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3Optimal scaling for survival
analysis with ordinal data

Medical and psychological studies often involve the collection and analysis of
categorical data with nominal or ordinal category levels. Nominal categories
have no ordering property, like gender, while ordinal category levels do
have an ordering, for example when subjects are classified according to
their education level, often categorized as low, medium, or high education.
Currently two methods can be chosen to include ordinal covariates in the
Cox proportional hazards model in survival analysis. Dummy covariates
can be used to indicate category memberships, as is done for nominal
covariates. Then the estimated parameters for each category indicate the
risk of experiencing the event of interest relative to the reference category.
Since these parameters are estimated independently from each other, the
ordering property of the categories is lost in the process. To keep the ordinal
property, integer values can be given to the category levels (e.g. low = 0,
medium = 1, high = 2), and the variable can be included in the model
as a numeric covariate. However, the ordinal data are now interpreted
as numeric data, so the property of equal distances between consecutive
categories is introduced. This assumption may be too strict for ordinal
data. In this paper a method is described to include ordinal data in the Cox
model. The method implements optimal scaling to find quantifications for
the ordinal category levels. These quantifications are chosen such that they
preserve the categories’ ordering and do not force equal distances between
consecutive category levels. A simulation study is carried out to compare
the performance of optimal scaling, and dummy and integer coding. Results

This chapter is published as Willems, S. J.W., Fiocco, M., and Meulman, J. J. (2017) Optimal
scaling for survival analysis with ordinal data. Computational Statistics & Data Analysis, 115,
155–171.
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3 Optimal scaling for survival analysis with ordinal data

show that the optimal scaling method increases the model fit if ordinal
covariates are included in the model.

3.1 Introduction

In medical and psychological studies a lot of data about patients are collected,
for example their gender, age, education level, weight, and socio-economic status.
These characteristics can have different measurement levels, namely numeric
or categorical. Numeric variables are those variable that are measured on a
continuous scale, like age and blood pressure. Categorical variables are not
measured on a continuous scale, but instead subjects are assigned to one of the
pre-defined category levels. There are two types of categorical data, nominal and
ordinal. Category levels of nominal variables are unordered, while the categories
of ordinal variables are ordered. Nominal variables seen in medical studies are, for
example, gender, treatment group, and ethnicity. Gender has the two unordered
categories, male and female. Treatment groups may be defined as treatment A, B
and C, or treatment vs. placebo, and these are usually unordered. Ethnicity can
have several category levels, depending on the ethnicities of interest, but there is
no ordering involved. Examples of ordinal categorical variables are education
level, and scales like pain severity scales, Likert scales, or the modified Rankin
Scale (mRS). Schools and diplomas may be categorized into low, medium and
high education levels, which clearly have an ordering. Pain severity scales are
used to get an indication of the intensity of a patient’s pain. Likert scales are
used to measure how strongly people agree or disagree with a statement, e.g.
with response options strongly disagree, disagree, I don’t know, agree, and strongly
agree. The mRS is used to measure the degree of disability or dependence in
daily activities of patients who suffer from neurological disabilities, e.g. caused
by a stroke (van Swieten et al., 1988). A property of the ordered category levels
in ordinal data is that the distances between consecutive category levels do
not necessarily represent an equal degree of difference. For example, the mRS
score ranges from 0 to 5 where 0 indicates no symptoms and 5 severe disability.
There is a slight difference between scores 0 and 1; from no symptoms (0) to no
significant disability (1). However, the difference between scores 2 and 3 is large,
since it indicates the transition from being functionally independent (2) to being
functionally dependent (3).

Researchers may choose between analyzing a specific variable according to
its measurement level, or to adjust the scale for analysis. For example, the
measurement level of age may be numeric (exact ages of patients are known),
but researchers may decide to discretized the covariate and include the resulting
age groups in the statistical models instead of the exact ages. Due to this
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Introduction 3.1

discretization the analysis level is ordinal, while the measurement level was
numerical.

In many statistical models a linear combination of predictor variables is used
to predict an outcome or response variable. Examples of these types of models
are the standard linear model, where the outcome is predicted directly from
the linear combination of predictors; generalized linear models, in which the
outcome is predicted from the linear model through a link function; and the Cox
model in survival analysis, where the linear predictor is included in the hazard
function. Models with linear predictors are directly applicable for variables that
are analyses on either a numeric or nominal level. Numeric variables are included
in the model, where the coefficients indicate the increase or decrease in risk for
every unit increase. For nominal data, Ck − 1 dummy variables are introduced,
where Ck represents the number of categories for variable k. The corresponding
Ck − 1 estimated model parameters indicate the difference in risk between a
category level relative to the reference level.

Complications arise for ordinal categorical data. In most literature on models
with linear predictors, no methods on how to fit these models for ordinal data are
discussed. Researchers usually use either the nominal or numeric approach. In
the nominal approach, dummy variables are introduced and the model is fitted
in the same way as for nominal data. However, this method ignores the ordering
property of the ordinal category levels, since it assumes unordered (nominal)
category levels. Therefore, it is not guaranteed that the linear predictor increases
(or decreases) with each increase of category level. To keep the monotonicity,
one can analyze the ordinal data using a numeric approach. In this case, each
category is given an integer value (e.g. 0, 1, 2, etc.), and the variable is then
included in the model as a numeric variable. By using the integer coding, equal
distances between consecutive categories is assumed, although the distances are
not necessarily equal in the data. Hence, unfortunately, neither of these two
approaches respect the ordinal categorical data characteristics and are therefore
not suitable for analyzing this data type.

To analyze ordinal data, optimal scaling techniques have been developed
(Gifi, 1990). In regression analysis, this method provides an optimal nonlinear
transformation of the category levels such that the relation between the response
and the predictors is optimal. In this way, the optimal scaling method turns
qualitative data (ordered category levels) into quantitative data (numeric values).
The resulting optimal quantifications can be treated as numeric data in the
model. The nonlinear optimal quantifications are found by fitting a nonlinear
monotone transformation on the original category values. The monotonicity
restriction of the transformation guarantees that the ordering of the category
levels is maintained and the nonlinearity enables unequal distances between
consecutive category levels.
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3 Optimal scaling for survival analysis with ordinal data

The optimal scaling method was first developed for simple linear models,
but was extended to more complicated models that include a linear combination
of predictors. Actually, optimal scaling can easily be included in any model
that is fitted with a least squares algorithm, as the regression (Meulman et al.,
2019) and the principal components model (Linting et al., 2007; Meulman et al.,
2004). Including the optimal scaling step results in an alternating least squares
algorithm in which the loss function is iteratively minimized over the model
parameters and the optimal scaling quantifications.

The inclusion of optimal scaling is more complicated for models that are
fitted with a maximum likelihood approach. This complexity may be the reason
why optimal scaling is not yet used to analyze variables on an ordinal level in the
Cox proportional hazards model in survival analysis, a model that is fitted by
the maximum likelihood method. Currently, researchers include ordinal variables
in the model by analyzing them on a nominal or numeric level, and in this way
lose the ordering property or introduce equal distances between consecutive
categories.

Our research focuses on optimal scaling in survival analysis, and in this paper
we show how the optimal scaling method can be incorporated in the Cox model.
In section 3.2 we will first describe how ordinal data are currently included in a
Cox model, and how optimal scaling is currently used for simple linear regression.
In section 3.3, a least squares approach to find the maximum likelihood estimator
for the Cox model is described, and optimal scaling is incorporated in this
algorithm. In section 3.4, the performances of different approaches to fit the Cox
model for ordinal data (nominal, numeric and optimal scaling) are compared in a
simulation study. The simulation results show that the optimal scaling approach
gives the most accurate model fit.

3.2 Current practice

In this section we will first describe in more detail the methods currently used
to incorporate ordinal data in the Cox proportional hazard model. Then, we
will discuss the basic principles of the optimal scaling method by showing an
application to the simple linear model.

3.2.1 Ordinal data in survival analysis

The aim of survival analysis is to estimate the time to an event of interest,
measured from a specific origin. For example, survival models can be used in a
medical setting to determine whether a certain treatment prolongs the life time of
patients since start of treatment. Since survival times may differ between patients
with different characteristics, patient information is collected and incorporated
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Current practice 3.2

in survival models. Survival data for individual i are represented as a triplet
(ti, δi, zi), (for i = 1, . . . , n). If subject i’s event is observed (δi = 1), ti represents
the survival time xi. If the event is not observed (δi = 0), ti represents the
censoring time ci, i.e. ti = min(xi, ci). Observed covariate values are denoted by
zi = (zi1, . . . , zip), with p the number of measured covariates.

