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CHAPTER 3
Assessment of predictive accuracy of

an intermittently observed binary
time-dependent marker

This chapter is based on joint work with Hein Putter and Marta Fiocco.

Abstract

Following tumor removal surgery soft tissue sarcoma patients are at risk for disease
recurrence, which can indicate an increased risk of death. The predictive value of
this time-dependent variable can be summarized by the time-specific Area Under the
receiver operating characteristics Curve (AUC). However, the fact that recurrence is
often diagnosed in an interval-censored fashion is frequently ignored when modelling
its effect on survival. Follow-up schemes determine the times at which a patient is dia-
gnosed with recurrence. The effect that ignoring the interval-censored nature of the
observation time has on the time-specific AUC in both incident/dynamic and cumu-
lative/dynamic definition is studied.[80, 171] AUC estimates derived from different
methods for fitting two types of models are compared: the Cox model with time-
dependent covariate and the illness-death model for interval-censored data. Data is
simulated from an illness-death model with Weibull transition hazards and the disease
state is censored at regular observation intervals. The true AUC is determined by
transition probabilities, derived from the Weibull transition hazards. The method is
applied to a data set of 2232 patients with high-grade soft tissue sarcoma and results
are discussed.
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§3.1 Introduction

Survival analysis studies the distribution of time from a time origin to an event of
interest. It is often applied in the medical field where for example the time from
diagnosis to death is studied. The intrinsic particularity of survival data is that it is
generally incomplete: the event of interest cannot always be observed because it takes
time to observe it. Data of individuals who did not experience the event of interest
within a specific time window are right-censored. A frequently used method to study
the effect of covariates on survival time is the Cox proportional hazards model.[44]
In the medical field it is often applied to study the effect of risk factors on a single
event such as death or disease progression. However, in practice disease progression
may be described by more than one type of event. These more complicated event
structures can be modeled simultaneously using multi-state models.[119] The most
simple of such models is the illness-death model, which is described by three states
(see Figure 3.1): an individual is initially disease-free (state 0), he may then develop
disease (state 1) and die (state 2) or he may die without disease. Like in the single
event situation the Cox model can be used to model the effect of covariates on the
transitions between states.

The illness-death model is applicable to a variety of disease settings; a problem
arises, however, if the time of disease cannot be observed exactly. Often, disease can
only be diagnosed at pre-specified follow-up times. An example lies in the care of
patients with soft tissue sarcoma. After initial treatment by tumor removal surgery a
patient may develop distant metastases and then die. Metastases are diagnosed at pre-
specified follow-up visits at which an X-ray of the patient is screened. If metastases
are found, it is therefore only known that they appeared between the last negative
screening and the first positive screening; the data is interval-censored. This type of
data contains two types of missing information: (1) the time of disease is only known
to have happened between two visits, it is interval-censored. (2) If the last disease
screening prior to death or last recorded follow-up was negative the disease status of
a patient between last screening and death or last recorded follow-up is unknown.

The illness-death model for interval-censored data has been previously studied and
it was found that ignoring the observation scheme of the data leads to biased estim-
ates of regression coefficients, baseline hazards, and survival.[64, 86, 65, 168, 97] A
prominent motivation comes from the study of dementia data.[86, 168, 97] Dementia
is diagnosed at infrequent follow-up visits which results in the time to dementia being
interval-censored. Further, if a patient’s last dementia test was negative and he dies
it is not known if he acquired dementia prior to death. Frydman (1995)[64] developed
a non-parametric maximum likelihood procedure for the estimation of the cumulative
transition hazards when times of disease are interval-censored. He does not address
the second form of incompleteness however, i.e. it is assumed that the disease state
is known before death or right-censoring time. Joly et al. (2002)[86] proposed a
non-parametric penalized likelihood method to estimate transition intensities in an
illness-death model with an intermittently observed disease state. Simulations showed
that not adjusting for the interval-censored nature of the data leads to a systematic
bias in the estimation of transition intensities. Frydman and Szarek (2009)[65] ex-
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tended the methodology of Frydman (1995)[64] to incorporate the observations with
unknown intermediate event status. They estimated the distribution of the time to
the first occurrence of disease or death and showed that their method corrects bias.
Yu et al. (2010)[168] used multiple imputation to analyze two aspects concerning
the risk of dementia: the risk of developing dementia and the impact of dementia
on survival. Leffondré et al. (2013)[97] performed simulation studies to show how
interval-censoring affects the estimation of the effect of risk factors.

If event times are observed exactly the illness-death model can be estimated with
several R-packages, such as the survival and the mstate package.[141, 49, 48] The
number of packages that can deal with an interval-censored disease state however is
limited. The msm and the SmoothHazard package can fit an illness-death model for
interval-censored disease times and exact death times.[85, 144] In the msm package
piece-wise constant hazards need to be assumed and in the SmoothHazard package
the user is able to choose between Weibull transition hazards and M-splines. The
coxinterval package can estimate the illness-death model for data with interval-
censored disease times as long as some disease times are observed exactly.[31] While
the effect of ignoring the interval-censored nature of the data on regression coefficients
and baseline hazards has been studied, the effect on the assessment of predictive
accuracy has been neglected so far.

The aim of this article is to study the predictive accuracy of an interval-censored
binary disease marker on survival. How much does the occurrence or absence of disease
contribute to survival predictions over time? The illness-death model for data in which
the disease state is interval-censored is considered. The effect of interval-censoring
on the time-specific Area Under the receiver operating characteristics Curve (AUC)
in both incident/dynamic and cumulative/dynamic definition is evaluated.[80, 171]
Several estimation approaches are compared for two types of models: the Cox model
with time-dependent disease marker and the illness-death model for interval-censored
data as implemented in the msm and SmoothHazard R-packages.[85, 144] For this
purpose a simulation study is conducted where data is simulated from an illness-
death model with Weibull transition hazards.

The remainder of this article is organized as follows. Section 3.2 introduces the
definitions of time-specific AUC for a binary time-dependent marker and the theoret-
ical AUC values for a Weibull illness-death model. In Section 3.3 the different models
considered in this work are illustrated. A simulation study is presented in Section
3.4. In Section 3.5 the different methods are applied to data of soft tissue sarcoma
patients. A discussion follows in Section 3.6.
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State 0:
Disease-free

State 1:
Disease

State 2:
Death

Figure 3.1: Illness-death model.

§3.2 Time-specific AUC for binary marker

Several measures of predictive accuracy have been introduced in the field of survival
analysis. In this article predictive accuracy is assessed using the time-specific defini-
tions of sensitivity and specificity which allow for censoring proposed by Heagerty et
al. (2000)[79], Heagerty and Zheng (2005)[80], and Zheng and Heagerty (2007)[171].

Originally, sensitivity and specificity were defined considering a binary outcome
B. Individuals with outcome B = 1 were considered to be ‘cases’ and individuals with
outcome B = 0 were considered ‘controls’. A covariateX together with a classification
criterion c can then be used as a classification rule: a subject is predicted to be a
‘case’ if the value of the covariate is bigger than c and it is predicted to be a ‘control’
otherwise. The accuracy of this classification rule can be summarized by the correct
classification rates; sensitivity(c) = P (X > c|B = 1) and specificity(c) = P (X ≤
c|B = 0). The full range of sensitivity and specificity for different classification criteria
c can be graphically summarized by the Receiver Operation Characteristic (ROC)
curve which plots sensitivity against 1-specificity. The ROC curve illustrates the
difference of the marker distribution between cases and controls. If the distributions
are the same, which means that the marker is useless to distinguish cases from controls,
then the ROC curve lies on the 45 degree line. The Area Under the Curve (AUC) is
a measure of concordance between the marker and the outcome and can be used to
summarize the predictive accuracy of the marker X. It is defined by

AUC(X) = P (X1 > X0) + 0.5 · P (X1 = X0),

where X1 is the value of a covariate drawn from the distribution of cases (B = 1)
and X0 is the value of a covariate drawn from the distribution of controls (B = 0).
To extend the concept of sensitivity and specificity to allow for censored data several
definitions for cases and controls were studied[79, 80, 171].

