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CHAPTER 2
Investigating hospital heterogeneity

with a competing risks frailty model

This chapter has been published in Statistics in Medicine 38(2) (2018) 269–288 as
A.J. Rueten-Budde , H. Putter and M. Fiocco, "Investigating hospital heterogeneity
with a competing risks frailty model" [17].

Abstract

Survival analysis is used in the medical field to identify the effect of predictive variables
on time to a specific event. Generally, not all variation of survival time can be
explained by observed covariates. The effect of unobserved variables on the risk of
a patient is called frailty. In multicenter studies, the unobserved center effect can
induce frailty on its patients, which can lead to selection bias over time when ignored.
For this reason, it is common practice in multicenter studies to include a random
frailty term modeling center effect. In a more complex event structure, more than
one type of event is possible. Independent frailty variables representing center effect
can be incorporated in the model for each competing event. However, in the medical
context, events representing disease progression are likely related and correlation is
missed when assuming frailties to be independent. In this work, an additive gamma
frailty model to account for correlation between frailties in a competing risks model
is proposed, to model frailties at center level. Correlation indicates a common center
effect on both events and measures how closely the risks are related. Estimation of
the model using the expectation-maximization algorithm is illustrated. The model
is applied to a data set from a multicenter clinical trial on breast cancer from the
European Organisation for Research and Treatment of Cancer (EORTC trial 10854).
Hospitals are compared by employing empirical Bayes estimates methodology together
with corresponding confidence intervals.
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§2.1 Introduction

Survival data arises where interest lies on the time from a specific time origin until
occurrence of an event of interest. Prominent applications are found in the medical
field, where e. g. time from diagnosis of disease until death could be studied. What
distinguishes survival analysis from other types of statistical analysis is the type of
data it deals with: it is generally incomplete. Since it takes time to observe an event,
it is usually not possible to collect complete information. A popular method to model
the effect of covariates on risk of event occurrence is through the semi-parametric Cox
proportional hazards model [44]. In some situations more than one type of end point
are possible, when e. g. different causes of death are studied. Analogous to the single
endpoint situation the Cox model can be used to model the effect of covariates on the
cause-specific transition hazards [119] of each cause of failure. A more complicated
event structure with intermediate states can be modeled by a multi-state model [119].
Dependence in survival data can be modeled by a random frailty term, which models
heterogeneity between observations or between clusters of observations. The frailty
term represents unobserved covariates on the individual or cluster level that act on
the risk of event occurrence. The frailty variance can be interpreted as a measure of
heterogeneity between clusters or individuals, however it can also be seen as a measure
of dependence within a cluster.

Multicenter studies are a common strategy to collect sufficient data for a clin-
ical study. Patients are clustered within treatment centers and possible correlation
between patients within a center can be modeled by using a shared frailty model.
Shared frailty models are able to model dependence, however these models limit the
unobserved covariates modeled by the frailty to have the same effect within a cluster.
In the presence of competing events the use of one frailty per center acting on all
causes of failure is questionable. Similarly using J independent frailties per center
one for each cause of failure does not yield a complete picture of the data structure.
Frailties for different competing events within a center are likely to be correlated,
since they represent the same unobserved covariates on cluster level. Yashin et al.
[166] first introduced a correlated gamma frailty model to analyze twin survival data.
They decompose a twin’s frailty into a sum of two independent frailties, one of which
is shared by both twins. Petersen et al. [116] use this idea of adding frailty compon-
ents, which act multiplicatively on the individual hazard and describe more complex
variance components models for survival data.

Clustered data in the presence of competing risks further complicate possible de-
pendence structures and different approaches are taken. Extensions of Fine and Gray’s
subdistribution hazard model [57] incorporate a frailty term to model cluster depend-
ence on the cumulative incidence function of the event of interest in the presence
of competing events [89, 131, 51, 172]. Wienke et al. [161, 163] analyze correlated
frailty models in the presence of competing risks, however assuming independence
between risks. The assumption of independence is questionable since related events
(e. g. events representing disease progression) might be influenced similarly by the
same unobserved covariates. Wienke et al. [162] extend the bivariate correlated
gamma frailty model of Yashin et al. [166] to model dependence among competing

20



§2.2. Competing risks model

C
h
a
pter

2

risks based on parametric marginal survival functions. Gorfine and Hsu [72] combine
frailty components multiplicatively to model dependence between competing risks
for clustered survival data. Liquet et al. [99] analyze hospital heterogeneity in multi-
state models using independent and joint frailty models to model dependence between
transition intensities. Rotolo et al. [123] propose to incorporate correlated frailties
in multi-state models acting on the transition-specific hazard functions. They con-
struct frailties by combining a common cluster component and a transition-specific
component multiplicatively.

In this paper we propose an additive gamma frailty model which acts multiplicat-
ively on the cause-specific hazard to model dependence within clusters and between
two competing events. The method can be used to investigate hospital heterogeneity
in a competing risks setting. An elegant estimation procedure using the EM-algorithm
is outlined as well as a strategy to calculate the standard error of the estimates. In
contrast to Wienke et al. [162] who model dependence among competing risks by
using a parametric approach our method is based on the semi-parametric Cox model
[44]. Compared to methods suggested by Gorfine and Hsu [72] and Rotolo et al.
[123] which combine frailty components multiplicatively in this article a gamma de-
composition is proposed to model dependence between risks. The advantage of our
method is its simplicity in construction and estimation, which is based on the math-
ematical properties of the gamma distribution. Additionally, estimation through the
EM-algorithm provides empirical Bayes estimates for each center’s frailty, which can
be used to compare centers.

In Section 2.2 and 2.3 the cause-specific hazards model and frailty model will be
reviewed briefly. The proposed competing risks frailty model is presented in Section
2.4. In Section 2.5 the method is applied to a data example and corresponding results
are presented. A simulation study to investigate the performance of the correlated
frailty model is discussed in Section 2.6. A discussion follows in Section 2.7.

§2.2 Competing risks model

Competing risks models are used when more then one type of failure is possible. An
example is the study of different causes of death. A fundamental concept in competing
risks is the cause-specific hazard. It is the hazard of failing from a particular cause
given still event free at that time.

For right censored survival times the cause-specific hazard of cause j for a subject
i with covariate vector Xi is as follows:

λj(t|Xi) = λj0(t)eβ
T
j Xi , (2.2.1)

where λj0 is the cause-specific baseline hazard for cause j and βj assesses the effect
of the covariates Xi on the progression rate to cause j [119]. Here the effects of co-
variates are quantified on the cause-specific hazard and not on the marginal hazard.
Only if the censoring due to the competing risks is non-informative conditionally on
the covariates in the model, the estimates can also be interpreted as effects on the
marginal hazard.
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§2.3 Frailty model

The concept of frailty introduces random effects in survival models, which represent
the presence of unobserved heterogeneity. The variance of this random component
is a measure used to quantify heterogeneity in the data. Vaupel et al. [157] dis-
cussed univariate frailty models with a gamma distribution and applied this concept
to survival. Clayton [40] used frailties in the multivariate analysis of chronic disease
incidence in families.

