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4
Optimal scaling

transformations to model
nonlinear relations in GLMs
with ordered and unordered

predictors

In Generalized Linear Models (GLMs) it is assumed that there is a linear
effect of the predictor variables on the outcome. However, this assumption
is often too strict, because in many applications predictors have a nonlinear
relation with the outcome. Optimal Scaling (OS) transformations combined
with GLMs can deal with this type of relations. Transformations of the
predictors have been integrated in GLMs before, e.g. in Generalized Additive
Models. However, the OS methodology several benefits. For example, the
levels of categorical predictors are quantified directly, such that they can be
included in the model without defining dummy variables. This approach
enhances the interpretation and visualization of the effect of different levels
on the outcome. Furthermore, monotonicity restrictions can be applied
to the OS transformations such that the original ordering of the category
values is preserved. This improves the interpretation of the effect and may
prevent overfitting. The scaling level can be chosen for each individual
predictor such that models can include mixed scaling levels. In this way, a
suitable transformation can be found for each predictor in the model. The
implementation of OS in logistic regression is demonstrated using three
datasets that contain a binary outcome variable and a set of categorical
and/or continuous predictor variables.

This chapter is submitted as: Willems, S. J.W., Van der Kooij, A. J., Fiocco, M., and Meulman,
J. J. Optimal Scaling transformations to model nonlinear relations in GLMs with ordered and
unordered predictors.
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4 Optimal scaling transformations in GLMs

4.1 Introduction

Linear models are often used to model relations between a numeric outcome
variable and a set of predictor variables. The ordinary least squares regression
model (OLS) assumes normally distributed errors and linearity in the predictors.
Due to these assumptions, the application to real data is sometimes limited.
For example, consider a medical application in which the relation between the
binary outcome of getting a particular disease and the predictor variable age is
modeled. First of all, the binary outcome cannot be modeled with the standard
linear regression model due to the assumption of normally distributed errors.
Furthermore, due to their weaker immune systems, it may be expected that
both young children and elderly people are more susceptible to the disease
than people of intermediate ages. In such situations, the relation between the
probability of getting the disease will have an inverted-u-shape and thus the
linearity assumption is too strict. Hence, for these types of situations, the
ordinary linear model is not appropriate.

To increase the applicability of the linear model, several extensions have been
developed.

One extension is to allow for a nonlinear relation between the linear combina-
tion of the predictor variables and the outcome via a link function. This type of
models are known as Generalized Linear Models (GLMs, McCullagh and Nelder
(1989)). GLMs do not assume normally distributed errors and are therefore
applicable if errors are distributed differently. A frequently used GLM for binary
outcomes is the logistic regression model, which uses the logit link function to
transform the linear predictor into the unit interval to model probabilities.

A second extension is by transforming the variables. This is done in, for
example, additive models (Friedman and Stuetzle (1981); Hastie and Tibshi-
rani (1990); Winsberg and Ramsay (1980)) and Optimal Scaling regression
(OS-regression) (Gifi, 1990; Van der Kooij and Meulman, 1999; Young et al.,
1976). The predictor variables are transformed using either a parametric or a
nonparametric function.

In this paper, we will integrate two extensions of ordinary linear models
by combining GLMs with optimal scaling techniques. As a result, a nonlinear
link function (as in a GLM) is used to model the relation between the response
variable and a linear combination of transformed predictor variables (as in the
OS approach). Hence, the important difference between a regular GLM and a
GLM with OS lies in the transformation of the predictor variables.

Initially, OS was developed to transform nominal or ordinal categorical
variables into quantitative data by finding optimal numeric values for the category
values. This process was referred to as quantifying qualitative data by Young
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Introduction 4.1

(1981) and the resulting transformations are called quantifications, denoted as
ϕk(xk) for variable k.

The quantifications can also be written in matrix form as ϕk(xk) = Gkvk.
Here, vk is a vector with the quantifications for each category level of variable
k, and Gk is an indicator matrix that represents the observed category values
in xk. Namely, the number of columns in this matrix is equal to the number of
categories and each row contains only zero’s and a single one where the one is
placed in the column that corresponds with i’s observed category level.

Although the OS methodology was originally developed for categorical data,
it can also be applied to non linearly transform numeric data. In this case, all
unique observations of the numeric variable are interpreted as an individual
category level and they are modeled in the same way as for categorical predictors.
Hence, if all objects have unique values, Gk is a permuted identity matrix.

In OS-regression, the response yi of observation i is modeled as a linear
combination of the quantifications of the p observed predictors. Hence, the
model is as follows

yi =
∑p

k=1 βkϕk(xik) + εi,

where εi is the error term. After explaining the OS algorithm for linear models,
we will show how it can be integrated in the Newton-Raphson method to fit a
GLM model with OS transformations.

The type of transformation (also called scaling level in the categorical data
analysis context) is chosen for each individual variable and may thus differ among
predictors. The combination of coefficients and transformations calculated by
the algorithm optimally describe the relation between the response and the
predictors under the restrictions set by the chosen scaling levels.

Several types of scaling levels can be chosen, depending on the expected, or
imposed, relation between the predictor and the outcome.

Usually a step-function is chosen for categorical predictors with few category
levels which can either be monotone or nonmonotone, depending on whether the
ordering of the category levels should be preserved. Kruskal (1964) described one
of the first algorithms to find monotonic step transformations in multidimensional
scaling and a similar technique is applied in OS.

If the predictor has many category levels (e.g. for a numeric variable), some
smoothing may be appropriate to avoid overfitting and to improve interpretation.
In these cases, either a monotone or nonmonotone spline function can be fit,
again depending on whether the ordering of the categories should be preserved.
I-splines (as described by Ramsay (1988)) are used to fit the (non)monotonic
spline function.

In case a linear relation may actually be suitable for a predictor, a linear
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4 Optimal scaling transformations in GLMs

(numeric) scaling level may also be chosen. If a numeric scaling level is chosen
for all predictors, the GLM-OS will give the same output as a ordinary GLM.

In this paper, we will describe how OS can be integrated in the Newton-
Raphson algorithm to find optimal quantifications for the predictor variables
in a GLM. This combination of methods is defined as the Generalized Linear
Model with Optimal Scaling (GLM-OS) or the generalized version of Optimal
Scaling regression (GOS-regression). Since the OS method nonlinearly transforms
the data, the term linear predictor that is used for the linear combination of
transformed predictors in the GLM literature may be confusing. Therefore, it is
referred to in this paper as the weighted sum or linear combination of transformed
predictors.

Although applicable to more GLMs, we will focus on logistic regression
with OS transformations and apply this model to three datasets. Each of these
datasets has different types of predictor variables, which allows us to illustrate
the benefits of OS with respect to visualization, interpretation, and predictability.

4.2 Optimal scaling in linear regression

In this section, we will explain how optimal scaling transformations are integrated
in linear regression. To keep this explanation concise, we only show the basics and
leave out the details and extensions. For more details about the OS-regression
algorithm, including some adjustments to optimize calculation time, we refer to
Van der Kooij (2007) and Meulman et al. (2019).

4.2.1 Model and notation

Let X be the data matrix of dimension n × p where n and p are the number
of objects and predictors respectively. The n observed values of the response
variable are collected in the vector y.

In ordinary least squares regression (OLS), the outcome is modeled as a
linear combination of the predictors, i.e. yi =

∑p
k=1 βkxik + εi, where εi is the

error term. In the optimal scaling setting, the original observed values xk of
each predictor variable k, for k = 1, . . . , p, are transformed and replaced by their
quantifications that is denoted as ϕk(xk). The outcome y is assumed to be
centered and therefore no intercept is required. Hence, the OS-regression model
is y =

∑p
k=1 βk ϕk(xk) + ε.