In this article a time-dependent binary covariate X(t) representing disease is con-
sidered. The covariate X(t) can take values 0 and 1 which correspond to not having
disease and having disease at time t, respectively. The Markov assumption is assumed
for the studied illness-death model throughout the article.
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§3.2.1 Incident cases and dynamic controls
Heagerty and Zheng (2005)[80] define incident sensitivity and dynamic specificity at
time t as

sensitivityI(c, t) = P (X(t) > c | T = t),

specificityD(c, t) = P (X(t) ≤ c | T > t),

where c is a classification criterion, T is time of death and X(t) is the time-dependent
disease marker evaluated at time t. In this definition the individuals who die at
time t are considered cases and individuals who survive beyond time t are considered
controls. Let i, j be individuals, Xi(t), Xj(t) their marker values at time t, and Ti
and Tj their death times. The incident/dynamic AUC is then defined by[80]

AUCI/D(t) =P (Xi(t) > Xj(t) | Ti = t, Tj > t)

+ 0.5P (Xi(t) = Xj(t) | Ti = t, Tj > t).

In case Xi(t) and Xj(t) are binary covariates the AUCI/D(t) can be rewritten as

AUCI/D(t) = 0.5 + 0.5(p(t)− π1(t)), (3.2.1)

where π1(t) is the probability that a person alive at time t has experienced disease
(prevalence of disease) and p(t) is the probability that a person who dies at time t
has a history of disease (see Appendix 3.A). The disease marker X(t) is related to the
illness-death model of Figure 3.1 in the following way: X(t) = 0 if a patient did not
move to state 1 (disease) before time t (in state 0 or 2 at time t) and X(t) = 1 if a
patient moved to state 1 (disease) before time t (in state 1 or 2 at time t). The terms
π1(t) and p(t) can be expressed by transition probabilities in a multi-state model with
states 0, 1, 2 (Figure 3.1),

π1(t) =P (Xi(t) = 1 | Ti > t) =
P01(t)

P00(t) + P01(t)
, (3.2.2)

p(t) =P (Xi(t−) = 1 | Ti = t) =

λ12(t)
λ02(t)P01(t−)

P00(t−) + λ12(t)
λ02(t)P01(t−)

, (3.2.3)

where t− means just before time t, P0l(t) is the conditional probability of being in
state l, (l = 0, 1) at time t given in state 0 at time 0 and λk2(t) is the transition
hazard at time t for moving from state k, (k = 0, 1) to state 2.

The incident/dynamic AUC at a specific time t measures how well the disease
marker evaluated at time t separates those who die at t from those who survive.
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The difference between p(t) and π1(t) is equal to

p(t)− π1(t) =
γ(t)P01(t)

P00(t) + γ(t)P01(t)
− P01(t)

P00(t) + P01(t)

=(γ(t)− 1)
P01(t)P00(t)

(P00(t) + γ(t)P01(t))(P00(t) + P01(t))
, (3.2.4)

=(γ(t)− 1)
1

(1 + γ(t)P01(t)/P00(t))(1 + P00(t)/P01(t))
,

where γ(t) = λ12(t)
λ02(t) .

From (3.2.1) and (3.2.4) follows that if γ(t) ≡ 1 then AUCI/D(t) = 0.5, if γ(t) > 1

then AUCI/D(t) ≥ 0.5 and if γ(t) < 1 then AUCI/D(t) ≤ 0.5.

§3.2.2 Cumulative cases and dynamic controls

Zheng and Heagerty (2007)[171] define cumulative sensitivity and dynamic specificity
at time t for a time-dependent covariate evaluated at time s as

sensitivityC(c | start = s, stop = t) = P (X(s) > c | T ≥ s, T ≤ t),
specificityD(c | start = s, stop = t) = P (X(s) ≤ c | T ≥ s, T > t),

where T is time of death, X(s) is marker measurement at time s. Cases are individuals
who die within a time window (t− s) from s and controls are individuals who survive
the time window. The cumulative/dynamic AUC is then defined by

AUCC/D(s, t) =P (Xi(s) > Xj(s) | Ti > s, Ti ≤ t, Tj > s, Tj > t)

+ 0.5P (Xi(s) = Xj(s) | Ti > s, Ti ≤ t, Tj > s, Tj > t)

where i, j are individuals, Xi(s), Xj(s) their marker values at time s, and Ti, Tj their
death times. For binary Xi(s) and Xj(s) the AUCC/D can be rewritten as

AUCC/D(s, t) =0.5 + 0.5(p(s, t)− π1(s, t)), (3.2.5)

where π1(s, t) is the probability that a person alive at time t had experienced disease
by time s and p(s, t) is the probability that a person that dies in the time interval
(s, t] had experienced disease by time s (see Appendix 3.A). The quantities π1(s, t)

and p(s, t) can be written in terms of transition probabilities, in the same multi-state
model of Figure 3.1:
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π1(s, t) =P (Xj(s) = 1 | Tj > t) =
P11(s, t)P01(0, s)

P00(0, t) + P01(0, t)
, (3.2.6)

p(s, t) =P (Xi(s) = 1 | Ti > s, Ti ≤ t) =
P12(s, t)P01(0, s)

P02(s, t)P00(0, s) + P12(s, t)P01(0, s)
,

(3.2.7)

where Pkl(u, v) is the conditional probability of being in state l at time v given in
state k at time u.

The cumulative/dynamic AUC at time s measures how well the disease marker
evaluated at time s separates those who die before time t from those who survive until
t.

§3.2.3 AUC for Weibull illness-death model
In this article an illness-death model with Weibull distributed transition hazards is
studied because of its simple transition probabilities. The transition hazards from
state i to state j are defined by

λij(t) = αijkt
k−1, (3.2.8)

where k is the common shape parameter and αij are transition-specific rate paramet-
ers. Let

S0(t) = exp(−(α01 + α02)tk),

S1(t) = exp(−α12t
k).

The transition probabilities are then equal to[119]

P00(u, t) =
S0(t)

S0(u)
,

P11(u, t) =
S1(t)

S1(u)
,

P01(u, t) =


α01

α01 + α02 − α12

(
S1(t)

S1(u)
− S0(t)

S0(u)

)
, if α01 + α02 − α12 6= 0

α01

(
S1(t)

S1(u)
tk − S0(t)

S0(u)
uk
)

, otherwise (note: S1(t) = S0(t)),

P 0
02(u, t) =

α02

α01 + α02

(
1− S0(t)

S0(u)

)
,
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P 1
02(u, t) =



α01

α01 + α02

(
1− S0(t)

S0(u)

)
− α01

α01 + α02 − α12

(
S1(t)

S1(u)
− S0(t)

S0(u)

)
,

if α01 + α02 − α12 6= 0

α01

α01 + α02

(
1− S0(t)

S0(u)

)
− α01

S0(t)

S0(u)

(
tk − uk

)
, otherwise

,

P02(u, t) =P 0
02(u, t) + P 1

02(u, t) = 1− α02 − α12

α01 + α02 − α12

S0(t)

S0(u)
− α01

α01 + α02 − α12

S1(t)

S1(u)
,

P12(u, t) =1− S1(t)

S1(u)
.

