
Self-adjusting surrogate-assisted optimization techniques for expensive
constrained black box problems
Bagheri, S.

Citation
Bagheri, S. (2020, April 8). Self-adjusting surrogate-assisted optimization techniques for
expensive constrained black box problems. Retrieved from https://hdl.handle.net/1887/87271
 
Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/87271
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/87271


 
Cover Page 

 
 

 
 
 

 
 
 

The handle http://hdl.handle.net/1887/87271 holds various files of this Leiden University 
dissertation. 
 
Author: Bagheri, S. 
Title:  Self-adjusting surrogate-assisted optimization techniques for expensive 
constrained black box problems 
Issue Date: 2020-04-08 

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/87271
https://openaccess.leidenuniv.nl/handle/1887/1�


Chapter 2

Black Box Optimization Methods

2.1 Is There Any Free Lunch in Optimization?

A function is called black box if no assumption about its type (linear, quadratic, ...)
can be made due to the lack of any prior knowledge. Optimization tasks in real-world
applications are often black box as very little to no information about their objective
function is available. The value of a black box function at an arbitrary point can
be measured through an evaluation procedure in its search space. This evaluation
procedure can be costly in terms of time and expenses which means a very limited
number of points can be evaluated in practice. When designing black box optimizers
often it is assumed that the objective function has a structure although unknown,
since fully random functions are not realistic examples of problems in real-world,
therefore tackling them is not of our interests.

Although numerous derivative-free algorithms are developed to solve black box
problems, searching for a universal optimizer which performs best for all possible
black box problems continues. One might question the existence of such universal
algorithm thinking of the famous no free lunch theorems (NFL) for optimization,
introduced by Wolpert and Macready in 1997 [181]. These theorems prove that
any two optimizers perform the same if their performance are averaged over all
possible combinatorial problems in finite discrete domain. For very long time since
the introduction of the no free lunch theorems not much effort was devoted to extend
these theorems for continuous domain. This lack of interest was perhaps due to
the assumption that any continuous optimization problem being optimized with a
computer practically has still a discrete domain. However, Droste et al. in 1999 [49]
and Igel et al. [86] in 2005 show that NFL is not relevant for real-world problems.
In 2010 Auger and Teytaud [10] show that NFL does not hold true for optimization
problems in continuous domains. Additionally, the authors bring some arguments
for the optimality of surrogate-assisted and estimation of distribution algorithms.

10



2.2. UNCONSTRAINED OPTIMIZATION

Corn and Knowles in [41] also claim that there are free lunches in multi-objective
optimization.

Despite the fact that no universal optimizer is designed yet, many strong opti-
mization frameworks are developed which clearly outperform an exhaustive random
search. We will briefly introduce and categorize a handful of unconstrained, con-
strained and surrogate-assisted optimizers in the following sections.

2.2 Unconstrained Optimization

The main focus of this dissertation is about efficient black box constrained optimiz-
ers. However, many constrained optimizers are built on top of an unconstrained
optimizer in one or other way, therefore, it is important to give a brief overview
about the existing unconstrained optimizers. A black box optimization problem can
be simply defined as minimization of an unknown objective function f defined in a
d dimensional parameter space:

Minimize f(~x), ~x ∈ [~l, ~u] ⊂ Rd, (2.1)

where ~l is the lower bound of the search space S ⊆ Rd and the ~u is the upper bound.
Some literature refer to Eq. (2.1) as optimization with bound or box constraints if the
lower and upper bounds have finite values. Vector ~x = [x1, x2, · · · , xd] has a length
of d. The goal is to find ~x∗ which minimizes the fitness function f in the search
space S. Maximization problems can be transformed to minimization by negating
the function without loss of generality.

In absence of the derivative information in black box optimization problems, the
gradient based techniques lose their functionality. Gradient based optimization algo-
rithms including gradient descent, Newton method, conjugate gradient, etc. require
first or even second order derivatives. In case of black box optimization these deriva-
tives cannot be directly measured. Also it is often too expensive or even impossible
to approximate these derivatives. Derivative-free algorithms, assuming that black
box functions have an unknown and complex structure, try to approach the optimal
solution by learning about the hidden structure of the function iteratively, in one or
another way.