The quantifications for all n observations can be written in matrix form. Let
Ck be the number of unique observed values for predictor k, and denote by Gk

the indicator matrix of dimensions n×Ck. Each ith row of Gk consists of Ck− 1
zero’s and a single one, placed in the column which corresponds to the value xik.
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Optimal scaling in linear regression 4.2

Furthermore, let vk be the Ck × 1 vector that contains the Ck quantifications of
predictor k. Then, Gkvk is the n× 1 vector of the transformed value for each
object, i.e. ϕk(xk) = Gkvk. Using this notation, the linear regression model
with optimal scaling quantifications in matrix form can be written as

y =
∑p

k=1 βk ϕk(xk) + ε =
∑p

k=1 βk Gkvk + ε. (4.1)

The matrices G1, . . . ,Gp are derived from the data, and coefficients β1, . . . , βp
and quantifications v1, . . . ,vp need to be estimated.

4.2.2 Model estimation

The loss function corresponding to the OS-regression model in (4.1) is written as

L(v1, . . . ,vp;β1, . . . , βp) =
∥∥y −∑p

k=1 βkGkvk
∥∥2 . (4.2)

To fit the model, the loss function should be minimized over both the model
coefficients β1, . . . , βp, and the quantifications v1, . . . ,vp simultaneously, where
the quantifications are restricted according to their scaling level, as described
above these are nominal and ordinal step or spline functions. As an infinite
number of combinations of model coefficients and quantifications will optimize
this function, the latter are standardized to ensure a unique solution.

Since no closed-form solution is available to minimize loss function (4.2) over
all parameters simultaneously, the quantifications and coefficients are optimized
for one variable at the time, and this process is iterated until convergence. This
type of algorithm is referred to as alternating least squares in the psychometric
literature (Gifi, 1990; Young et al., 1976), since the least squares solution is
calculated by alternating the estimation of optimal quantifications and model
coefficients for one variable at the time. In the statistical literature it is called
backfitting and has been extensively used to fit Additive Models and GAMs
(Friedman and Stuetzle, 1981; Hastie and Tibshirani, 1990). A variety of other
terms is present in the literature, like component-wise update and block relaxation,
but it is currently usually referred to as coordinate descent.

In the initialization step, standardized values of the observed variables are
used as starting values for the quantifications v1, . . . ,vp, and the corresponding
ordinary least squares solution based on these standardized quantifications are
used as starting values for β1, . . . , βp. If a numeric scaling level is chosen for
variable k, standardizing xk already gives a solution that satisfies the restrictions.
Hence, quantifications of a numeric scaling level do not require any adjustments
except for standardization.

After initialization, the parameters are updated for a single variable at the
time. At each iteration, all regression coefficients and variables are assumed to
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4 Optimal scaling transformations in GLMs

be fixed, except for the variable k that is currently (conditionally) optimized.
All fixed terms are merged into a single vector denoted by uk and variable k is
then separated from this fixed part, i.e.

L(vk, βk) =
∥∥∥y −∑l 6=k βlGlvl − βkGkvk

∥∥∥2 = ‖uk − βkGkvk‖2 . (4.3)

If variable k’s scaling level is not numeric, quantifications vk need to be
updated. While updating vk, it is assumed that βk is fixed, which enables us to
calculate the unrestricted solution for vk as the ordinary least squared solution
for (4.3) with respect to vk. Hence, if ṽk is the current estimate of vk, then it is
updated as

ṽ+
k =

{
(β̃kGk)

T β̃kGk

}−1
(β̃kGk)

Tuk

=
{
β̃2kG

T
kGk

}−1
GT
k β̃

T
k uk

= β̃−1k D−1k GT
k uk, (4.4)

where β̃k is the current estimate of βk and Dk = GT
kGk. Actually, since ṽk will

be standardized later, β̃−1k in (4.4) can be replaced by sign(β̃k).
This unrestricted solution is actually the solution to the optimal scaling

problem for a nominal variable. For the other scaling levels, restrictions have to
be applied to ṽ+

k . For the ordinal scaling level, weighted monotonic regression
(Kruskal (1964)) is applied, resulting in a monotonic step function. For the
nonmonotone and monotone spline restrictions (with a specified number of
knots and degree of the polynomial functions, Ramsay (1988)) are fitted to
the unrestricted solution. After the appropriate restrictions have been applied,
the result is standardized to ensure a unique solution. This restricted and
standardized solution is then the current estimate ṽk of vk.

Once the quantifications of the kth variable have been updated, model
parameter βk is estimated by again using the ordinary least squares solution for
loss function (4.3) in which Gkvk is now fixed. Hence, the updated value for βk
is calculated as

β̃+k =
{

(Gkṽk)
TGkṽk

}−1
(Gkṽk)

Tuk

=
{
ṽTkDkṽk

}−1
ṽTk GT

k uk. (4.5)

The algorithm continues updating the quantifications and model parameters
for the other variables. This process continues until the loss measured by (4.2)
does not change anymore.

The final estimates of the model coefficients and quantifications (denoted as
β̂1, . . . , β̂p and v̂1, . . . , v̂p) are the updates from the last iteration. Usually the
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Optimal scaling in generalized linear models 4.3

final estimates of the quantifications (v̂k) are plotted against the original values
of variable k to visualize the transformations.

Note that Gk and Dk are sparse matrices which make the above calculations
very inefficient. Therefore, in the implementation of the algorithm, methods are
applied to perform these calculations without using these matrices.

OS-regression algorithm:
Initialization: Create G1, . . . ,Gp based on the data, and initialize the model

parameters β̃1, . . . , β̃p and ṽ1, . . . , ṽp.
Cycle: For k = 1, . . . , p, do:
Step 1: Calculate uk = y −

∑
l 6=k βlGlvl.

Step 2: If the scaling level of variable k is nonnumeric, calculate the
unrestricted estimates of the quantifications of k as

ṽ+
k = β̃−1k D−1k GT

k uk.

Apply appropriate scaling restrictions to ṽ+
k and standardize the result.

Step 3: Update the estimate for model coefficient βk as

β̃+k =
{
ṽTkDkṽk

}−1
ṽTk GT

k uk.

Convergence: Repeat the cycle until convergence criteria are met.

4.3 Optimal scaling in generalized linear models

In this section we will explain how the OS procedure can be integrated in the
Newton-Raphson algorithm used to fit GLMs. After describing the Newton-
Raphson algorithm as it is used to fit regular GLMs, we will show how it can
be modified to include OS transformations. Then we will show the specific
example of how optimal scaling transformations can be calculated for the logistic
regression model. This model will also be used for the data illustrations in the
next section.

4.3.1 GLM-OS model and notation

For GLM-OS we use notation that is similar to the notation used for OS-
regression. Hence, let X and y again be the data matrix and the vector with the
outcome. In a GLM, the outcome is not centered and thus these models include
an intercept. In the GLM-OS setting, we therefore assume that the intercept is
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4 Optimal scaling transformations in GLMs

represented by the regression coefficient β0 multiplied by a vector of ones, which
is denoted as x0 and included in the data matrix X.

A GLM consists of three components, namely
1) a random component that specifies the distribution of the response variable

given the predictors;
2) a linear combination of the predictor variables, denoted as η = β0x0 +β1x1 +
. . .+ βpxp;

3) an invertible link function g which models the relation between the linear com-
bination of object i and i’s response yi, i.e. g(µi) = ηi = β0xi0 + . . .+ βpxip
where µi = E(Yi).