These transition probabilities can be used to calculate the time-specific incid-
ent/dynamic and cumulative/dynamic AUC using Equations (3.2.1) and (3.2.5), re-
spectively.

§3.2.4 Estimation
Equations (3.2.1)–(3.2.3)and (3.2.5)–(3.2.7) relate, respectively, the incident/dynamic
and cumulative/dynamic AUC to transition probabilities and hazards. Estimates for
the AUCs can be obtained by replacing transition probabilities and hazards by their
estimated counterparts. Such estimates may be obtained from software packages for
multi-state models, such as the R-packages mstate, msm, and SmoothHazard discussed
in Section 3.3.[49, 48, 85, 144]

§3.2.5 Estimation of incident/dynamic AUC
Equations (3.2.1)–(3.2.3) are used to estimate the incident/dynamic AUC,

ÂUC
I/D

(t) = 0.5 + 0.5(p̂(t)− π̂1(t)), (3.2.9)

where

π̂1(t) =
P̂01(t)

P̂00(t) + P̂01(t)
,

p̂(t) =

λ̂12(t)

λ̂02(t)
P̂01(t−)

P̂00(t−) + λ̂12(t)

λ̂02(t)
P̂01(t−)

,

where t− means just before time t, P̂0l(t) is an estimate of the conditional probability
of being in state l, (l = 0, 1) at time t given in state 0 at time 0 and λ̂k2(t) is an
estimate of the transition hazard at time t for moving from state k, (k = 0, 1) to state
2.
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§3.2.6 Estimation of cumulative/dynamic AUC
Equations (3.2.5)–(3.2.7)are used to estimate the cumulative/dynamic AUC,

ÂUC
C/D

(s, t) = 0.5 + 0.5(p̂(s, t)− π̂1(s, t)),

where

π̂1(s, t) =
P̂11(s, t)P̂01(0, s)

P̂00(0, t) + P̂01(0, t)
,

p̂(s, t) =
P̂12(s, t)P̂01(0, s)

P̂02(s, t)P̂00(0, s) + P̂12(s, t)P̂01(0, s)
,

where P̂kl(u, v) is an estimate of the conditional probability of being in state l at time
v given in state k at time u.

§3.3 Illness-death models

Four different methods to estimate the illness-death model for interval-censored data
were compared: (1) the Cox model with disease state as time-dependent covari-
ate (ignoring the interval-censored nature of the time-dependent covariate), (2) the
piecewise-constant model accounting for interval-censoring using the msm function
from the msm package, (3) the Weibull model accounting for interval-censoring us-
ing the idm function from the SmoothHazard package, and (4) the M-spline model
accounting for interval-censoring using the idm function from the SmoothHazard
package.[85, 144] A sieve estimator for a Cox based multi-state model that accounts
for interval-censoring is implemented in the coxdual function from the coxinterval
package, however, at least some disease times need to be observed exactly for the
estimation procedure to work.[31] Since this is not the case in the motivation for this
study the coxinterval package was not further considered. In the simulation study
presented in Section 3.4 all methods are used and from their transition probabilities
the AUC is estimated.

§3.3.1 Cox model with time-dependent covariate
The Cox model with a binary time-dependent covariate is defined by the following
hazard function:

λ(t|X(t)) = λ0(t) exp(βX(t)),
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where λ0(t) is the baseline hazard, X(t) is the binary disease marker at time t and
β its effect. This model can be estimated by e.g. the coxph R-function from the
survival package[141], however, ignoring the interval-censored nature of the time-
dependent covariate. Disease time is assumed to be the time of diagnosis of disease:
X(t) = 0 if a patient was not diagnosed with disease yet at time t and X(t) =

1 if a patient was diagnosed with disease by time t. The Cox model with time-
dependent covariate corresponds to an illness-death model in which the transition
hazards to the state death are proportional. This allows for the estimation of the
effect of disease on death in form of a hazard ratio (HR). Transition probabilities
can be retrieved from the model using msfit and probtrans functions from the
mstate package.[49, 48] The risksetAUC R-function from the risksetROC package[80]
estimates the incident/dynamic AUC for a Cox model with time-dependent covariate.
Additionally to estimating the AUC using transition probabilities this function is also
used in the simulation study in Section 3.4.

§3.3.2 Piecewise-constant model accounting for interval-
censoring

This Markov model is described in Figure 3.1. Interval-censored data from an illness-
death process are a special case of panel data, in which the state of an individual is
observed at a finite series of times. The likelihood for panel data can be calculated in
closed form if the transition hazards are constant or piece-wise constant.[85] A model
with piecewise-constant hazards given by

λij(t) =


λij1 , if t ≤ c1
λij2 , if c1 < t ≤ c2
...

,

where ck are the times at which the hazard may change is considered. This model
is implemented in the msm package and can account for the interval-censored disease
state.[85] In the simulation study of Section 3.4 the hazards towards the death state are
assumed to be proportional so that an effect of disease on survival can be estimated.

§3.3.3 Weibull model accounting for interval-censoring
This model is a Markov illness-death model (see Figure 3.1) which assumes a Weibull
distribution for the transition hazards given by

λij(t) = αijkijt
kij−1,

where αij and kij are rate and shape parameters for the transition from state i to
state j, respectively. This model is implemented in the SmoothHazard R-package.[144]
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It accounts for interval-censoring and the probability of developing disease between
last disease scan and death or lost to follow-up and it is estimated by maximizing
the likelihood with the idm function. The function does not allow for the transition
hazards to the death state to be set proportional and therefore no effect of disease on
death can be estimated. The package provides prediction of transition probabilities
based on estimated transition hazards.

§3.3.4 M-spline model accounting for interval-censoring
This Markov illness-death model is described in Figure 3.1. The model is estim-
ated using a penalized likelihood approach with non-parametric transition hazards
λ01(t), λ02(t), and λ12(t), approximated by M-splines and it is implemented in the
SmoothHazard R-package.[86, 144] This model as the previous two, accounts for
interval-censoring of the disease state as well as the probability of developing dis-
ease between the last disease scan and death or lost to follow-up. It is estimated by
the idm function from the SmoothHazard R-package in which the option method =
"Splines" is set.[144] By default 7 knots per transition are estimated. As for the
Weibull model, the transition hazards towards the death state can not be set propor-
tional and therefore no HR for disease can be estimated. Transition probabilities can
be obtained using functions provided in the package.

§3.4 Simulation

To study the predictive accuracy of an interval-censored disease marker on survival
a simulation study was conducted. Incident/dynamic and cumulative/dynamic AUC
were computed to quantify the predictive accuracy of the disease marker for differ-
ent estimation procedures of the illness-death model. The methods compared were
the Cox model with time-dependent disease marker, which ignores interval-censoring,
and the illness-death model for interval-censored data estimated with three differ-
ent implementations: the piecewise-constant model implemented in the msm pack-
age, the Weibull model, and the M-spline model which are both implemented in the
SmoothHazard package (see Section 3.3). The piecewise-constant model needs as in-
put pre-specified change points at which the hazard may change. For the simulation
study 4 change points were considered 6, 30, 60, and 90 months. For the M-spline
model the default of 7 knots per transition was used.

