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Chapter 1

Introduction

1.1 Motivation

Nowadays, optimization problems emerge in nearly every possible field of science,
industry or business. Minimizing cost or time, maximizing profit or efficiency of
any procedure belongs to the daily challenges we may face regardless of our field of
profession. It is very likely that real-world optimization problems are restricted to
various sorts of limitations imposed by many different sources, making only a subset
of solutions feasible. This being said, in real-world applications it is very common
to encounter constrained optimization problems (COPs) dealing with optimization
of an objective function subject to a single or multiple constraint functions. Classic
gradient-based constrained or unconstrained optimization algorithms including New-
ton’s methods, Lagrange multiplier, etc. can be used for finding optimal solutions of
any real-world problem that can be formulated with mathematical functions. How-
ever, formulating an optimization problem in terms of simple mathematical functions
is not always possible or it might require an oversimplification of the problem.

Significant growth of the computational power in the last decades made it possi-
ble for engineers and scientists to develop sophisticated simulation software in order
to model complex physical phenomena and therefore introduce new tasks including
new classes of optimization problems. In many engineering fields finding an opti-
mal design for large complex systems which are highly parametrized became popular
only after development of detailed accurate simulation software replacing real exper-
iments. Many industrial design tasks can be formulated as optimization problems
where their objective and/or constraint functions are black box, meaning that they
can only be evaluated through conducting a simulation run. Treating such optimiza-
tion problems which do not have an explicit algebraic formulation is not possible with
the classical optimization methods. Modern optimization heuristics, many of them
being inspired by natural processes, are often derivative-free techniques suitable to
tackle black box optimization problems.
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As simulation software tools evolve rapidly and become more detailed and ac-
curate, they become significantly more time-consuming to run. For this reason, the
optimization problems for which objective and/or constraint functions can only be
evaluated through time-expensive simulation runs are considered as challenging ex-
pensive tasks. The conventional modern optimization techniques like evolutionary
algorithms are not always a practical tool to handle expensive black box real-world
problems, despite their contribution to non-expensive black box problems. This is be-
cause modern optimizers often require several ten thousands of function evaluations
and their required number of function evaluations usually increases exponentially as
the size of the parameter space increases.

In the fast changing automotive industry, finding optimal stable vehicle designs
minimizing production costs, fuels consumption, pollutant production, mass or max-
imizing speed, power, efficiency, etc. is an important task. Such tasks can be seen
as black box constrained optimization problems subject to constraints coming from
conducting crash tests. Crash test simulation is an example for a time-expensive
simulation software which revolutionized the automotive industry by replacing the
real experiments (in this case the physical prototype) with the virtual ones [165].
Spethmann et al. in [165] give a comprehensive overview about the evolution of
crash simulators since the development of the explicit finite element method (FEM)
for crash events in 1960, to the first time that supercomputers, though in high costs,
made the FEM-based simulators a practical tool in 1970, up to the present day.
One of the very first crash simulations going back to 1983 had only 60 elements and
needed 33 hours of CPU time. Only three years later the crash simulation developed
for Volkswagen Polo consisted 5661 finite elements but the simulation took only 4
hours [165]. In 1990 Opel Astra introduced a crash model having 70 000 elements
that took 2 days to complete a simulation run. In 2003 Opel Astra’s sophisticated
crash model had more than 1 million elements and its execution took about 2.5 days
to 6.3 weeks. Up till now the enhancement of the simulation software as well as
the computational power of supercomputers did not slow down, which yield highly
detailed simulations running in a time scope of couple of hours to weeks depending
on the model, application, number of supercomputers in service and many other
factors [28, 165, 90]. Therefore, the development of efficient optimization techniques
which can find optimal or near-optimal solutions with very limited number of func-
tion evaluations is crucial when we are dealing with real-world optimization problems
associated with expensive simulations.