To extend GLMs to include optimal scaling transformation the linear combi-
nation of predictors is replaced by a linear combination of the quantifications,
so

η =
∑p

k=0 βkϕk(xk) =
∑p

k=0 βkGkvk. (4.6)

To fit the GLM-OS, coefficients β0, . . . , βp and quantifications v1, . . . ,vp need
to be estimated. Note that, to represent the intercept, ϕ0(x0) = 1n, and
consequently G0 = 1n and v0 = {1}, are fixed, and hence these terms do not
have to be estimated in each iteration.

4.3.2 Model estimation

The maximum likelihood approach is used to estimate GLMs. The exact form
of the likelihood function depends on the random component of the GLM and
the link function. The log-likelihood is is a function of the linear combination
of predictors and is denoted as l(η). In a GLM η only depends on parameters
β0, . . . , βp, while in GLM-OS it depends on both β0, . . . βp and v1, . . .vp.

There is no closed-form solution to maximize the (log-)likelihood functions,
hence a numerical method is required to find the maximum likelihood estimator
(MLE). For GLMs, usually the Newton-Raphson method is used.

Newton-Raphson method for GLMs

The GLM fitting algorithm aims to find the roots of the gradient by using the
Newton-Raphson algorithm. This method iteratively improves the initial starting
values via the first-order Taylor approximation of the gradient ∇l(β) of the
log-likelihood around the current guess β̃. Hence, the solutions are found as
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Optimal scaling in generalized linear models 4.3

follows

0 = ∇l(β) ≈∇l(β̃) + Hl(β̃)(β − β̃)

−Hl(β̃) β ≈∇l(β̃)−Hl(β̃) β̃

β ≈ β̃ −H−1l (β̃) ∇l(β̃),

where
– β̃ is the current estimate of β;
– Hl(β̃) is the Hessian matrix containing all the second-order partial derivatives

of l(η) w.r.t. β evaluated at β̃;
– ∇l(β̃) is the gradient vector that contains the first-order partial derivatives of
l(η) w.r.t. β evaluated at β̃.

Then, the current estimate β̃ is updated in each iteration as

β̃
+

= β̃ −H−1l (β̃) ∇l(β̃). (4.7)

Each update β̃
+

should be a better approximation of the root than the
previous estimate β̃ and the algorithm repeatedly updates these estimates until
the convergence criteria are met.

In some applications an approximation of H−1l (β̃) is used to simplify the
calculations. For example, in Fisher’s Scoring method, the Hessian is replaced
by its expectation. In some cases, the Hessian and its expectation are identical,
in which case Newton-Raphson and Fisher’s scoring method are equivalent. If
Hl(η̃) is not a diagonal matrix, it can be approximated by a diagonal matrix
to reduce calculation time. For example, Simon et al. (2011) and Willems et al.
(2017) fitted Cox’ Proportional Hazards model in the context of regularization
and OS transformations respectively, and approximated the full Hessian matrix
by its diagonal.

If it is easier to do calculations with the negative log-likelihood, the algorithm
is modified such that it finds the minimum of −l(η). In this case the algorithm
does essentially not change except that it now uses the the gradient and Hessian
of the negative log-likelihood −l(η) to repeatedly update β̃ to find β̂.

Modification of the Newton-Raphson method to fit GLM-OS

To estimate the GLM-OS model the coefficients β1, . . . , βp and quantifications
v1, . . . ,vp that maximize the log-likelihood function need to be computed. Hence,
the following equations need to be solved,

∇l(v1) = . . . = ∇l(vp) = 0,

and
∇l(β0) = . . . = ∇l(βp) = 0.
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4 Optimal scaling transformations in GLMs

Since there is no closed-form solution to derive the parameters simultaneously,
they will be calculated iteratively for one variable k at the time, as was done in
the OS-regression algorithm. After initialization, the algorithm iterates over all
k = 0, . . . , p predictors and updates first the quantifications vk (unless k = 0)
and then model coefficient βk.

As when updating β in ordinary GLMs, we set the first-order Taylor approx-
imation of ∇l(vk) around the current estimate ṽk to zero and derive the update
for vk from that equation, i.e. via

0 = ∇l(vk) ≈∇l(ṽk) + Hl(ṽk) (vk − ṽk)

vk ≈ ṽk −H−1l (ṽk) ∇l(ṽk),

where
– ṽk is the current estimate of vk;
– Hl(ṽk) is the Hessian matrix containing all the second-order partial derivatives

of l(η) w.r.t. vk evaluated at ṽk (or some approximation thereof); and
– ∇l(ṽk) is the gradient vector containing the first-order partial derivatives of
l(η) w.r.t. vk evaluated at ṽk.

Since η is the weighted sum of transformed predictors, i.e. η =
∑p

k=0 βkGkvk,
the gradient vector of η w.r.t. vk is βkGk. Hence, from the chain rule

∇l(ṽk) = (β̃kGk)
T ∇l(η̃)

and
Hl(ṽk) = (β̃kGk)

T Hl(η̃) β̃kGk,

with ∇l(η̃) the gradient vector and Hl(η̃) the Hessian matrix of l(η) w.r.t. η
evaluated at current estimate η̃. Hence, the quantifications for all predictors
with a nonnumeric scaling level are updated as

ṽ+
k = ṽk −H−1l (ṽk) ∇l(ṽk)

= ṽk −
{

(β̃kGk)
T Hl(η̃) β̃kGk

}−1
(β̃kGk)

T ∇l(η̃). (4.8)

These updates are the unrestricted estimates of the quantifications and are
the optimal solution for a nominal scaling level. For the other scaling levels,
restrictions have to be applied to ṽ+

k by fitting a nonmonotone or monotone
step or spline function, as is done in OS-regression. Then the quantifications are
standardized to ensure a unique solution.

After updating the quantifications vk for predictor k, βk needs to be up-
dated accordingly. Again, updates can be derived via the first-order Taylor
approximation of ∇l(βk), which results in

β̃+k = β̃k −H−1l (β̃k) ∇l(β̃k), (4.9)
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Optimal scaling in generalized linear models 4.3

where
– β̃k is the current estimate of βk;
– Hl(β̃k) is the Hessian matrix containing all the second-order partial derivatives

of l(η) w.r.t. βk evaluated at β̃k (or some approximation thereof); and
– ∇l(β̃k) is the gradient vector containing the first-order partial derivatives of
l(η) w.r.t. βk evaluated at β̃k.

Using the chain rule,

β̃+k = β̃k −H−1l (β̃k) ∇l(β̃k)

= β̃k −
{

(Gkṽk)
T Hl(η̃) Gkṽk

}−1
(Gkṽk)

T ∇l(η̃),

where ∇l(η̃) and Hl(η̃) are recalculated in between updating ṽk and β̃k.

The modified version of the Newton-Raphson method for GLM-OS can be
summarized as follows.

GLM-OS algorithm:
Initialization: Set G0 = 1n and v0 = {1}, create G1, . . . ,Gp based on the

data, and initialize the model parameters β̃0, . . . , β̃p and ṽ1, . . . , ṽp.
Cycle: For k = 0, . . . , p, do:
Step 1: Calculate the Hessian matrix Hl(η̃) and the gradient vector ∇l(η̃).
Step 2: If the scaling level of variable k is nonnumeric, calculate the

unrestricted estimates of the quantifications of k as

ṽ+
k = ṽk −

{
(β̃kGk)

T Hl(η̃) β̃kGk

}−1
(β̃kGk)

T ∇l(η̃).

Apply appropriate scaling restrictions to ṽ+
k and standardize the result.