A frailty is an unobserved random factor varying over the population of individu-
als, which is assumed to have a multiplicative effect on the hazard of a single individual
or a group or cluster of individuals. In univariate frailty models each individual has
its own independent frailty, while in shared frailty models clustered individuals share
a common frailty.

For subject i with covariate vector Xi belonging to cluster k with frailty Wk the
hazard is given as

λ(t|Xi,Wk) =Wkλ0(t)eβ
TXi (2.3.1)

=λ0(t)eβ
TXi+log(Wk).

A convenient choice for the frailty distribution is the gamma distribution, since
its posterior distribution given survival data, stays in the gamma family [116].

§2.4 Competing risks frailty model

Heterogeneity between centers in a competing risks setting can be modeled by assign-
ing each center J frailties, one for each cause of failure. The J frailty terms within a
center may be chosen to be independent, however the effects within a center are likely
to be related which is ignored in such a model. In a more realistic model frailties
within a center are correlated. A model for the dependence structure was first pro-
posed by Yashin et al. [166] in a twin study, decomposing the frailty of each twin as
a sum of two independent frailties one of which is shared. Petersen et al. [116] use an
additive variance components structure on multiplicative gamma frailty models and
outline its estimation. The correlated frailty model proposed in this article follows
their approach.

§2.4.1 Frailty decomposition
In the following, letWk1,Wk2 denote the frailty variables corresponding to two causes
of failure within hospital k (k = 1, ...,K). Correlation between frailties is construc-
ted by decomposing each frailty as the sum of two independent gamma distributed
variables, one of which is common in both frailties [59, 58]. For cause j (j = 1, 2),
frailties are given as

Wkj =
Zk0 + Zkj
ν0 + νj

, (2.4.1)
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where

Zk0 ∼ Γ(ν0, 1), Zkj ∼ Γ(νj , 1). (2.4.2)

The random variables Zk0, Zk1, Zk2 are independent and from now on referred
to as the independent frailty components of hospital k. This results in the following
frailty distribution:

Wkj ∼ Γ(ν0 + νj , ν0 + νj). (2.4.3)

The expectation of the frailty variables is equal to one, which corresponds to no
hospital effect or the average hospital effect. Their variance and correlation are given
as

Var (Wk1) =
1

ν0 + ν1
= ξ1, Var (Wk2) =

1

ν0 + ν2
= ξ2, (2.4.4)

Cor (Wk1,Wk2) = ν0(ξ1ξ2)1/2 = ρ. (2.4.5)

This construction allows for positive correlation only. In many practical situations
however it may be justified to disregard negative correlation, e. g. when competing
events describe disease progression. A further restriction is that not all variance
correlation combinations are possible in this construction. A large correlation does
not allow the variances to be too different, or equivalent, different frailty variances do
not allow the correlation to be (almost) one:

ν1 =
1

ξ1
− ρ√

ξ1ξ2
>0√

ξ2/ξ1 >ρ (2.4.6)

ν2 =
1

ξ2
− ρ√

ξ1ξ2
>0√

ξ1/ξ2 >ρ. (2.4.7)

From (2.4.6) and (2.4.7) it follows that ρ < min(
√
ξ2/ξ1,

√
ξ1/ξ2).

§2.4.2 Model estimation
Model parameters are obtained by maximizing the log-likelihood function based on
the observed data. Since frailties associated to different centers and individuals across
hospitals are independent, the likelihood is the product of hospital likelihoods. For
simplicity only the log-likelihood and necessary quantities of a single center k are
given in the following.

Denote by nk and dkj the number of patients and the number of patients that fail
from cause j (j = 1, 2) in hospital k respectively. LetXki, tki and δki(δki = 0, 1, 2) be
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the covariate vector for patient i treated at hospital k, the event or censoring time and
the event or censoring indicator respectively. In the following let βj be the vector
of regression coefficients, λj0 the baseline hazard and Λj0 the cumulative baseline
hazard for cause j (j = 1, 2). If the frailties were observed the complete data yields
the following log-likelihood for hospital k

`k(β1,β2, λ10, λ20) =

nk∑
i=1

1δki=1

{
log

(
Zk0 + Zk1

ν0 + ν1

)
+ log(λ10(tki)e

βT1Xki)

}
(2.4.8)

+

nk∑
i=1

1δki=2

{
log

(
Zk0 + Zk2

ν0 + ν2

)
+ log(λ20(tki)e

βT2Xki)

}

− Zk0 + Zk1

ν0 + ν1

nk∑
i=1

Λ10(tki)e
βT1Xki − Zk0 + Zk2

ν0 + ν2

nk∑
i=1

Λ20(tki)e
βT2Xki

+ log(f(Zk0, Zk1, Zk2)),

where f is the probability density function of the independent and gamma distributed
frailty components.

Integrating out all frailty components specific to each center in the log-likelihood
yields the observed data log-likelihood, which is computationally challenging to max-
imize (see Appendix 2.A for details). Considering the unobserved frailties as missing
information yields a typical application of the expectation maximization algorithm
(EM-algorithm) [50].

§2.4.3 Implementation

For fixed parameter ν = (ν0, ν1, ν2), the estimation procedure uses the expecta-
tion maximization algorithm (EM-algorithm) to approximate the observed data log-
likelihood to find optimal regression coefficients and baseline hazards [50]. The ap-
proximated observed data log-likelihood is then employed in a three dimensional
search to a find maximum likelihood estimate for ν.

Since ν is fixed throughout the EM iterations, the estimation concerns the regres-
sion coefficients and baseline hazards only. The conditional expectations of the terms
log ((Zk0 + Zkj)/(ν0 + νj)), (j = 1, 2) and of log(f(Zk0, Zk1, Zk2)) given observed
data are irrelevant to the estimation of the complete data case (2.4.8). Therefore
the E-step reduces to the calculation of the conditional expectations of the frailties
Wkj = (Zk0 + Zkj)/(ν0 + νj), (j = 1, 2) given observed data. As a result, defining
Λkj =

∑nk
i=1 Λj0(tki)e

βTj Xki , (j = 1, 2), it is sufficient to consider
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E (Zk0|data k) =

∫
zk0

zk0f(zk0|data k)dzk0 (2.4.9)

=

dk1∑
l=0

dk2∑
m=0

ck(l,m, ν0, ν1, ν2)
dk1 + dk2 + ν0 − l −m(

1 + 1
ν0+ν1

Λk1 + 1
ν0+ν2

Λk2

)
E (Zk1|data k) =

∫
zk1

zk1f(zk1|data k)dzk1 (2.4.10)

=

dk1∑
l=0

dk2∑
m=0

ck(l,m, ν0, ν1, ν2)
l + ν1(

1 + 1
ν0+ν1

Λk1

)
E (Zk2|data k) =

∫
zk2

zk2f(zk2|data k)dzk2 (2.4.11)

=

dk1∑
l=0

dk2∑
m=0

ck(l,m, ν0, ν1, ν2)
m+ ν2(

1 + 1
ν0+ν2

Λk2

) ,
where f is the conditional probability density function of a frailty component given
data, and ck(l,m, ν0, ν1, ν2) is a function over the number of events of each type of
failure for fixed frailty parameters. Details about the computations are outlined in
the Appendix 2.A.