Expensive black box optimization problems are not only limited to the prob-
lems involved with crash test simulations. Any sort of constrained/unconstrained
optimization problems for which constraint and/or objective functions are outputs
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1.1. MOTIVATION

Figure 1.1: Comparing the crash model contents for 1998 and 2003 Opel Astra [165]. The images
are taken from [165].

of physical complex procedures modeled with partial differential equations (PDEs),
aka PDE constrained optimization problem, are expensive problems due to the time-
consuming simulation runs required for their evaluation [139]. A few instances among
numerous other examples for real-world black box constrained/unconstrained opti-
mization problems are listed as follows: reducing heat loss by optimizing combustion
chamber shape in automotive industry [3], airfoil design optimization in aerospace
engineering, aiming at maximizing lift or minimizing the aerodynamic drag subject
to multiple constraints on drag force, pressure drag, etc. [14], water turbine shape
optimization [175, 64], gas transmission pipeline optimization [34], submersible oil
drilling pump design optimization [71], optimization of the cooling system of the
motor of an electrical panel [123], shape optimization of medical devices [2], pressure
vessel shape optimization [93] and many more.

Although the real-world optimization problems coming from each corner of the
industry have different characteristics, there are several important common prop-
erties which make them challenging to tackle. Optimization problems from indus-
try are usually subject to multiple constraints due to many restrictions in practice
caused by resource limitation, geometrical constraints, stability, safety, budget, etc.
Real-world optimization problems are black box, meaning that their objective and/or
constraint functions are too complex to be modeled with an explicit algebraic for-
mula. Therefore, they can only be evaluated by running time-expensive simulation
runs. One more common challenge for the real-world optimization problems is their
high-dimensionality in parameter space. Summarizing the main common properties
of the real-world optimization problems which makes them challenging, we can say
that they are often black box, constrained, expensive and high-dimensional.
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Figure 1.2: Optimizing the geometrical design of the cooling system of the electrical panel on an
airplane: (top) the cooling system is shown in color placed on an airplane, only the red part (the
diffuser) can be modified. (bottom-left) the initial diffuser design. (bottom-right) the optimized
diffuser geometry, colors represent the amount of accumulative change at each point suggested by
the optimized model; at the lower parts of the diffuser wall the changes are larger than the other
areas [123]. The images are taken from [123].

In the recent years, there were many attempts to handle real-world optimization
problems in an efficient manner. To do so, often researchers break down the prob-
lems to simpler versions and try to tackle each challenge in an isolated fashion. The
development of the modern derivative-free heuristics helped solving the black box
optimization problems regardless of their dimensional spaces, but they need usually
a large number of function evaluations. Despite the contributions made by these ap-
proaches for black box unconstrained inexpensive problems, one of their weak points
is that they have several hyperparameters which have to be tuned apriori. The
demanding challenge with the expensive function evaluation is often addressed by
usage of surrogate-assisted algorithms. Surrogate-assisted optimizers aim at saving
expensive simulation runs by replacing the real functions with cheap and fast math-
ematical models. Also, several different constraint handling methods were developed
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which can be coupled with the unconstrained optimizers. Chapter 2 provides an
overview about the related work. In Chapter 2 we give a brief survey about the
existing optimization methods suitable for addressing black box unconstrained and
constrained optimization problems. Very limited studies are devoted to address all
the demanding challenges of the real-world optimization problems simultaneously.
For example, a surrogate-assisted efficient constrained optimization framework with
no or small need of hyperparameter tuning was missing before this work. As the title
suggests, in this dissertation we work on the development of efficient self-adjusting
surrogate-assisted optimization techniques for expensive constrained black box prob-
lems.

