors will contribute
to a common difficulty for RBF surrogate models: If functions in such problems are
sampled only very sparsely with few sample points, it becomes very hard to build
reliable models.

It is a subject for ongoing research to quantify whether the ideas of SACOBRA
developed here carry on for the case of non-smooth functions as well. It is well known
that RBF models are ideal candidates for (smooth) local polynomial models. If the
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functions are non-smooth or noisy, it is likely that RBF models due to their interpo-
lating behavior degrade rapidly (due to overfitting). We believe that the same would
apply to Kriging surrogate models or other interpolating models 16. An interesting
approach for further research would be to replace the interpolating surrogate mod-
els by approximating (non-interpolating) surrogate models to avoid overfitting. In
the area of computer graphics there have been good results for approximating RBF
models build from noisy data of a 3D-scanner [33]. A challenge for optimization un-
der restricted budgets will be to find the right degree of approximation (smoothing
factor) from only relatively few samples.

Equality Constraints

The current approach in COBRA (and in SACOBRA as well) can only handle in-
equality constraints. The reason is that equality constraints do not work together
with the uncertainty mechanism of Sec. 3.5.1. A reformulation of an equality con-
straint h(x) = 0 as inequality |h(x)| ≤ 0.0001 as in [107, 150] is not well-suited
for COBRA and for RBF modeling.17 We used in this work the same approach as
Regis [141] and replaced each equality operator with an inequality operator of the
appropriate direction (see Sec. 3.6.1). The equality-to-inequality transformation of
constraints severely changes the nature of the optimization problem since it funda-
mentally changes the feasible volume. Therefore, we renamed the modified problems
by adding a mod as suffix to clearly distinguish between them. It has to be noted
that such a modification is not viable for problems with more complicated objec-
tive functions having minima on both sides of an equality constraint hypersurface.
An equality handling technique for SACOBRA was developed to solve this problem
in [16] and will be described in detail in Ch. 4.

3.7.3 Comparison of Solution Qualities

A final cautionary remark is necessary here: The term
”

solved“ is defined quite
differently in different works and this makes it sometimes difficult to compare results
from different papers. While we have for example chosen the threshold τ = 0.05, the
CEC 2006 competition had a stricter threshold τ = 0.0001. A fair comparison would
either test at same τ -levels (we could do this here only for DE and COBYLA, see

16In Kriging metamodels, which follow a kernel-based approach similar to RBF, but are motivated
by statistical assumptions, recently some noise handling mechanisms have been addressed, such as
the nugget effect [99].

17The reason is that RBF modeling is not very accurate for modeling functions with sharp ridges,
as in the case of |h(x)| ≤ 0.0001.

59



Fig. 3.11) or use other measures avoiding the solved criterion, e. g. mean or median
error at different iterations.

3.8 Conclusion

We summarize our discussion by stating that a good understanding of the capabilities
and limitations of RBF surrogate models – which is not often undertaken in the
surrogate literature we are aware of – is an important prerequisite for efficient and
effective constrained optimization.

The analysis of the errors and problems occurring initially for some G-problems in
the COBRA algorithm have given us a better understanding of RBF models and led
to the development of the enhancing elements in SACOBRA. By studying a widely
varying set of problems we observed certain challenges when modeling very steep
or relatively flat functions with RBF. This can lead to large approximation errors.
SACOBRA tackles this problem by making use of a conditional plog-transform for
the objective function. We proposed a new online mechanism to let SACOBRA
decide automatically when to use plog and when not.

Numerical issues to train RBF models can also occur in the case of a very large
input space. A simple solution to this problem is to rescale the input space. Although
many other optimizers recommend to rescale the input, this work has shown the
reason behind it and the importance of it by evidence. Therefore, we can answer
our first research question Q3.1 positively: Numerical instabilities can occur in RBF
modeling, but it is possible to avoid them with the proper function transformations
and search space adjustments.

SACOBRA benefits from all its extension elements introduced in Sec. 3.5.2. Each
element boosts up the optimization performance on a subset of all problems without
harming the optimization process on the other ones. As a result, the overall opti-
mization performance on the whole set of problems is improved by 50% as compared
to COBRA (with a fixed parameter set). About 90% of the tested problems can
be solved efficiently by SACOBRA (Fig. 3.8).18 In this chapter the main contribu-
tion is to propose with SACOBRA the first surrogate-assisted constrained optimizer
which solves efficiently the G-problem benchmark and requires no parameter tun-
ing or manual function transformations. Therefore, we can conclude a result to
Q3.3: SACOBRA requires less than 500 function evaluations to solve 10 out

18This is for the case of threshold τ = 0.05 used in our definition of solved problems. If we use
the stricter threshold τCEC = 0.0001 used in the CEC 2006 competition, we can solve 76% of all
tested problems.
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of 11 G-problems (exception: G02) with similar accuracy as other state-of-the-art
algorithms. Those other algorithms often need more function evaluations by a fac-
tor between 300 and 1000. The solved -condition was defined slightly different here
than in the CEC 2006 competition (see Sec. 3.7.3). Under this condition it could be
shown that SACOBRA can be used to solve a wide range of constrained optimization
problems with nonlinear constraints Q3.2.

Future research in this area may be devoted to overcome the current limitations
of SACOBRA mentioned in Sec. 3.7.2. As we show in the next chapter the equality
constraint limitation is now mainly solved [16], therefore the challenging remaining
limitations are: (a) highly multimodal functions like G02 and (b) non-smooth or
noisy functions or functions with a certain level of uncertainty.
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