In order to gain some overview about the existing numerous derivative-free al-
gorithms, we try to categorize them by a few of their features and briefly discuss
them in this section. However, a detailed review about such algorithms can be found
in [147]. Black box optimizers can be deterministic or have some randomness and be

11



stochastic. A large group of stochastic heuristics, categorized as nature-inspired, are
motivated by a variety of natural processes. Also, we can categorize all derivative-free
algorithms under population based or point based methods. Expensive optimization
problems are often addressed by surrogate-assisted solvers. Estimation of distribu-
tion algorithms aka model-based optimizers are a group of optimizers which aim to
model a distribution and learn about the problem iteratively. This class of optimiz-
ers have shown promising contributions solving black-box problems. Fig. 2.1 shows
a taxonomy of derivative free unconstrained optimization algorithms with examples
and references for each category.

Deterministic optimizers are a class of optimizers which, starting with a fixed
initial configuration, will always generate the same solution after the same amount
of iterations. No sort of randomness appears in these algorithms except for some
of them that need to be randomly initialized by a starting point or a population
of points. In practice often one or several initial solutions are known and the goal
is to improve the existing solution(s), so there is no need for a random start. The
taxonomy in Fig. 2.1 lists several well-known deterministic optimizers including direct
search aka pattern search [24], Lipschitzian [163], BOBYQA [130], etc.

Hooke & Jeeves [83], being a special type of pattern search with one evaluation
per iteration and Nelder-Mead [122] based on the simplex method are some examples
of very strong deterministic solvers for nonlinear problems, although they often face
difficulties as the parameter space grows. The convergence conditions of this class
of solvers are studied in [174, 105]. Several deterministic black box optimizers are
surveyed and compared in [104].

Stochastic optimizers refer to a large category of optimization techniques benefiting
from randomness in one or another way. Many of the recently developed modern
derivative-free solvers employ randomness directly or indirectly as an exploration
tool to avoid getting stuck in local optima. Simulated annealing (SA) [96] is an
example for stochastic optimization which is well suited for global optimization of
multimodal problems. A great number of the stochastic optimization algorithms
can be categorized as nature-inspired methods, imitating various processes in na-
ture like evolution, chemical reactions, social behavior in animals, neural networks,
etc. [184, 59]. Evolutionary algorithms including evolution strategy, genetic algo-
rithm, etc. are among very successful nature-inspired optimizers which are widely
used in many different areas [12, 11, 13].

In general all the sequential derivative-free optimizers fall into two categories of
population based and point based algorithms. The former refers to the algo-
rithms which require evaluation of a population of solutions in each iteration, their
performance is designed according to the statistical properties or the interaction

12



2.2. UNCONSTRAINED OPTIMIZATION

deterministicstochastic

p
op

u
la

ti
on

b
as

ed
p

oi
n
t

b
as

ed

SAPS[188]

BOBYQA[130]

COBYLA[131]

CMA-ES[76]

GA[70]

DE[167]
PSO[94]

MVO[55]

Cuckoo search[185]

(1+1)-CMA-ES[85]

(1+1)-ES[9]

SA[96]
SA

SA
[164]

s ∗
A

C
M

-E
S

[108]

Hooke & Jeeves[83]

Lipschitzian[163, 91]

Nelder-Mead[122]

pattern search[24, 30, 169]

grid search

random search

EGO[90]

q-
E

I[
69

]

S
A

C
O

B
R

A
+

O
W

[]
S
A

C
O

B
R

A
[1

5]

stochastic pattern search[126]

Figure 2.1: Taxonomy of derivative-free unconstrained optimization techniques for black-box
optimization problems. The green circle groups the surrogate-assisted techniques together and the
purple circle belongs to the nature-inspired algorithms. Algorithms written in blue are from the
EDA optimization class.

