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Abstract

Background
Clusters of infectious diseases are frequently detected late. Real-time, detailed informa-
tion about an evolving cluster and possible associated conditions is essential for local 
policy makers, travelers planning to visit the area, and the local population. This is cur-
rently illustrated in the Zika virus outbreak.

Methods
In the Netherlands, ICARES (Integrated Crisis Alert and Response System) has been devel-
oped and tested on three syndromes as an automated, real-time tool for early detection of 
clusters of infectious diseases. From local general practices, General Practice Out-of-Hours 
services and a hospital, the numbers of routinely used syndrome codes for three piloted 
tracts i.e. respiratory tract infection, hepatitis and encephalitis/meningitis, are sent on 
a daily basis to a central unit of infectious disease control. Historic data combined with 
information about patients’ syndromes, age cohort, gender and postal code area have 
been used to detect clusters of cases.

Results
During the first two years, two out of eight alerts appeared to be a real cluster. The first was 
part of the seasonal increase in Enterovirus encephalitis and the second was a remarkably 
long lasting influenza season with high peak incidence.

Conclusions
This tool is believed to be the first flexible automated, real-time cluster detection system 
for infectious diseases, based on physician information from both general practitioners 
and hospitals. ICARES is able to detect and follow small regional clusters in real time and 
can handle any diseases entity that is regularly registered by first line physicians. Its value 
will be improved when more health care institutions agree to link up with ICARES thus 
improving further the signal-to-noise ratio.
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Background

Worldwide, the number of infectious disease outbreaks is increasing (1). Consequently, 
the early detection of and response to clusters of infectious diseases is becoming more 
important.

Past experience shows that many outbreaks of infectious diseases are detected late. For 
example, in the Netherlands in 1999, a point source outbreak of Legionnaire’s disease was 
detected 14 days after the first patient was admitted to hospital. At that time, another 70 
patients had already been admitted to various hospitals throughout the Netherlands (2;3).

There are many similar examples where retrospective analysis of data clearly indicates 
that clusters of infectious diseases are not detected until relatively late. This hampers the 
identification of the source of the outbreak, the control of the associated transmission 
route(s) and the identification of associated conditions. For example, delayed detection 
of hemolytic uremic syndrome (HUS) and bloody diarrhea of Shiga Toxin-producing Esch-
erichia coli outbreak in Germany in 2011 had significant and long-lasting impacts (4;5). 
The speculation about the association between the Zika virus outbreak and microcephaly 
gave rise to conflicting advice to women of childbearing age (6;7).

Such delayed detections and lack of detailed insight in possible related conditions are 
costly in terms of the disease burden but also have impact on the social and economic 
aspects of the communities affected (8).

Reasons for late detection can be attributed to the non-specificity of the detection sys-
tems. For example, Google Flu Trends was developed to find a potential flu cluster as soon 
as possible. Critical analysis revealed that it has overestimated the number of flu cases 
and Google Flu Trends has discontinued to publish current estimates (9;10).

This large amount of data noise can be overcome by medical doctors being the data source. 
Medical doctors define a working diagnosis at first patient contact. Such primary data yield 
more specific results in comparison with lay persons based systems as Google Flu Trends.

On the other hand, using disease syndromes in outbreak surveillance frequently lacks 
specificity and commonly refers to a broader categorisation, e.g. respiratory tract infection 
or gastro-enteritis. Additionally, General Practitioners (GPs) do not, for instance, regularly 
request microbiological testing for these syndromes. This can easily result in a missed 
opportunity to successfully identify a possible cluster that could represent the first sign of 
a much larger potential outbreak.
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To overcome this information gap, the Dutch Public Health Law (Wet Publieke Gezond-
heid), based on the International Health Regulations (IHR) (11), obliges medical doctors 
to report unusual clusters of infectious diseases with possible serious public health 
consequences. The criteria for reporting under this heading are not well specified and in 
practice medical doctors hardly ever report such clusters. Still, individual physicians will 
miss clusters in overlapping physician catchment areas. This is clearly exemplified by the 
aforementioned examples.