Motivated by the clinical data discussed in Section 3.5 multiple data scenarios
were simulated and results from the different methods were compared. The number of
individuals per data set was either equal to 1000 or equal to 2000. Data were generated
from Weibull transition hazards with a common shape parameter k and different rate
parameters α01, α02 and α12 (see Equation (3.2.8)). The Weibull parameters were
based on the data discussed in Section 3.5 and were fixed throughout the simulated
scenarios (α01 = 0.05, α02 = 0.05, α12 = 0.56, k = 0.5).

The survival time was censored according to two different censoring schemes:
either it was censored administratively at 10 years follow-up or censoring times were
sampled from a uniform distribution between 5 and 10 years. The disease state was
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Table 3.1: Simulated scenarios.

Scenario N Censoring Follow-up
A 1000 unif(5, 10) 3
B 1000 unif(5, 10) 6
C 1000 unif(5, 10) 12
D 1000 10 3
E 1000 10 6
F 1000 10 12
G 2000 unif(5, 10) 3
H 2000 unif(5, 10) 6
I 2000 unif(5, 10) 12
J 2000 10 3
K 2000 10 6
L 2000 10 12
Abbreviations: N, total number of patients;
Censoring, type of death censoring, unif(5,
10) means censoring was uniformly sampled
between 5 and 10 years and 10 means that
administrative censoring occurred at 10 years;
Follow-up, time between disease observations
in months.

observed only at pre-specified follow-up visits. The scenarios cover three different
follow-up schemes in which the disease state was observed every 3, 6, or 12 months.
Table 3.1 summarizes the simulated scenarios. Each scenario was simulated 1000
times.

Table 3.2 shows the estimated coefficients and hazard ratios of disease for the
piecewise-constant and the Cox model. For the Weibull and M-spline model no effect
could be estimated, since the idm function does not allow transition hazards to be
proportional. The coefficients from the Cox model were consistently more biased
than from the piecewise-constant model. The Cox model underestimated the true
coefficient and the bias increased for larger follow-up intervals. These results are in
line with Leffondré et al. (2013)[97] who showed that the effect estimates of the Cox
model were biased if the covariate affected both the risk of disease and death.

Simulation results show that the coefficients from the piecewise-constant model
had smaller bias and smaller root mean square error.

AUC results obtained from different methods for scenarios A-F are summarized
in Tables 3.3 and 3.4. For results concerning other scenarios, see Appendix 3.B.
The cumulative/dynamic AUC was estimated every month and the incident/dynamic
AUC was estimated at each event time, because it depends on the transition hazard
evaluated at that time. In Table 3.3 where the AUC at specifc time points was
investigated, the AUC estimate just before that time was considered.

The M-spline model did not converge for many data sets. In some of these cases
this prevented the estimation of the incident/dynamic and cumulative/dynamic AUC.
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The number of invalid estimations is shown in Appendix 3.B, Table 3.B.4. The res-
ults of the M-spline model in Tables 3.3 and 3.4 are based only on valid estimations.
Additionally, for the M-spline model it is not possible to obtain transition probabil-
ities for a time after the last observation time. This restricts the estimation of the
cumulative/dynamic AUC (with prediction window of 5 years) to be estimated only
until 5 years prior to the last observation time, see Figure 3.2.

Table 3.3 shows the bias, empirical standard error, and root mean square error
for estimates of the incident/dynamic AUC at different years. The Weibull model
outperformed the other models in every scenario. This is not surprising since data were
generated according to Weibull distributions. The M-spline model consistently had
the largest standard error as well as the second smallest bias overall. The piecewise-
constant model was slightly less biased than the Cox model for scenarios with 6 and
12 months in between follow-up visits (scenarios B, C, E, F). For the scenarios with
3 months in between follow-up visits the Cox model outperformed the piecewise-
constant model (scenarios A, D) in terms of bias. The incident/dynamic AUC for the
Cox model was estimated by two different approaches. The first approach computes
the AUC from the ROC curve derived from the estimated sensitivity and specificity
and is implemented in the risksetAUC function from the risksetROC R-package[80].
The second approach computes the AUC from estimated transition probabilities as
described in Equation (3.2.9). Since the two estimation procedures for the Cox model’s
AUC gave similar result, only results for the transition probability based AUC are
presented in Table 3.3 (see Appendix 3.B, Table 3.B.2 for all results).

Table 3.4 shows the bias, empirical standard error, and root mean square error for
estimates of the cumulative/dynamic AUC. The piecewise-constant model showed the
worst performance and underestimated the true AUC. The Weibull model, M-spline
and the Cox model provided good results.

In Table 3.3 and 3.4 the AUC estimates were investigated at 1, 3, and 5 years
which coincide with the times of follow-up visits for every scenario. At these times
the Cox model displays less bias compared to times in between follow-up visits (see,
Figure 3.1 and 3.2).

The censoring scheme did not have a large effect on the incident/dynamic and cu-
mulative/dynamic AUC estimates for the Cox, piecewise-constant and Weibull model.
It did however, have an effect on the estimates of the M-spline model. Earlier cen-
soring according to the uniform distribution between 5 and 10 years (scenarios A-C,
G-I) resulted in a larger percentage of invalid estimations (see Appendix 3.B, Table
3.B.4), compared to administrative censoring at 10 years (scenarios D-F, J-L).

The number of individuals per data set did not have a large effect on the mean HRs
for disease, it did however reduce the empirical standard error (Table 3.2). Average
AUC estimates were nearly identical between scenarios where only the size differed
and therefore only results for n = 1000 are shown in Table 3.3 and 3.4 (see Appendix
3.B for results of all scenarios). The number of patients per data set did have an effect
on the percentage of converged M-spline models (see Appendix 3.B, Table 3.B.4).

The follow-up schemes with larger intervals resulted in larger bias of the incid-
ent/dynamic AUC estimates, particularly for the Cox model. The follow-up scheme
with larger intervals resulted in consistently more biased estimates of the cumulat-
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ive/dynamic AUC for the piecewise-constant model. The Cox, Weibull and M-spline
model based estimates were of limited bias for the different follow-up schemes.

Figure 3.1 and 3.2 show incident/dynamic and cumulative/dynamic AUC estim-
ates respectively for data scenarios A, B and C with follow-up visits every 3, 6, and
12 months, respectively. Each plot depicts the true AUC in blue and 1000 green lines
which correspond to the AUC estimates of each simulated data set. The Cox model’s
AUC displays jumps at the observation time points. The reason is that at those time
points the proportion of diseased individuals is increased in the risk set. Before the
first observation time point the curve is equal to 0.5, because no disease was observed
yet.

For the incident/dynamic AUC in Figure 3.1 the M-spline model shows a similar
behaviour to the Cox model. No distinct jumps are observed but waves can be seen
that are most defined at the beginning of follow-up time. Since the piecewise-constant
model and the Weibull model make assumptions about the hazard function, the AUC
estimates do not display jumps or waves, like for the Cox and M-spline model.