Since the conditional distributions of the frailty components Zk0, Zk1, Zk2 given
observed data are mixtures of gamma distributions (see Appendix 2.A for details),
it is straightforward to compute the quantities (2.4.9)-(2.4.11). Notably the factor
ck(l,m, ν0, ν1, ν2) is the same in all three expectations.

The M-step consists of estimating the updated baseline hazards Λ10(t), Λ20(t) and
coefficient vectors β1, β2, through maximization of the conditional log-likelihood,
given frailties estimated in the E-step. This can be done with existing software, e. g.
using coxph() from the R [122] package survival [142], incorporating the logarithm of
the expected frailties as offset into the cause-specific hazards model. The algorithm
iterates over these two steps and stops once the approximation of the observed data
log-likelihood converged (e. g. change of smaller than 1e-06).

Until now, the frailty parameter ν = (ν0, ν1, ν2) was fixed throughout the
EM iterations. Profile likelihood is used to obtain maximum likelihood estimates
of (ν0, ν1, ν2, β1, β2, Λ10, Λ20); the function optim() is used to find the optimal
ν, maximizing the observed data log-likelihood approximated with the EM-algorithm
(see the supplementary material in this paper).

§2.4.4 Estimation of the standard error
Louis [101] discussed how to obtain the covariance matrix for the regression paramet-
ers, that stays within the EM-algorithm framework, using only derivatives of the com-
plete data log-likelihood. This approach does not yet include the uncertainty caused
by estimating the frailty parameters ν = (ν0, ν1, ν2) outside of the EM-algorithm.
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Putter and van Houwelingen [120, supplementary material] proposed estimation as
described in the following.

Let η̂(ν) = (β̂
T

1 (ν), β̂
T

2 (ν), λ̂
T

10(ν), λ̂
T

20(ν))T denote the maximum likelihood
estimates (MLE) of the regression coefficients and baseline hazards given frailty para-
meters ν, and denote by ν̂ the MLE of ν maximizing the observed data log-likelihood.
The combined covariance matrix of ν̂, η̂ is given as

 Σνν Σνν

(
∂η̂(ν)
∂ν

)T(
∂η̂(ν)
∂ν

)
Σνν Σηη +

(
∂η̂(ν)
∂ν

)
Σνν

(
∂η̂(ν)
∂ν

)T
 , (2.4.12)

where Σνν and Σηη are the covariance matrix of ν and η̂ respectively and the term
∂η̂(ν)
∂ν are the partial derivatives of the regression parameters given ν. The term on

the bottom right of (2.4.12) represents the covariance of η̂(ν̂) where the term η̂(ν̂)

is obtained using a Taylor expansion of η̂(ν) and the score functions of η̂(ν) and ν̂
around the MLEs. The off diagonal terms are covariance matrices of (ν̂, η̂(ν̂)) and
can be derived in a similarly way, see Appendix 2.B for details.

The term Σνν is computed from the Hessian matrix obtained using the hessian()
function from the numDeriv package [69] around the point estimate of ν found by the
optim() function in R [122]. We proceed by inverting the negative of the Hessian
matrix, since the inverse of the observed profile information equals the ν component
of the full observed inverse information evaluated at (ν, η̂(ν)) [167, sec. 8.6.2].

The term ∂η̂(ν)
∂ν is approximated numerically. The derivative around the MLE is

estimated by calculating the slope between parameters for values of ν close to the
MLE.

The term Σηη can be computed as described by Louis [101]. It requires the
gradient vector and second derivative matrix of the complete data log-likelihood, but
not the ones associated to the incomplete data case, see Appendix 2.B for details.

The standard error of the estimated regression parameters η can be calculated
by taking the square root of the corresponding diagonal elements of the covariance
matrix (2.4.12). To obtain the standard error of the frailty variances and correlation
we apply the multivariate delta method on Σνν [39, sec. 5.6]. See the supplementary
material for implementation in R.

§2.4.5 Empirical Bayes estimates
Heterogeneity between hospitals may raise the question of hospital ranking based on
their frailty or relative performance. A popular method to compare institutions is the
empirical Bayes approach introduced to this setting by Thomas et al. [143]. If many
centers are involved, a crude center effect estimate may explode for small centers
due to large variation and not due to a real center effect [153]. The empirical Bayes
estimator helps distinguish observations that are "extreme by nature" and those that
are "extreme by chance" and is very well suited for the analysis of quality comparison
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data [152]. The empirical Bayes approach not only uses information on a particular
center to quantify its performance, but uses information on all centers to help improve
the estimate.

Following van Houwelingen [152], the empirical Bayes principle will be outlined.
Let X1, ..., XK be independent outcomes with densities f(xk, θk) and θ1, ..., θK iid
with distribution G. The optimal estimator under mean squared error loss for each θk
is given by the Bayes estimator d(xk|G) = E(θk|xk, G), when G is known. When G
is unknown, one can estimate E(θk|xk, G) through an estimate of the distribution G.
The resulting estimator is shrunken towards the mean, where the amount of shrinkage
depends on the variance of the underlying distribution. In the context of center
performance Xk represents the outcome and θk the true unobserved performance of
center k.

The E-step of the EM-algorithm estimates the empirical Bayes estimate of the
center frailties given current model parameters and ν. Hence computing a last E-step
based on the MLE of regression parameters and ν after convergence of the algorithm
will give the empirical Bayes estimate of center frailties.

Even though empirical Bayes estimates are preferred to crude performance estim-
ates when analyzing quality comparison data, interpretation of results should be made
with caution as reasons for different outcome may lie outside a center’s responsibility.
Statistical issues in comparing institutions are discussed in more detail in Goldstein
and Spiegelhalter [71].

The conditional distribution of Zk0, Zk1 and Zk2 given data is the weighted sum of
gamma distributions depending on the number of events of each type (see Appendix
2.A for details). To obtain prediction intervals for the empirical Bayes estimates a
simplified sampling procedure is applied.

1) Sample from set of tuples (l,m) from {(0, 0), ..., (dk1, dk2)}, where dk1 and dk2

are the number of events of type 1 and 2 respectively.

2) Sample Zk0, Zk1 and Zk2 from gamma distributions Γ(dk1 +dk2 +ν0− l−m, 1+

Λk1 + Λk2),
Γ(l + ν1, 1 + Λk1) and Γ(m+ ν2, 1 + Λk2) respectively.