The gaps in surveillance intelligence described above highlight the urgent need for a 
surveillance tool to capture and analyse regional clusters of infectious diseases. This tool 
should ideally be automated, real-time and based on diseases identified by medical doc-
tors without adding to the administrative burden of medical professionals (12;13). This 
will prompt public health professionals to investigate further when certain upper limits 
of incidence for a given syndrome have been reached. Detailed information about the 
extent of an outbreak will help public health authorities to inform and advice the involved 
population adequately. Our case study addresses this gap specifically.

Methods

From 1 October 2013 to 1 October 2015, a pilot ICARES (Integrated Crisis Alert and Response 
System) case study was conducted in the Leiden-The Hague region in the western part of 
the Netherlands. This area has approximately 1.25 million inhabitants, six hospitals, eight 
GP Out-of-Office-Hours services and 380 individual GP practices.

This study was approved by the Medical Ethical Committee of the Leiden University Medi-
cal Center on 18 April 2012. The aim of the case study was to design, develop and test an 
automated surveillance tool capable of providing early signals of potential clusters that 
could escalate into outbreaks. The complete spectrum of front-line health care organisa-
tions contributed to this case study and included General Practices, Out-of-Hours General 
Practitioner services, and one hospital (emergency department, ward and intensive care 
unit admissions and outpatient department consultations). For the hospital, DBC/DOT 
(Diagnose Behandel Code Op weg naar Transparantie) codes were used to map to the cor-
responding syndrome. Hospital physicians routinely enter codes during the first evalua-
tion of a patient. These DBC/DOT codes are developed for hospitals to reimburse the costs 
of patient care at health care insurers and represent the patient’s diagnosis.

Diagnostic information from General Practitioner (GP) patient records is obtained using 
the International Classification of Primary Care (ICPC) (14), according to the guidelines 
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of the Dutch College of General Practitioners (15). Nowadays, both in daily practice and 
during out-of-office hours, GPs routinely enter these codes in the electronic patient file at 
first patient presentation.

Any disease entity that is routinely coded and entered in the patient record can be se-
lected. In this case study, we focused on respiratory tract infection, infectious hepatitis 
and meningoencephalitis. Trigger diagnostic codes (Table 1) are collected and sent to 
ICARES every 24 hours, yielding a near real-time snapshot of what is happening in the 
community and its burden on health care institutions.

Together with these diagnostic codes, the minimal data set (MDS) of patient sex, age 
range, the four digits of the postal district (i.e. not the full postal code), identification of 
the participating health care facility and date of consultation are captured for transmis-
sion to ICARES. For reasons of data confidentiality, privacy and security, no specific patient 
identifiable information is collected from the GP systems. With hospital data, an encrypted 
patient identification number is added, with only the principal investigator at the hospital 
being able to decrypt these codes. This practice ensures that the minimal data set does 
not contain patient identifiable information.

In order to obtain calculation baselines for the data analysis, historic data from the various 
participating organisations were collected and analysed. This case study benefited from 
one year’s data from GPs, including GP Out-of-Office-Hours services, as well as eight years 
of hospital data. This yielded means and standard deviations for various codes.

A secure web-based decision support tool was developed for the purpose of this study 
by inFact Ltd. and was named ICARES (Integrated Crisis Alert and Response System). The 
software tool receives the MDS from the various participating organisations every night. 
Special web services have been written to interface, in a non-intrusive way, with the dispa-
rate electronic patient records. ICARES then maps all the diagnostic codes received onto 
the corresponding three sets of syndromes mentioned, and presents the analysed data 
in an easy to understand dashboard with a risk dial for each disease to the local unit of 
infectious disease control.