In this work, we introduce two surrogate-assisted optimization techniques SACO-
BRA and SOCU. SACOBRA standing for self-adjusting constrained optimization by
radial basis function interpolation is an efficient technique using RBF interpolations
as surrogates for objective and constrained functions which is also able to automati-
cally control some of its important hyperyparameters without any prior information
about the problems. Although the algorithm was initially only developed for con-
strained optimization problems (COPs) with inequality constraints (Chapter 3),
the framework was later extended to handle COPs with equality and inequality con-
straints in (Chapter 4). Cubic radial basis function interpolation has shown strong
performance as surrogate in the SACOBRA optimization framework. However, no
theoretical or practical evidence suggested that cubic RBFs are the best choice but
our preliminary results have shown the opposite, meaning that different types of ra-
dial basis functions delivered contrary performances on modeling different functions.
Therefore, we have developed an online model selection procedure for SACOBRA to
automatically choose the best type of radial basis function during the optimization
procedure in Chapter 8.

SOCU standing for surrogate-assisted optimization encompassing constraints and
uncertainties is the second approach introduced in this dissertation which utilizes
Kriging aka Gaussian Processes, a probabilistic modeling technique, as surrogates.
SOCU, described in Chapter 5 and Chapter 6, can be considered as an extension
to the efficient global optimization algorithm [90] (EGO) for handling constrained
optimization problems. To our best knowledge it is the first time that an EGO-based1

constrained optimizer is evaluated on the challenging G-problem-COPs.
In order to evaluate the proposed optimization techniques, two real-world con-

strained optimization problems and a set of well-studied toy problems known as
G-problems suite [107] are used as benchmarks. MOPTA08 [92] is a large scale

1EGO: Efficient Global Optimization technique is a surrogate-assisted solver using Kriging prob-
abilistic modeling, aka Bayesian optimization
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mass optimization problem in the auto industry. This problem was presented at the
MOPTA 2008 conference as a competition challenge. The problem which was intro-
duced by Don Jones as a technical fellow at General Motors, has a 124-dimensional
space with 68 nonlinear black box constraints. The parameters come from part ma-
terial variables or shape variables and the constraints are the output of the crash
simulation which in the ideal case can be computed 60 times a day in practice. It
is desired to find a design with 10% to 20% reduced mass within one month which
means the maximum number of function evaluations is limited to 60 × 30 = 1800.
The second real-world COP used in this dissertation is an airfoil design problem
aiming at minimizing the aerodynamic drag force subject to multiple equality and
inequality constraints, as it is described in Chapter 5. Moreover, we use a set of
24 COPs, the so-called G-problem set [107] to asses the developed algorithms on
problems with various difficulties in terms of size of the parameter space, number of
equality and inequality constraints, type of the objective and constraint functions,
etc.

RBF interpolation used in SACOBRA and Kriging used in SOCU are both
common choices of modeling techniques for surrogate-assisted optimization frame-
works. Although both methods come from very different origins, they have un-
deniable similarities. Some similarities and differences between RBF and Kriging
are mentioned in Chapter 7. Kriging unlike the RBF interpolation, provides an
uncertainty measure, indicating how uncertain the model at each point is. This
property makes Kriging a popular choice for many optimizers, especially efficient
unconstrained solvers which employ probabilistic concepts. Despite the close ties
between RBF interpolation and Kriging, RBFs lack the mentioned property by their
nature. This motivated us to investigate whether it is possible to determine an un-
certainty measure for any arbitrary RBF kernel by means of analogy between the
two modeling techniques.

