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1. Introduction

CHAPTER 1
Introduction

Statistical analysis aims to find patterns in data and to increase understanding of
such data. The beauty of statistics is that it can be applied to a great variety of
fields to answer relevant research questions. The particular field of statistics called
survival analysis is where the topics of this thesis find their place. Survival analysis
deals with life-time data. In this type of data the time from a specific starting point
until an event of interest occurs are recorded. In medical research for example, time
from diagnosis of disease until death could be studied. What characterizes life-time
data, also called survival data, is that it is generally incomplete. Some individuals
in the data might not have experienced the event of interest at the end of the study
period or have dropped out of the study before the event has occurred. These data are
called right-censored. The event time is unknown, it is known however, that the event
had not occurred before the last observation time. To handle this particular type of
missing data, and other similar types, special methodology is necessary summarized
under the term survival analysis. Even though survival analysis is relevant to a large
number of applications, the works in this thesis are all motivated by medical research.
For this reason, examples are given in the context of clinical research.

Survival analysis is used by clinicians to identify risk factors associated with the
occurrence of a clinical event of interest. For example in cancer research, clinicians use
survival models to investigate if a patient’s age, sex, tumor size, and other variables
are associated to the risk of death. To describe the evolution of disease complex
mathematical models are required. Patients may experience several disease related
events in different orders. Multi-state models can be applied in such context. Another
extension of survival models is to add a random effect, also called frailty. Frailty
terms are used to model unobserved covariates which might have an effect on the
event of interest. In all studies not all relevant patient or disease characteristics can
be collected and therefore the survival model is incomplete. Random effects quantify
the so called unobserved heterogeneity resulting from an incomplete model.

Survival models may be used to investigate the effect of risk factors on clinical
events of interest and to predict survival probabilities. Such predictions inform both
patients and clinicians of a patient’s prognosis and may help in the shared decision
making process. Prediction models are available for a variety of diseases and there
is a demand for more and more sophisticated models. Ordinary prediction models
are often limited to a single prediction time point. This means that predictions can
only be made at a particular time, such as at time of diagnosis of disease. When a
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1 patient comes back for a follow-up visit, such models are not able to provide accurate

predictions. A patient may experience disease related events over time which are not
taken into account by a model that considers only risk factors known at diagnosis or
at start of treatment. Dynamic prediction models provide updated predictions from
different time points during follow-up. They are able to include updated information
as it becomes available. A simple idea to create dynamic prediction models is through
the landmarking approach. Predictions are made from a chosen landmark time point
by using a subset of the data consisting of patients still alive at that time. Multiple
landmark times can be chosen to make predictions from different time points during
follow-up.

The remainder of this chapter introduces basic concepts of survival analysis as
well as more complex models that are used in this thesis. The following Section
provides an introduction to survival analysis and explains simple survival models.
Section 1.2, 1.3, 1.4, 1.5 introduce frailty models, competing risks models, multi-
state models, and dynamic prediction models, respectively. In Section 1.6 and 1.7
the C-index and multiple imputation are explained, respectively. Section 1.8 and 1.9
introduce the motivating soft tissue sarcoma data set and the developed prediction
tool, respectively. The last Section gives an overview of the remaining chapters of
this thesis.

§1.1 Introduction to survival analysis

The concepts and definitions of this Section are introduced as in Klein and Moeschber-
ger [92], which is referred to for further reading.

Survival analysis developed from the need to analyse life-time data. The structure
of such data can be of different kind and often motivates the development of new
methods. A first step in understanding survival concepts is in understanding the data
it has to deal with.

The subject of study is the event time T . In medical research, T could represent
the time from diagnosis until death. The event time for an individual may not be
observed, if he dropped out of the study early, or the study ended before the event
of interest occurred, or another event occurred. Denote by C the right censoring
time for an individual. This is the last time a subject was observed in the study. The
information observed for an individual is T̃ = min(T,C), the minimum between right-
censoring and event time, and δ = 1(T ≤ C), the event time indicator. δ = 1, if the
event time was observed and δ = 0, if it was not. Survival models for right-censored
data assume that the event time T and the right-censoring time C are independent,
sometimes conditional on covariates.

For other types of events, the exact event time cannot be observed directly. In
cancer care for example, after removal of the tumor a patient attends scheduled follow-
up visits where he is screened for recurrence of disease. If recurrence is found it is only
known that it had occurred between the last negative screening and the first positive
screening. The time until recurrence is interval-censored.