Repeating this sampling procedure many times lower and upper confidence limits
can be found by taking the 2.5% and 97.5% quantile.

§2.5 Data application

§2.5.1 Data description
The data used in this work originates from the European Organization for Research
and Treatment of Cancer (EORTC) trial 10854, which studied the effect of one course
of perioperative chemotherapy given directly after surgery on survival [147]. The data
set includes 2795 women treated for invasive stage I or II breast cancer, randomized
for treatment in 15 different centers. Breast cancer is one of the most common types
of cancer in women. The standard treatment for breast cancer is surgery, which may
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be followed by chemotherapy, radiotherapy or both. Disease progression after surgery
can be described in terms of events a patient might experience. A patient can develop
local recurrence (LR), which means that the tumor grows back at the site of surgery
and/or might develop distant metastasis (DM), which corresponds to a tumor growth
not at the site of surgery and/or she might die.

Patients were excluded from this analysis following exclusion criteria of the trial
(n = 41) and if information on relevant covariates was missing (n = 91). Furthermore,
all 5 patients from a particular center were excluded, because of the small amount
of patients treated at this center, leaving a total of 2658 patients from 14 different
centers for analysis.

The competing risks model for this data is illustrated in Figure 2.1. Two competing
events are considered, recurrence of disease (LR or DM) and death. The starting state
is the state a patient enters after surgery, being alive with no evidence of disease after
surgical removal of the primary tumor (ANED).

Table 2.1: Characteristics of 2658 patients.

Variable N (%)
Age
≥50 1602 (60.3)
40–50 762 (28.7)
<40 294 (11.1)

Tumor size
<2cm 798 (30.0)
≥2cm 1860 (70.0)

Nodal status
negative 1407 (52.9)
positive 1251 (47.1)

Surgery
mastectomy 1164 (43.8)
breast conserving 1494 (56.2)

Perioperative chemotherapy
yes 1325 (49.8)
no 1333 (50.2)

Adjuvant chemotherapy
no 2173 (81.8)
yes 485 (18.2)

Adjuvant radiotherapy
no 54 (2.0)
yes 2604 (98.0)
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ANED

Recurrence

Death

1049

83

Figure 2.1: Initially, 2658 patients are alive with no evidence of disease (ANED).

The choice of covariates to analyze is based on a previous study on the same
data [46]. The following prognostic factors are considered in the analysis: age (≥
50, 40 − 50, < 40), tumor size (< 2cm, ≥ 2cm), nodal status (negative, positive),
type of surgery (mastectomy, breast conserving), perioperative chemotherapy (yes,
no), adjuvant chemotherapy (yes, no), adjuvant radiotherapy (yes, no). Patients’
characteristics are provided in Table 2.1.

§2.5.2 Competing risks model with independent frailties
To account for center effect in a cause-specific regression model each cause of failure
within a hospital is assigned its own independent frailty.

The model can be estimated similarly to the classical competing risks model, by
using coxph() together with the frailty() function from the R package survival
[142] or the emfrail() function from the frailtyEM [27] package. The results of the
estimated model with independent gamma frailties are shown in Table 2.2.

A young age (<40) significantly increases the risks of experiencing recurrence (HR:
1.43; CI: 1.16-1.76), as well as a larger tumor size (HR: 1.41; CI: 1.22-1.64), a positive
nodal status (HR: 1.55; CI: 1.34-1.79) and whether or not perioperative chemotherapy
and adjuvant chemotherapy was administered (HR: 1.15; CI: 1.02-1.30 and HR: 0.79;
CI: 0.64-0.97 respectively). The frailty variance for transition 1 is estimated to be
equal to 0.05.

A larger tumor size and a positive nodal status also have a significant effect on
death before recurrence with HR: 1.46 (CI: 1.21-1.76) and HR: 2.22 (CI: 1.87-2.63).
For death also type of surgery has a significant effect with HR equal to 0.82 (CI:
0.70-0.97) for breast conserving therapy compared to mastectomy. This finding is
unexpected and should probably be ascribed to insufficient adjustment for factors
relates to choice of primary surgical treatment. The frailty variance for this transition
is estimated to be equal to 0.13.

A different frailty model assigns to each hospital a shared frailty term for both
causes of failure. Both the independent and shared frailty model are not realistic. The
former assumes an independent effect of the unobserved covariates on the two events
and the latter assumes them to have the same effect on both events. A model allowing
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Table 2.2: Cause-specific hazards model with independent frailties.

ANED → Recurrence ANED → Death
HR 0.95 CI HR 0.95 CI

Age
≥50 1.00 1.00
40–50 1.00 0.85-1.19 0.84 0.68-1.04
<40 1.43 1.16-1.76 1.03 0.79-1.34

Tumor size (≥ 2 vs <2 cm) 1.41 1.22-1.64 1.46 1.21-1.76
NodST (pos. vs neg.) 1.55 1.34-1.79 2.22 1.87-2.63
Surgery (cons. vs mast.) 0.92 0.80-1.05 0.82 0.70-0.97
PeriCT (no vs yes) 1.15 1.02-1.30 1.11 0.96-1.29
AdjCT (yes vs no) 0.79 0.64-0.97 0.82 0.64-1.05
AdjRT (yes vs no) 1.20 0.73-1.98 1.12 0.62-2.00

Variance SE Variance SE
Frailty 0.05 0.03 0.13 0.06
Abbreviations: NodST (pos. vs neg.), Nodal status (positive vs negative); Surgery
(cons. vs mast.), Surgery (breast conserving vs mastectomy); PeriCT, Perioperat-
ive chemotherapy; AdjCT, Adjuvant chemotherapy; AdjRT, Adjuvant radiotherapy;
ANED, alive with no evidence of disease; CI, confidence interval; HR, hazard ratio;
SE, standard error.

for possible correlation between frailties is probably a more accurate representation
of reality.

§2.5.3 Competing risks model with correlated frailties

In Table 2.3 the results for the competing risks frailty model with correlated frailties
are shown.

The hazard ratios for recurrence are almost unchanged compared to the independ-
ent frailty model. However, in the correlated frailty model nodal status and size are
the only significant factors. The hazard ratios for death without recurrence are very
different from the independent frailty model. This can be explained by the small
number of deaths without recurrence in the data set. The variation added by addi-
tionally estimating the frailties, increased the standard errors and fewer variables are
significant.

The variance of the frailty for transition 1 (ANED → Recurrence) is equal to
0.05 with a standard error of 0.03. For transition 2 (ANED → Death) the frailty
variance is equal to 0.27 with a standard error of 0.22. The correlation of the frailties
is estimated to be equal to 0.37 with a standard error of 0.18. Given these frailty
variances the maximum correlation between frailties in this model is 0.43 resulting
from inequalities (2.4.6) and (2.4.7).
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Table 2.3: Cause-specific hazards model with correlated frailties.