13



of a population of solutions, e.g., differential evolution (DE) [167], evolution strat-
egy [13, 160]. On the contrary, point based algorithms evaluate one solution at
a time. Examples for such algorithms are the stochastic (1+1)-ES [11, 9] and the
deterministic Nelder-Mead [122]. The population based methods often demand too
many function evaluations. This makes them sometimes unaffordable for expensive
real-world optimization problems. However, these algorithms can benefit from a
suitable parallelization approach [35, 69, 68].

The optimizers which make use of any mathematical modeling technique (surrogate
models) to assist the optimization procedure and save some function evaluations,
belong to the category of surrogate-assisted optimizers. Real-world optimization
tasks which are black box and expensive to evaluate are the main motivation for
the development of many surrogate-assisted optimization techniques in recent years.
As in practice it is an absolute necessity to be thrifty with the amount of function
evaluations, surrogates are used to model the hidden structure behind the black
box objective functions in order to reduce the number of real function calls by as
many as possible. A wide range of modeling techniques are used to solve expensive
optimization problems efficiently, e.g., linear local models in Cobyla [131], quadratic
modeling in BOBYQA [130], radial basis function interpolation in SACOBRA [19],
probabilistic modeling in EGO [90], random forest in [21], recurrent neural networks
in [36, 37], etc. Many surrogate-assisted solvers employ a regression technique as
a surface fitting approach to replace the objective function, but surrogate-assisted
optimization is not in general limited to regression techniques. As the focus of this
dissertation is on solving expensive constrained optimization problems, surrogate-
assisted constrained optimization is discussed in more details in Sec. 2.4.

Estimation of Distribution Algorithms (EDAs) aim at estimating a distri-
bution of solutions which are likely to improve the current solutions [106]. This
estimated distribution is often updated iteratively. Covariance matrix adaptation
evolution strategy (CMA-ES) [76] and Mean Variance optimization (MVO) [55] are
examples for EDAs which show very strong performance on a large set of bench-
marks [75, 55].

2.3 Constraint Handling Techniques

Real-world optimization problems can be more demanding than simply minimizing
a function as in Eq. (2.1), when the feasible solutions are restricted by multiple
constraints coming from many various sources. In this thesis we focus on solving
black box constrained optimization problems (COPs) with expensive objective and

14



2.3. CONSTRAINT HANDLING TECHNIQUES

constraint functions. Depending on the application of the COP, the evaluation of
the constraint functions outputs differently. Evaluating explicit constraints outputs
real numbers indicating the level of the constraint violation. But in case of implicit
constraints the evaluation can only reveal feasibility or infeasibility of the evaluated
point. An optimization problem with explicit constraint functions can be defined by
the minimization of an objective function f subject to inequality constraint func-
tion(s) gj and equality constraint function(s) hk :

Minimize f(~x), ~x ∈ [~l, ~u] ⊂ Rd, (2.2)

subject to gj(~x) ≤ 0, j = 1, 2, . . . ,m,

hk(~x) = 0, k = 1, 2, . . . , r,

where ~l is the lower bound of the search space S ⊆ Rd and the ~u is the upper
bound. ~x = [x1, x2, · · · , xd] is a vector with the length of the parameter space size
d. The variable xi refers to the i-th element of the vector ~x. The goal is to find ~x∗

which minimizes the fitness function f(.) in the feasible space F ⊆ S ⊆ Rd. Similar
to the unconstrained case (Eq. (2.1)), a constrained maximization problem can be
transformed to a minimization problem by negating the fitness function without loss
of generality.

The constraint functions of the real-world optimization problems can be grouped
with different factors into different categories. A real-world COP can have either a
set of black box or white box constraints, meaning that with some COPs no prior
knowledge about the constraints is available and for some other the constraints can
be formulated analytically. For solving COPs with a black box objective function
but known constraints several algorithms are developed [5, 4, 166].