Step 3: Update the Hessian matrix Hl(η̃) and the gradient vector ∇l(η̃)
using the current estimate ṽk.

Step 4: Update the estimate for model coefficient βk as

β̃+k = β̃k −
{

(Gkṽk)
T Hl(η) Gkṽk

}−1
(Gkṽk)

T ∇l(η̃).

Convergence: Repeat the cycle until convergence criteria are met.

4.3.3 The relation between the Newton-Raphson method for
GLM(-OS)s, IRLS, and OS-regression

The Newton-Raphson method for GLMs is often referred to as Iterative Reweighed
Least Squares (IRLS), because the algorithm iteratively solves reweighted least
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4 Optimal scaling transformations in GLMs

squares problems. This will be explained in this section. This relation between
GLM estimation and least squares is important for GLM-OS, because it ac-
commodates the use of monotone regression and I-splines when finding optimal
quantifications.

As was shown in subsubsection 4.3.2, β̃ in an ordinary GLM is updated in
each iteration as

β̃
+

= β̃ −H−1l (β̃) ∇l(β̃).

Given that the linear combination in ordinary GLMs is η = Xβ, the matrix
containing all its partial derivatives w.r.t. β1, . . . , βk is X. Hence, according to
the chain rule

Hl(β̃) = XT Hl(η̃) X

and
∇l(β̃) = XT ∇l(η̃).

Hence, the updates for the model parameters β̃ can be rewritten as

β̃
+

= β̃ −H−1l (β̃) ∇l(β̃)

= β̃ −
{
XT Hl(η̃) X

}−1
XT ∇l(η̃)

=
{
XT Hl(η̃) X

}−1
XT Hl(η̃)

{
Xβ̃ −H−1l (η̃) ∇l(η̃)

}
=
{
XT Hl(η̃) X

}−1
XT Hl(η̃) z

where z = Xβ̃ −H−1l (η̃) ∇l(η̃). These updates are exactly the solution to the
weighted least squares problem

argminβ ‖z−Xβ‖2Hl(η̃)
,

with Hl(η̃) the (diagonal) matrix with weights for each observation. Hence,
the Newton-Raphson algorithm iteratively optimizes a weighted least squares
problem in which the weights are updated in each iteration. For this reason, it
is often called the Iterative Reweighted Least Squares algorithm.

The same reasoning can be used to show that the GLM-OS algorithm
iteratively solves the weighted least squares problems

argminvk

∥∥∥zk − β̃kGkvk

∥∥∥2
Hl(η̃)

(4.10)

and

argminβk ‖zk − βkGkṽk‖2Hl(η̃)
, (4.11)
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with zk = β̃kGkṽk −H−1l (η̃)∇l(η̃).
Since the GLM-OS alternates between updating the model coefficients and

the quantifications, it could be referred to as the Iterative Reweighted Alter-
nating Least Squares (IRALS) algorithm. Note that the weights in Hl(η̃) are
recalculated between calculating the updates of ṽ+

k and β̃+k , and that the objects
should be weighted accordingly when fitting the step or spline functions.

Although loss functions (4.10) and (4.11) look very similar to loss function
(4.3) of the OS-regression algorithm, they are different. In the GLM-OS setting
the objects are weighted according to the Hessian entries, while in OS-regression
they receive equal weights. Furthermore, in GLM-OS the least squares problems
change at each iteration and are subproblems that serve as intermediate steps
to get closer to the maximum of the (log-)likelihood. In OS-regression, the
minimization of the loss function is the actual optimization problem.

4.3.4 Example: logistic regression with optimal scaling transfor-
mations

The GLM-OS algorithm as described previously can be applied to a variety of
GLMs. In this paper, we focus on the logistic regression model, which is used
when the outcome of interest is dichotomous. It models the probability πi that
observation i has response yi = 1, given observed predictor values xi. To avoid
the probability estimates to be negative or exceed one, a logistic distribution
maps the weighted sum of (transformed) predictor variables ηi onto the unit
interval, i.e.

πi =
1

1 + exp(−ηi)
, (4.12)

which represents the probability of success (yi = 1) in a Bernoulli trial. The
resulting likelihood function is

L(η) =

n∏
i=1

πyii (1− πi)1−yi =

n∏
i=1

exp(ηi)
yi

1

1 + exp(ηi)
, (4.13)

with corresponding log-likelihood

l(η) =
n∑
i=1

yiηi −
n∑
i=1

log{1 + exp(ηi)}. (4.14)

We use the modified Newton-Raphson method as described in subsubsec-
tion 4.3.2 to maximize (4.14) to find the optimal estimates for both the model
parameters β and quantifications v1, . . . ,vp. To simplify later calculations, we
recast the maximization problem into a minimization problem and find the
minimum of the negative of the log-likelihood.
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To apply the algorithm, we need to derive the gradient vector ∇−l(η̃) and
the Hessian matrix H−l(η̃) of −l(η) w.r.t. η evaluated at the current estimate
η̃. The gradient is

∇−l(η̃) = π − y

and the Hessian is

H−l(η̃) = diag {π(1− π)} ,

where π is the n-vector of probabilities πi as defined in (4.12). Calculation
details are provided in subsection 4.6.1.

The updates for quantifications vk and coefficient βk in each iteration are as
follows

ṽ+
k = ṽk −

[
(β̃kGk)

T diag {π(1− π)} β̃kGk

]−1
(β̃kGk)

T (π − y) (4.15)

and

β̃+k = β̃k −
[
(Gkṽk)

T diag {π(1− π)} Gkṽk
]−1

(Gkṽk)
T (π − y), (4.16)

where π is recalculated before updating β̃k.
This algorithm that integrates OS transformations in the logistic regression

model has been implemented in R software environment (R Core Team (2018))
to perform the analyses that will be described in the next section. This imple-
mentation of the algorithm uses some methods to speed up the calculations and
save memory space by, for example, avoiding matrix multiplications with the
sparse matrices Gk.

4.4 Application of GLM with optimal scaling: logistic
regression

In this section the GLM-OS method us applied to three different datasets. In all
examples, we use a logistic regression model to predict a binary classification
from a set of predictors. Each illustration focuses on a particular predictor type,
namely categorical, ordinal and mixed data, and on different scaling levels which
can be used to analyze these types of data.

4.4.1 Transformation and visualization of categorical predictors

We use a medical dataset to show how the OS methodology deals with categorical
data by finding optimal quantifications for each category level. This approach is
an alternative to the use of dummy variables, which is the standard approach for
categorical predictors in GLMs. We will show how the replacement of dummy
variables by quantifications will simplify the visualization and interpretation of
the model, while it also benefits the computational process.
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Data description

The first dataset is provided by the German multi-center project DINSTAP (Dif-
ferentielle INdikationsstellung Stationärer und TAgesklinischer Psychotherapie;
differential indication for inpatient and day clinic psychotherapy). The aim of
the original project was to explore which criteria are used by clinicians to choose
between an inpatient or a day clinic psychotherapy treatment.

Data on 25 possible predictors for treatment choice were collected. In the
analysis illustrated in this section, we will only include the six most important
variables for prediction (Hartmann et al. (2009)); namely Need for medical care,
Travel time, Need for relief from family conflicts, Need for relief from strain,
Psychological restrictions of mobility, and Need to apply therapy in everyday life.

Since this data analysis is for illustration purposes only, we focus only on the
complete cases (n = 342). For 53.8% of these patients, clinicians preferred a day
clinic treatment (y = 0), while for the others (46.2%) an inpatient treatment
(y = 1) seemed more suitable.

We refer to Zeeck et al. (2009) for a description of the full dataset.