ANED → Recurrence ANED → Death
HR 0.95 CI HR 0.95 CI

Age
≥50 1.00 1.00
40–50 1.00 0.69-1.44 0.35 0.05-2.76
<40 1.42 0.92-2.18 0.62 0.06-6.48

Tumor size (≥ 2 vs <2 cm) 1.41 1.05-1.89 0.96 0.25-3.73
NodST (pos. vs neg.) 1.55 1.15-2.08 1.72 0.47-6.27
Surgery (cons. vs mast.) 0.92 0.70-1.22 0.65 0.18-2.31
PeriCT (no vs yes) 1.15 0.89-1.48 1.14 0.35-3.70
AdjCT (yes vs no) 0.79 0.50-1.27 0.80 0.06-10.08
AdjRT (yes vs no) 1.18 0.81-1.71 0.66 0.12-3.72

Variance SE Variance SE
Frailty 0.05 0.03 0.27 0.22

Correlation SE
Correlation 0.37 0.18
Abbreviations: NodST (pos. vs neg.), Nodal status (positive vs negative); Surgery
(cons. vs mast.), Surgery (breast conserving vs mastectomy); PeriCT, Perioperat-
ive chemotherapy; AdjCT, Adjuvant chemotherapy; AdjRT, Adjuvant radiotherapy;
ANED, alive with no evidence of disease; CI, confidence interval; HR, hazard ratio;
SE, standard error.

§2.5.4 Empirical Bayes estimates
Figure 2.2 shows the empirical Bayes estimates of the frailties of each center together
with 95% prediction intervals, for event recurrence and death. A value equal to 1
implies that there is no center effect. Centers are ordered by number of patients
treated. The prediction intervals are computed by sampling from the gamma mixture
distribution of frailties and taking 2.5% and 97.5% quantiles as lower and upper limit.

The left panel of Figure 2.2 shows the frailties for the event recurrence for 14
hospitals ordered by number of patients treated. Two hospitals (9 and 11) have a
significantly increased risk for their patients to develop recurrence. One hospital (12)
has a significantly decreased risk for its patients to develop recurrence. Further one
can see that the width of the prediction intervals decrease with a growing number of
patients in the hospital.

The right panel of Figure 2.2 shows that one hospital (11) has an increased risk for
its patients to move to the state death. One hospital (14) has a marginally significant
decreased risk for its patients to die.

To visualize the relation of the frailties within a hospital the empirical Bayes
estimates of the two frailties for each center are plotted against each other in Figure
2.3, together with the joint empirical distribution of the frailties for two centers with
index 11 and 12.

The hospital effects on a patient can be investigated by looking at the difference
in cumulative hazard and cumulative incidence between the hospitals for a particular
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Figure 2.2: Empirical Bayes estimates of frailties and 95% prediction intervals for event
recurrence and death of 14 centers, sorted by number of patients.

patient. This is shown in Figure 2.4, for a patient whose covariate values correspond
to the mean covariate values in the data.

A pairwise comparison of cumulative incidence curves for an average patient
treated in two hospitals further illustrates the difference in effects. This is depic-
ted in Figure 2.5, which shows the stacked cumulative incidence curves for an average
patient treated in the two hospitals with the lowest and highest frailty for recurrence.
The prognosis shown in the left panel estimates a lower risk for both events, compared
to the right panel. This is explained by the estimated correlation between frailties
(Table 2.3) and the empirical Bayes estimates of the hospitals (Figure 2.3), which
indicate that a hospital with a decreased risk for one cause also has a decreased risk
for the other cause. This makes the hospital corresponding to the left panel more
appealing.
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Figure 2.3: Empirical Bayes estimates of frailties for two causes of failure plotted together for
14 centers. For centers with index 11 and 12 the joint empirical distribution of the frailties
is shown in red and blue respectively.
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left) and death (on the right); each line represents a hospital. Lower panels: cumulative
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line represents a hospital.
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§2.6 Simulation

To investigate the performance of the correlated frailty model a simulation study is
conducted. Multiple data scenarios are simulated and the results of the independent
and correlated frailty model are compared. Motivated by the data example from
Section 2.5 a similar scenario with 2700 patients distributed equally over 15 centers
is used for simulation. To study how the number of centers affects the estimation,
different scenarios with 5, 30 and 50 centers are considered, while keeping the total
number of patients fixed to 2700 (see Table 2.4).

Table 2.4: Scenarios for simulation.

Scenario n K nk Var (Wk1) Var (Wk2) Cor (Wk1,Wk2) Correlation Bounds
A 2700 5 540 0.25 0.25 0.3 (0, 1)
B 2700 15 180 0.25 0.25 0.3 (0, 1)
C 2700 30 90 0.25 0.25 0.3 (0, 1)
D 2700 50 54 0.25 0.25 0.3 (0, 1)
E 2700 15 180 0.1 0.3 0.8 (0, 0.58)
F 2700 15 180 0.25 0.25 -0.3 (0, 1)
Notation: n, total number of patients; K, number of centers; nk, number of patients
per center; Wkj (j = 1, 2), center-specific frailty for cause j.

Survival times are generated by using two Weibull baseline hazards with a com-
mon shape parameter a and rate parameters b1 and b2 for the two causes of failure
respectively. Weibull parameters are fixed throughout the data scenarios and are
estimated from the data example of Section 2.5 (a = 1.01, b1 = 0.05, b2 = 0.03).

Different frailty variance structures are simulated in the different scenarios. Using
an additive gamma model as presented in Section 2.4 correlated frailties are sampled
with variances equal to 0.25 and correlation equal to 0.3 for scenarios A, B, C and
D. As discussed in Section 2.4 different frailty variances by construction do not allow
too large correlations; in addition correlation is assumed to be positive to use the
proposed method. To study the performance of the method proposed in this article
data scenarios E and F which violate these assumptions are simulated. Center and
patient distribution are set closest to the data example (15 centers with 180 patients
each). Frailties for scenarios E and F in Table 2.4 are sampled from a multivariate
lognormal distribution. Scenario E considers a situation in which the correlation is
too large to be modeled: frailty variances are equal to 0.1 and 0.3 for cause 1 and 2
respectively while correlation is equal to 0.8. Scenario F represents a situation in which
negative correlation is present, with frailty variances equal to 0.25 and correlation
equal to -0.3.

Table 2.4 summarizes all scenarios simulated. Censoring times are simulated from
a uniform distribution between 9 and 14 years, motivated by the data example.

For each scenario, 1000 data sets are simulated for which two models are estimated:
a model with independent frailties for the two causes and the proposed correlated
frailty model. Results for frailty variance and empirical Bayes estimates are shown in
Table 2.5 and Table 2.6, respectively.

Table 2.5 shows that the independent frailty model generally estimates the frailty
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variances to be too high with a large bias and large root-mean-square error (RSME).
This seems to be more apparent in data sets with fewer centers.