Depending on the application of a COP, its constraint functions can be cate-
gorized as cheap or expensive to evaluate regardless of the type of the objective
function. This means that in some cases a black box COP is only expensive in
its objective function and the constraints evaluations are not as expensive as the
objective function.

Inequality constraints restrict the feasible solutions to a subset of the search
space with the same dimensionality. On the contrary, equality constraints limit
the feasible solutions to a subspace with a smaller dimensionality, in other words
the volume of the feasible space is zero for COPs with equality constraints. It
is worth to mention that black box equality constraints are more challenging to
handle comparing to inequality constraints and they cannot be addressed by many

15



constrained optimizers. A detailed discussion about the equality constraints and
different techniques to handle them can be found in Ch. 4 of this thesis.

A solution, satisfying the constraints, is called a feasible solution and the one
which does not lie within the region restricted by constraints is called an infeasible
solution. Evaluation of an infeasible solution can have different outputs depending
on the application of the COP. In some cases evaluation of an infeasible solution has
a very harsh consequence like a software crash, for such problems infeasible solutions
must be avoided as much as possible. There are also cases, where the constraint
functions output Boolean results saying if the evaluated point is feasible or infeasible
but not more. For such problems classification algorithms might be helpful to model
the hidden structure of the constraints. The third case is when the constraint function
outputs real numbers indicating not only the feasibility or infeasibility but also the
level of constraint violation. A more detailed taxonomy of constraint function in real-
world applications can be found in [46]. In this dissertation we focus on developing
efficient algorithms to tackle fully black box expensive optimization problems subject
to real value equality and inequality constraint functions.

The already existing unconstrained optimizers can be extended to constrained
optimizers in different fashions. We list the most effective techniques which are
widely used. Several approaches concentrate on the feasible region and assume that
any feasible solution is better than the infeasible ones [102, 44] unlike some others
which try to approach the feasible region by allowing some infeasible points in the
population [150, 151]. Additionally, there exists several approaches which benefit
from the existence of infeasible solutions by repairing and guiding them to the fea-
sible area [38, 113, 98]. Various constraint handling techniques can be classified as
following:

• Death penalty rejects the infeasible individuals and re-samples as long a feasible
solution is found. This method is used with simulated annealing [164] and
evolution strategy (ES) for simple problems [13]. A drawback of this approach
is the large amount of imposed function evaluations, especially for COPs with
very small feasible region.

• Penalty functions are one of the most common ways of handling constraints in
optimization. The idea is to change the constrained optimization problem to
an unconstrained one by minimizing f̃ a weighted combination of the objective
function f and a measure of the constraint function(s) G as follows:

f̃ = f(x) + α ·G(x), (2.3)

16



2.4. SURROGATE-ASSISTED CONSTRAINED OPTIMIZATION

where α is the penalty factor. G can be defined in different ways including the
sum or product of all constraint violations, maximum constraint violation, etc.
The penalty factor can be assigned as a constant or can be adapted during
the optimization process. However, a drawback of such techniques is that the
penalty factor is very problem sensitive and sometimes time-consuming tunings
are required to find the right penalty factor.

• Stochastic ranking originally was utilized for an evolution strategy (ES) by
Runarsson et al. [150, 151], to assist solving COPs with ES. However, the main
idea of stochastic ranking, assigning good ranks to infeasible solutions with
some probability in order to benefit from existence of infeasible solutions in
the population, can be applied in many different nature-inspired rank-based
algorithms.

• Repair algorithms try to modify the infeasible solutions and move them toward
the feasible region. Gene repair [113] is an example of repair algorithms used in
combination to a genetic algorithm. Several repair mutations are also proposed
for ES approaches in [25, 166]. Chootinan et al. [38] propose a gradient based
repair algorithm embedded in a genetic algorithm. Koch et al. [98] introduce
a surrogate-assisted repair.

• Multiobjective optimization techniques are used for solving COPs by several
authors [88]. This class of constraint handling approaches aim at minimizing
the objective function and one or several measures of constraint violations, e.g.,
sum or max of constraint violation.