The relation of covariates with event times is often modeled with the Cox
proportional hazards model. In this model, the hazard rate at time t is as follows

h(t|Z) = h0(t) exp(Zβ)

= h0(t) exp

[
p∑

k=1

βkZk

]
, (3.1)

where βT = (β1, . . . βp) are the model parameters and Z1, . . . , Zp the covariates.
The survival probabilities of individuals with covariate values zi and zj can be
compared by looking at the proportion of their hazards, i.e.

h(t|zi)
h(t|zj)

=
h0(t) exp

[∑p
k=1 βkzik

]
h0(t) exp

[∑p
k=1 βkzjk

]
= exp

[
p∑

k=1

βk(zik − zjk)

]
, (3.2)

which is a constant. Ratio (3.2) is called the hazard ratio and represents the
relative risk of an individual with risk factor zi experiencing the event as compared
to an individual with risk factor zj . Regression coefficient βk, for k = 1, . . . , p, in
the model indicates the change in the relative risk for different values of covariate
Zk.

The way in which a covariate is incorporated in the model depends on its
analysis level. Covariates with a numeric analysis level can be included directly.
In this case, the regression coefficient βk indicates the change in the relative
risk when the covariate value is increased by one unit. For nominal covariates a
dummy coding will be introduced, and fitted regression coefficients will indicate
the relative risk between category levels. For details see the book by Klein and
Moeschberger (2003).

If a covariate Zk has Ck category levels, Ck − 1 dummies are required. For
example, to code categories low, medium, and high two dummy covariates D1

and D2 can be defined as

D1i = 1 if subject i is in category medium, 0 otherwise,
D2i = 1 if subject i is in category high, 0 otherwise.

The resulting dummy coding for each category is presented in Table 3.1.
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3 Optimal scaling for survival analysis with ordinal data

Dummy Coding Integer Coding Optimal Scaling
D1 D2 Zint Zos

Low 0 0 0 0
Medium 1 0 1 1.2

High 0 1 2 1.8

Table 3.1: Three categories’ codings used in for dummy coding, integer coding
and the optimal scaling method.

Dummy Coding Integer Coding Optimal Scaling

h(t|Low) h0D(t) h0int(t) h0os(t)
h(t|Medium) h0D(t) exp(βD1) h0int(t) exp(1βint) h0os(t) exp(1.2βos)
h(t|High) h0D(t) exp(βD2) h0int exp(2βint) h0os exp(1.8βos)

Table 3.2: Three categories’ hazard functions in dummy coding, integer coding
and the optimal scaling method. Indices "D1" and "D2" indicate dummies 1
and 2, index "int" indicates integer coding, and index "os" indicates optimal
scaling.

For each dummy a model parameter is estimated. This results in the hazard
rates shown in Table 3.2.

The relative risks between each category are shown in Figure 3.1a. If
βD1 , βD2 > 0 or βD1 , βD2 < 0, and |βD2 | > |βD1 | the relative risk between
category levels low and high will be larger than the relative risk between levels
low and medium, and the ordering of the category levels will be maintained. In
all other cases, the relative risks do not correspond with the ordering of the
category levels.

If there are a priori reasons to expect the relative risks to have the same order
as the category levels, an integer coding system can be used instead of dummy
coding to preserve the ordering of the category levels. In this coding system,
integer values are given to each category level such that the ordering of the
integers corresponds to the ordering of the categories. For example, categories
low, medium, and high could be coded as 0, 1, and 2 respectively, see Table 3.1.
The covariate is now included in the model as a numerical covariate, and only a
single parameter βint will be estimated. For the integer coding the hazard rates
for subjects in the three categories will be as in Table 3.2. The relative risks
between the categories are shown in Figure 3.1b. Since |βint| < |2βint| holds
for any βint, the correct ordering of the category levels is always ensured by
using this integer coding system. Due to the choice of codings, the relative risks
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between low and medium and medium and high are equal, namely exp(βint).
Therefore, this coding system forced equal relative risks between the consecutive
categories. Since the distances between category levels of ordinal data are not
necessarily equal, assuming that the relative risks is equal is inappropriate for
this type of data.

Low Medium High
eβD1

eβD2
−βD1

eβD2

(a) Dummy coding method.

Low Medium High
eβint eβint

e2βint

(b) Integer coding method.

Figure 3.1: Relative risks between subjects in categories low, medium, and
High for the dummy and integer coding methods.

The two currently used coding systems, dummy and integer coding, are not
appropriate for ordinal data. Dummy coding does not ensure the preservation
of the ordering of category levels, and integer coding will keep the ordering
of the category levels, but will force equal relative risks between consecutive
category levels. In this paper we describe a method to find numerical values
(quantifications) for each category level which will preserve the ordering of
the categories, but will not force equal distances. An example concerning
quantifications for the category levels low, medium, and high are shown in
Table 3.1 and corresponding hazard functions are given in Table 3.2. Figure 3.2
shows that the quantifications are in the same order as the category levels,
but the distances between category levels are not the same (nonlinear), i.e. the
distance between levels low and medium is larger than the distance between
medium and high.
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Category Level

Q
u

a
n

ti
fi
c
a

ti
o

n

Low Medium High

0

1
1.2

1.8
2

Figure 3.2: Example of quantifications for a categorical variable with three
levels.

Quantifications should be chosen in an optimal manner, such that the relation
between the covariates and the outcome of interest is maximized. Optimization
can be obtained by maximizing the likelihood function for the Cox model. The
method used to find quantifications is called optimal scaling. For simple regression
models, quantifications are estimated by maximizing the relation between the
outcome and covariates by minimizing the sum of squared residuals. The optimal
scaling procedure for regression will be discussed in subsection 3.2.2.

3.2.2 Optimal scaling in simple linear regression

The aim of optimal scaling is to find a transformation that assigns numerical
values (quantifications) to each category level of a covariate in such a way that
the relation between subjects’ covariates and the model outcome is maximized,
while respecting the measurement characteristics of the data, e.g. ordering
of category levels. Maximizing this relation can be done, for example, by
minimizing the loss function or maximizing the likelihood. Restrictions are
placed on the transformation to preserve the characteristics of the data. Nominal
quantifications preserve only class membership information, i.e. if individuals
i and j are in the same category, they should be assigned the same numerical
value. For ordinal data, the order of the category levels should be preserved as
well. If for example individual i is in a lower level than individual j, then the
quantification for individual i should be smaller (or equal) to the quantification
for individual j. In the latter case, the category levels and quantifications are
related by a monotonic function. This monotonic function can take different
forms, for example a step function or a spline function. The monotonic regression
approach proposed by Kruskal (1964) is used if the number of category levels is
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low. Spline transformations are often used to keep the fine grid when there are
many category levels. The method developed by Ramsay (1988) and implemented
by Meulman et al. (2019) can be used to fit spline transformations. This paper
concentrates on ordinal categorical variables with only a few category levels, so
focus is on nonmonotone step functions.

Many statistical models aim to predict an outcome from a set of predictor
values. For linear regression, the outcome is usually denoted as Y and the p
predictor values as X1, . . . , Xp. To avoid confusion with the notation used in
the survival model, we will denote the set of predictor values by Z1, . . . , Zp for
the linear model. The outcome will be denoted as Y .

The model is fitted on observed data from n subjects. Let y be the vector of
length n that consists of all n observed outcomes yi, with i = 1, . . . , n. Denote
by Z the matrix with dimensions n × p that contains the observed covariate
values for all subjects, i.e. if zik is the observed value of covariate k for subject i,
then

y =



y1
y2
...
yi
...
yn


and Zn×p =



z11 z12 · · · z1k · · · z1p
z21 z22 · · · z2k · · · z2p
...

...
. . .

...
... · · ·

zi1 zi2 · · · zik · · · zip
...

...
. . .

...
... · · ·

zn1 zn2 · · · znk · · · znp


.

Let i be the row index of matrix Z with i = 1, . . . , n. Denote by Zi∗ the vector
of length p that contains the p observed covariates corresponding to subject i,
i.e. Zi∗ = (zi1, . . . , zip). Let k be the column index of Z, with k = 1, . . . , p; then
the vector Z∗k contains the n observed values for the specific covariate k, i.e.
Z∗k = (z1k, . . . , znk)

T . In the linear model, the response yi corresponding to
subject i is modeled as

yi = Zi∗β + εi, (3.3)

with β = (β1, . . . , βp)
T the vector of regression coefficients and εi the error term.