The correlated frailty model estimates on average results that are closer to the true
parameter values with bias of less than half the empirical standard error apart from
scenarios E and F. Empirical standard errors are smaller compared to the independent
model and are comparable to the average standard error, which even though close, is
consistently smaller than the empirical standard error. Root-mean-square errors are
generally smaller for the correlated frailty model compared to the independent model.

For scenarios with a larger number of centers better estimation results are ob-
tained. Scenario D with 50 centers per data set shows the best estimation results.
Average standard errors are close to the empirical standard errors and RSMEs are
small. Scenario E showcases a situation in which the correlation is too large to be
modeled with the additive gamma construction. Given frailty variances correlation
is restricted to ρ <

√
0.1/0.3 = 0.58 (see equations (2.4.6-2.4.7)). The method in

this case finds a middle ground and underestimates the frailty variance for cause 2 to
allow for a larger correlation. Scenario F considers negative correlation. In this case
frailty variances are underestimated, however they are still closer to the true values
compared to estimates of the independent model and the correlation estimate is very
close to 0.

Table 2.6 shows summary measures of empirical Bayes estimates over the different
data scenarios. Bias as well as RMSEs are reported together with coverage probabil-
ities of prediction intervals acquired using the sampling method described in Section
2.4 and studied for each scenario. The number of centers has a stronger effect on
the empirical Bayes estimates compared to the frailty variance estimates. Scenario
A with only 5 centers shows very poor coverage of the 95% prediction intervals with
probabilities of 0.394 and 0.492 for empirical Bayes estimates corresponding to cause
1 and 2 respectively. Scenarios with 15 centers (B, E and F) achieved coverage prob-
abilities between 0.749 and 0.864 and scenarios with more centers (C and D) achieved
values between 0.877 and 0.930. Bias and RSME of empirical Bayes estimates ap-
pear consistent over different scenarios. To quantify the performance of the method
on the estimation of the center-specific cumulative incidence, its bias and RMSE are
estimated at quartiles of the theoretical overall event time distribution (t1 = 3.55,
t2 = 8.48, t3 = 16.85). The estimates appear unbiased but worsen for the later
time t3. Interestingly, the bias and RSMEs appear not to be influenced much by the
amount of centers and it even appears to become slightly worse if more centers are
present in the data. An explanation could be that the estimation of the cumulat-
ive incidence becomes more challenging due to the data being generated from many
different hazard rates.

For some of the simulated data sets the standard error of the frailty variance
and correlation estimate could not be obtained because the hessian matrix obtained
during optimization was not positive definite. In this case another attempt was made
by starting the optimization of the frailty components from another starting value.
This procedure was able to compute results in some cases (see Table 2.7). In case
the hessian was not positive definite the data set was discarded. The amount of
failed estimation was strongly dependent on the amount of centers in the data set.
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Percentages of second attempts and discarded data sets are given illustrated in Table
2.7.
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Table 2.7: Failed estimation of standard error.

Scenario Nbr. of
data sets

Successful
runs

Success second
attempt

Failed
estimation

Evaluated

A 1200 1062 80 138 1000
B 1200 1165 17 35 1000
C 1200 1117 1 83 1000
D 1200 1142 0 58 1000
E 1200 1046 232 154 1000
F 1200 1196 0 4 1000
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§2.7 Discussion and Conclusion

Using shared frailty models to account for unobserved covariates in multicenter studies
is common practice to avoid bias and to measure the amount of heterogeneity between
centers. Correlated frailty models extend the shared frailty model by incorporating
dependence structures between related individuals. Dependence among transition
intensities of competing risks have come of interest [162, 99, 123].

The model presented uses correlated gamma frailties to model dependence within
hospitals and between two competing risks. The mathematical properties of the
gamma distribution are exploited to construct and estimate correlated frailties. An
estimation procedure using the EM-algorithm is outlined and estimation of the stand-
ard error is illustrated. The estimation procedure provides empirical Bayes estimates
for hospital frailties, which together with their prediction intervals can be used to
compare hospital effects. The model is applied to breast cancer data and a moderate
correlation between the frailties of the competing events recurrence and death is es-
timated. A simulation study is conducted to investigate performance of the method
in different situations. Data scenarios with differing number of centers and correla-
tion structures are considered and estimates of a model with independent frailties are
compared to the proposed correlated frailty model. The performance of the empirical
Bayes estimates obtained by the method was studied under different conditions.

The independent frailty model showed that it is not capable of accounting for
center frailty in case of correlation between frailties. The correlated frailty model
outperformed it in all data scenarios, concerning estimates as well as size of empirical
standard errors. Its estimation benefits from a larger number of centers in the data. In
data scenarios with unattainable correlation structures it still performed reasonably
well and behaved in an expectable way.

The method is well suited to investigate hospital heterogeneity in the presence of
competing risks. It distinguishes between common and separate effects of a hospital
on two competing events and performed well in a simulation study. The proposed
model can be extended to the case of more then two competing events. Dependence
between risks can be modeled by adding frailty components, where shared components
induce dependence between risks. However, the model is limited to positive correlation
between frailties.

Wienke et al.[162] pointed out that in the case of cause-specific mortality the
presence of risk factors might increase the risk of death with respect to all disease,
making the case for positive dependence between risks. At the same time he argues
that everyone dies eventually, so if the risk of death from one cause is decreased
the risk from another cause must be increased, which suggests negative correlation
between risks. Further study should be dedicated to the nature of dependencies among
competing risks.

Putter and van Houwelingen [121] compare a two-point frailty distribution to a
gamma distribution to model association between transition times in multi-state mod-
els. An advantage of the two-point frailty model is that it allows the two frailty terms
to operate on different scale and that, in contrast to the gamma distribution, it allows
negative association. In their simulation study the two-point frailty outperforms the
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gamma distribution. A similar model could be used in the competing risks setting
modelling dependence between risks, possibly with three or four points.
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Appendix

§2.A Probabilities for E-step

Let zk0, zk1, zk2 be the independent gamma distributed frailty components and let
dkj (j = 1, 2) be the number of failures of type j in hospital k (k = 1, ...,K). Defining
Λkj =

∑nk
i=1 Λj0(tki)e

βTj Xki (j = 1, 2) the conditional probability of the data given
frailty components is given as

f(data k|zk0, zk1, zk2) =

nk∏
i=1

(
zk0 + zk1

ν0 + ν1
λ10(tki) exp(β

T
1Xki)

)1{δki=1}
(
zk0 + zk2

ν0 + ν2
λ20(tki) exp(β

T
2Xki)

)1{δki=2}

exp

(
−
(
zk0 + zk1

ν0 + ν1
Λ10(tki) exp(β

T
1Xki) +

zk0 + zk2

ν0 + ν2
Λ20(tki) exp(β

T
2Xki)

))

=(ν0 + ν1)
−dk1 (ν0 + ν2)

−dk2

dk1∑
l=0

(dk1
l

)
z
dk1−l
k0 z

l
k1

 dk2∑
m=0

(dk2
m

)
z
dk2−m
k0 z

m
k2


nk∏
i=1

{
(λ10(tki) exp(β

T
1Xki))

1{δki=1} (λ20(tki) exp(β
T
2Xki))

1{δki=2}
}

exp

(
−zk0

(
1

ν0 + ν1
Λk1 +

1

ν0 + ν2
Λk2

))
exp

(
−zk1

1

ν0 + ν1
Λk1

)
exp

(
−zk2

1

ν0 + ν2
Λk2

)
.