The main drawback of the most of the mentioned algorithms is that they are often
not applicable to expensive real-world COPs as they demand too many function
evaluations. This motivates the coming chapters of this thesis, introducing new
surrogate-assisted constrained optimizers suited for expensive COPs.

2.4 Surrogate-Assisted Constrained Optimization

2.4.1 Taxonomy of Surrogate Models

Optimizing an expensive black box function subject to multiple constraints, is a
common task in real-world applications. When every single function evaluation im-
poses significant effort, then a suitable optimizer must be efficient in terms of number

17



of function evaluations that it requires to find a near-optimal solution. Surrogate-
assisted optimizers using mathematical modeling techniques aim to take advantage
from the limited information gained about the black box functions during the opti-
mization procedure as much as possible. The term surrogate can refer to any type of
modeling technique employed to approximate the hidden structure of the black box
functions for an optimization task. To tackle unconstrained optimization problems,
a great number of surrogate-assisted solvers applying different modeling approaches
were developed [90, 68, 108, 130, 188, 164]. However, less effort is devoted to solve
the constrained optimization problems (COPs) by assistance of surrogates. We cat-
egorize the surrogate-assisted constrained and unconstrained optimizers into four
different groups based on their modeling approaches:

• Interpolation is one of the most common modeling techniques used to replace
the black box functions in an optimization task. The idea is to fit a surface for
the black box function based on the limited evaluated points scattered in the
search space. Cobyla [131] is a constrained surrogate-assisted approach making
use of linear models to approximate objective and constraints function locally.
This approach applies the Nelder-Mead technique combined with a penalty
function to solve the constrained problem on the surrogates. BOBYQA [130]
uses quadratic approximation for the objective functions in unconstrained op-
timization. Wang et al. [178] proposed a variant of a response surface method
to approximate the objective function by quadratic modeling. Although they
addressed constrained problems, they assumed that constraint functions are
cheap to evaluate in order to keep the problems easy to tackle. Quadratic
models are also used to solve black box COPs in [40]. Since most of the real-
world optimization problems have nonlinear functions, the radial basis function
interpolation (RBF) attracted a lot of attention in the surrogate-assisted con-
strained and unconstrained optimization field [145, 140, 144, 143, 82]. This
is because the RBF models are reasonably accurate, easy to train and extend
to high dimensions. In this thesis (Ch. 3) we introduce an algorithm which
works by means of RBF interpolations. Sec. 2.4.2 briefly describes the RBF
interpolation technique.

• Probabilistic Modeling is commonly employed as a mean to build surrogate
models for unconstrained optimization problems and less often for the con-
strained optimization problems. Gaussian process aka Kriging [103] is a prob-
abilistic modeling approach which is capable of not only providing a model for
the black box function but also an uncertainty quantification for the model,
given a limited number of evaluated points. Gaussian process armed with an

18



2.4. SURROGATE-ASSISTED CONSTRAINED OPTIMIZATION

uncertainty measure is the backbone of the expected improvement concept used
in Bayesian optimization approaches [116, 117] and the Efficient Global Opti-
mization (EGO) [90]. Schonlau et al. [159] use probabilistic modeling to tackle
constrained optimization problems, by modeling the feasibility probability. In
this thesis (Ch. 5) a constrained solver equipped with probabilistic models is
introduced which outperforms the latter technique [159] in several cases.

• Classification approaches are also utilized as surrogates to predict if a solution
is feasible in infeasible before being evaluated on the real expensive black box
constraint functions. Poloczek and Kramer [128] employed support vector ma-
chines as a feasibility classifier combined with the Covariance Matrix Adapta-
tion Evolution Strategy (CMA-ES). Their approach tends to reduce the number
of constraint function evaluations, as they assume that only constraint func-
tions are expensive to evaluate. They obtain slight improvements on analytical
test functions, but also report negative results on some functions. Arnold and
Hansen [7] give reasons for this decreased performance, which is possibly due
to the rotation of the CMA-ES mutation distribution. The contribution made
by [128] in terms of reducing the required number of constraint function calls
is not significant. Arnold and Hansen [7] recommend an alternative approach
which yields better results. Later, Basudhar et al. [22] coupled the efficient
global optimization algorithm (EGO) as a surrogate for the objective function
with a support vector machine classifier as surrogate for constraint functions.
They report promising results on an experimental study for low-dimensional
COPs.