OS transformations with nominal scaling level

In the OS methodology, optimal quantifications for the categories of the predictor
variables are found within the restrictions of the chosen scaling level. The least
restrictive scaling level is a nominal transformation in which no ordering of the
categories is taken into account. This scaling level best resembles the standard
approach to handle categorical data, in which first dummy variables are defined
to represent the category levels and then model coefficients are estimated for each
dummy individually. Namely, if there are Ck categories for variable k, then Ck−1
dummies are defined and hence Ck − 1 regression coefficients will be estimated,
each indicating the effect of one category in comparison to the reference category.
In contrast, optimal scaling assigns quantifications to all categories and estimates
a single regression coefficient for each categorical predictor. Namely, the vector
vk of length Ck contains quantifications for the Ck categories and matrix Gk

contains Ck columns representing all the categories, such that Gkvk gives the
transformed predictor which is weighted by one regression coefficient βk. If
no restrictions (nominal scaling level) are applied to the quantifications vk it
will give similar results as analysis on dummy variables, but these results are
represented differently, as shown in Table 4.1

The OS transformations for the six predictor variables are visualized by
plotting the estimated quantifications against the original values of the category
levels (Figure 4.1) and the estimated regression coefficients are given below each
plot.
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Category Dummy coding Optimal scaling

1 βkvk1
2 βk2 βkvk2
...

...
...

Ck − 1 βkCk−1
βkvkCk−1

Ck βkCk βkvkCk

Table 4.1: Contributions of the Ck category levels of a categorical variable
k to the linear combination of predictor variables for the ordinary regression
model with dummy coding and the optimal scaling model.

The lines that connect the dots have no meaning since there are no interme-
diate categories. However, their slopes visualize useful additional information
about the relation between category levels. For example, a steep slope indicates a
large difference between consecutive categories, while a small increase or decrease
is indicated by a flat slope. In this way, the lines help interpreting the result
and are therefore included in the plots.

The interpretation of the influence of a specific variable k in a model with
OS transformations is via the estimated model coefficient β̂k which indicates the
strength of the effect, and via the estimated quantifications v̂k which indicate
the direction of the effect.

To understand which predictors have the strongest effect on the outcome,
we first compare the regression coefficients. Given the values of the estimated
coefficients, the predictors can be ordered according to the strength of their
effect; i.e. Travel Time has the strongest effect (β̂ = 1.41), followed by Need for
relief from family conflicts (β̂ = 1.28), Need to apply therapy in everyday life
(β̂ = 1.20), Need for relief from strain (β̂ = 1.06), Psychological restrictions of
mobility (β̂ = 0.96), and Need for medical care (β̂ = 0.65). The proportions of
the model coefficients can also be used to draw conclusions. For example, we can
conclude that the effect of Need for relief from family conflicts on the weighted
sum of predictors is twice as big compared to the effect of Need for relief for
medical care (β̂ = 1.28 vs. β̂ = 0.65).

The direction of the effect of a category level is given by the combination of
its quantification and the sign of the predictor’s model coefficient. For example,
the large positive quantifications of the third category (often) of Need for medical
care in combination with the positive model coefficient of this predictor indicates
that if medical care is often required, a patient is more likely to be referred to
inpatient treatment than day clinic treatment. Furthermore, this probability

116



Application of GLM with optimal scaling: logistic regression 4.4

0

1

2

3

Need for medical care

coeff. =  0.65

Original values

Q
u
a
n
ti
fi
c
a
ti
o
n

none rarely often very often

0

1

2

3

4

5

6

Travel time (x 15 min)

coeff. =  1.65

Original values
Q

u
a
n
ti
fi
c
a
ti
o
n

0−1 2−3 4−5 6−8

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

Need for relief from
family conflicts

coeff. =  1.28

Original values

Q
u
a
n
ti
fi
c
a
ti
o
n

none rarely often very often

−0.5

0.0

0.5

1.0

1.5

Need for relief from strain

coeff. =  1.06

Original values

Q
u
a
n
ti
fi
c
a
ti
o
n

none rarely often

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

Psychological restrictions
of mobility

coeff. =  0.96

Original values

Q
u
a
n
ti
fi
c
a
ti
o
n

none slight marked strong

−1

0

1

2

Need to apply therapy
in everyday life

coeff. =  1.20

Original values

Q
u
a
n
ti
fi
c
a
ti
o
n

none rarely often very often

Figure 4.1: DINSTAP data: Nominal quantifications estimated for each of
the original categories of the six predictor variables. Regression coefficients are
provided below the plots of the corresponding predictor. The estimated intercept
is 0.56.

increases if medical care is very often needed (fourth category). However, when
no medical care is required (first category) or just rarely (second category),
this will hardly influence a clinician’s choice. A similar pattern is seen for
Psychological restrictions of mobility. Additionally, only a strong need to be
relieved from family conflicts seems to be a reason to choose for an inpatient
treatment. Apparently inpatient treatment is believed to give additional mental
stress, because this type of treatment is usually only given when there is no
need for relief from strain. Moreover, the effect of the need to apply the therapy
in everyday life seems to be almost linear in its categories. Surprisingly, a
Travel Time of 6–8 quarters of an hour seems to be a strong indicator for
inpatient treatment, while an even longer travel time is an indicator for day
clinic treatment. This is a questionable result which might be due to the small
number of observations in these two categories (8 and 6 patients relatively).

Concluding, the visualizations of the quantifications help to interpret the
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results. A closer look at their exact values and the model coefficients will give a
more detailed interpretation.

Comparison between OS transformations and the use of dummy vari-
ables

In standard logistic regression dummy variables are created to estimate the
effects of each category level for all predictors on the outcome. The analysis on
the DINSTAP data gives the estimates in Table 4.2.

These estimates should always be interpreted in terms of the reference
category, thus the estimate −0.220 for category 2 of Need for medical care
indicates that for patients who are classified in the second level of this predictor,
the weighted sum of predictors is 0.220 lower than the weighted sum for those in
the first category (= reference level). This coefficient represents the log of the odds
ratio between these two categories. To compare the second and third categories,
it is necessary to subtract the corresponding coefficients. Hence, to know whether
being classified in category rarely instead of often or in often instead of very often
has a bigger effect on the treatment choice, we have to compare the differences
between their corresponding coefficients. Since 1.284 − (−0.220) = 1.504 and
2.434− 1.284 = 1.150, this implies that the step from the second to the third
category is larger than the step from the third to the fourth level. The same
conclusion could be drawn by looking at the slopes in the quantification plots in
Figure 4.1.

The similarity between the results obtained with optimal scaling and the use
of dummy variables can be seen through the differences between the category
quantifications. For example, the difference in the effect of categories 1 and 2 of
Need for Medical Care in the optimal scaling result is the difference between the
quantifications multiplied by the coefficient, 0.65 ·{−0.563−(−0.225)} = −0.220,
which is precisely the coefficient for the corresponding dummy variable.

Hence, the results from ordinary logistic regression with dummy variables
are essentially equal to the results of logistic regression with nominal scaling
transformations, but they are represented differently. While the result for dummy
variables focuses on the numeric coefficients only, OS puts more emphasis on
visualization to improve the understanding of the quantification result, and
provides regression coefficients for the predictors. The coefficients estimated for
each dummy variable could also be plotted and the resulting figures will be very
similar to those in Figure 4.1. However, most statistical software do not provide
these plots as a default.
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4 Optimal scaling transformations in GLMs

4.4.2 Monotone transformations to facilitate interpretation

In the next illustration we use survey data to show the differences between
nonmonotone and monotone quantifications for both ordered categorical and
continuous data. If the prediction accuracy is not reduced significantly, it may
be beneficial to put monotonicity constraints on the transformations.