Integrating over the frailty components yields the following conditional probabilities

f(data k|zk0, zk2) =

∫
zk1

f(zk1)f(data k|zk0, zk1, zk2)dzk1

=(ν0 + ν1)
−dk1 (ν0 + ν2)

−dk2

 dk2∑
m=0

(dk2
m

)
z
dk2−m
k0 z

m
k2


nk∏
i=1

{
(λ10(tki) exp(β

T
1Xki))

1{δki=1} (λ20(tki) exp(β
T
2Xki))

1{δki=2}
}

exp

(
−zk0

(
1

ν0 + ν1
Λk1 +

1

ν0 + ν2
Λk2

))
exp

(
−zk2

1

ν0 + ν2
Λk2

)
1

Γ(ν1)

dk1∑
l=0

(dk1
l

)
z
dk1−l
k0

Γ(l + ν1)(
1 + 1

ν0+ν1
Λk1

)l+ν1

f(data k|zk0) =

∫
zk2

f(zk2)f(data k|zk0, zk2)dzk2

=(ν0 + ν1)
−dk1 (ν0 + ν2)

−dk2 1

Γ(ν1)Γ(ν2)

nk∏
i=1

{
(λ10(tki) exp(β

T
1Xki))

1{δki=1} (λ20(tki) exp(β
T
2Xki))

1{δki=2}
}

exp

(
−zk0

(
1

ν0 + ν1
Λk1 +

1

ν0 + ν2
Λk2

))
dk1∑
l=0

dk2∑
m=0

(dk1
l

)(dk2
m

) Γ(l + ν1)(
1 + 1

ν0+ν1
Λk1

)l+ν1 Γ(m+ ν2)(
1 + 1

ν0+ν2
Λk2

)m+ν2
z
dk1+dk2−l−m
k0
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f(data k|zk0, zk1) = (ν0 + ν1)
−dk1 (ν0 + ν2)

−dk2

dk1∑
l=0

(dk1
l

)
z
dk1−l
k0 z

l
k1


nk∏
i=1

{
(λ10(tki) exp(β

T
1Xki))

1{δki=1} (λ20(tki) exp(β
T
2Xki))

1{δki=2}
}

exp

(
−zk0

(
1

ν0 + ν1
Λk1 +

1

ν0 + ν2
Λk2

))
exp

(
−zk1

1

ν0 + ν1
Λk1

)
1

Γ(ν2)

dk2∑
m=0

(dk2
m

)
z
dk2−m
k0

Γ(m+ ν2)(
1 + 1

ν0+ν2
Λk2

)m+ν2

f(data k|zk1) =

∫
zk0

f(zk0)f(data k|zk0, zk1)dzk0

=(ν0 + ν1)
−dk1 (ν0 + ν2)

−dk2 1

Γ(ν0)Γ(ν2)

nk∏
i=1

{
(λ10(tki) exp(β

T
1Xki))

1{δki=1} (λ20(tki) exp(β
T
2Xki))

1{δki=2}
}

dk1∑
l=0

dk2∑
m=0

(dk1
l

)(dk2
m

) Γ(m+ ν2)(
1 + 1

ν0+ν2
Λk2

)m+ν2

Γ(dk1 + dk2 + v0 − l−m)(
1 +

(
1

ν0+ν1
Λk1 + 1

ν0+ν2
Λk2

))dk1+dk2+v0−l−m

z
l
k1 exp

(
−zk1

1

ν0 + ν1
Λk1

)

f(data k|zk2) =

∫
zk0

f(zk0)f(data k|zk0, zk2)dzk0

=(ν0 + ν1)
−dk1 (ν0 + ν2)

−dk2 1

Γ(ν0)Γ(ν1)

nk∏
i=1

{
(λ10(tki) exp(β

T
1Xki))

1{δki=1} (λ20(tki) exp(β
T
2Xki))

1{δki=2}
}

dk1∑
l=0

dk2∑
m=0

(dk1
l

)(dk2
m

) Γ(l + ν1)(
1 + 1

ν0+ν1
Λk1

)l+ν1 Γ(dk1 + dk2 + v0 − l−m)(
1 +

(
1

ν0+ν1
Λk1 + 1

ν0+ν2
Λk2

))dk1+dk2+v0−l−m

z
m
k2 exp

(
−zk2

1

ν0 + ν2
Λk2

)

The observed data likelihood is given as

f(data k) =

∫
zk0

f(zk0)f(data k|zk0)dzk0

=(ν0 + ν1)
−dk1 (ν0 + ν2)

−dk2 1

Γ(ν0)Γ(ν1)Γ(ν2)

nk∏
i=1

{
(λ10(tki) exp(β

T
1Xki))

1{δki=1} (λ20(tki) exp(β
T
2Xki))

1{δki=2}
}

dk1∑
l=0

dk2∑
m=0

(dk1
l

)(dk2
m

) Γ(l + ν1)(
1 + 1

ν0+ν1
Λk1

)l+ν1 Γ(m+ ν2)(
1 + 1

ν0+ν2
Λk2

)m+ν2

Γ(dk1 + dk2 + ν0 − l−m)(
1 + 1

ν0+ν1
Λk1 + 1

ν0+ν2
Λk2

)dk1+dk2+ν0−l−m
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The conditional probabilities of the frailty components given the data necessary for
the E-step are given as

f(zk0|data k) =
f(data k|zk0)f(zk0)

f(data k)

=

dk1∑
l=0

dk2∑
m=0

ck(l,m, ν0, ν1, ν2)

(
1 + 1

ν0+ν1
Λk1 + 1

ν0+ν2
Λk2

)dk1+dk2+v0−l−m

Γ(dk1 + dk2 + v0 − l−m)
z
dk1+dk2+ν0−l−m−1

k0

exp

(
−zk0

(
1 +

1

ν0 + ν1
Λk1 +

1

ν0 + ν2
Λk2

))

f(zk1|data k) =
f(data k|zk1)f(zk1)

f(data k)

=

dk1∑
l=0

dk2∑
m=0

ck(l,m, ν0, ν1, ν2)