• Deep Learning Sequence Models are used very recently for optimization pur-
poses. Chen et al. in [36] proposed a fundamentally new surrogate-assisted
approach. In the mentioned work the surrogates do not learn the black box
functions, they rather learn a generic optimizer to solve black box functions by
means of sequence models like recurrent neural networks. Later, the work was
extended in [37].

2.4.2 Radial Basis Function Interpolation

Radial basis function (RBF) interpolation is one of the strongest methods among
the multitude of existing regression techniques for modeling a black box function,
given a set of sparse scatter points in any n-dimensional search space. This makes
them a very suitable choice as surrogate models: They are utilized to solve expensive
optimization problems efficiently. Although the origin of the RBF development goes

19



back to the invention of a special form of RBF interpolation (Multiquadric RBF) by
trial and error for 2-dimensional problems [78], strong theoretical foundations sup-
port their advantages over other interpolation techniques like polynomial or Fourier
interpolation even for high dimensional problems [112, 182]. In 1990 a topographer
called Hardy tried to automatize the generation of contour maps for 2-dimensional
topographic surfaces by means of mathematical approaches which can be locally ac-
curate while it can also model the global trend reasonably well. For Hardy’s tasks,
the Fourier interpolation was a failure due to its aggressive oscillation between the
sparse evaluated points and polynomial interpolation had difficulties to model sur-
faces with large derivatives. Additionally, according to the Haar theorem [74] and
Mairhuber-Curtis theorem [43, 109], there are infinitely many sets of points that can
cause instability for polynomial or other types of interpolation techniques, but not
for RBF.

We give a sketch of the proofs of these theorems along the lines of the excellent
article by Fornberg et al [62], explaining why the mentioned instabilities do not
happen for RBF interpolation. Let us assume that any interpolation approach tries
to approximate a function f by means of a weighted linear combination of k basis
functions Fi as in Eq. (2.4).

s(~x) =
k∑

i=1

θiFi(~x), (2.4)

To find the parameters of such interpolant satisfying s(~xj) = f(~xj) for n given
points ~xj, the linear equation system in Eq. (2.5) must be solved.




F1(~x1) F2(~x1) · · · Fk(~x1)
F1(~x2) F2(~x2) · · · Fk(~x2)

...
...

...
F1(~xn) F2(~xn) · · · Fk(~xn)




︸ ︷︷ ︸
A




θ1
θ2
...
θk




︸ ︷︷ ︸
~θ

=




f(~x1)
f(~x2)

...
f(~xk)




︸ ︷︷ ︸
~f

(2.5)

Let us assume that for a set of given points matrix A has a non-zero determinant
meaning that this equation system has a unique solution. If we fix all the points
but move two points in the search space and swap them with each other, then the
sign of the determinant of matrix A changes. This being said, it becomes clear that
somewhere on the interchanging path the determinant of A becomes zero. Consider-
ing the fact that there are infinite number of possible paths for such an interchange
in 2 or higher dimensions, means that there are infinite configurations of points for

20



2.4. SURROGATE-ASSISTED CONSTRAINED OPTIMIZATION

which no unique polynomial interpolant can be found. This does not hold true for
RBF interpolants, as the basis functions are radial, meaning that they are only de-
pendent on the distance of the points to each other, see Eq. (2.6). In case of the
RBF interpolation linear equation system, swapping two points does not change the
sign of the determinant as the distances remain unchanged.