ICARES aggregates the actual data harvested and compares these values with those for 
the nearest current time window historically. Calculations in ICARES are currently per-
formed using this Cumulative sum (CUSUM) method for a moving seven-day period (16). 
To calculate the equivalent historic period, the previous seven-day period is taken into 
consideration, adjusted for holidays.
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Table 1. Trigger diagnostic codes

DBC/DOT code (Hospital)ª Representing syndrome/diagnosis

Respiratory tract infection

INT401 Pneumonia

INT402 Interstitial pneumonia

INT409 Other respiratory tract infections

LON1401 Pneumonia

LON1405 Acute (trachea)bronchitis

KIN3104 Upper respiratory tract infection

KIN3202ᵇ Asthma/bronchial hyperreactivity

KIN3207 Laryngotracheobronchitis

KIN3208 Lower respiratory tract infection

KIN3210 RSV bronchiolitis

Infectious hepatitis

INT463 Viral hepatitis (not B or C)

INT944 Hepatitis B or C

MDL701 Hepatitis

MDL705 Hepatitis B or C with antiviral therapy

MDL718 Acute liver failure

KIN3312 Hepatitis

Meningitis/encephalitis

INT441 Meningitis/encephalitis/brain abscess

NEU0101 Bacterial Meningitis

NEU0102 Non-bacterial meningitis

NEU0111 Encephalitis

KIN3511 Meningitis/encephalitis

ICPC (General Practice) Representing syndrome/diagnosis

Respiratory tract infection

R74 Acute upper respiratory tract infection 

R77 Acute laryngitis/tracheitis

R78 Acute bronchitis/bronchiolitis

R80 Influenza

R81 Pneumonia

Infectious hepatitis

D13 Icterus

D72 Infectious hepatitis

Meningitis/encephalitis

N70 Poliomyelitis/(entero)viral infection CNS

N71 Meningitis/encephalitis

a.	 DBC/DOT codes from internal medicine, pulmonology, pediatrics, neurology and gastroenterology are 
used.

b.	This code is only used in children under the age of 5 since asthma/bronchial hyperreactivity, at this age, 
is most often triggered by a respiratory tract infection.
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The above information is synthesised in a risk dial with traffic light colors immediately 
recognisable as green to signify a normal setting, orange when a warning threshold has 
been reached corresponding to an incident ratio between 0.75 and 1.40 and red for an 
incident ratio of more than 1.40. The rates can only be calculated for the GP population 
since it is only in the GP practices that the number of patients, the denominator, is known. 
For hospital and Out-of-Hours General Practitioner services, colors are determined by 
rates of the 7-day numbers observed divided by the historic 7-day numbers. Thresholds 
are the same as those for incident ratio.

These colors on the dashboard provide a crude indication of current numbers versus 
historic numbers. If colors turn red, more profound investigation is warranted to define 
whether further action is needed. These action limits are visualized in the graphs and 
defined by three standard deviations above average.

Should the ICARES action limit be exceeded, i.e. indicating that a possible cluster is de-
tected for that given institution, the local unit of infectious disease control will use this 
as a trigger for further investigation. After assessment of geographic information and raw 
data, they will consult the treating physicians to find out more about the specific diagnosis 
and patient characteristics of the possible cluster. Up-to-date information continues to 
be available on the dashboard in order to follow the cluster as it evolves over time. If a 
specific, microbiologically confirmed diagnosis is not available at the time when the trig-
ger appears, diagnostic protocols for possible outbreaks have been put in place to deal 
with this. Parts of these protocols are adapted from current national guidelines (17).

The dashboard is an easy to use quick scan for possible clusters. If colors and numbers are 
within normal range, no further action is necessary and the dashboard can be reopened 
the next day. This visual quick scan of the dashboard is done daily by the local unit for 
infectious disease control in the Leiden-the Hague area and by the research team and 
takes less than one minute.

All alerts will be evaluated whether it have been real clusters or not. Reasons for false posi-
tive alerts will be documented as well as the use of additional, public health care initiated, 
diagnostic tests.
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Results

ICARES, the automated, real-time tool for the detection of clusters of infectious diseases 
has been tested on three disease entities since October 2013: respiratory tract infection, 
infectious hepatitis and meningoencephalitis.

After a run-in period of three months, the project started with one teaching hospital par-
ticipating (catchment area approximately 200,000 inhabitants) and four GP practices with 
33,117 patients (18). During the first 24 months, four Out-of-Hours General Practitioner 
services (catchment area approximately 500,000 inhabitants) and ten more GP practices 
joined, contributing to a total number of 78,924 GP patients (19;20).