The parameters β are estimated by minimizing the loss function

L(β) =
n∑
i=1

(yi − Zi∗β)2 = ‖y −Zβ‖2 =

∥∥∥∥∥y −
p∑

k=1

Z∗kβk

∥∥∥∥∥
2

. (3.4)

The loss function is minimized by the ordinary least squares solution

β̂ = (ZTZ)−1ZTy. (3.5)
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3 Optimal scaling for survival analysis with ordinal data

In case of categorical data, the linear model can be extended to include
transformations ϕk for each variable Zk (with k = 1, . . . , p). The transformed
values give numerical representations, quantifications, of the category values.
The vector ϕk(Z∗k) = (ϕk(z1k), . . . , ϕk(znk))

T contains the quantifications for
all observed categories of covariate Zk. For example, if for Zk we have observed
category levels low, medium, low, and high for four individuals, ϕk will represent
the four quantifications corresponding to these levels. Using the example quan-
tifications given in Figure 3.2 in subsection 3.2.1, the resulting vector ϕk(Z∗k)
for the four individuals is

Z∗k =


Low

Medium
Low
High

 → ϕk(Z∗k) =


0

1.2
0

1.8

 .

In the new model, the covariate values Z∗k are replaced by their quantifica-
tions ϕk(Z∗k) and are interpreted as numeric values, i.e. outcome yi is modeled
as

yi =

p∑
k=1

βkϕk(zik) + εi.

This results in the following loss function

L(β,ϕ) =

∥∥∥∥∥y −
p∑

k=1

βkϕk(Z∗k)

∥∥∥∥∥
2

. (3.6)

To find the optimal fit for this model, the loss function (3.6) should be minimized
over both β and ϕ. This minimization is done for one covariate at the time. In
each step, covariate k and its regression parameter are separated from the other
covariates, i.e.

L(β,ϕ) =

∥∥∥∥∥∥y −
∑
l 6=k

βlϕl(Z∗l)− βkϕk(Z∗k)

∥∥∥∥∥∥
2

. (3.7)

Parameters βl and ϕl with l 6= k are assumed to be fixed and optimization is
performed over covariate βk and ϕk. Therefore these terms can be merged with
y to form a single fixed term uk in the loss function, i.e.

uk = y −
∑
l 6=k

βlϕl(Z∗l),
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which yields
L(βk, ϕk) = ‖uk − βkϕk(Z∗k)‖2 . (3.8)

For each categorical covariate Zk with Ck category levels, let Gk be the
indicator matrix with dimensions n × Ck which indicates the category levels
for each of the n subjects. Row Gik contains only zeros except in the column
that refers to the category of subject i. Furthermore, define vk as the vector of
dimensions Ck × 1, with quantifications for all category levels of Zk. Matrix Gk

and vector vk for the example data introduced above are given as

Gk =


1 0 0
0 1 0
1 0 0
0 0 1

 and vk =

 0
1.2
1.8

 .

From the definitions of Gk and vk, it follows that Gkvk = ϕk(Z∗k). This is
shown below for the example.

Gkvk =


1 0 0
0 1 0
1 0 0
0 0 1


 0

1.2
1.8

 =


0

1.2
0

1.8

 = ϕk(Z∗k).

Using the new notation, the loss function (3.8) can be rewritten as

L(βk,vk) = ‖uk − βkGkvk‖2 . (3.9)

The loss function (3.9) should be minimized over both βk and vk. Infinite combi-
nations of βk and vk will minimize this function. Therefore, vk is standardized
such that the method is restricted to finding a unique combination. Then, βk is
assumed to be fixed in order to estimate vk. The unrestricted quantifications v̌k
for covariate k is the least squares solution for a simple linear regression model
(see subsection 3.6.1 for details)

v̌k = β−1k D−1k GT
kuk, (3.10)

with Dk = GT
kGk = diag(nk1, . . . , nkCk) the diagonal matrix containing the

number of subjects nkc in each category c for the specific covariate k, with
c = 1, . . . , Ck. For the example illustrated before, the matrix Dk is as follows

Dk = GT
kGk =

1 0 1 0
0 1 0 0
0 0 0 1




1 0 0
0 1 0
1 0 0
0 0 1

 =

2 0 0
0 1 0
0 0 1

 .
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3 Optimal scaling for survival analysis with ordinal data

As explained above, the unrestricted quantifications v̌k are standardized to
provide a unique solution, i.e.

v̄k = n1/2v̌k(v̌
T
kDkv̌k)

−1/2. (3.11)

The unrestricted quantifications are the parameter estimates for nominal data
which do not necessarily preserve the ordering of categories. In case of ordinal
data, the ordering of the categories should be preserved, i.e. the values of v̄k
should be adjusted such that they are in the same order as their underlying
category levels. In this paper, weighted monotonic regression (Kruskal, 1964) is
used to find a monotonic step function which preserves the category orderings.
This method uses a weighted average of the unrestricted quantifications if these
are in the wrong order. The resulting restricted version of v̄k is denoted as v̂k.
As an example, consider the example data given before in which categories of four
individuals are observed. Assume that the fit for the nominal case results in the
transformation as shown in Figure 3.3a. This is not a monotone transformation,
since the quantification of categories low and medium are in the wrong order.
In the weighted monotone regression algorithm, a monotone transformation is
made by replacing the quantifications of both these categories by their weighted
average. The weighted average is calculated as in Table 3.3. The resulting
monotone transformation is shown in Figure 3.3b.

Low Medium High

Nominal Quantifications 2 1 3

Ordinal Quantifications 5
3

5
3 3

Table 3.3: Weighted monotone regression algorithm on small data example in
which the observed categories were low, low, medium, and high.

With v̂k being the result of the monotone regression algorithm, i.e. the
restricted version of v̄k, if follows that ϕ̂k(Z∗k) = Gkv̂k is the vector of quantifi-
cations for covariate k corresponding to the n subjects.

Once the loss function (3.9) has been minimized over ϕk, the next step is to
minimize this loss function over βk. The least squares solution for βk is derived
from the ordinary least squares solution for (3.9) (see subsection 3.6.1 for details),
and is estimated by

β̂k = uTk ϕ̂k(Z∗k). (3.12)

Now that both quantifications ϕ̂k(Z∗k) and model parameters β̂k have been
updated, the algorithm continues minimizing the loss function (3.6) step by step

78



Current practice 3.2
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(a) Initial nominal quantifications.
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(b) Resulting ordinal quantifications.

Figure 3.3: Initial nominal quantifications and transformed ordinal quantifi-
cations for example data, calculated with weighted monotonic regression.

minimizing over the remaining covariates, until all p covariates are updated.
The process of updating the βk’s and vk’s for all covariates k is repeated until
convergence criteria are satisfied. The algorithm can be summarized as follows.

Optimal scaling regression algorithm:
Step 1: Initialize β̃k and ṽk for k = 1, . . . , p.
Step 2: For k = 1, . . . , p, do:

Step 2a: Calculate ũk = y −
∑

l 6=k β̃lGlṽl.
Step 2b: Find v̌k minimizing∥∥∥ũk − β̃kGkvk

∥∥∥2 .
Standardize v̌k, and denote the standardized version by v̄k. If covariate
Zk is ordinal, apply ordinal restrictions on v̄k, resulting in restricted
quantifications v̂k. Set ṽk = v̂k, and ϕ̃k(Z∗k) = Gkṽk.

Step 2c: Find β̂k minimizing

‖uk − βkϕ̃k(Z∗k)‖2 .

Set β̃k = β̂k.
Step 3: Repeat step 2 until convergence of ṽk and β̃k.

The algorithm is called Alternating Least Squares, since it alternates between
minimizing the quadratic loss ‖uk − βkϕk(Z∗k)‖2 over quantifications ϕk(Z∗k)
and model parameters βk while keeping all other parameters constant. Note that
by keeping all terms fixed except the one that is optimized, and by separating
the fixed part uk from the variable part β̃kGkvk of the loss function (3.9), this
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method becomes an ordinary least squares problem. Merging all fixed parts and
separating them from the variable part is a crucial step, because it reduces the
optimization problem from the multivariate to the univariate case. The merging
and separation steps described can easily be implemented in any least squares
problem. Therefore, if a model is fit by using a least squares approach, then the
merging and separation steps can be used to fit the model in case of categorical
covariates. As a consequence, optimal scaling can be easily implemented in
all models that are fitted by a least squares approach by implementing the
alternating least squares algorithm.