As already mentioned, RBF interpolation approximates a function by fitting a
linear weighted combination of radial basis functions. Any function which is only
dependent on the distance from a specific point (centroid) in the space belongs to
the group of radial functions. RBF takes all the evaluated points as the centroids
of the basis functions, produces a perfect fit through these points and reasonably
approximates the unknown area:

f̂(~x) =
n∑

i=1

θiϕ(ri) =
n∑

i=1

θiϕ((||~x− ~xi||) (2.6)

The distance r is often determined based on the Euclidean norm but this is not
the only approach. Some of the commonly used RBFs are shown in Tab. 8.1. The
radial basis functions can be parameter-free like the cubic RBF or having a shape
parameter α as in Gaussian RBF. In order to determine the weights θi, Eq. (2.7)
must be solved.




ϕ(r11) ϕ(r12) · · · ϕ(r1n)
ϕ(r21) ϕ(r22) · · · ϕ(r2n)

...
...

. . .
...

ϕ(rn1) ϕ(rn2) · · · ϕ(rnn)




︸ ︷︷ ︸
Φ




θ1
θ2
...
θk




︸ ︷︷ ︸
~θ

=




f(~x1)
f(~x2)

...
f(~xk)




︸ ︷︷ ︸
~f

, (2.7)

where Φ ∈ Rn×n and rij is the Euclidean distance between the ~xi and ~xj for i, j =
1, . . . , n. Therefore, the weights can simply be computed as

~θ = Φ−1 ~f, (2.8)

if the matrix Φ is invertible, which is - due to the Haar theorem - more often the
case for RBFs than for other interpolants.

Augmented RBF

Although RBF matrices have fewer singularities than other interpolation schemes,
the above statements are not a guarantee that Φ in Eq. 2.7 is always invertible.

21



Table 2.1: Commonly used radial basis functions

Type of basis function ϕ(r)

Parameter-free RBF

Cubic r3

Thin plate spline r2 log r

RBF with shape parameter

Gaussian e−
r2

2α2

Multiquadric (MQ)
√

1− ( r
α

)2

Micchelli shows that for some radial basis functions including the cubic RBF there
are special configuration of points for which Φ becomes singular. In order to assure
that the Eq. 2.7 has a unique solution using any type of radial basis functions,
Micchelli introduced augmented RBFs [112]. Augmented RBFs are actually RBF
functions with a polynomial tail:

f̂(x) =
n∑

i=1

θiϕ(||~x− ~xi||) + µ0 +
kd+1∑

l=1

µlpl(~x), ~x ∈ Rd, (2.9)

where µ0 +
∑kd+1

l=1 µlpl(~x) is a k-th order polynomial tail in d-dimensional space with
kd+ 1 coefficients.

The augmented RBF model requires the solution of the following linear system
of equations: [

Φ P
PT 0(kd+1)×(kd+1)

] [
~θ
~µ

]
=

[
~f

0(kd+1)

]
(2.10)

Here, P ∈ Rn×(kd+1) is a matrix with (1, xi1, · · · , xid, · · · , xki1, · · · , xkid) in its ith
row, where xij is the jth component of vector ~xi for i = 1, · · · , n and j = 1, ..., d.
0(kd+1)×(kd+1) ∈ R(kd+1)×(kd+1) is a zero matrix, 0(kd+1) is a vector of zeros. In this
work, we use the augmented cubic radial basis function with a second order polyno-
mial tail (k = 2).

Fig. 2.2 and 2.3 show a 1D interpolation example by means of Gaussian and
cubic augmented RBF with a first order polynomial tail (k = 1). The goal is to
approximate a curve according to the information from the blue points.

22



2.4. SURROGATE-ASSISTED CONSTRAINED OPTIMIZATION

●
●

●

●

●

●

●

●

x

f(
x)

●
●

●

●

●

●

●

●

x

f(
x)

●
●

●

●

●

●

●

●

x

f(
x)

Figure 2.2: Conceptualization of RBF interpolation in 1D, with Gaussian φ(r). The goal is to
approximate a curve according to the information from the blue points. The red curves are weighted
Gaussian radial basis functions with centers of blue points and the red dashed line is the polynomial
tail p(x). Summation of all the red curves and the dashed line is the blue curve which interpolates
all points and fits a smooth curve through them.