GP coverage in the complete Leiden-The Hague study area was 6%. Since most of the 
health care facilities were located in the Leiden part of the study area, GP coverage in the 
Leiden region was 11%. Coverage of Out-of-Hours GP services in the Leiden region was 
67%, hospital coverage was 27%.

On a daily basis, the local unit of infectious disease control and the research team checked 
the risk dials on the ICARES dashboard.

In the first two years of ICARES, eight signals of possible clusters were detected. Two of 
these alerts appeared to be a real cluster. Characteristics are outlined in table 2.

Table 2. Alerts during the first two years of ICARES

Alert Syndrome
(Health care institution)

Additional 
public health 
diagnostics

True 
cluster

Comment

1 Respiratory tract infection (GP) No No Different causative agents and coding 
imperfections

2 Infectious hepatitis (GP) Yes No Non-infectious hepatitis

3 Meningoencephalitis (Hospital) No Yes Enterovirus encephalitis

4 Meningoencephalitis (Hospital) No No Two unrelated cases of Listeria in Katwijk

5 Infectious hepatitis (GP) No No Coding imperfections

6 Respiratory tract infection 
(Hospital and GP)

No Yes Long lasting influenza season with high 
peak incidence

7 Meningoencephalitis (Hospital) No No Coding imperfections/double coding

8 Meningoencephalitis (GP) No No Non-acute illness
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Alert 3 was detected from August 8 2014 onwards (Figure 1). Eight cases of meningoen-
cephalitis were reported within one week in the hospital (Figures 1 and 2). Prompt analysis 
ultimately revealed that three cases with Enterovirus encephalitis belonged to the same 
cluster. Two of these three were household contacts. The third case was from a diff erent 
four-digit postal district.

The other five notifications from the cluster of meningoencephalitis were double coded 
or had another cause than Enterovirus. Daily evaluation of this cluster revealed a sharp 
decline in incidence aft er one week.

figure 1. Dashboard on 13 August 2014 during meningoencephalitis outbreak
Dial numbers are incident ratios: the ratio between the observed previous 7 days incident rate with the 
equivalent historic incident rate. Rates are calculated as the numbers of incidents per 100,000 as based 
upon the GP practice’s population data.
The dial color is set as green for an incident ratio of less than 0.75, orange for between 0.75 and 1.40 and 
red for greater than 1.40. Dials are limited to GP practices as these are the only ones where population data 
is available.
Colored numbers are absolute incident counts for the last 7 days for a given institution. The institution that 
is displayed, is the one with the largest incident ratio. This is the ratio between observed and historic using 
rate values if available, otherwise absolute counts. The color is determined in a similar manner to the dial 
color.
Trend arrows are determined from the ratio between the current week’s (previous 7 days) observed inci-
dent rate (or observed absolute incident count if rate not available) and the same value as calculated for the 
previous week. The trend arrow reflects current week versus previous week.
A rising trend is shown for ratios greater than 1.1, stable for between 0.9 and 1.1, and falling for less than 0.9.
NaN = Not a Number. NaN is displayed when the equivalent historic 7 day period has zero cases. A ratio 
would result in a divide by zero error.
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The peak in meningoencephalitis cases occurred during the Enterovirus season, which 
was also detected, retrospectively, by the virologic surveillance program in the Nether-
lands (21).

Alert 6 consisted of influenza cases in March-May 2015 (Figure 3). It was part of the 2014-
2015 influenza season which was remarkably long lasting and had a higher peak incidence 
compared to previous influenza seasons.

Figure 4 represents hepatitis cases in the hospital. Numbers during study period did not 
exceed the upper alarm limit.

Two alerts were not analysed. From March 6 2014 onwards, a small peak of respiratory 
tract infections was detected (Figure 3). This alert coincided with a late, minor peak in 
Influenza-like illness, detected by national surveillance system. It was therefore not ana-
lyzed further.