3.3 Optimal scaling in survival analysis

As mentioned above, the optimal scaling procedure can easily be implemented for
models that are fitted using a least squares algorithm. For the Cox proportional
hazards regression model used in survival analysis the parameters are not fitted
with a least squares approach, but by maximizing the partial likelihood. There-
fore, the optimal scaling procedure as described for the simple linear regression
model cannot be implemented directly.

In this paper we propose a least squares approach to fit the Cox model
that includes the optimal scaling procedure. Simon et al. (2011) developed a
method similar to the standard Newton-Raphson algorithm to transform the
maximum likelihood approach for the Cox model into a reweighted least squares
approach in order to penalize the model parameters β. In this section, we will
first discuss the reweighted least squares approach for the standard Cox model
setting (i.e. without penalization of the model parameters). Then, we will show
how the optimal scaling approach can be included in this algorithm to find
optimal quantifications for ordinal covariates in the Cox model.

3.3.1 A reweighted least squares approach to fitting the Cox
model

Recall from subsection 3.2.1 the notation for survival data. Survival data for
subject i are represented by the triplet (ti, δi, zi), with i = 1, . . . , n, where n is
the number of subjects. Variable ti represents the observed time point, either
the event time xi or the censoring time ci, i.e. ti = min(xi, ci). The indicator
δi shows whether ti is an event (δi = 1) or censoring time (δi = 0). The Cox
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proportional hazards model is defined as

h(t|Z) = h0(t) exp(Zβ)

= h0(t) exp

[
p∑

k=1

βkZk

]
, (3.13)

with β = (β1, . . . βp)
T .

In this paper, we will allow for tied event times and for weighted observations.
Let t1 < t2 < . . . < tD denote the D distinct and ordered event times and let
Dm be the set of all individuals with an event at time tm, for m = 1, . . . , D.
If wi denotes the weight of subject i, then let dm be the sum of the weights
of subjects who experience an event at time tm, i.e. dm =

∑
j∈Dm wj . Define

Rtm to be the set of individuals at risk just prior to tm. Let Z be the matrix
of dimensions n× p of observed covariate values, as defined in subsection 3.2.2.
Vector Zi∗ = (zi1, . . . , zip) is row i of matrix Z and contains the p observed
covariate values for individual i. Column k is defined as Z∗k = (z1k, . . . , znk)

T

and contains the n observed values for covariate Zk, with k = 1, . . . , p. Let
η = Zβ be the vector of length n with elements ηi = Zi∗β = zi1β1 + . . .+ zipβp.

To fit the Cox model with ties and weighted observations, the Breslow
approximation of the partial likelihood (Breslow, 1972) is used,

Lik(η) =

D∏
m=1

exp(
∑

j∈Dm wjηj)(∑
r∈Rtm wr exp(ηr)

)dm . (3.14)

Maximizing this likelihood is equivalent to maximizing the log of the partial
likelihood,

`(η) =
D∑

m=1

∑
j∈Dm

wjηj −
D∑

m=1

dm log

 ∑
r∈Rtm

wr exp(ηr)

 . (3.15)

Simon et al. (2011) proposed a Newton-Raphson approach to assess the
maximum of (3.15). This procedure results in a reweighted least squares problem
with associated loss function

L(η) = −
n∑
i=1

ωi (η)(ζi(η)− Zi∗β)2 , (3.16)

where ωi(η) is the i-th diagonal entry of `′′(η), the second partial derivative of
`(η) with respect to ηi, and ζi(η) = ηi − (`′′(η)i,i)

−1`′(η)i. Details on how to
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derive loss function (3.16) are given in subsection 3.6.2. The loss function (3.16)
can be rewritten as follows

L(β) = ‖ζ(η)− Zβ‖2Ω(η) , (3.17)

where ζ(η) is the vector of length n with elements ζi(η), and Ω(η) is the
diagonal matrix with elements (−ω1(η), . . . ,−ωn(η)). To calculate the ωi(η)’s
and ζi(η)’s for i = 1, . . . , n, we need the first and second partial derivatives of
log likelihood `(η) with respect to ηi. Details about the derivatives are given in
subsection 3.6.3. The first partial derivative of `(η) with respect to ηi is

`′(η)i = δiwi −
∑
s∈Si

dswi exp(ηi)∑
r∈Rts wr exp(ηr)

, (3.18)

where Si is the set of all individuals s that experience the event before the
observed time point of person i, i.e. δs = 1 and ts ≤ ti. Second partial derivative
of `(η) is

`′′(η)i,i = −
∑
s∈Si

ds
wi exp(ηi)

∑
r∈Rts wr exp(ηr)− (wi exp(ηi))

2

(
∑

r∈Rts wr exp(ηr))2
. (3.19)

The first and second derivatives, (3.18) and (3.19), can be used to find explicit
formulas for ωi(η) and ζi(η), yielding

ωi(η) = `′′(η)i,i

= −
∑

s∈Si ds
wi exp(ηi)

∑
r∈Rts

wr exp(ηr)−(wi exp(ηi))2

(
∑
r∈Rts

wr exp(ηr))2
(3.20)

and

ζi(η) = ηi − `′(η)i
`′′(η)i,i

= ηi − 1
ωi(η)

(
δiwi −

∑
s∈Si

dswi exp(ηi)∑
r∈Rts

wr exp(ηr)

)
.

(3.21)

Therefore, to maximize the likelihood (3.14), the loss function (3.17) should
be minimized over the regression coefficients β.

3.3.2 Including optimal scaling in the reweighted least squares
algorithm for the Cox model

To find optimal quantifications for category levels of the p covariates, we can
include the optimal scaling procedure into the reweighted least squares algorithm
described in subsection 3.3.1. The first step is to replace the covariates Z by
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quantifications ϕ(Z) = (ϕ1(Z∗1), . . . , ϕp(Z∗p)). Hence, the Cox proportional
hazards model with quantifications is now defined as

h(t|Z) = h0(t) exp(ϕ(Z)β). (3.22)

By defining η∗ = ϕ(Z)β as the vector of length n with elements η∗i =∑p
k=1 ϕk(zik)βk, the partial likelihood can easily be extended to the case with

quantified variables. This results in

Lik(η∗) =
D∏

m=1

exp(
∑

j∈Dm wjη
∗
j )(∑

r∈Rtm wr exp(η∗r )
)dm . (3.23)

This likelihood can be maximized by maximizing its log,

`(η∗) =
D∑

m=1

∑
j∈Dm

wjη
∗
j −

D∑
m=1

dm log

 ∑
r∈Rtm

wr exp(η∗r )

 ,

which can then be translated in a reweighted least squares problem with associ-
ated loss function

L(η∗) = −
n∑
i=1

ωi (η∗)(ζi(η
∗)−ϕ(Zi∗)β)2 , (3.24)

where

ωi(η
∗) = `′′(η∗)i,i

= −
∑

s∈Si ds
wi exp(η

∗
i )
∑
r∈Rts

wr exp(η∗r )−(wi exp(η∗i ))2

(
∑
r∈Rts

wr exp(η∗r ))
2 ,

(3.25)

and

ζi(η
∗) = η∗i −

`′(η∗)i
`′′(η∗)i,i

= η∗i − 1
ωi(η∗)

(
δiwi −

∑
s∈Si

dswi exp(η
∗
i )∑

r∈Rts
wr exp(η∗r )

)
.