●
●

●

●

●

●

●

●

x

f(
x)

●
●

●

●

●

●

●

●

x

f(
x)

●
●

●

●

●

●

●

●

x

f(
x)

Figure 2.3: Conceptualization of RBF interpolation in 1D, with cubic φ(r). Otherwise the same
as Fig. 2.2.

In this thesis we use augmented RBF to develop a strong surrogate-assisted con-
strained optimizer, the so-called SACOBRA optimization framework. We initially
use the cubic basis functions in Ch. 3 and 4. Furthermore, we develop an online
model selection technique to choose between different types of basis functions during
the optimization process in Ch. 8. In the same chapter, we will use a cubic RBF in
conjunction with multiquadric RBFs with different shape parameters. We compare

23



RBF interpolation with Kriging, a probabilistic modeling technique, in Ch. 7. We
show that although RBF interpolation unlike Kriging does not have an uncertainty
quantification by its nature, it is possible to compute an uncertainty measure for any
arbitrary RBF basis function.

2.5 Visualization Methods in Optimization

In many papers in the field of optimization the strength of a technique is measured
by comparing the final solution achieved by different algorithms [150]. This approach
only provides the information about the quality of the results and neglects the speed
of convergence which is a very important measure for expensive optimization prob-
lems. Comparing the convergence curve over time (number of function evaluations)
is also one of the common benchmarking approaches [141]. Although a convergence
curve provides good information about the speed of convergence and the final quality
of the optimization result, it can be used to compare performance of several algo-
rithms only on one problem. It is often interesting to compare the overall capability
of a technique on solving a group of problems. The data and performance profiles
developed by Moré and Wild [118] are good approaches to analyze the performance
of any optimization algorithm on a whole test suite and are now used frequently in
the optimization literature [32, 142, 14, 15, 19].

Performance profiles

Performance profiles are defined with the help of the performance ratio

rp,s =
tp,s

min
∀s′∈ S
{tp,s′}

, p ∈ P (2.11)

where P is a set of problems, S is a set of solvers and tp,s is the number of iterations
solver s ∈ S requires to solve problem p ∈ P. A COP problem is said to be solved
if a feasible solution ~x is found whose objective value f(~x) deviates from the best
known objective value f( ~x∗) less than a given tolerance τ :

f(x)− fL ≤ τ (2.12)

Smaller values are more desirable for the performance ratio rp,s. When using the
best solver s to solve problem p then rp,s = 1. If a solver s cannot solve problem p
the performance ratio is set to infinity. The performance profile ρs is now defined as

24



2.5. VISUALIZATION METHODS IN OPTIMIZATION

a function of the steerable performance factor α:

ρs(α) =
1

|P| |{p ∈ P : rp,s ≤ α}| . (2.13)

In performance profile plots the relative performance of each algorithm is shown
by a curve of the performance profile over the performance factor. The higher and
more to the left this curve is the better the algorithm.

Data profiles

Data profiles are suitable for evaluating optimization algorithms on expensive prob-
lems. They are defined as

ds(α) =
1

|P|

∣∣∣∣{p ∈ P :
tp,s
d+ 1

≤ α}
∣∣∣∣ , (2.14)

with P,S and tp,s defined as above and d as the dimension of problem p.
Although performance profiles and data profiles share many common properties

with each other, in this dissertation we prefer data profiles because the performance
factor α has a more intuitive meaning for data profiles: If we allow for each problem
with dimension d a budget of Bα = α · (d + 1) function evaluations, then the value
ds(α) can be interpreted as the fraction of problems which solver s can solve within
this budget Bα. In other words, data profile curves show the percentage of the solved
problems after α · (d+ 1) function evaluations.

25