The variation between curves is much larger for the incident/dynamic AUC es-
timates in Figure 3.1 compared to the cumulative/dynamic estimates in Figure 3.2.
Results indicate that the piecewise-constant model is not flexible enough to follow
the shape of the true AUC curve, particularly in the incident/dynamic case. The
M-spline model displays a larger variance in the incident/dynamic case and shows a
better performance in the cumulative/dynamic case. Its cumulative/dynamic curves
underestimated the true AUC initially but recovered later on. The Weibull model
outperformed the other models, but again one should keep in mind that data were
generated from Weibull distributions.
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AUCI/D(1) = 0.71 AUCI/D(3) = 0.72 AUCI/D(5) = 0.72
Scenario Model Bias SE RMSE Bias SE RMSE Bias SE RMSE
A Cox -0.04 0.01 0.04 -0.02 0.01 0.02 -0.02 0.01 0.02
A Piecewise-constant -0.05 0.01 0.05 -0.03 0.01 0.03 -0.02 0.01 0.03
A Weibull 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.01
A M-spline 0.02 0.02 0.03 0.00 0.02 0.02 -0.01 0.04 0.04
B Cox -0.07 0.02 0.08 -0.04 0.01 0.04 -0.03 0.01 0.03
B Piecewise-constant -0.06 0.01 0.07 -0.04 0.01 0.04 -0.03 0.01 0.03
B Weibull -0.01 0.02 0.02 0.00 0.01 0.01 0.00 0.01 0.01
B M-spline 0.01 0.03 0.03 -0.01 0.03 0.03 0.00 0.04 0.04
C Cox -0.21 0.00 0.21 -0.07 0.01 0.07 -0.06 0.01 0.06
C Piecewise-constant -0.09 0.01 0.09 -0.06 0.01 0.06 -0.05 0.02 0.05
C Weibull -0.01 0.03 0.03 0.00 0.02 0.02 0.00 0.02 0.02
C M-spline -0.05 0.04 0.06 0.00 0.03 0.03 0.00 0.04 0.04
D Cox -0.04 0.01 0.04 -0.02 0.01 0.02 -0.02 0.01 0.02
D Piecewise-constant -0.05 0.01 0.05 -0.03 0.01 0.03 -0.02 0.01 0.03
D Weibull 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.01
D M-spline 0.02 0.02 0.03 -0.01 0.02 0.03 0.00 0.03 0.04
E Cox -0.07 0.02 0.07 -0.04 0.01 0.04 -0.03 0.01 0.03
E Piecewise-constant -0.06 0.01 0.06 -0.04 0.01 0.04 -0.03 0.01 0.03
E Weibull -0.01 0.02 0.02 0.00 0.01 0.01 0.00 0.01 0.01
E M-spline 0.01 0.02 0.03 -0.01 0.03 0.03 0.00 0.04 0.04
F Cox -0.21 0.00 0.21 -0.07 0.01 0.07 -0.06 0.01 0.06
F Piecewise-constant -0.09 0.01 0.09 -0.06 0.01 0.06 -0.05 0.01 0.05
F Weibull -0.01 0.02 0.02 0.00 0.01 0.01 0.00 0.01 0.01
F M-spline -0.05 0.04 0.06 0.00 0.03 0.03 0.00 0.04 0.04
Abbreviations: AUCI/D(x), incident/dynamic AUC at year x; SE, empirical standard error;
RMSE, root mean square error.
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Table 3.4: Time-specific cumulative/dynamic AUC.

AUCC/D(1) = 0.59 AUCC/D(3) = 0.62 AUCC/D(5) = 0.64
Scenario Model Bias SE RMSE Bias SE RMSE Bias SE RMSE
A Cox 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.02 0.02
A Piecewise-constant -0.02 0.01 0.02 -0.01 0.01 0.02 -0.01 0.01 0.02
A Weibull 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.01
A M-spline 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.02 0.02
B Cox 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.02 0.02
B Piecewise-constant -0.04 0.00 0.04 -0.02 0.01 0.03 -0.02 0.01 0.02
B Weibull 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.01
B M-spline 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.02 0.02
C Cox 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.02 0.02
C Piecewise-constant -0.05 0.00 0.05 -0.04 0.01 0.04 -0.03 0.01 0.03
C Weibull -0.01 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.01
C M-spline 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.02 0.02
D Cox 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.01
D Piecewise-constant -0.02 0.01 0.02 -0.01 0.01 0.02 -0.01 0.01 0.02
D Weibull 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.01
D M-spline 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.02 0.02
E Cox 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.01
E Piecewise-constant -0.04 0.00 0.04 -0.03 0.01 0.03 -0.02 0.01 0.02
E Weibull 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.01
E M-spline 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.02 0.02
F Cox 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.01
F Piecewise-constant -0.05 0.00 0.05 -0.04 0.01 0.04 -0.03 0.01 0.03
F Weibull -0.01 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.01
F M-spline 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.02 0.02
Abbreviations: AUCC/D(x), cumulative/dynamic AUC at year x; SE, empirical standard error;
RMSE, root mean square error.
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Figure 3.1: Incident/dynamic AUC for scenario A (3 months), B (6 months) and C (12
months). Abbreviations: Cox ROC, estimate based on risksetAUC function; Cox prob,
estimate based on transition probabilities of Cox model.
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Figure 3.2: Cumulative/dynamic AUC for scenario A (3 months), B (6 months) and C (12
months).
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§3.5 Application

The data analyzed in this section was used for the development of a dynamic pre-
diction model for high-grade soft tissue sarcoma patients.[19] The data set contains
follow-up information of 2232 patients treated surgically with curative intent. Median
follow-up time was 6.42 years. After surgery disease progression can be described by
several adverse events: a patient may develop a local recurrence and/or develop dis-
tant metastasis (DM) and/or die. The analysis discussed in this section focuses on
the effect of DM on death. In total 1034 patients died and 715 patients developed
DM (see Figure 3.1).

Surgery

Distant
metastasis

Death

715

427

607

Figure 3.1: Soft tissue sarcoma illness-death model (n = 2232).

After surgery a common follow-up visit scheme to screen for DM is to see a patient
every 3 months within the first 3 years, then every 6 months until year 5, and from
then on once a year.[66] The data did not contain information about exact follow-up
times and an approximation of disease screening times was applied. For a patient who
was diagnosed with DM during follow-up, the time of DM was interpreted as the first
positive screening for DM. Depending on whether DM was diagnosed within the first
3 years, between 3 and 5, or after 5 years the previous screening was assumed to have
taken place either 3, 6, or 12 months prior. A patient who was never diagnosed with
DM was assumed to have been screened according to the common follow-up scheme
described above.

Table 3.1 shows HRs for DM and estimates for the time-specific AUC at different
years. The HRs estimated by the Cox and piecewise-constant model are similar, with
HRs for the Cox model being slightly larger.

Figure 3.2 displays on the left and the right panel the non-parametric cumulative
baseline hazards and a graphical check of their fit to a Weibull distribution, respect-
ively. For this figure the time of DM was assumed to be equal to the time that DM
was detected during screening. If the hazards were coming from a Weibull distribution
the lines in the right panel of Figure 3.2 would be straight, which is not the case in
particular for the transition from surgery to DM. The Weibull model therefore may
not be appropriate for this data.

Figure 3.3 shows the AUC over time for the different models. The incident/dynamic
AUC of the Weibull model is initially much larger compared to the other models and
declines over time. The incident/dynamic AUC of the piecewise-constant model is

70



§3.5. Application

C
h
a
pter

3

the lowest of all three methods. The cumulative/dynamic AUC of the Cox model
is generally the largest and the Weibull models the lowest. The M-spline model did
not converge for this data set and consequently the incident/dynamic and cumulat-
ive/dynamic AUC could not be estimated.
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Figure 3.2: Left panel: Cumulative transition hazards. Right panel: plot of ln[H(x)] vs. ln(x)
to empirically check the fit of the Weibull distribution.

Table 3.1: Effect and predictive accuracy for distant metastasis.