(3.26)

The loss function (3.24) which includes the quantifications can be rewritten as

L(β,ϕ) = ‖ζ(η∗)−ϕ(Z)β‖2Ω(η∗) , (3.27)

where ζ(η∗) is the vector of length n with elements ζi(η∗), and Ω(η∗) is the
diagonal matrix with elements (−ω1(η

∗), . . . ,−ωn(η∗)).
In this optimal scaling setting for the Cox model, the loss function (3.27)

has to be minimized over both the regression coefficients β and the set of
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transformations ϕ. Since the problem has been transformed into a reweighted
least squares problem, almost the same methodology can be applied to optimize
the loss function over both β and ϕ as used for OS regression. Again, the
loss function is optimized over one covariate Zk at the time, and alternating
between optimizing ϕk(Z∗k) and optimizing βk while assuming all other terms
fixed. Similar to OS in regression, in each step, the quantifications ϕk(Z∗k) and
regression parameter βk are separated from the linear combination of the other
predictors

∑
l 6=k βlϕl(Z∗l). Therefore, (3.27) can be rewritten as

L(β,ϕ) =

∥∥∥∥∥∥ζ(η∗)−
∑
l 6=k

βlϕl(Z∗l)− βkϕk(Z∗k)−

∥∥∥∥∥∥
2

Ω(η∗)

. (3.28)

By assuming all terms, except βk and ϕk, fixed and merging all these fixed terms
into one term defined as uk = ζ(η∗)−

∑
l 6=k βlϕl(Z∗l), (3.28) becomes

L(βk, ϕk) = ‖uk − βkϕk(Z∗k)‖2Ω(η∗) . (3.29)

By introducing the indicator matrix Gk to show the category levels of
covariate Zk for all individuals and vk the vector of quantifications as defined
for the simple linear regression case, (3.29) can be rewritten as

L(βk, ϕk) = ‖uk − βkGkvk‖2Ω(η∗) . (3.30)

As in OS regression, infinite combinations of βk and vk minimize this loss
function. Hence, vk is standardized in order to find a unique solution.

The first step is to find the unrestricted quantifications v̌k that minimize the
loss function (3.30) while keeping βk constant. This estimate is given by the
univariate weighted least square solution, i.e.

v̌k = β−1k D−1k G
T
k Ω(η∗)uk.

Let v̄k be the standardized version of v̌k, as defined in (3.11). Using the same
methods as for OS in regression, the restricted version of v̄k is determined,
and is denoted by v̂k. Then ϕ̂k(Z∗k) = Gkv̂k contains the current estimated
quantifications for covariate Zk.

In the next step, loss function (3.30) is minimized over βk while keeping vk
constant. This parameter is estimated by using the univariate weighted least
squares solution

β̂k =
(
ϕk(Z∗k)

TΩ(η∗)Tϕk(Z∗k)
)−1

ϕk(Z∗k)
TΩ(η∗)uk. (3.31)

84



Simulation study 3.4

Once both v̂k and β̂k have been updated, the algorithm moves to the next
covariate. After updating the parameters for all covariates, convergence is
checked by using the stopping rule

max
k

A∗k(β̃
old
k − β̃newk ) < ε2, (3.32)

with

A∗k =
D∑

m=1

1

4n

(
max
r∈Rtm

(ϕk(Zkr))− min
r∈Rtm

(ϕk(Zkr))

)2

,

and ε a convergence parameter defined by the user (Yang and Zou, 2013). The
optimal scaling algorithm for the Cox proportional hazards model is summarized
below.

Optimal scaling algorithm for Cox’ proportional hazards model:
Step 1: Initialize β̃k and ṽk for k = 1, . . . , p.
Step 2: For k = 1, . . . , p, do:

Step 2a: Compute `′(η̃∗) and `′′(η̃∗), and use these quantities to derive
ω(η̃∗) and ζ(η̃∗).

Step 2b: Calculate uk = ζ(η∗)−
∑

l 6=k βlϕl(Z∗l).
Step 2c: Find v̌k minimizing∥∥∥uk − β̃kGkvk

∥∥∥2
Ω(η∗)

.

Standardize v̌k, and denote the standardized version by v̄k. If covariate
Zk is ordinal, apply ordinal restrictions on v̄k, resulting in restricted
quantifications v̂k. Set ṽk = v̂k, and ϕ̃k(Z∗k) = Gkṽk.

Step 2d: Find β̂k minimizing

‖uk − βkϕ̃k(Z∗k)‖2Ω(η∗) .

Set β̃k = β̂k.
Step 3: Repeat step 2 until convergence criterium (3.32) is met.

3.4 Simulation study

A large simulation study was done to investigate the performance of the optimal
scaling method for survival analysis proposed in this paper. The new method
is compared with the two currently used methods: dummy and integer coding.
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Z Z0 Z1 · · · ZC−1

0 1 0 · · · 0
1 0 1 · · · 0
...

...
C − 1 0 0 · · · 1

Table 3.4: Coding corresponding to the C categories to generate data.

To investigate the performance of the different methods, several scenarios were
simulated. We investigated the effect of a nonlinear monotone increasing set
of model parameters βZ0 , βZ1 , . . . , βZC−1

, different sample sizes, and different
percentages of censored subjects. In this section, first an overview of the set up
of the simulation study is given, and then results coming from several simulation
scenarios are discussed.

3.4.1 Set up of simulation study

In this section we will illustrate how the survival data were generated, how the
three models were fitted, and how results were compared.

Generating the data

For this simulation study, we generated n subjects with a single catagorical
covariate Z with C category levels 0, 1, . . . , C − 1. For each subject i (with
i = 1, . . . , n), one category level was sampled and denoted as zi, i.e. zi ∈
{0, 1, . . . , C − 1}. Event times X and censoring times C were sampled from
an exponential distributed with constant hazards hX|Z and hC respectively, i.e.
X ∼ exp(hX|Z) and C ∼ exp(hC). The hazard hX|Z is related to the covariate
as defined in the Cox proportional hazards model

hX|Z = h0X exp(βZ), (3.33)

where the baseline hazard h0X is assumed to be constant over time. It is also
assumed that hC in the censoring model is constant over time. However, this
parameter is independent from the covariate Z, i.e. it is equal to the baseline
hazard of being censored,

hC = h0C . (3.34)

The coding used to generate the data sets is shown in Table 3.4. This coding
system results in the following hazards for time to event X for each category
level
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Z D1 D2 · · · DC−1

0 0 0 · · · 0
1 1 0 · · · 0
...

...
C − 1 0 0 · · · 1

Table 3.5: Dummy coding of C simulated categories.

h(t|Z = 0) = h0(t) exp(1βZ0
+ 0βZ1

+ . . . 0βZC−1
) = h0(t) exp(βZ0

)
h(t|Z = 1) = h0(t) exp(0βZ0

+ 1βZ1
+ . . . 0βZC−1

) = h0(t) exp(βZ1
)

...
...

...
h(t|Z = C − 1) = h0(t) exp(0βZ0

+ 0βZ1
+ . . . 1βZC−1

) = h0(t) exp(βZC−1
).

To make Z an ordinal categorical variable for which the effect on the hazard
rate is increasing with the category levels, we can choose the parameters for
each category level in an increasing way, i.e. such that βZ0 ≤ βZ1 ≤ . . . ≤ βZC−1

.
Another option to generate an ordinal covariate is to choose the parameters such
that the effect always decreases with category levels, i.e. βZ0 ≥ βZ1 ≥ . . . ≥ βZC−1

.
In this way the effects of the category levels are still ordered, and the hazard rate
decreases with category levels. Hence, any monotone increasing or decreasing
function can be chosen to simulate an ordinal covariate.

For each observation i, the event time xi and censoring time ci are generated
from exponential distributions with parameter hX|zi = h(t|Z = zi) and h0C
respectively. Actually, only the first of these time points is observed. Hence,
the observed time point can be calculated as ti = min(xi, ci), and the status
indicator δi = 1{ti=xi} is used to indicate whether the observed time point is an
event (δi = 1) or censoring time (δi = 0).

Hence, for each observation i we have generated category level zi, event time
xi, censoring time ci, observed time point ti, and status indicator δi. The triple
(ti, δi, zi) will be used to fit the survival models.

Fitting the models

The generated survival data is used to fit the Cox proportional hazards model
with three different methods to incorporate the ordinal categorical covariate.
When applying the dummy coding method, C−1 dummy covariates are generated
(see Table 3.5), and the model parameters βD1 , . . . , βDC−1

are estimated for each
of these dummies. In total C−1 parameters are estimated for the linear predictor
in this model. The estimated hazards for each of the category levels are
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ĥ(t|Z = 0) = ĥ0D (t) exp(0 β̂D1
+ 0 β̂D2

+ . . . 0 β̂DC−1
) = ĥ0D (t)

ĥ(t|Z = 1) = ĥ0D (t) exp(0 β̂D1
+ 1 β̂D2

+ . . . 0 β̂DC−1
) = ĥ0D (t) exp(β̂D1

)
...

...
...

ĥ(t|Z = C − 1) = ĥ0D (t) exp(0 β̂D1 + 0 β̂D2 + . . . 1 β̂DC−1
) = ĥ0D (t) exp(β̂DC−1

).