Data description

For this illustration we use a subset of the 1987 National Indonesia Contra-
ceptive Prevalence Survey data (Lim et al. (2000), available from the ICU Ma-
chine Learning Repository via https://archive.ics.uci.edu/ml/datasets/
Contraceptive+Method+Choice). The dataset contains several variables col-
lected from married couples and their choice of contraceptive method. The
categories of the outcome variable are no, long-term, or short-term use, and
we merged the short- and long-term use into one category to create a binary
outcome variable indicating whether couples use contraceptive methods (y = 1)
or not (y = 0). There are nine predictor variables of which three are binary,
four are categorical with ordered levels, and two are continuous. There are no
missing values for any of the variables (n = 1472).

Nonmonotone vs. monotone quantifications

Since the values for most predictor variables in this dataset are ordered (namely
for four categorical and two continuous variables), this dataset is suitable to
compare nonmonotone and monotone transformations. For the categorical
variables, either a nonmonotone or monotone step function are fitted, and for the
continuous variables we use a (non)monotone spline transformation (of degree
two with one interior knot). The results are shown in Figure 4.2.

Most estimated transformations are monotone even without imposing mono-
tonicity, therefore the quantifications of the monotone and nonmonotone analyses
are very similar for most predictors. The largest differences can be found for
the variables Education Husband, Occupation Husband, and Number of previous
children. However, although the results are very similar, it may still be beneficial
to apply the monotonicity constraints, since it may simplify the interpretation of
the result, or correspond better to the expected relation between the predictor
variable and the outcome.

For example, if there are no monotonicity restrictions, the model indicates
that if the husband is in the highest category of education, then the couple is less
likely to use contraceptive methods, compared to the two middle categories. This
result seems unexpected and it is difficult to explain. If monotonic restrictions
are imposed, the quantifications of the three highest categories are equal and
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very close to zero. This suggests that only a low education level of the husband
is an indicator for no use of contraceptive methods (although the overall effect of
this variable is small (β = 0.05)). From this example we see that monotonicity
may simplify the interpretation of the quantifications, since there is no need to
explain an unexpected decrease in effect.

A similar reasoning can be used for the quantifications of the Number of
previous children. Namely, it is more plausible that the probability of using
contraceptives increases with the number of previous children, than that there is
a slight dip after 9 children and then again an increase after 12 children.

Hence, although differences with the nonmonotonic results are small, the
monotonic quantifications of Education Husband, Occupation Husband, and
Number of previous children are easier to interpret and correspond more to
reality than the nonmonotonic ones.

Even though monotonic constraints ease interpretation, imposing too many
restrictions on the transformations may hide the true relation between the
predictor and outcome variables. Therefore it is important to check the model’s
performance for future observations before choosing for monotone scaling levels.
This check can be done with cross-validation (CV). The results for this dataset
are shown in Table 4.3.

As can be expected, the prediction errors based on the test data (EPE)
using a 10-fold cross-validation are higher for both models compared to the
apparent prediction error (APE) calculated on the training data. The increase is
slightly smaller for the model with monotone transformations, but the difference
between the models is very small (0.1875 vs. 0.1869). This suggests that applying
monotonicity does not hide any important relation between the predictors and
the outcome variable.

APE EPE SE(EPE) MCR (%)

Logistic Regression (linear) 0.206 0.211 0.0047 32.8
GAM (nonmonotone) 0.181 0.188 0.0052 28.3

GLM-OS (nonmonotone) 0.181 0.188 0.0053 28.7
GLM-OS (monotone) 0.181 0.187 0.0053 28.2

Table 4.3: Contraceptive method choice data: Apparent prediction error (APE)
for the GLM-OS model with nonmonotone and monotone transformations,
together with the 10-fold cross validation results: Expected Prediction Error
(EPE) along with its standard error (SE(EPE)) and the Misclassification Rate
(MCR). Results from standard logistic regression and GAM are added for
comparison.
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Relation with ordinary logistic regression and GAMs

In ordinary logistic regression, categorical predictors are included in the model by
defining the category levels with dummy variables and by analyzing continuous
data linearly. For categorical data, the dummy coding essentially gives the same
result as transformations with a nominal scaling levels, although the result is
represented differently (see subsection 4.4.1). The main difference between the
ordinary logistic regression and nonmonotone GLM-OS results for this dataset
is in the restrictions applied on the continuous variables. Namely, the linearity
assumption for the logistic regression is more restrictive than the nonmonotone
spline transformations in the GLM-OS.

In a GAM analysis, categorical variables are represented as dummy variables,
as in ordinary logistic regression. Continuous variables are usually transformed
using a nonmonotone spline function, but the algorithm to find the optimal
spline is different from the algorithm used in OS. Therefore, the objective of
GAMs is similar to nonmonotone GLM-OS, but the results for categorical data
are represented differently and the nonmonotone splines are fitted in a slightly
different way.

In Table 4.4 restrictions for ordinary logistic regression, (non)monotone
GLM-OS, and GAMs are provided for comparison of the models.

The similarity of GAM and nonmonotonic GLM-OS is confirmed by the
cross-validation results provided in Table 4.3. The small difference between the
fitted splines have little influence on the predicted values of the observations.

Larger differences are seen for ordinary logistic regression. The prediction
errors and misclassification percentages for the classic analysis are higher than
those for (non)monotone GLM-OS and GAM. This suggests that the linearity
assumption seems too strict for this dataset. Hence, imposing monotonicity
will enhance interpretation, but imposing linearity (which would simplify the
interpretation even more) will hide nonlinear relations between the predictors
and outcome that are important for prediction.

122



Application of GLM with optimal scaling: logistic regression 4.4

−1.0

−0.5

0.0

0.5

1.0

Education Wife

coeff. nom =  0.60 , coeff. ord =  0.58

Original values

Q
u
a
n
ti
fi
c
a
ti
o
n

1=low 2 3 4=high

−5

−4

−3

−2

−1

0

1

Education Husband

coeff. nom =  0.10 , coeff. ord =  0.05

Original values

Q
u
a
n
ti
fi
c
a
ti
o
n

1=low 2 3 4=high

−2.0

−1.5

−1.0

−0.5

0.0

0.5

Religion Wife

coeff. nom =  −0.14 , coeff. ord =  −0.14

Original values

Q
u
a
n
ti
fi
c
a
ti
o
n

Non−Islam Islam

−1.5

−1.0

−0.5

0.0

0.5

Working Wife

coeff. nom =  0.01 , coeff. ord =  0.01

Original values

Q
u
a
n
ti
fi
c
a
ti
o
n

Yes No

−1

0

1

2

3

4

5

Occupation Husband

coeff. nom =  0.13 , coeff. ord =  0.13

Original values

Q
u
a
n
ti
fi
c
a
ti
o
n

1=low 2 3 4=high

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

Standard Of Living

coeff. nom =  0.23 , coeff. ord =  0.23

Original values

Q
u
a
n
ti
fi
c
a
ti
o
n

1=low 2 3 4=high

0

1

2

3

Media Exposure

coeff. nom =  −0.17 , coeff. ord =  −0.18

Original values

Q
u
a
n
ti
fi
c
a
ti
o
n

Good Not good

−2

−1

0

1

2

Age Wife

coeff. nom =  −0.85 , coeff. ord =  −0.87

Original values

Q
u
a
n
ti
fi
c
a
ti
o
n

15 20 25 30 35 40 45 50

−2

−1

0

1

2

3

4

Number Of Previous Children

coeff. nom =  1.23 , coeff. ord =  1.24

Original values

Q
u
a
n
ti
fi
c
a
ti
o
n

0 4 8 12 16

Figure 4.2: Contraceptive method choice data: Nominal (circles) and ordinal
(squares) quantifications estimated for each of the original categories of the nine
predictor variables. Categorical variables are transformed using step functions
and continues predictors are transformed using splines. Estimated regression
coefficients are provided below the plots of the corresponding predictor. The
estimated intercepts are 0.30 for both the nonmonotone and monotone analyses.
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4.4.3 Mixed scaling levels

Although monotone quantifications are usually easier to interpret, choosing a
monotone scaling level is only correct if the predictor is also measured on an
ordinal scale. For example, it would not make sense to impose monotonicity
on the transformations of nominal categorical variables like countries, color, or
blood type. On the other hand, nonmonotone restrictions can be applied to an
ordered variable (categorical or numeric) if a nonmonotone relation is expected
between this variable and the outcome. Therefore, it is important to choose each
scaling level in accordance with the measurement level of the predictor.