(
1 + 1

ν0+ν1
Λk1

)l+ν1
Γ(l + ν1)

z
l+ν1−1

k1 exp

(
−zk1

(
1 +

1

ν0 + ν1
Λk1

))

f(zk2|data k) =
f(data k|zk2)f(zk2)

f(data k)

=

dk1∑
l=0

dk2∑
m=0

ck(l,m, ν0, ν1, ν2)

(
1 + 1

ν0+ν2
Λk2

)m+ν2

Γ(m+ ν2)
z
m+ν2−1

k2 exp

(
−zk2

(
1 +

1

ν0 + ν2
Λk2

))

where

c̃k(l,m, ν0, ν1, ν2) =(dk1
l

)(dk2
m

) Γ(l + ν1)(
1 + 1

ν0+ν1
Λk1

)l+ν1 Γ(m+ ν2)(
1 + 1

ν0+ν2
Λk2

)m+ν2

Γ(dk1 + dk2 + v0 − l−m)(
1 + 1

ν0+ν1
Λk1 + 1

ν0+ν2
Λk2

)dk1+dk2+v0−l−m

ck(l,m, ν0, ν1, ν2) =
c̃k(l,m, ν0, ν1, ν2)∑dk1

l=0

∑dk2
m=0 c̃k(l,m, ν0, ν1, ν2)

.

§2.B Observed information of regression parameters

The term Σηη = I−1
ηη can be computed as described by Louis [101].

Let `∗ and ` be the log-likelihood and the conditional log-likelihood given frailties.
The Fisher information for η̂ can be rewritten in terms of the conditional log-likelihood
given as

Iηη(ν) =E ν

(
− ∂2

∂η∂η
`∗(η)

)
(2.B.1)

=E ν

(
− ∂2

∂η∂η
`(η|W )|W ∈ R

)
− E ν

(
∂

∂η
`(η|W )

∂

∂η
`T (η|W )|W ∈ R

)
+

∂

∂η
`∗(η)

∂

∂η
`∗T (η),
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where W are the unobserved frailties and R is the set of possible frailties given the
data. Notably the last term is zero at the MLE and thus a simplified notation for the
Fisher information at the MLE is given as

Iηη = I(full)
ηη − I(loss)

ηη

where the first term represents the full information and the second term represents
the loss of information due to the unobserved frailties.

Let

• dk1, dk2: number of failures of cause 1 and 2 in hospital k respectively

• d1, d2: number of failures of cause 1 and 2 in total respectively

• dkl′ : number of failures of cause 1 at time tl′ in hospital k

• dkm′ : number of failures of cause 2 at time tm′ in hospital k

• d1l′ : number of failures of cause 1 at time tl′

• d2m′ : number of failures of cause 2 at time tm′

• tkl, l = 1, ..., dk1: ordered event times for cause 1 in hospital k

• tkm,m = 1, ..., dk2: ordered event times for cause 2 in hospital k

• tl′ , (l′ = 1, ..., d1): ordered event times for cause 1

• tm′ , (m′ = 1, ..., d2): ordered event times for cause 2

• Λ10(t) =
∑
tl′≤t

λ10(tl′)

• Λ20(t)
∑
tm′≤t

λ20(tm′)

•
∑nk
i=1 e

βT1XkiΛ10(tki) =
∑d1
l′=1 λ10(tl′)

∑
i:tki≥tl′

eβ
T
1Xki

•
∑nk
i=1 e

βT2XkiΛ20(tki) =
∑d2
m′=1 λ20(tm′)

∑
i:tki≥tm′

eβ
T
2Xki

• Rk(t) = {i : tki ≥ t}: risk set at time t for hospital k

The conditional log-likelihood given frailties can be expressed as

` =
∑
k

dk1 log(
zk0 + zk1

ν0 + ν1
) +

dk1∑
l=1

log(λ10(tkl)) +

dk1∑
l=1

βT1Xkl

− zk0 + zk1

ν0 + ν1

d1∑
l′=1

λ10(tl′)
∑

i∈Rk(tl′ )

eβ
T
1Xki

+ dk2 log(
zk0 + zk2

ν0 + ν2
) +

dk2∑
m=1

log(λ20(tkm)) +

dk2∑
m=1

βT2Xkm

− zk0 + zk2

ν0 + ν2

d2∑
m′=1

λ20(tm′)
∑

i∈Rk(tm′ )

eβ
T
2Xki .
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The term I
(loss)
ηη is the product of the gradient vector of the conditional log-likelihood

with itself. The elements of the gradient vector are:

∂

∂β1j

` =
∑
k


dk1∑
l=1

Xklj −
zk0 + zk1

ν0 + ν1

d1∑
l′=1

λ10(tl′)
∑

i∈Rk(tkl′ )

Xkije
βT1Xki


∂

∂β2j

` =
∑
k


dk2∑
m=1

Xkmj −
zk0 + zk2

ν0 + ν2

d2∑
m′=1

λ20(tm′)
∑

i∈Rk(tm′ )

Xkije
βT2Xki


∂

∂λ10l′
` =

∑
k

 dkl′

λ10l′(tl′)
− zk0 + zk1

ν0 + ν1

∑
i∈Rk(tl′ )

eβ
T
1Xki


=

d1l′

λ10l′(tl′)
−
∑
k

zk0 + zk1

ν0 + ν1

∑
i∈Rk(tl′ )

eβ
T
1Xki

∂

∂λ20m′
` =

d2m′

λ20m′(tm′)
−
∑
k

zk0 + zk2

ν0 + ν2

∑
i∈Rk(tm′ )

eβ
T
2Xki

The second order derivatives to calculate the full information matrix I(full) are:

∂2

∂β1j∂β1h

` =−
∑
k

zk0 + zk1

ν0 + ν1

d1∑
l′=1

λ10(tl′)
∑

i∈Rk(tl′ )

XkijXkihe
βT1Xki

∂2

∂β1j∂β2h

` = 0

∂2

∂β1j∂λ10l′
` =−

∑
k

zk0 + zk1

ν0 + ν1

∑
i∈Rk(tl′ )

Xkije
βT1Xki

∂2

∂β1j∂λ20m′
` = 0

∂2

∂β2j∂β2h

` =−
∑
k

zk0 + zk2

ν0 + ν2

d2∑
m′=1

λ20(tm′)
∑

i∈Rk(tm′ )

XkijXkihe
βT2Xki

∂2

∂β2j∂λ10l′
` = 0

∂2

∂β2j∂λ20m′
` =−

∑
k

zk0 + zk2

ν0 + ν2

∑
i∈Rk(tm′ )

Xkije
βT2Xki

∂2

∂λ10p′∂λ10l′
` = 0,

∂2

∂λ10l′∂λ10l′
` = − d1l′

λ10l′(tl′)2

∂2

∂λ10p′∂λ20m′
` = 0

∂2

∂λ20p′∂λ20m′
` = 0,

∂2

∂λ20m′∂λ20m′
` = − d2m′

λ20m′(tm′)2
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