For each simulation, the model is fitted with the standard procedures currently
used for nominal data. Therefore, when fitting the model there are no ordering
restrictions on the model parameters, i.e. β̂D1 ≤ β̂D2 ≤ . . . ≤ β̂DC−1

is not
required.

For the method of integer coding, the category levels are given integer
values (0, . . . , C − 1) which are interpreted as numeric values. There is only one
parameter in the linear predictor, namely βint. The estimated hazards are

ĥ(t|Z = 0) = ĥ0int
(t) exp(0 β̂int) = ĥ0int

(t)

ĥ(t|Z = 1) = ĥ0int
(t) exp(1 β̂int) = ĥ0int

(t) exp(1 β̂int)
...

...
...

ĥ(t|Z = C − 1) = ĥ0int(t) exp((C − 1) β̂int) = ĥ0int(t) exp((C − 1) β̂int).

The parameter βint is estimated with the standard Cox procedures used for
survival analysis with numeric covariates.

The hazards estimated in the optimal scaling method contain the parameter
βos and C quantifications (ϕ(0), ϕ(1), . . . , ϕ(C − 1)), one for each category level.
These quantifications are interpreted as numeric values, so the estimated hazards
for this method are

ĥ(t|Z = 0) = ĥ0os(t) exp(ϕ̂(0) β̂os)

ĥ(t|Z = 1) = ĥ0os(t) exp(ϕ̂(1) β̂os)
...

...
ĥ(t|Z = C − 1) = ĥ0os(t) exp(ϕ̂(C − 1) β̂os).

The parameters are estimated with the alternating least squares procedure
described in subsection 3.3.2. The quantifications will be estimated such that
restriction ϕ̂(0) ≤ ϕ̂(1) ≤ . . . ≤ ϕ̂(C − 1) holds.

Comparing performance

Direct comparison of the model parameters estimated by the three different
methods is not possible, since the parameters do not have the same interpretation
in each of the three models (see Table 3.6). We will therefore instead compare
the estimated hazard ratios for category c vs category c− 1, for c = 1, . . . , C − 1,
from dummy coding, integer coding, and optimal scaling with the hazard ratios
from the true model underlying the data. The hazard ratio between category
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Z Dummy Coding Integer Coding Optimal Scaling

0 ĥ0D (t) ĥ0int
(t) ĥ0os(t) exp(ϕ̂(0) β̂os)

1 ĥ0D (t) exp(β̂D1
) ĥ0int

(t) exp(1 β̂int) ĥ0os(t) exp(ϕ̂(1) β̂os)
...

...
...

...
C − 1 ĥ0D (t) exp(β̂DC−1

) ĥ0int(t) exp((C − 1) β̂int) ĥ0os(t) exp(ϕ̂(C − 1) β̂os)

Table 3.6: Hazards estimated for each category level by each of the three
methods, dummy coding, integer coding and optimal scaling.

c vs c− 1 ĤRD(c vs c−1)
ĤRint(c vs c−1)

ĤRos(c vs c−1)

1 vs 0 exp(β̂D1
) exp(β̂int) exp((ϕ̂(1)− ϕ̂(0)) β̂os)

2 vs 1 exp(β̂D2
− β̂D1

) exp(β̂int) exp((ϕ̂(2)− ϕ̂(1)) β̂os)
...

...
...

...
C − 1 vs C − 2 exp(β̂DC−1

− β̂DC−2
) exp(β̂int) exp((ϕ̂(C − 1)− ϕ̂(C − 2)) β̂os)

Table 3.7: Hazard ratios between categories c and c− 1, for c = 1, . . . , C − 1
estimated with the three methods, dummy coding (ĤRD(c vs c−1)

), integer coding
(ĤRint(c vs c−1)

), and optimal scaling (ĤRos(c vs c−1)
).

level c and c− 1 for the true underlying model from which the data is generated
is

HR(c vs c−1) =
h0(t) exp(βZc)

h0(t) exp(βZc−1)
= exp(βZc − βZc−1). (3.35)

The hazard ratios estimated by the three methods are given in Table 3.7 and
can be compared to the hazard ratio in (3.35).

3.4.2 Results

To investigate the performance of the three methods, several scenarios were
chosen to simulate the data. First, we chose a nonlinear monotone increasing
function for the parameter set βZ0 , βZ1 , . . . , βZC−1

and looked at the performance
of the three methods in this scenario. Then, we increased the sample size from
100 to 500 to study the effect of sample size on the model fit. Finally, we
increased the percentage of censored subjects in the dataset from 35% to 60% to
investigate the effects of missing information on the model fit. In each scenario,
M = 10, 000 datasets are simulated and the three methods are applied to each
dataset. Parameter settings for each of the simulation scenarios are given in
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n β’s h0X h0C

Scenario 1 100 as in Figure 3.4 0.015 0.02
Scenario 2 500 as in Figure 3.4 0.015 0.02
Scenario 3 100 as in Figure 3.4 0.015 0.07

Table 3.8: Chosen parameters in each scenario of the simulation study. Bold
values indicate the changes compared to baseline scenario 1.

Table 3.8. As discussed in subsubsection 3.4.1, the hazard ratios estimated by
each method will be used to compare their performance. The results of all M
datasets are summarized by box plots of the estimated log hazard ratios.

Monotonically increasing model parameters

The parameters βZ0 , βZ1 , . . . , βZC−1
determine the strength of the relation be-

tween the category levels 0, 1, . . . , C − 1 and event time X. As explained in
subsubsection 3.4.1, a monotone increasing or decreasing function should be
chosen for these parameters to simulate ordinal category levels. We restricted
this simulation study to the nonlinear monotone increasing transformation as
shown in Figure 3.4, for 7 categories (C = 7). In the first scenario, we set the
simulation parameters to the values as given in Table 3.8, which resulted in
approximately 35% censoring in each data set. Box plots of the log hazard ratios
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Figure 3.4: Simulation parameters βZ0
, βZ1

, . . . , βZ6
.

estimated by the three methods in the M simulated data sets are shown in
Figure 3.5. Results for this first scenario are shown by the upper set of box plots
in each figure. These box plots show that for the first category levels, the integer
coding system overestimates the log hazard ratio between consecutive categories,
while for the highest levels, it underestimates this ratio. This can be explained
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by considering the restrictions put on the category levels when assuming the
integer values of the categories to be numeric. Since numeric restrictions are
assumed, the integer coding method will approximate the true βZc values by a
linear function, i.e. the method assumes that the difference between consecutive
βZc ’s is constant. Therefore, it will use the categories’ average difference in the
data as estimate in the model. In the true data the difference is very small for
the low categories and increases with the category levels, so the integer coding
method overestimates βZc − βZc−1 for low c’s, and underestimates the difference
for large c’s. This is supported by the box plots in Figure 3.5. Summarizing,
the integer coding method gives biased results, i.e. the numeric restriction on
the integer values is too strict in case the differences βZc − βZc−1 are nonlinearly
increasing with category level c.

The box plots corresponding to the dummy coding methods show that the
average log hazard ratios are quite close to the true values. The box plots also
show that the log hazard ratios are regularly estimated to be negative by the
dummy coding method, especially for the first four category pairs. A negative
log hazard ratio indicates that β̂Dc−1 ≥ β̂Dc , which means that the ordering
of the model parameters is wrong. This happens because the dummy coding
does not apply the restriction of β̂D1 ≤ β̂D2 ≤ . . . ≤ β̂D6 . A logical explanation
why the dummy coding method regularly gives the wrong ordering for the first
four categories, but the correct ordering for the last three categories, is that
the differences between hazard ratios increases with the category levels. For
the first category levels the difference between the parameter values are very
small, and therefore the correct ordering corresponding to these category levels
is more difficult to detect. for the last category levels the difference is large, so
the dummy coding system can easily detect the correct ordering.

The results based on the optimal scaling method show that the average log
hazard ratios estimated by the optimal scaling method are quite close to the
true log hazard ratio. All log hazard ratios estimated with the optimal scaling
method are nonnegative because of the ordering restriction, since βZc ≤ βZc−1

for c = 1, . . . , C − 1. This is also clear from the box plots truncated at 0. The
ordinal restrictions on the βZc ’s also results in less variation for the category
levels were the difference βZc − βZc−1 is small. For large differences βZc − βZc−1 ,
the optimal scaling and the dummy coding provide equal results. This is because
optimal scaling starts with the dummy coding result, and in case this result
satisfies the ordering restriction (which it does for the higher category levels), it
does not change this result (see in Figure 3.5 the box plots for category levels
higher than 5).
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Increasing sample size

To study the effect of increasing sample size n, we also considered n equal to
500. All the other parameters remained constant in this second scenario, see
Table 3.8. The results of n equal to 100 and 500 (Scenarios 1 and 2) are shown
in the upper and middle box plots in each subfigure in Figure 3.5.