In OS a different scaling level can be selected for each individual predictor.
Usually this results in a model with a mix of scaling levels most suitable for the
data. We will illustrate a mixed scaling level model with a medical dataset.

Data description

For this illustration we use the breast cancer recurrence dataset (M. Zwitter & M.
Soklic, University Medical Center, Institute of Oncology, Ljubljana, Yugoslavia;
available from the ICU Machine Learning Repository via https://archive.ics.
uci.edu/ml/datasets/breast+cancer). This dataset contains information on
the binary response variable which indicates whether a patient experienced
recurrence-events (y = 1) or not (y = 0). The aim is to predict the probability
of recurrence-events from nine categorical and numerical predictor variables.

The predictor variables were measured on different scales. Variables Node
caps, Irradiation, and Breast are categorical with two unordered categories.
Breast quadrant and Menopause are categorical with more than two unordered
categories. The Degree of malignancy is indicated by three category levels. These
levels are ordered and a higher level indicates more abnormal cells. Finally, there
are three numeric predictors that were discretized into categories; Inv-nodes,
Age, and Tumor size. Unfortunately, the dataset does not include the original
numeric values, so we can only use the discretized results.

The dataset contains 276 complete cases and the distribution of these obser-
vations over the predictors’ categories is shown in Figure 4.3.

GLM-OS with scaling levels according to measurement level

Given that all predictors have different measurement levels, they require a
different type of transformation in the logistic regression analysis. In the OS
setting this can easily be done by selecting an appropriate scaling level for each
variable.

For binary variables, all scaling levels will result in the same quantifications.
Hence, for the three binary predictors, any scaling level could be chosen. To
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4 Optimal scaling transformations in GLMs

reduce calculation time it is best to choose the numeric scaling level.
The categorical variables Breast quadrant, Menopause, and Degree of malig-

nancy contain up to five categories. Since the levels of the first two predictors
are unordered, a nonmonotone step function is the most appropriate. For Degree
of malignancy a monotone step function is more suitable since its category levels
are ordered.

The last three numerical predictors were summarized into categories. Pre-
dictors Inv-nodes and Age were discretized into 6 and 5 levels respectively
and restrictions for a monotone step function are used to fit their quantifica-
tions. Tumor size was discretized into eleven categories and we choose a smooth
transformation by fitting a monotone spline (quadratic, 1 interior knot).

Results based on the logistic regression analysis with OS transformations
are given in Figure 4.4. Several conclusions can be drawn from this exploratory
analysis.

The values of the estimated coefficients suggest that whether the cancer
metastasizes to a lymph node (Node caps) has little influence on the probability
of a recurrence-event; nor does the use of irradiation therapy. Furthermore,
tumor location (indicated by Breast and Breast Quadrant) has a small effect.

From the quantifications of the categories of Menopause, its seems that the
lt40 stage is protective against recurrence-events. However, this result was based
on only five observations (see corresponding bar plot in Figure 4.3), so more
information should be collected from patients in this menopause stage to verify
this result.

The ordinal predictors seem quite informative. For example, patients who
were in the third degree of malignancy were more likely to get recurrence-events
compared to those who were in one of the two lower levels. Furthermore, the
transformations of the numerical predictors indicate that recurrence-events are
more likely to occur if lymph nodes contain metastatic breast cancer (Inv-nodes),
or if the tumor size was large. But, although the probability of a recurrence-event
increases with tumor size, it barely increases once a tumor has reached size 25.
Moreover, especially women of age 60 or older experience recurrence-events.

Comparison with nonmonotone scaling level and linearity restrictions

In the current analysis, all scaling levels are chosen to preserve all properties
of the data. However, scaling levels with less restrictions may be chosen. For
example, although Age was calculated on an ordinal scale, it does not necessarily
imply that the relation between Age and the probability of recurrence-events
is monotonic. Therefore, we may check whether a nonmonotone scaling level is
more suitable for an ordinal predictor as well.
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A cross-validation is used to compare the prediction accuracy from the previ-
ous model with those from the less restrictive analysis with only nonmonotone
transformations. In the latter model, nonmonotone step functions were used to
transform all variables except for Tumor size, for which a nonmonotone spline
function (quadratic, 1 interior knot) was chosen. Results are shown in Table 4.5.

APE EPE SE(EPE) MCR(%)

GLM-OS (nonmonotone) 0.156 0.196 0.0154 28.6
GAM (nonmonotone) 0.150 0.193 0.0154 26.5

Logistic regression (1 variable linear) 0.154 0.189 0.0152 26.1
Logistic regression (4 variables linear) 0.166 0.187 0.0137 27.9

GLM-OS (mixed scaling levels) 0.156 0.179 0.0142 25.4

Table 4.5: Breast cancer recurrence data: Apparent prediction error (APE)
for the GLM-OS model with nonmonotone and monotone transformations,
together with the 10-fold cross validation: Expected Prediction Error (EPE)
along with its standard error (SE(EPE)) and the Misclassification Rate (MCR).
Results from standard logistic regression and GAM are added for comparison.

Cross-validation shows that the analysis with monotonicity restrictions pro-
duce smaller prediction errors on the test data and a smaller misclassification rate.
This result suggests that a nonmonotone approach yields overfitting. So, in ad-
dition to easing interpretation of the quantifications, monotone transformations
can prevent overfitting.

We also estimated a GAM on this data set. In this analysis we fitted a
nonmonotonic spline transformation for Tumor size and all other predictors
were defined with dummy variables. With these settings, GAM analysis closely
resembles the nonmonotonic GLM-OS approach. This resemblance is supported
by the similarity of the cross-validation results (Table 4.5).

We also estimated two ordinary logistic regressions with linearity assumptions.
In the first analysis, we put linearity constraints on the Tumor size and included
all the other variables as categorical data by defining dummy variables. In the
second analysis, we put linearity constrains on all four ordinal predictors (i.e.
on Degree of malignancy, Inv-nodes, Age, and Tumor size). The latter is the
standard approach used if researchers want to preserve the category ordering.
The cross-validation results for these models are also shown in Table 4.5.

When comparing the two logistic regression models with linearity assumptions,
the cross-validation results show that the prediction error for the full dataset
(APE) is much larger when the linearity restrictions are put on all four variables
compared to only on Tumor size. However, in the cross-validation the prediction
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4 Optimal scaling transformations in GLMs

errors (EPE) are almost similar, although the misclassification rate is slightly
higher for the model with most restrictions.