In order to deliver high quality fits for the objective and constraint functions
from widely different classes, there are several self-adjusting elements in SACOBRA
that strengthen the modeling phase, like plog-transformation and constraint rescal-
ing introduced in Chapter 3 or the online model selection functionality introduced
in Chapter 8. However, our attempt to apply SACOBRA on the noiseless BBOB
unconstrained optimization benchmark [58] depicted weak performance of SACO-
BRA in solving problems having objective functions with high-conditioning. This
weak performance occurred mainly due to the RBF interpolations struggling to pro-
vide any useful model in case of having high conditioning objective functions. Such
functions have a high ratio of steepest slope in one direction to flattest slope in
another direction. In Chapter 9 we try to address the challenge that SACOBRA
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faces in solving unconstrained optimization problems with high conditioning objec-
tive functions. We develop an online whitening approach for SACOBRA trying to
transform the functions with high-conditioning in a way to become easier to model
by means of RBF interpolations. In Chapter 9 we show that SACOBRA with the
online whitening approach (OW) is able to find solutions with significantly better
optimization errors. Although a great number of function evaluations are imposed
by the proposed OW mechanism, most of them are parallelizable. SACOBRA+OW
performs better than SACOBRA without the OW mechanisms in solving BBOB with
high-conditioning, though further development of the SACOBRA+OW to improve
its efficiency and to compete with the state-of-the-art in solving the BBOB problems
is left as a future research direction.
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1.2 Summary of Research Questions

For the benefit of the reader, we summarize the set of all research questions which
will be tackled in the following chapters.

Chapter 3 describes a self-adjusting constrained optimizer called SACOBRA
which uses radial basis function interpolation (RBF) as surrogate. Throughout this
chapter we try to answer the following research questions:

Q3.1 Do numerical instabilities occur in RBF surrogates and is it possible
to avoid them?

Q3.2 Is it possible with SACOBRA to start with the same initial pa-
rameters on all G-problems and to solve them by self-adjusting the
parameters on-line?

Q3.3 Is it possible with SACOBRA to solve all G-problems in a given,
small number of function evaluations (e. g., 1000) ?

In Chapter 4, SACOBRA optimization frameworks is extended to address COPs
with equality constraints. The main research questions which will be addressed in
Chapter 4 are listed as follows:

Q4.1 How can SACOBRA be extended to handle COPs with equality
constraints efficiently and solve the common dilemma of margin-
based equality handling methods?

Q4.2 Is a gradually shrinking feasibility margin an important ingredi-
ent for SACOBRA to produce high-quality results on COPs with
equality constraints?

SOCU is the second surrogate assisted constrained optimizer developed in this
work which performs based on the probabilistic modeling technique Kriging. The
SOCU algorithm is described in Chapter 5. To our best knowledge it is the first
time that an EGO-based2 constrained optimizer is evaluated on the challenging G-
problem-COPs. In Chapter 5 we try to answer the following research questions:

Q5.1 Is it possible to modify existing EGO-based optimization algorithms
to handle challenging COPs with multiple active constraints?

2EGO: Efficient Global Optimization technique is a surrogate-assisted solver using Kriging prob-
abilistic modeling, aka Bayesian optimization
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Q5.2 Is it possible to balance the exploration of feasible and infeasible
infill points in a proper way?

In Chapter 6, SOCU framework is extended to address COPs with equality
constraints.

Chapter 7 compares radial basis function interpolation (RBF) and Gaussian
Process modeling (GP) techniques with each other and tackles the following research
question:

Q7.1 Can we determine an estimation of the model uncertainty for any
arbitrary kernel, e. g., cubic RBF, augmented cubic RBF, etc?

The online model selection extension in SACOBRA framework is described in
Chapter 8. The research questions listed below are answered in Chapter 8:

Q8.1 Are there COPs which significantly benefit from using different
types of RBF functions for objective and constraint functions?

Q8.2 Is it possible to advise an online algorithm which automatically se-
lects the right RBF type for each function? That is, does such an
algorithm boost up the overall performance of a COP solver?

In Chapter 9, we deal with optimization problems with high conditioning fitness
functions. After discussing the difficulties of modeling such functions, we try to
develop an approach for transforming high conditioning functions to answer the
research question below:

Q9.1 Can we advise an approach to transform high conditioning functions
to low conditioning in an online manner?

Finally in Chapter 10, the main results of this dissertation will be summarized
and the strengths and limitations of the developed optimizers will be discussed.
Furthermore, possible future directions of research will be mentioned.
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