When the sample size of a dataset is large, there is more observed information
for each of the category levels, and hence the underlying model can be estimated
more precisely. Therefore, the variation of the estimated log hazard ratios
decreases with sample size for all three methods. This is confirmed by the more
compact box plots for n = 500 compared to for n = 100 (Scenario 2 versus
Scenario 1 in Figure 3.5). The dummy coding method shows a better performance
for the large sample size, since there are more observations in each category,
which makes it easier to detect the correct ordering of consecutive category levels.
Simulation results suggest that increasing the sample size reduces the variation
of the estimated log hazard ratios. This has a positive effect on the results from
the dummy coding and optimal scaling method, since all estimated log hazard
ratios are closer to their true values. However, it does not improve the results
from the integer coding method. For this method, there is also less variation in
the log hazard ratios, but the estimated values are still biased.

Increasing censoring percentage

A typical characteristic of survival data is that some subjects in the dataset
are censored over time. This prevents us from observing the event time. Since
censoring is a characteristic of survival data, we have studied the effect of
an increasing censoring percentage on the estimated parameters. We choose
censoring percentages equal to 35% and 60%. All other covariates were chosen
as in the first scenario, see Table 3.8. Results corresponding to 35% and 60%
censoring are shown by the upper and lower box plots (Scenarios 1 and 3) in
Figure 3.5 .

When subjects are censored, we have less information, and this will affect
the precision of the estimated parameters. Hence, the higher the percentage of
censored subjects, the worse the estimated parameters. This is confirmed by the
increased variation in estimated log hazard ratios for the three methods, shown
in Figure 3.5. Results based on this simulation study indicate as before that
integer coding shows the worst performance. The advantages of optimal scaling
compared to dummy coding are again more visible for the category levels whose
parameters are close to the parameters of their neighbouring category levels.
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Method

Dummy Coding Integer Coding Optimal Scaling

Figure 3.5: Box plots of estimated log hazard ratios between consecutive cate-
gories based on the three methods (see Table 3.7) for each of the three scenarios;
a) Scenario 1, b) Scenario 2, and c) Scenario 3. Simulation parameters for
each scenario were chosen as in Table 3.8. The black vertical lines indicate the
true log hazard ratio, derived from the model parameters given in (3.35).
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3.5 Discussion

In many studies, categorical variables are collected and used as predictors to
model an outcome of interest. Often, the category levels of the data have an
ordering. In medical research many scales are used to assess the severity of
a disease. Pain intensity, quality of life, and modified Rankin scales are just
three among a broad range of scales. For many of these scales it is expected
that they have a monotone relation with the time to an event of interest. The
modified Ranking Scale (mRS) is an example of this type of scales. It indicates
the degree of disability or dependence in daily activities of patients who suffer
from neurological disabilities. This scale is a good indicator for the medical
rehabilitation needs of a patient. Patients with few disability complaints score
low on this scale, and are expected to have a short rehabilitation process.
Patients who are disabled severely (highest possible score on the scale) have a
long rehabilitation process ahead of them. This indicates that mRS scores and
medical rehabilitation time are monotonically related.

The two currently used methods to implement ordinal categorical data in the
Cox proportional hazards model, dummy and integer coding, do not preserve
the characteristics of this type of data. Dummy coding will not guarantee the
correct ordering of the category levels. Integer coding will, but it will also force
equal distances between consecutive category levels.

In this paper we have described the method of optimal scaling, in which
numerical representations (quantifications) are estimated for each category level
of the data. These quantifications can then be used as numerical input for
the model. Restrictions can be put on the quantifications such that the data
characteristics are preserved by their numerical representations. Optimal scaling
is already used in several regression models that are fitted with a least squares
approach. In this paper, we have described how the maximum likelihood approach
to fit the Cox model can be transformed into a reweighted least squares approach
in which the optimal scaling steps can be implemented.

A simulation study was carried out in order to assess the performance of
the optimal scaling method in case event times are dependent on an ordinal
categorical covariate. Data were generated for different scenarios by increasing
sample size and censoring percentage. Simulation results suggest that the integer
coding method will provide biased results when the parameters are not linearly
increasing with category levels. It will estimate the parameters to be close to
the linear regression line for the true parameters, and will therefore not find
the nonlinearity. Dummy coding gives results quite close to the optimal scaling
method in case the difference between consecutive parameter values is large.
However, in case this difference is small, the dummy coding method may fail
to detect the correct ordering. Since optimal scaling puts restriction on the
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estimated model parameters, it will always find the correct ordering. For large
sample sizes, both the dummy coding and optimal scaling method provide more
accurate results. However, if the censoring percentage is increased, there will
be more variation in the estimated log hazard ratios, due to the higher rate of
missing information.

To get more insight into the performance of the three methods, the simulations
study can be further extended. In this simulation study, we have only looked at
a specific set of parameters. One could investigate the effect of other nonlinear
monotone relations, or could decrease or increase the number of category levels.
Furthermore, we have restricted the simulation study to a Cox model with only
a single covariate associated to the occurrence of the event of interest. The
model could also be extended to include more ordinal, nominal and/or numerical
covariates. To assess the performance of the methods, one could also compare
other outcomes than the log hazard ratios, for example the prediction error.

We think that currently in survival analysis, too little attention is given to
ordinal categorical data. The two currently used methods to implement this
type of data into the Cox model do not guarantee that data characteristics
are preserved. Researchers should consider using the optimal scaling method
discussed here to implement ordinal data in the Cox proportional hazards model
correctly when they expect a monotone relation between category levels and the
event times.

Note that application of optimal scaling in survival analysis is a new concept
and this paper is the first step of our research. We plan to implement more
techniques that use optimal scaling for the Cox proportional hazards model. For
example, we would like to apply optimal scaling to reduce the dimensionality of
high dimensional survival data with ordinal covariates. Scales are often used in the
medical field to assess a patient’s status according to p different characteristics,
denoted as Z1, . . . , Zp. The dimension is then reduced by summarizing the
category choices of the scales into one or more composite scores. These composite
scores can then be used in the statistical model to predict outcome Y of a
regression model (see Figure 3.6 for a representation of reduction to one dimension
(one composite score) for a regression model).

Principal component analysis (PCA) can be used to reduce the dimensionality
of the data. The resulting principal components are used as predictors in the
regression model. Categorical PCA (Linting et al., 2007; Meulman et al., 2004),
the PCA method that includes an optimal scaling step, can be used to find
optimal scores that preserve the characteristics of ordinal covariates, i.e. it allows
for nonlinear quantifications for the category levels of the scales. The next goal
in our research is to extend the optimal scaling procedure described in this
paper to analyze high dimensional survival data as described above. We aim
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to extend the categorical optimal scaling technique to the Cox model to find
optimal quantifications of the scales to better predict the event time X.

Z1

Z2

...

Zp

Z Y

βZ

Figure 3.6: Representation of dimension reduction into one dimension for
the regression model.
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3.6 Supplementary material

3.6.1 Optimal scaling in ordinary linear regression

Recall the loss function

L(βk,vk) = ||uk − βkGkvk||2 (3.36)

that corresponds to the ordinary linear regression model with optimal scaling.
This loss function is minimized over vk while keeping βk fixed by using the
ordinary least squares solution:

vk =
(
(βkGk)

TβkGk

)−1
(βkGk)

Tuk

=
(
GT
k βkβkGk

)−1
GT
k βkuk

=
(
GT
kGkβkβk

)−1
GT
k βkuk

= β−2k
(
GT
kGk

)−1
GT
k βkuk

= β−1k
(
GT
kGk

)−1
GT
kuk

= β−1k D−1k GT
kuk,

with Dk = GT
kGk, the diagonal matrix that gives the number of objects in each

category. Similarly, the ordinary least squares solution can be used to minimize
loss function (3.36) over βk while keeping vk fixed. i.e.

β̂k = (ϕ̂k(xk)
T ϕ̂k(xk))

−1ϕ̂k(xk)
Tuk

= (ϕ̂k(xk1)
2 + . . .+ ϕ̂k(xkp)

2)−1ϕ̂k(xk)
Tuk

= (||ϕ̂k(xk)||2)−1ϕ̂k(xk)Tuk
= 1−1ϕ̂k(xk)

Tuk
= uTk ϕ̂k(xk).