On December 26 2013, the threshold for meningoencephalitis was exceeded (Figure 2). 
Discussion by the research team concluded that this could not be a real cluster, partly 
because of the low absolute numbers. Further evaluation was abandoned.

figure 2. Hospital cases of meningoencephalitis 1/10/2013-1/10/2015
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figure 3. Hospital cases of respiratory tract infections 1/10/2013-1/10/2015

figure 4. Hospital cases of hepatitis 1/10/2013-1/10/2015
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Discussion

We developed and tested ICARES as an automated, real-time tool for the detection of clus-
ters of infectious diseases. In a small pilot region, ICARES detected differences in incidence 
in the three groups of diseases in real time (24-hour window) during the first two years of 
the project. Alert 3 and alert 6 demonstrate the ability of ICARES to detect and to monitor 
clusters of infectious diseases in real time.

Important strengths of ICARES are the robust diagnosis data with the minimal data set, 
the real-time collection and easily interpretable presentation of disease data, the historic 
comparison specific for each health care provider, the absence of administrative burden 
for medical professionals and the flexibility of the system.

Disease data should be very specific and we therefore opted in our project for definition by 
a medical doctor. In the Dutch health care system, doctors enter a diagnostic code in their 
medical record routinely. This diagnostic code most likely has a higher reliability than 
data used by other detection tools as Google Flu Trends and Triple S, using non-specific 
health indicators and proxy measures to define a syndrome (22). In our case study, the 
exceedingly long lasting flu season of 2014/2015 was notified and no significant alert 
was generated for the mild 2013/2014 flu season. On top of that, ICARES will represent 
the health care consumption in possible outbreaks since all patients in ICARES did visit a 
medical doctor.

Another strength of ICARES is the minimal data set. Details relating to geographic mapping 
or age cohort are important for source detection in the early phases of a possible outbreak. 
The minimal data set is non-patient specific and fully respects data privacy laws. But, if 
required, individual hospital-patient data can be traced by the treating physician since an 
encrypted patient identification number can be decrypted by the principal investigator in 
the hospital. At GP level, the treating GP can share information by finding the cases in a 
possible cluster via a query in their own GP information system. Diagnostics to evaluate 
the cluster (and the individual patient’s illness) can be advised to treating physicians by 
public health care professionals. This was done during the second alert.

Daily, new data from health care providers are compared with their own historic numbers. 
Without significant changes in coding custom or patient population, this entails that the 
percentage of double coded patients or travelers would be the same in both historic group 
and current patients making false positive clusters for these reasons less likely.
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Data acquisition and presentation on a dashboard are done daily. This contains the real-
time character of ICARES enabling public health authorities to analyse clusters at an earlier 
stage. Other comparable systems, such as the Electronic Surveillance System for the Early 
Notification of Community-Based Epidemics (ESSENCE), show the difficulty in detecting 
an outbreak soon enough to start up control measures (23). So far, the limited amount of 
small clusters detected with ICARES is insufficient to evaluate its real-time character and 
to determine its ability to slow the spread of infection.

As shown in the third alert with a cluster of Enterovirus encephalitis, updates on the 
evolution of the cluster are made available on a daily basis enabling public health care 
authorities to inform policy makers and public adequately.

On the other hand, when numbers of infectious diseases are not above alarm threshold, a 
quick scan of the dashboard is usually enough to reassure public health care authorities.

The codes used for ICARES make it possible to capture clusters of a wide range of diseases 
via the three selected syndromes. Even new emerging infectious diseases presenting as 
one of these syndromes can be detected via ICARES. To implement ICARES fully, other 
syndromes will be added in the future. Also, in case of newly arising possible disease as-
sociations, any other disease entity might be selected for this type of surveillance.

An important reason is that ICARES algorithm is not based on a static threshold before 
triggering an alert. Seasonal variations in the incidence of syndromes warrant adjusting 
the baseline values of syndromes. The ICARES algorithm with adjusting baseline values 
for seasonal variations in the incidence of syndromes, gives rise to a moving threshold 
for cluster detection. The pragmatic and mature SPC-based (Statistical Process Control) 
algorithm used in ICARES can readily be used in most generalized case studies. Various 
challenges arising from shortcomings of other methods have been explored by various 
authors (24-28). CUSUM charts seem to adapt better to this type of analysis as they help 
improve the consideration of seasonal patterns as mentioned by Fricker et al (29).

