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Summary

Summary

Statistical analysis aims to find data based answers to important research questions
in a variety of research areas. The Field of statistics called survival analysis is where
the topics of this thesis find their place. Survival analysis deals with life-time data.
In this type of data the time from a specific starting point until an event of interest
occurs are recorded. In medical research for example, time from diagnosis of disease
until death could be studied. What characterizes life-time data, also called survival
data, is that it is generally incomplete. Some individuals in the data might not have
experienced the event of interest at the end of the study period or have dropped out
of the study before the event has occurred. These data are called right-censored. The
event time is unknown, it is known however, that the event had not occurred before
the last observation time. To handle this particular type of missing data, and other
similar types, special methodology is necessary summarized under the term survival
analysis.

Survival analysis is used by clinicians to identify risk factors associated with the
occurrence of a clinical event of interest. For example in cancer research, clinicians use
survival models to investigate if a patient’s age, sex, tumor size, and other clinically
relevant variables are associated to the risk of death. To describe the evolution of
disease complex mathematical models are required. Patients may experience several
disease related events in different orders. Multi-state models can be applied in such
context. Another extension of survival models is to add a random effect, also called
frailty. Frailty terms are used to model unobserved covariates which might have an
effect on the event of interest. In all studies not all relevant patient or disease char-
acteristics can be collected and therefore the survival model is incomplete. Random
effects quantify the so called unobserved heterogeneity resulting from an incomplete
model.

Survival models may be used to investigate the effect of risk factors on clinical
events of interest and to predict survival probabilities. Such predictions inform both
patients and clinicians of a patient’s prognosis and may help in the shared decision
making process. Prediction models are available for a variety of diseases and there
is a demand for more and more sophisticated models. Ordinary prediction models
are often limited to a single prediction time point. This means that predictions can
only be made at a particular time, such as at time of diagnosis of disease. When a
patient comes back for a follow-up visit, such models are not able to provide accurate
predictions. A patient may experience disease related events over time which are not
taken into account by a model that considers only risk factors known at diagnosis or
at start of treatment. Dynamic prediction models provide updated predictions from
different time points during follow-up. They are able to include updated information
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as it becomes available. A simple idea to create dynamic prediction models is through
the landmarking approach. Predictions are made from a chosen landmark time point
by using a subset of the data consisting of patients still alive at that time. Multiple
landmark times can be chosen to make predictions from different time points during
follow-up.

The main objective of this thesis was to develop clinically relevant survival models
for patients with high-grade soft tissue sarcoma of the extremities, in particular the
development and validation of prediction models for use in clinical practice. The in-
terdisciplinary collaboration between the Mathematical Institute of Leiden University
and the Leiden University Medical Center resulted in important contributions to the
care of soft tissue sarcoma patients [2, 4, 5].

In Chapter 1 basic concepts of survival analysis are introduced as well as more
complex models that are used in this thesis. After a short introduction of general
concepts, such as the hazard and survival function, frailty models are discussed which
add random effects to a survival model. Later on, the simple one end-point survival
model for a single event of interest is extended to multiple end-points by introducing
competing risks models. More complicated event structures are described thereafter
using multi-state models, in which transitioning states where an individual can move
through are allowed. Next, dynamic prediction models are introduced as well as
measures of discrimination that assess the predictive accuracy of survival prediction
models. Some information about the motivating soft tissue sarcoma data set are
given. Finally, the developed prediction tool is discussed. An outline of this thesis
ends the chapter.

In Chapter 2 a novel frailty model for multi-center data with two competing events
is proposed. In practice not all relevant covariates to explain the variance of event
times between subjects can be collected. Random effects, called frailty, quantify
the unobserved heterogeneity resulting from an incomplete model. Frailty variables
that are shared by individuals who were treated in the same hospital are used to
model unobserved heterogeneity on the hospital level; they could be interpreted as
the "hospital effect" on the competing events. The patients treated in some hospitals
may, corrected for covariates, live longer than those treated in other hospitals. This
"hospital effect" may be an interest of study. The novelty of the proposed frailty
model lies in the construction of the frailty variables. Two frailty variables, one for
each competing event, are constructed from three independent gamma distributed
frailty components. Each frailty is the sum of two frailty components, a cause-specific
and a shared frailty component. This allows for the two frailties to be correlated. The
model is estimated using the expectation-maximization algorithm which additionally
provides empirical Bayes estimates for each hospital’s frailties.

