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Introduction

This thesis is based on five papers on several topics: survival analysis, optimal
scaling transformations and statistics communication. Each topic is introduced
briefly and then the outline of the thesis is provided.

Survival analysis

In survival analysis the time to the occurrence of an event of interest is studied.
This type of analysis is regularly used in medical statistics to estimate the
survival time of patients (i.e. time until death). However, it can also be used to
estimate other time frames, like recovery time or unemployment duration.

Survival time is defined as the time between a prespecified time origin (e.g.
birth, diagnosis, end of employment) and the time of occurrence of the event of
interest (e.g. death, recovery, reemployment). One of the main aims in survival
analysis is to estimate the survival function S(t) which gives the probability that
an individual does not experience the event of interest before time t.

A characteristic of survival data is the presence of censoring. This occurs
when either the time origin or event time are unobserved. For example, if a
patient i under treatment moves from one city to another and therefore changes
hospital, researchers at the initial hospital will not observe the recovery time
xi. The only information available is that the event had not occurred yet at
the patient’s last hospital visit. Hence, the observed time for this patient is
ti = min(xi, ci), where ci denotes the time between the time origin and the
last hospital visit. Although less informative than the actual event time, the
censoring time is valuable information since it indicates that the recovery time
was at least more than the time to censoring, i.e. xi > ci.

Because censoring occurs regularly in survival data, survival analysis methods
are designed to also include subjects with unknown event times. In many of
these techniques, independent censoring is an important assumption. This means
that within any subgroup of interest, censored subjects are representative of
all individuals who remain at risk of experiencing the event, with respect to
their survival experience. This assumption implies that the censored subjects
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are randomly selected from the subgroup.

Usually, more information is known about subjects besides their event or
censoring time, like gender, age and treatment. A way to compare, for example,
the effect of different treatments, is to estimate and compare the survival curves
for each treatment. However, in this way, only the categories of one variable can
be compared in each analysis.

A more elaborate model which also allows to incorporate several covariates is
Cox’ proportional hazards model (Cox, 1972). This model focuses on estimating
the hazard function which gives the rate at which an individual, who has survived
until time t, will experience the event in the next instant of time. This hazard
function is modeled as

h(t|Z) = h0(t) exp

[
p∑

k=1

βkZk

]
.

The survival chances of subjects with covariate values Z and Z∗ can then be
compared by looking at the proportion of their hazards, i.e.

h(t|Z)

h(t|Z∗)
=
h0(t) exp

[∑p
k=1 βkZk

]
h0(t) exp

[∑p
k=1 βkZ

∗
k

] = exp

[
p∑

k=1

βk(Zk − Z∗k)

]
,

which is a constant.
Each regression coefficient βk in Cox’ proportional hazards model indicates

the change in relative risk. Linearity is assumed for continuous variables, so
the regression coefficients of continuous variables indicate the change in the
relative risk if the corresponding covariate is increased by one unit. The levels of
categorical covariates are represented by dummy variables. Hence, the regression
coefficients corresponding to a category level represent the relative risk between
that specific level and the reference level.

Optimal scaling transformations

Linear regression is commonly used to model the relation between an outcome
variable and a set of predictor variables. In linear regression the outcome is
modeled as a linear combination of the predictor variables, i.e.

y =
∑p

k=1 βkxk + ε.

Hence, this model assumes a linear relation between the outcome variable and
the set of predictor variables.
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However, in many cases the linearity assumption is too strict. A typical
example of a nonlinear relation is the relation between the number of accidents
caused by a driver and the age of the driver. In general, younger and older
drivers cause more accidents than drivers in the middle-age group. Hence, this
relation has a u-shape which cannot be captured by standard linear regression.

Since the linearity assumption is too strict, interest has grown in less restric-
tive models. Model adaptations and extensions that have been developed can
be classified into three groups. The first group of nonlinear models is nonlinear
regression in which the outcome variable is modeled as a nonlinear function
of the predictors. The second group (Generalized Linear Models, McCullagh
and Nelder (1989)) consists of models in which the outcome is modeled as a
nonlinear link function on the linear combination of predictor variables. In the
third group the predictor variables in the regression model are transformed such
that the relation between predictors and the outcome is linearized. In some of
these models the outcome is transformed as well.

In this thesis we focus on a member of the third group, namely on Optimal
Scaling regression (Gifi, 1990; Van der Kooij and Meulman, 1999; Young et al.,
1976). This method uses the concepts of linear regression, and finds optimal
transformations of the predictor variables while simultaneously estimating the
regression coefficients. The aim of optimal scaling is to find optimal numeric
values (called quantifications) that replace the original predictor values. These
quantifications will have numerical properties and linearize the relation between
the outcome and transformed predictors. The model is defined as

y =
∑p

k=1 βk ϕk(xk) + ε,

where xk are the original observed values of predictor k and ϕk(xk) their quan-
tifications.

A different type of transformation can be chosen for each variable in the
model, and this choice depends on which data properties should be preserved.
The restrictions applied are specified by choosing a scaling level, which can
be either nominal, ordinal, nonmonotone spline, monotone spline, or numeric
(Meulman et al., 2019).