This case study has several limitations as well.

Signal-to-noise ratio was questionable during this case study with two real clusters versus 
six false positive alerts. Positive predictive value is therefore 0.25. Although we are not 
aware of any missed clusters, we cannot calculate sensitivity.

Imperfections in coding for a new patient with a non-specific syndrome may constitute 
reasons for low signal-to-noise ratio. This may result in false positive alerts. This is illus-



Chapter 2

42

trated by the alert 1, 5 and 7. Other reasons for false positive alerts might be provoked 
by other factors contributing to a syndrome resembling an infectious disease. A sudden 
increase in respiratory symptoms can be attributed to a contagious viral infection but also, 
e.g., to a high pollen count.

The relatively small number of health care facilities and, with that, the limited regional 
coverage during this first two years of ICARES may give rise to false positive and false nega-
tive alerts.

The historic data from our GPs only cover a one-year period and are therefore not robust. 
Eight-year historic hospital data might be too long as changes in care and population 
might make the oldest data irrelevant for upcoming cluster definition. Further work is 
therefore required to determine the appropriate length of history.

Currently, GP data is aggregated according to the underlying patient population data. 
This is not possible when considering hospitals and Out-of-Hours GP services as the 
exact catchment area is not known. As regional coverage broadens, assessment of this 
catchment area will also improve and incidence rates can be calculated for all health 
care facilities based on the total population in the (public health) district. As more health 
care facilities join the ICARES project, improved mathematical modelling to define alarm 
thresholds will be necessary.

Alerts are visible for public health care authorities within 24 hours after the treating 
physician routinely enters the trigger code. General Practitioners enter the ICPC code 
during the first consultation, DBC/DOT codes in hospital should be entered at first patient 
presentation. However, DBC/DOT codes can be changed when initial diagnosis changes 
and whether medical doctors abide by instant coding, is unknown. This could hamper 
real-time detection of clusters.

ICARES is a new and unique surveillance tool in the Netherlands to detect clusters of 
diseases in real time. Current local detection of small clusters depends on notification by 
medical doctors or laboratories as is defined in the Dutch Public Health Law (Wet Pub-
lieke Gezondheid), based on the International Health Regulations (IHR) (11). Nationwide, 
weekly updates of virologic results are published (21) and weekly updates about patients 
visiting their GP with influenza-like illness are reported (30). Automated tools for real-time 
detection of clusters are lacking. Systems for detection of acute hepatitis or meningoen-
cephalitis are lacking as well.
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Therefore, ICARES can improve outbreak detection in the Netherlands when used as a 
complement rather than a substitute for human involvement in interpreting cluster detec-
tion.

Diagnostic protocols in possible clusters have not been tested sufficiently during this proj-
ect. It would be interesting to explore more disease syndromes, like food-borne diseases. 
This might improve its use for public health care authorities.

Further implementation of ICARES will enable cost benefit analysis. At this stage, mainte-
nance costs are less than €10.000,- per year; daily efforts of local units of infectious disease 
control are minimal in case no thresholds are being exceeded. Besides time expenditure 
of existing staff, the development and primary piloting costs did not surpass €100,000.-.

Benefits will depend on the appearance of any clusters of infectious disease and the con-
tribution of ICARES as a complement of surveillance tools in order to curb the outbreak.

To cite an outbreak that would have benefitted from an automated surveillance system, 
the current Zika epidemic in South America is an example. We could survey the illness as 
well as complications like microcephaly and Guillain Barre syndrome by adding diagnostic 
codes to ICARES.

As the project evolved, more institutions have expressed their willingness to participate. 
At the time of writing of this paper (22 November 2016) four hospitals, four Out-of-Hours 
General Practitioner services and 25 GP practices (87,380 patients) submit their consul-
tation data daily. For GP patients, this leads to a coverage of approximately 12 % in the 
Leiden region. There is still some way to go to improve regional coverage and robustness 
of data.

Conclusions

ICARES was able to detect and to monitor local clusters of infectious diseases automati-
cally and in real-time. Therefore it could be a complement to current surveillance tools in 
the Netherlands and other countries with highly digitalized health care administrations.
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