When comparing the results from ordinary logistic regression to the GLM-OS
results, we see that the prediction accuracy is in between the results of the
models with nonmonotone and monotone scaling levels. This results suggests
that applying no restrictions on the ordering will give the worst predictions. The
prediction error can be improved by imposing the strict linearity restrictions for
only one or four predictors. However, the most beneficial option is to impose
monotonicity instead of linearity.

Concluding, analyzing the data with mixed scaling levels that are appropriate
for the measurement levels of the predictors can help improve the results. When
choosing the most suitable scaling level a cross-validation study is helpful to
prevent overfitting.
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Figure 4.3: Breast cancer recurrence data: Distribution of observation over
the categories of the predictor variables, split by outcome value (dark grey =
recurrence events, light grey = no recurrence events).
*This category is a union of two categories that were merged because one of the
original categories contained only one observation.
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Figure 4.4: Breast cancer recurrence data: Quantifications estimated for
each of the original categories of the nine predictor variables. Unordered
categorical variables are transformed using nonmonotone step functions and
ordered categorical variables are transformed using monotone step functions.
Variable Tumor size is transformed using a monotone spline. Regression
coefficients are provided below the plots of the corresponding predictor. The
estimated intercept is -1.24.
*This category is a union of two categories that were merged because one of the
original categories contained only one observation.
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4.5 Discussion

In this paper we have shown how OS transformations can be integrated in GLMs
to transform predictors to optimize model fit and prediction accuracy. OS allows
for nonlinear transformations that can be either nonmonotonic or monotonic,
and are fit with a step or a spline function.

Transformations of the predictor variables have been integrated in GLMs
before (Hastie and Tibshirani, 1990). However, the OS methodology has several
benefits compared to other methods.

The strong focus of OS on categorical predictors results in a more flexible
analysis method and an easier interpretation of the results for categorical data.
While models like ordinary GLMs and GAMS use dummy variables to include
categorical predictors, in the OS setting the predictor’s categories are given
optimal numerical values (quantifications) such that they can be interpreted in
the same way as numerical data. Since the categories are quantified directly,
no dummy variables are required, and, consequently, no reference category
has to be chosen. This simplifies the interpretation. The quantifications are
plotted against the original category levels to visualize the transformations and
simplify interpretation. Quantifications and model coefficients are also provided
numerically. Hence, while ordinary GLMs focus on the fitted numerical results
only, OS puts emphasis on visualizing the result.

Another advantage of OS is the possibility to impose monotonicity restrictions
on a transformation to preserve the ordering of category levels. This monotonicity
restriction can be beneficial in two ways. First of all, a monotone transformation
makes interpretation easier since an increase in category level implies an increase
ór decrease in response. Furthermore, by imposing more restrictions on the
transformation, there is a smaller risk of overfitting on the training data, which
may reduce the prediction error for new data.

GAMs usually apply nonmonotone transformations on numeric data and the
standard approach for categorical data in which dummy variables are defined
does by definition not preserve the order of the categories. Hence, the ability to
apply monotonicity constraints to both categorical and continuous predictors is
a unique property of OS.

In a GLM-OS, the scaling level can be individually chosen for each predictor
variable in the model. Hence, the most appropriate combination of transformation
restrictions can be selected for each individual predictor. GLM-OS with mixed
scaling levels is a provides a flexible analysis method that can be applied to a
large variety of data types, ranging from unordered categorical data to (ordered)
numerical data.
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4 Optimal scaling transformations in GLMs

Another feature of the OS technique is its group treatment of the category
levels of a predictor variable. Namely, in OS a regression coefficient is obtained
for each predictor to indicate its overall effect on the outcome (as in linear
logistic regression) while no such diagnostic is obtained for logistic regression
with dummy variables. In other words, in the OS setting the categories are
no longer analyzed individually as is done when using dummy variables, but
together as a group.

This grouping is extremely useful when applying regularization techniques.
Namely, in an OS analysis, regularization can be done directly on the regression
coefficients since these are estimated separately from the quantifications. Three
regularization methods, Ridge regression, the Lasso, and the Elastic Net, were
already implemented in OS-regression (Regularized Optimal Scaling Regres-
sion; ROS Regression (Meulman et al., 2019)), and these techniques can be
implemented in GLM-OS in a similar manner. In other models that transform
predictor variables in a GLM, the regression coefficients are incorporated in the
variables’ transformation and therefore regularization cannot be applied directly
to the coefficients. Alternatives like Group Lasso (Yuan and Lin, 2006) and
Blockwise Sparse Regression (Kim et al., 2006), to regularize a group or block of
instead of the individual variables, have been suggested to remedy this. However,
applying regularization directly to the regression coefficients in the OS model is
more straightforward and gives the same model fit. Hence, the incorporation of
regularization techniques is a useful future extension of GLM-OS.
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Supplementary material 4.6

4.6 Supplementary material

4.6.1 Calculating the gradient and Hessian of the negative log-
likelihood function of the logistic regression model

In a logistic regression function, the outcome is binary, i.e. Y ∈ {0, 1}. The
probability πi of having outcome yi = 1, given observed predictor variables xi, is
modeled. To avoid that the probability estimates are negative or exceed one, a
logit link function maps the linear combination of predictor variables, ηi = xiβ,
onto the unit interval, i.e.

P (yi = 1) = πi =
1

1 + exp(−ηi)
=

exp(ηi)

1 + exp(ηi)
. (4.17)

Using this representation, the probability distribution for Yi is

p(yi) = P (Yi = yi) = πyii (1− πi)1−yi .

Since observations are assumed to be independent, the likelihood function is
product of marginal probabilities, i.e.

L(η) =
n∏
i=1

πyii (1− πi)1−yi

=
n∏
i=1

(
πi

1− πi

)yi
(1− πi)

=
n∏
i=1

exp(ηi)
yi

[
1− exp(ηi)

1 + exp(ηi)

]

=

n∏
i=1

exp(ηi)
yi

[
1 + exp(ηi)− exp(ηi)

1 + exp(ηi)

]

=
n∏
i=1

exp(ηi)
yi

1

1 + exp(ηi)
,

and the corresponding log-likelihood function is

l(η) = log

[
n∏
i=1

exp(ηi)
yi

1

1 + exp(ηi)

]

=
n∑
i=1

yiηi −
n∑
i=1

log[1 + exp(ηi)].
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To simplify computations the negative log-likelihood

l-(η) =
n∑
i=1

log[1 + exp(ηi)]−
n∑
i=1

yiηi

is minimized. The gradient of l- is the vector with elements

∂l-(η)

∂ηi
= [log(1 + exp(ηi))]

′ − [yiηi]
′

=
1

1 + exp(ηi)
[exp(ηi)]

′ − yi

=
1

1 + exp(ηi)
exp(ηi)− yi

=
exp(ηi)

1 + exp(ηi)
− yi

= πi − yi.

Since these partial derivatives are independent of ηj for j 6= i all second-order
mixed partial derivatives are zero. Hence, the Hessian is a diagonal matrix with
diagonal elements

∂2l-(η)

∂η2i
=

[exp(ηi)]
′(1 + exp(ηi))− exp(ηi)[1 + exp(ηi)]

′

(1 + exp(ηi))2
− 0

=
exp(ηi)(1 + exp(ηi))− exp(ηi) exp(ηi)

(1 + exp(ηi))2

=
exp(ηi)

1 + exp(ηi)
− exp(ηi)

2

(1 + exp(ηi))2

=
exp(ηi)

1 + exp(ηi)

(
1− exp(ηi)

1 + exp(ηi)

)
= πi(1− πi).

In matrix notation,

∇(η) = π − y;

H(η) = diag {π(1− π)} ,

where π = (π1, . . . , πn) as defined in (4.17).
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