HR(DM) AUCI/D(1) AUCI/D(2) AUCI/D(3) AUCI/D(4) AUCI/D(5)
Cox ROC 11.71 0.74 0.76 0.76 0.75 0.74
Cox prob 11.71 0.75 0.76 0.76 0.75 0.74
Piecewise-constant 11.28 0.71 0.73 0.73 0.71 0.70
Weibull 0.81 0.78 0.76 0.74 0.72

AUCC/D(1) AUCC/D(2) AUCC/D(3) AUCC/D(4) AUCC/D(5)
Cox ROC
Cox prob 0.64 0.69 0.70 0.68 0.67
Piecewise-constant 0.62 0.66 0.68 0.66 0.66
Weibull 0.62 0.63 0.64 0.64 0.64
Abbreviations: AUCI/D(x), incident/dynamic AUC at year x; AUCC/D(x), cumulative/dynamic AUC at
year x; Cox ROC, estimate based on Cox model through risksetAUC function; Cox prob, estimate based on
Cox model through transition probabilities; HR(DM), hazard ratio of DM.
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Figure 3.3: Time-specific AUC for distant metastasis. Abbreviations: AUC I/D, incid-
ent/dynamic AUC; AUC C/D, cumulative/dynamic AUC; Cox ROC, estimate based on Cox
model through risksetAUC function; Cox prob, estimate based on Cox model through trans-
ition probabilities.

§3.6 Discussion

The illness-death model is frequently applied to clinical data to describe disease pro-
gression. A patient enters the model disease free, he can then experience disease
and die. In clinical practice however, often the time of disease cannot be observed
exactly. The information is interval-censored or unobserved because of death or cen-
soring. This can lead to bias in the estimation of disease incidence and regression
coefficients.[86, 97]

This article studied the predictive accuracy of a binary time-dependent disease
marker in the context of the illness-death model for interval-censored data. A simu-
lation study with several data scenarios was conducted to study four different mod-
els: the Cox model with disease as time-dependent marker, the piecewise-constant
model implemented in the msm package, the Weibull model, and the M-spline model
implemented in the SmoothHazard package. Both incident/dynamic and cumulat-
ive/dynamic AUC estimates were derived from their transition probabilities and stud-
ied. The methods were applied to a data set of soft tissue sarcoma patients who were
scanned for distant metastasis at scheduled follow-up visits.

The simulation study showed that the HRs from the piecewise-constant model
were less biased than those of the Cox model. The number of patients per data
set (1000 vs 2000) did not have a large effect on the estimates of the HR, AUC
estimates in incident/dynamic and cumulative/dynamic definition except for the M-
spline model. The M-spline model converged more reliably with large data sets. The
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spacing of follow-up visits at which the disease state was observed did have a large
effect on estimates of the incident/dynamic AUC. The Weibull model showed the
best performance, however this model had an unfair advantage since the simulated
data had Weibull distribution. In practice a Weibull distribution may not be a good
fit to the data. The M-spline model showed a good performance when estimating
the incident/dynamic and cumulative/dynamic AUC however was not always able to
converge and provide AUC estimates. The piecewise-constant model under performed.
Even though, incident/dynamic AUC estimates had less bias than the Cox model’s for
scenarios with large spacing between follow-up visits, cumulative/dynamic estimates
had the largest bias of all methods.

Prediction models are becoming more and more important in clinical practice
to provide individualized patient care. Dynamic prediction models can incorporate
time-dependent disease markers and the predictive accuracy of such a marker may
be of interest. In the presence of interval-censored disease time, the results of this
study suggest to take the interval-censoring into account not only when estimating
parameters of the model, but also when evaluating the predictive accuracy of disease.

Simulations performed studied the effect of an interval-censored binary disease
marker. Future research should focus on the predictive accuracy of a time-dependent
covariate that can take more than 2 values as well as continuous markers.

73



3. Assessment of predictive accuracy of an intermittently observed binary
time-dependent marker

C
h
a
pt

er
3

Appendix

§3.A Derivation of AUC

§3.A.1 Incident/dynamic AUC

Let i, j be individuals, Xi(t), Xj(t) the binary covariate values at time t, and Ti and
Tj the death times. The incident/dynamic AUC is defined as

AUCI/D(t) =P (Xi(t) > Xj(t) | Ti = t, Tj > t) + 0.5P (Xi(t) = Xj(t) | Ti = t, Tj > t)

=P (Xj(t) = 0 | Tj > t)P (Xi(t) = 1 | Ti = t)

+ 0.5[P (Xj(t) = 0 | Tj > t)P (Xi(t) = 0 | Ti = t)+

P (Xj(t) = 1 | Tj > t)P (Xi(t) = 1 | Ti = t)]

=(1− P (Xj(t) = 1 | Tj > t))P (Xi(t) = 1 | Ti = t)

+ 0.5[(1− P (Xj(t) = 1 | Tj > t))(1− P (Xi(t) = 1 | Ti = t))+

P (Xj(t) = 1 | Tj > t)P (Xi(t) = 1 | Ti = t)]

=(1− π1(t))p(t) + 0.5[(1− π1(t))(1− p(t)) + π1(t)p(t)]

=p(t)− π1(t)p(t) + 0.5[1− p(t)− π1(t) + π1(t)p(t) + π1(t)p(t)]

=p(t)− π1(t)p(t) + 0.5− 0.5p(t)− 0.5π1(t) + π1(t)p(t)

=0.5 + 0.5(p(t)− π1(t)),

where

π1(t) =P (Xi(t) = 1 | Ti > t)

p(t) =P (Xi(t−) = 1 | Ti = t).

§3.A.2 Cumulative/dynamic AUC

Let i, j be individuals, Xi(s), Xj(s) their binary covariate values at time s, and Ti
and Tj their death times. The cumulative/dynamic AUC is then
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AUCC/D(s, t) =P (Xi(s) > Xj(s) | Ti > s, Ti ≤ t, Tj > t)+

0.5P (Xi(s) = Xj(s) | Ti > s, Ti ≤ t, Tj > t)

=P (Xj(s) = 0 | Tj > t)P (Xi(s) = 1 | Ti > s, Ti ≤ t)

+ 0.5[P (Xj(s) = 0 | Tj > t)P (Xi(s) = 0 | Ti > s, Ti ≤ t)+

P (Xj(s) = 1 | Tj > t)P (Xi(s) = 1 | Ti > s, Ti ≤ t)]

=(1− P (Xj(s) = 1 | Tj > t))P (Xi(s) = 1 | Ti > s, Ti ≤ t)

+ 0.5[(1− P (Xj(s) = 1 | Tj > t))(1− P (Xi(s) = 1 | Ti > s, Ti ≤ t))+

P (Xj(s) = 1 | Tj > t)P (Xi(s) = 1 | Ti > s, Ti ≤ t)]

=(1− π1(s, t))p(s, t) + 0.5[(1− π1(s, t))(1− p(s, t)) + π1(s, t)p(s, t)]

=p(s, t)− π1(s, t)p(s, t) + 0.5[1− p(s, t)− π1(s, t) + π1(s, t)p(s, t) + π1(s, t)p(s, t)]

=p(s, t)− π1(s, t)p(s, t) + 0.5− 0.5p(s, t)− 0.5π1(s, t) + π1(s, t)p(s, t)

=0.5 + 0.5(p(s, t)− π1(s, t)),

where

π1(s, t) =P (Xj(s) = 1 | Tj > t)

p(s, t) =P (Xi(s) = 1 | Ti > s, Ti ≤ t).
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§3.B Results for all scenarios

Table 3.B.1: Effect of disease.