The nominal and ordinal scaling levels are usually applied to categorical data.
The former only preserves the grouping property of a predictor, and the latter
preserves both the grouping and ordering properties. For continuous data or
categorical variables with many category levels, a smooth spline transformation
is more suitable. Spline functions allow for nonlinear transformations which
can either preserve the ordering property of the data (monotone spline) or not
(nonmonotone spline). If a linear relation is expected, linearity constrains can
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be applied by choosing the numeric scaling level; this will give the same result
as in linear regression.

Optimal Scaling transformations are not only applied in linear regression but
can also be used to introduce nonlinearity in other types of models. For example,
these transformations have been introduced in Principal Components Analysis.
This analysis method reduces the dimensionality of a dataset by summarizing
its original variables into a set of linearly uncorrelated variables (the principal
components) which are linear combinations of the original observed values. PCA
with OS transformations is the nonlinear equivalent of PCA (Meulman et al.,
2004; Takane et al., 1978).

Statistics communication

Especially with the increasing amount of collected data, statistical results are
more frequently used in decision making. Therefore, communicating their findings
to decision makers in a clear manner is an important task of statisticians. If the
final results are misunderstood, then all the work that was put into collecting
the data, developing analysis methods and applying them, is wasted.

Since statistical models are often used to make predictions, clear commu-
nication of the estimated probabilities is important. Previous research shows
that the persons who communicate estimated probabilities prefer to express
these verbally by using probability expressions as unlikely, usually and maybe
because these expressions convey some amount of uncertainty (Druzdzel, 1989).
This preference indicates that a translation step is needed from the estimated
numerical probability to an appropriate verbal phrase. In some cases probability
scales are used to standardize this translation step. For example, a probability
scale may state that the phrase very likely should be used for probabilities in
the range of 90–95% and extremely likely for 95–99%. Usually these scales are
symmetrical. So, if very likely represents the range 95–99%, then very unlikely
indicates 1–5%.

Extensive research has been done on the interpretation of English verbal
probability phrases. This research showed that there is huge variation in the
interpretation of verbal probability phrases and that interpretation is often asym-
metric. For example, the mean perceived percentages of mirrored expressions as
likely and unlikely do not sum to 100% (Lichtenstein and Newman, 1967; Reagan
et al., 1989; Stheeman et al., 1993). Additionally, interpretation is influenced by
the base rate expectation of the statement in which the phrase is placed. For
example, the numerical interpretation of likely in the statement “It is likely that
it will rain in Manchester, England, next June” is usually higher than in “It is
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likely that it will rain in Barcelona, Spain, next June” (Wallsten et al., 1986).
These research results show that it is impossible to summarize verbal proba-

bility expressions into (symmetrical) probability scales that would be supported
by everyone. Yet, still many organizations are using scales like this.

Outline of this thesis

This thesis consists of five chapters that are published or submitted papers.
The first chapter focuses on the issue of dependent censoring in survival

analysis. It was motivated by a clinical research question from the Department
of Psychiatry of Leiden University Medical Center, where it is expected that
most patients with anxiety problems stop coming to their appointments when
they start to feel better. Therefore, censored patients are not representative
for the whole group and the independent censoring assumption is violated. In
this chapter, we discuss the Inverse Probability Censoring Weighted Estimator
(IPCW) and propose a new user friendly algorithm in the statistical software
package R (R Core Team, 2018). This algorithm is applied to the data on the
anxiety patients from the Department of Psychiatry of Leiden University Medical
Center. Furthermore, the performance of IPCW is studied in a simulation study.

The second chapter combines PCA with Optimal Scaling transformations
and survival analysis techniques. The research revolves around survey data
that were provided by the Dutch Employee Insurance Agency (UWV) in the
Netherlands. The dataset contains many categorical and continuous variables
that may predict unemployment duration. Nonlinear PCA is first applied to
reduce the dimensionality of the data by finding uncorrelated composite scores,
which are weighted sums of the original variables. Then the Cox proportional
hazards model is fit on the composite scores to study the association between
possible predictors and unemployment duration.

In the third and fourth chapter, additional nonlinearity is introduced in
GLMs by applying Optimal Scaling transformations on the predictor variables
in these models. As a result, a GLM’s link function is no longer applied
to the linear combination of predictor variables, but on the weighted sum
of their quantifications. In this way nonlinearity is introduced via both the
transformations of the variables and the link function. First (chapter 3) this
technique is applied to Cox’ proportional hazards model in survival analysis.
The aim of combining these techniques is to preserve the ordering in the levels of
categorical predictor variables. The model is studied in a simulation study. Next
(chapter 4), it is shown how the Optimal Scaling technique can be extended to the
family of GLMs. Three different datasets are used to demonstrate the method.
All datasets contain a binary outcome variable and a set of categorical and/or
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continuous predictor variables. Since the outcome variables in the datasets are
binary, the chapter’s demonstrations focus on logistic regression. It is shown
how the different scaling levels can be applied to the predictors with different
properties. It is also discussed how the quantifications of the variables can
enhance the visualization and interpretation of the model, which will simplify
the communication of the results.

The final chapter continues on the topic of the interpretation of probability
expressions. A study was conducted on probability phrases from the Dutch
language like waarschijnlijk (probably) and misschien (maybe), and frequency
phrases as soms (sometimes) and doorgaans (usually), of which many have not
been studied before. Although extensive research has been done on English
expressions, it is important to study them in other languages as well. Namely,
many international organizations publish their documents in more than one
language and then the meaning of verbal probability expressions may get lost in
translation.
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