(3.37)

3.6.2 From maximum likelihood to least squares

To transform the maximum partial likelihood approach of the Cox model into an
iterated reweighted least squares framework, Simon et al. (2011) used a method
similar to the Newton-Raphson method.

The second order Taylor expansion for the log-partial likelihood `(β) centered
at current estimate β̃ has the form
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`(β) ≈ `(β̃) + (β − β̃)T ˙̀(β̃) + 1
2(β − β̃)T ῭(β̃)(β − β̃)

= `(η̃) + (β − β̃)T `′(η̃) ∂η
∂β̃

+ 1
2(β − β̃)T ∂η̃

∂β̃
`′′(η̃) ∂η̃

∂β̃
(β − β̃)

= `(η̃) + (β − β̃)T `′(η̃)Z + 1
2(β − β̃)TZ`′′(η̃)Z(β − β̃)

= `(η̃) + (Zβ − Zβ̃)T `′(η̃) + 1
2(Zβ − Zβ̃)T `′′(η̃)(Zβ − Zβ̃)

= `(η̃) + (Zβ − η̃)T `′(η̃) + 1
2(Zβ − η̃)T `′′(η̃)(Zβ − η̃)

= (Zβ − η̃)T `′(η̃) + 1
2(Zβ − η̃)T `′′(η̃)(Zβ − η̃) + C(β̃, η̃),

where C(β̃, η̃) does not depend on β. As we will show below, the β that
maximizes this log likelihood approximation is the same β that maximizes the
function

1

2
(ζ(η̃)− Zβ)T `′′(η̃)(ζ(η̃)− Zβ),

with ζ(η̃) = η̃ − `′′(η̃)−1`′(η̃). This can be shown as follows.

1
2(ζ(η̃)− Zβ)T `′′(η̃)(ζ(η̃)− Zβ)

= 1
2(η̃ − `′′(η̃)−1`′(η̃)− Zβ)T `′′(η̃)(η̃ − `′′(η̃)−1`′(η̃)− Zβ)

= 1
2(η̃ − Zβ − `′′(η̃)−1`′(η̃))T `′′(η̃)(η̃ − Zβ − `′′(η̃)−1`′(η̃))

= 1
2

[
(η̃ − Zβ)T `′′(η̃)(η̃ − Zβ)− (η̃ − Zβ)T `′′(η̃)(`′′(η̃)−1`′(η̃))

−(`′′(η̃)−1`′(η̃))T `′′(η̃)(η̃ − Zβ) + (`′′(η̃)−1`′(η̃))T `′′(η̃)(`′′(η̃)−1`′(η̃))
]

= 1
2

[
(η̃ − Zβ)T `′′(η̃)(η̃ − Zβ)− (η̃ − Zβ)T `′(η̃)

−`′(η̃)T (η̃ − Zβ) + (`′′(η̃)−1`′(η̃))T `′(η̃)
]

= 1
2

[
(η̃ − Zβ)T `′′(η̃)(η̃ − Zβ)− 2(η̃ − Zβ)T `′(η̃) + (`′′(η̃)−1`′(η̃))T `′(η̃)

]
= 1

2

[
(Zβ − η̃)T `′′(η̃)(Zβ − η̃) + 2(Zβ − η̃)T `′(η̃) + (`′′(η̃)−1`′(η̃))T `′(η̃)

]
= 1

2(Zβ − η̃)T `′′(η̃)(Zβ − η̃) + (Zβ − η̃)T `′(η̃) + (`′′(η̃)−1`′(η̃))T `′(η̃)

= (Zβ − η̃)T `′(η̃) + 1
2(Zβ − η̃)T `′′(η̃)(Zβ − η̃) + (`′′(η̃)−1`′(η̃))T `′(η̃)

= (Zβ − η̃)T `′(η̃) + 1
2(Zβ − η̃)T `′′(η̃)(Zβ − η̃) + C(β̃, η̃).
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This is equal to the Taylor approximation of the log likelihood `(β) as shown
before. Therefore, maximizing the approximation of the log likelihood over β
will give the solution as maximizing

(ζ(η̃)− Zβ)T `′′(η̃)(ζ(η̃)− Zβ), (3.38)

with ζ(η̃) = η̃ − `′′(η̃)−1`′(η̃), over over β. Since calculation of `′′(η̃) would
require a lot of computations, Simon et al. (2011) proposed to replace it by a
diagonal matrix with the diagonal entries of `′′(η̃), denoted as ωi(η̃). Then,
maximizing (3.38) comes down to minimizing

L(β̃) = −
n∑
i=1

ωi (η̃)(ζi(η̃)− ϕ(Zi∗)β)2 . (3.39)

In this way the maximum likelihood approach has been recasted into a weighted
least squares framework, where the observations are weighted by their second
derivatives at the current estimate ωi(η̃). An iteration procedure is applied to
estimate the parameters. In each step, the loss function (3.39) is minimized over
β. The term β̃ is then replaced by the estimates β̂. This procedure is repeated
until convergence. This process is called Iteratively Reweighted Least Squares
(IRLS) (Green, 1984).

3.6.3 Derivatives log likelihood Cox model

Let t1 < t2 < . . . < tD denote the D distinct and ordered event times. Denote
by Dm the set of all individuals who die at time tm. Let dm be the sum of the
weights for subjects who experience an event at time tm, i.e. dm =

∑
j∈Dm wj ,

and let Rtm be the set of individuals r at risk just prior to tm, with m = 1, . . . , D.
For random covariates Z = (Z1, . . . , Zp) let η = Zβ be the (n× 1)-vector with
elements ηi = Zi∗β = zi1β1 + . . . + zipβp, with i = 1, . . . , n. The Breslow
approximation of the partial likelihood for ties (Breslow, 1972), extended to
weighted subjects is

L(η) =
D∏

m=1

exp(
∑

j∈Dm wjηj)(∑
r∈Rtm wr exp(ηr)

)dm . (3.40)

The log likelihood is

`(η) =
∑D

m=1 log

(
exp(

∑
j∈Dm wjηj)(∑

r∈Rtm
wr exp(ηr)

)dm
)

=
∑D

m=1

(∑
j∈Dm wjηj

)
−
∑D

m=1

(
dm log

(∑
r∈Rtm wr exp(ηr)

))
.
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The first partial derivative of `(η) with respect to ηi is derived as follows:

`′(η)i = ∂`(η)
∂ηi

=
[∑D

m=1

(∑
j∈Dm wjηj

)]′
−
[∑D

m=1

(
dm log

(∑
r∈Rtm wr exp(ηr)

))]′
=

[∑
j∈Dm wjηj

]′
−
∑D

m=1 dm
1∑

r∈Rtm
wr exp(ηr)

[∑
r∈Rtm wr exp(ηr)

]′
= δiwi −

∑D
m=1 dm

1∑
r∈Rtm

wr exp(ηr)
1{i∈Rtm}wi exp(ηi)

= δiwi −
∑D

m=1 dm
1∑

r∈Rtm
wr exp(ηr)

1{ti≥tm}wi exp(ηi)

= δiwi −
∑

s∈Si
dswi exp(ηi)∑
r∈Rts

wr exp(ηr)
,

where Si is the set of all individuals s that experience the event before person
i’s observed time point, i.e. δs = 1 and ts ≤ ti. The second partial derivative of
`(η) with respect to ηi is derived as follows:

`′′(η)i,i = ∂2`(η)
∂η2i

= [δiwi]
′ −
[∑

s∈Si
dswi exp(ηi)∑
r∈Rts

wr exp(ηr)

]′
= 0−

∑
s∈Si

[dswi exp(ηi)]
′∑

r∈Rts
wr exp(ηr)−dswi exp(ηi)[

∑
r∈Rts

wr exp(ηr)]′

(
∑
r∈Rts

wr exp(ηr))2

= −
∑

s∈Si
dswi exp(ηi)

∑
r∈Rts

wr exp(ηr)−dswi exp(ηi)wi exp(ηi)
(
∑
r∈Rts

wr exp(ηr))2

= −
∑

s∈Si ds
wi exp(ηi)

∑
r∈Rts

wr exp(ηr)−(wi exp(ηi))2

(
∑
r∈Rts

wr exp(ηr))2
.
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