Scenario N Censoring Follow-up Model Mean(coef) exp(mean(coef)) SE(coef) Bias(coef) RMSE(coef)
Truth 2.42 11.20
A 1000 unif(5, 10) 3 Cox ROC 2.35 10.44 0.09 -0.07 0.11
A 1000 unif(5, 10) 3 Cox prob 2.35 10.44 0.09 -0.07 0.11
A 1000 unif(5, 10) 3 Piecewise-

constant
2.43 11.32 0.09 0.01 0.09

B 1000 unif(5, 10) 6 Cox ROC 2.29 9.91 0.10 -0.12 0.16
B 1000 unif(5, 10) 6 Cox prob 2.29 9.91 0.10 -0.12 0.16
B 1000 unif(5, 10) 6 Piecewise-

constant
2.48 11.90 0.10 0.06 0.12

C 1000 unif(5, 10) 12 Cox ROC 2.24 9.37 0.11 -0.18 0.21
C 1000 unif(5, 10) 12 Cox prob 2.24 9.37 0.11 -0.18 0.21
C 1000 unif(5, 10) 12 Piecewise-

constant
2.41 11.11 0.12 -0.01 0.12

D 1000 10 3 Cox ROC 2.35 10.45 0.09 -0.07 0.11
D 1000 10 3 Cox prob 2.35 10.45 0.09 -0.07 0.11
D 1000 10 3 Piecewise-

constant
2.45 11.59 0.08 0.03 0.09

E 1000 10 6 Cox ROC 2.31 10.05 0.09 -0.11 0.14
E 1000 10 6 Cox prob 2.31 10.05 0.09 -0.11 0.14
E 1000 10 6 Piecewise-

constant
2.50 12.19 0.10 0.08 0.13

F 1000 10 12 Cox ROC 2.25 9.47 0.10 -0.17 0.20
F 1000 10 12 Cox prob 2.25 9.47 0.10 -0.17 0.20
F 1000 10 12 Piecewise-

constant
2.43 11.34 0.11 0.01 0.11

G 2000 unif(5, 10) 3 Cox ROC 2.34 10.43 0.07 -0.07 0.10
G 2000 unif(5, 10) 3 Cox prob 2.34 10.43 0.07 -0.07 0.10
G 2000 unif(5, 10) 3 Piecewise-

constant
2.42 11.30 0.06 0.01 0.06

H 2000 unif(5, 10) 6 Cox ROC 2.29 9.91 0.07 -0.12 0.14
H 2000 unif(5, 10) 6 Cox prob 2.29 9.91 0.07 -0.12 0.14
H 2000 unif(5, 10) 6 Piecewise-

constant
2.47 11.88 0.07 0.06 0.09

I 2000 unif(5, 10) 12 Cox ROC 2.24 9.38 0.08 -0.18 0.20
I 2000 unif(5, 10) 12 Cox prob 2.24 9.38 0.08 -0.18 0.20
I 2000 unif(5, 10) 12 Piecewise-

constant
2.41 11.09 0.08 -0.01 0.08

J 2000 10 3 Cox ROC 2.34 10.40 0.06 -0.07 0.10
J 2000 10 3 Cox prob 2.34 10.40 0.06 -0.07 0.10
J 2000 10 3 Piecewise-

constant
2.44 11.52 0.06 0.03 0.07

K 2000 10 6 Cox ROC 2.30 10.00 0.06 -0.11 0.13
K 2000 10 6 Cox prob 2.30 10.00 0.06 -0.11 0.13
K 2000 10 6 Piecewise-

constant
2.49 12.10 0.07 0.08 0.10

L 2000 10 12 Cox ROC 2.24 9.40 0.07 -0.17 0.19
L 2000 10 12 Cox prob 2.24 9.40 0.07 -0.17 0.19
L 2000 10 12 Piecewise-

constant
2.42 11.24 0.08 0.00 0.08

Abbreviations: SE, empirical standard error; RMSE, root mean square error.

Table 3.B.2: Time-specific incident/dynamic AUC.

AUCI/D(1) = 0.71 AUCI/D(3) = 0.72 AUCI/D(5) = 0.72
Scenario Model Bias SE RMSE Bias SE RMSE Bias SE RMSE
A Cox ROC -0.04 0.02 0.04 -0.02 0.01 0.03 -0.02 0.01 0.02
A Cox prob -0.04 0.01 0.04 -0.02 0.01 0.02 -0.02 0.01 0.02
A Piecewise-constant -0.05 0.01 0.05 -0.03 0.01 0.03 -0.02 0.01 0.03
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Table 3.B.2: (continued)

AUCI/D(1) = 0.71 AUCI/D(3) = 0.72 AUCI/D(5) = 0.72
Scenario Model Bias SE RMSE Bias SE RMSE Bias SE RMSE
A Weibull 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.01
A M-spline 0.02 0.02 0.03 0.00 0.02 0.02 -0.01 0.04 0.04
B Cox ROC -0.07 0.02 0.08 -0.04 0.01 0.04 -0.03 0.01 0.04
B Cox prob -0.07 0.02 0.08 -0.04 0.01 0.04 -0.03 0.01 0.03
B Piecewise-constant -0.06 0.01 0.07 -0.04 0.01 0.04 -0.03 0.01 0.03
B Weibull -0.01 0.02 0.02 0.00 0.01 0.01 0.00 0.01 0.01
B M-spline 0.01 0.03 0.03 -0.01 0.03 0.03 0.00 0.04 0.04
C Cox ROC -0.21 0.00 0.21 -0.07 0.02 0.08 -0.06 0.02 0.06
C Cox prob -0.21 0.00 0.21 -0.07 0.01 0.07 -0.06 0.01 0.06
C Piecewise-constant -0.09 0.01 0.09 -0.06 0.01 0.06 -0.05 0.02 0.05
C Weibull -0.01 0.03 0.03 0.00 0.02 0.02 0.00 0.02 0.02
C M-spline -0.05 0.04 0.06 0.00 0.03 0.03 0.00 0.04 0.04
D Cox ROC -0.04 0.02 0.04 -0.02 0.01 0.02 -0.02 0.01 0.02
D Cox prob -0.04 0.01 0.04 -0.02 0.01 0.02 -0.02 0.01 0.02
D Piecewise-constant -0.05 0.01 0.05 -0.03 0.01 0.03 -0.02 0.01 0.03
D Weibull 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.01
D M-spline 0.02 0.02 0.03 -0.01 0.02 0.03 0.00 0.03 0.04
E Cox ROC -0.07 0.02 0.08 -0.04 0.01 0.04 -0.03 0.02 0.03
E Cox prob -0.07 0.02 0.07 -0.04 0.01 0.04 -0.03 0.01 0.03
E Piecewise-constant -0.06 0.01 0.06 -0.04 0.01 0.04 -0.03 0.01 0.03
E Weibull -0.01 0.02 0.02 0.00 0.01 0.01 0.00 0.01 0.01
E M-spline 0.01 0.02 0.03 -0.01 0.03 0.03 0.00 0.04 0.04
F Cox ROC -0.21 0.00 0.21 -0.07 0.02 0.08 -0.06 0.02 0.06
F Cox prob -0.21 0.00 0.21 -0.07 0.01 0.07 -0.06 0.01 0.06
F Piecewise-constant -0.09 0.01 0.09 -0.06 0.01 0.06 -0.05 0.01 0.05
F Weibull -0.01 0.02 0.02 0.00 0.01 0.01 0.00 0.01 0.01
F M-spline -0.05 0.04 0.06 0.00 0.03 0.03 0.00 0.04 0.04
G Cox ROC -0.04 0.01 0.04 -0.02 0.01 0.02 -0.02 0.01 0.02
G Cox prob -0.04 0.01 0.04 -0.02 0.01 0.02 -0.02 0.01 0.02
G Piecewise-constant -0.05 0.01 0.05 -0.03 0.01 0.03 -0.02 0.01 0.03
G Weibull 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.01
G M-spline 0.02 0.02 0.03 0.00 0.02 0.02 -0.01 0.02 0.03
H Cox ROC -0.07 0.01 0.08 -0.04 0.01 0.04 -0.03 0.01 0.03
H Cox prob -0.07 0.01 0.08 -0.04 0.01 0.04 -0.03 0.01 0.03
H Piecewise-constant -0.06 0.01 0.06 -0.04 0.01 0.04 -0.03 0.01 0.03
H Weibull -0.01 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.01
H M-spline 0.01 0.02 0.02 -0.01 0.02 0.02 -0.01 0.03 0.03
I Cox ROC -0.21 0.00 0.21 -0.07 0.01 0.07 -0.06 0.01 0.06
I Cox prob -0.21 0.00 0.21 -0.07 0.01 0.07 -0.06 0.01 0.06
I Piecewise-constant -0.09 0.01 0.09 -0.06 0.01 0.06 -0.05 0.01 0.05
I Weibull -0.01 0.02 0.02 0.00 0.01 0.01 0.00 0.01 0.01
I M-spline -0.04 0.03 0.05 0.00 0.02 0.02 0.00 0.03 0.03
J Cox ROC -0.04 0.01 0.04 -0.02 0.01 0.02 -0.02 0.01 0.02
J Cox prob -0.04 0.01 0.04 -0.02 0.01 0.02 -0.02 0.01 0.02
J Piecewise-constant -0.05 0.01 0.05 -0.03 0.01 0.03 -0.02 0.01 0.03
J Weibull 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.01
J M-spline 0.02 0.01 0.03 -0.01 0.02 0.02 -0.01 0.02 0.03
K Cox ROC -0.07 0.01 0.07 -0.04 0.01 0.04 -0.03 0.01 0.03
K Cox prob -0.07 0.01 0.07 -0.04 0.01 0.04 -0.03 0.01 0.03
K Piecewise-constant -0.06 0.01 0.06 -0.04 0.01 0.04 -0.03 0.01 0.03
K Weibull -0.01 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.01
K M-spline 0.01 0.02 0.02 -0.01 0.02 0.02 0.00 0.02 0.03
L Cox ROC -0.21 0.00 0.21 -0.07 0.01 0.07 -0.06 0.01 0.06
L Cox prob -0.21 0.00 0.21 -0.07 0.01 0.07 -0.06 0.01 0.06
L Piecewise-constant -0.09 0.01 0.09 -0.06 0.01 0.06 -0.05 0.01 0.05
L Weibull -0.01 0.02 0.02 0.00 0.01 0.01 0.00 0.01 0.01
L M-spline -0.04 0.03 0.05 0.00 0.02 0.02 0.00 0.03 0.03
Abbreviations: AUCI/D(x), incident/dynamic AUC at year x; SE, empirical standard error; RMSE, root
mean square error.
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Table 3.B.3: (continued)