In Chapter 3 the effect of interval censoring is studied on the predicted accuracy
of a binary disease marker. The motivation comes from cancer care. After surgery
a patient is regularly screened for local recurrence and distant metastasis. Once a
recurrence is diagnosed, however, it is only known that it occurred between the last
negative and the first positive screening. Additionally, if a patient dies after a negative
recurrence screening, then it is unknown whether he developed a recurrence between
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the last screening and death. The predictive value of this time-dependent recur-
rence variable can be summarized by time-specific Area Under the receiver operating
characteristics Curve (AUC) measures. The effect that ignoring the interval-censored
nature of the observation time has on the time-specific AUC in both incident/dynamic
and cumulative/dynamic definition is studied through simulations. AUC estimates
derived from different methods for fitting two types of models are compared: the
Cox model with time-dependent covariate, which ignores interval-censoring and the
illness-death model for interval-censored data.

Chapter 4 is the first in a series of publications based on the growing soft tissue
sarcoma data set. A data set of 687 patients with high-grade soft tissue sarcoma of
the extremities treated surgically was collected from 4 international tertiary centers.
The effect of risk factors on local recurrence and distant metastasis/death was studied
using a 3-state multi-state model. Multi-state models describe the evolution of the
disease close to reality and allow detailed insights into the effect of risk factors on
disease progression. After surgery a patient starts in the starting state "alive without
evidence of disease", he can then move to the local recurrence state and subsequently
to the distant metastasis/death state or move to distant metastasis/death directly.
For each of the three transitions the effect of risk factors was studied allowing for the
effects to differ between transitions. Of particular interest was the effect of surgical
margin. Surgical margin describes the amount of healthy tissue surrounding the
tumor that is dissected during tumor removal surgery. The association with survival
and local recurrence was of great interest for clinicians as it impacts the functional
outcome after surgery.

Chapter 5 is the continuation of the soft tissue sarcoma project, with a data set
of 766 patients collected from 5 international tertiary centers. The motivation came
from the need of clinicians for an easy to use prediction tool for patients with soft
tissue sarcoma. Two prediction models one for survival and one for the probabil-
ity of local recurrence were developed using Cox and Fine and Gray’s methodology.
The survival model is a simple one end-point model, the model for local recurrence
however, needs to consider the competing risk of death. The models predict the prob-
ability of surviving 3, 5, and 10 years as well as the probability of developing a local
recurrence within 3, 5, and 10 years from time of surgery respectively. The advantage
of using Fine and Gray’s model for competing risks to model covariate effects on the
probability of developing local recurrence is that estimated regression coefficients are
more intuitive to interpret for clinicians compared to the cause-specific hazards model.
The prediction models were implemented in the PERSARC mobile application to be
used by clinicians to improve patient care [4, 5]. An internal validation considering
calibration plots and the C-index demonstrated good calibration and discrimination
of the prediction models.

In Chapter 6 a dynamic prediction model based on the growing soft tissue sarcoma
data set was developed. Data of 2232 soft tissue sarcoma patients was collected from
a total of 14 international tertiary centers. The aim was to develop a prediction
tool able to make updated survival predictions for patients during follow-up. After
surgery a patient has scheduled follow-up visits to monitor him and to screen for
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adverse events. Events like local recurrence and distant metastasis affect the future
prognosis. Also the fact that a patient survived a length of time after surgery may
give an insight into the future prognosis. This requires dynamic predictions for a
patient to be updated over time. For this purpose a landmark supermodel was used
to predict the probability of surviving an additional 5-years from different prediction
time points during follow-up. Local recurrence and distant metastasis, are used to
update predictions over time and covariates were investigated for time-varying effects.
The model was internally validated.

In Chapter 7 the previously developed dynamic prediction model for soft tissue
sarcoma patients is updated and externally validated. The updated model is based
on 3826 patients collected from 17 international tertiary centers and a randomized
controlled trial. Data for external validation consisted of 1111 patients from a single
tertiary center. The updated dynamic prediction model now includes grade as addi-
tional covariate in the model. This important covariate was initially omitted because
the previously collected data contained mainly grade III patients. During this re-
search, the data set has been significantly augmented and now includes a large cohort
of grade II patients. A successful external validation showed that the model was able
to adequately predict the probability of surviving an additional 5-years from different
prediction time points during follow-up. The model is implemented in the updated
PERSARC mobile application [4, 5].

In Chapter 8 a multi-state model was developed for 982 Ewing sarcoma patients
that were treated surgically according to the EURO-E.W.I.N.G99 protocol. The
starting time of analysis is the time of surgery, from which a patient can move to
different states corresponding to disease progression. Adverse events considered in
the multi-state model were local recurrence, distant metastasis of the lungs, distant
metastasis at other locations, and death. The effect of risk factors was studied on
the transitions between disease states and the effect was allowed to differ between
transitions. A particular interest lay in the effects of surgical margins, histological
response, and radiotherapy treatment.
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