AUCC/D(1) = 0.59 AUCC/D(3) = 0.62 AUCC/D(5) = 0.64
Scenario Model Bias SE RMSE Bias SE RMSE Bias SE RMSE

Table 3.B.3: Time-specific cumulative/dynamic AUC.

AUCC/D(1) = 0.59 AUCC/D(3) = 0.62 AUCC/D(5) = 0.64
Scenario Model Bias SE RMSE Bias SE RMSE Bias SE RMSE
A Cox 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.02 0.02
A Piecewise-constant -0.02 0.01 0.02 -0.01 0.01 0.02 -0.01 0.01 0.02
A Weibull 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.01
A M-spline 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.02 0.02
B Cox 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.02 0.02
B Piecewise-constant -0.04 0.00 0.04 -0.02 0.01 0.03 -0.02 0.01 0.02
B Weibull 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.01
B M-spline 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.02 0.02
C Cox 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.02 0.02
C Piecewise-constant -0.05 0.00 0.05 -0.04 0.01 0.04 -0.03 0.01 0.03
C Weibull -0.01 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.01
C M-spline 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.02 0.02
D Cox 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.01
D Piecewise-constant -0.02 0.01 0.02 -0.01 0.01 0.02 -0.01 0.01 0.02
D Weibull 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.01
D M-spline 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.02 0.02
E Cox 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.01
E Piecewise-constant -0.04 0.00 0.04 -0.03 0.01 0.03 -0.02 0.01 0.02
E Weibull 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.01
E M-spline 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.02 0.02
F Cox 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.01
F Piecewise-constant -0.05 0.00 0.05 -0.04 0.01 0.04 -0.03 0.01 0.03
F Weibull -0.01 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.01
F M-spline 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.02 0.02
G Cox 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.01
G Piecewise-constant -0.02 0.00 0.02 -0.01 0.01 0.01 -0.01 0.01 0.01
G Weibull 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.01
G M-spline 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.01
H Cox 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.01
H Piecewise-constant -0.04 0.00 0.04 -0.02 0.01 0.02 -0.02 0.01 0.02
H Weibull 0.00 0.00 0.01 0.00 0.01 0.01 0.00 0.01 0.01
H M-spline 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.01
I Cox 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.01
I Piecewise-constant -0.05 0.00 0.05 -0.04 0.01 0.04 -0.03 0.01 0.03
I Weibull -0.01 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.01
I M-spline 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.01
J Cox 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.01
J Piecewise-constant -0.02 0.00 0.02 -0.01 0.01 0.01 -0.01 0.01 0.01
J Weibull 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00
J M-spline 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.01
K Cox 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.01
K Piecewise-constant -0.04 0.00 0.04 -0.02 0.01 0.03 -0.02 0.01 0.02
K Weibull 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.01
K M-spline 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.01
L Cox 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.01
L Piecewise-constant -0.05 0.00 0.05 -0.04 0.01 0.04 -0.03 0.01 0.03
L Weibull -0.01 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.01
L M-spline 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.01
Abbreviations: AUCC/D(x), cumulative/dynamic AUC at year x; SE, empirical stand-
ard error; RMSE, root mean square error.
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Table 3.B.4: Invalid estimations for M-spline model.

Scenario
A B C D E F G H I J K L

invalid AUCI/D 379 442 555 17 34 88 201 292 378 1 7 19
invalid AUCC/D 381 444 560 17 34 89 201 296 381 1 7 19
Number of invalid estimations of AUCI/D and AUCC/D from 1 year based on
1000 data sets.

§3.C Incident/dynamic AUC for scenarios D–L
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Figure 3.C.1: Incident/dynamic AUC for scenario D (3 months), E (6 months) and F (12
months). Abbreviations: Cox ROC, estimate based on risksetAUC function; Cox prob,
estimate based on transition probabilities of Cox model.
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Figure 3.C.2: Incident/dynamic AUC for scenario G (3 months), H (6 months) and I (12
months). Abbreviations: Cox ROC, estimate based on risksetAUC function; Cox prob,
estimate based on transition probabilities of Cox model.
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Figure 3.C.3: Incident/dynamic AUC for scenario J (3 months), K (6 months) and L (12
months). Abbreviations: Cox ROC, estimate based on risksetAUC function; Cox prob,
estimate based on transition probabilities of Cox model.
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Figure 3.D.1: Cumulative/dynamic AUC for scenario D (3 months), E (6 months) and F
(12 months).
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Figure 3.D.2: Cumulative/dynamic AUC for scenario G (3 months), H (6 months) and I
(12 months).
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Figure 3.D.3: Cumulative/dynamic AUC for scenario J (3 months), K (6 months) and L
(12 months).
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