To study the distribution of the survival time T different parameters are studied.
The most prominent function of interest is the survival function S(t) = P (T > t),
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which at time t is equal to the probability of being event-free at time t. The survival
function is usually modelled by the hazard function

λ(t) = lim
∆t→0

P (t ≤ T < t+ ∆t | T ≥ t)
∆t

.

The hazard function at time t is equal to the conditional probability of experiencing
the event in the next instant conditional on being event-free just before time t. The
survival function can be defined in terms of the hazard function,

S(t) = exp

(
−
∫ t

0

λ(u)du

)
,

and it can be estimated nonparametrically with the Kaplan-Meier estimator [88]. Let
t1 < t2 < ... < tD be the ordered event times, di the number of events at time ti, and
Yi denote the number of individuals at risk at time ti. The Kaplan-Meier estimator
of the survival function is given as follows

Ŝ(t) =

{
1, if t < t1∏
ti≤t

(
1− di

Yi

)
, if t1 ≤ t.

(1.1.1)

An example of survival data set and the corresponding Kaplan-Meier curve are
shown in Figure 1.1. Subject 2 and 10 are right-censored. The Kaplan-Meier curve
changes at event times and remains unchanged at censoring times. The censoring
times however affect the size of the jump the curve makes.

The effect of a covariate vector Z is most commonly modelled with the Cox pro-
portional hazards model [44] in which the hazard is defined as

λ(t | Z) = λ0(t) exp(βTZ),

where λ0(t) is the baseline hazard and β is the vector of regression coefficients. In the
Cox model, the effect of covariates is assumed to be multiplicative on the nonpara-
metric baseline hazard. Let t1 < t2 < ... < tD be the ordered event times, Z(i) the
covariates of the individual who experiences the event at time ti, Zj the covariates
of individual j, and R(ti) denote the set of individuals still at risk at time ti. The
vector of regression coefficients β is estimated, assuming all event times are distinct,
by maximising the partial likelihood

L(β) =

D∏
i=1

exp(βTZ(i))∑
j∈R(ti)

exp(βTZj)
,

and the baseline hazard λ0(t) can then be computed using the Breslow estimator [34].
The covariates Z discussed so far are time-fixed and known at the time origin.

However covariates can also change over time, like blood values which are repeatedly
measured. Let Z(t) be a vector of time-dependent covariates, whose values change
over time. The Cox model with time-dependent covariates is defined as
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Figure 1.1: Left panel: survival data for 10 subjects. Right panel: the corresponding condi-
tional Kaplan-Meier survival estimate.

λ(t | Z(t)) = λ0(t) exp(βTZ(t)).

The partial likelihood for this Cox model is defined analogously to the model
with only time-fixed covariates. Let Z(i)(ti) be the covariate vector at time ti of the
individual who experiences the event at time ti, Zj(t) the covariate vector of individual
j at time t, and R(ti) the set of individuals still at risk at time ti. Again assuming
all event times are distinct, the vector of regression coefficients β is estimated by
maximising the partial likelihood

L(β) =

D∏
i=1

exp(βTZ(i)(t))∑
j∈R(ti)

exp(βTZj(t))
.

§1.2 Frailty models

Survival regression models aim to explain the differences of survival times between
individuals using covariate information. If the model is perfectly specified, the remain-
ing variation reflects the randomness of the event time, conditional on the covariate
values. However, often not all relevant covariates can be included in the model. The
variation of survival time accounted for the missing covariates in the model is called
unobserved heterogeneity. The effect of unobserved heterogeneity on the event time
is called frailty [157].
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In survival analysis, frailty can be modelled by a random effect included in a
survival model. The variance of the random effect is a measure of the amount of
unobserved heterogeneity. The frailty variable can be chosen subject specific or it can
be shared for clusters of individuals. In univariate frailty models, a subject specific
frailty models unobserved heterogeneity on the individual level. In multivariate frailty
models, a shared frailty variable is used for a cluster of individuals which models
unobserved heterogeneity on the cluster level.

The random frailty variable can be incorporated in a survival model with a mul-
tiplicative effect on the hazard. The cluster i specific frailty Wi has a multiplicative
effect on the hazard,

λ(t |Wi) = Wiλ0(t),

where λ0(t) is the baseline hazard. Often E(Wi) = 1, then V ar(Wi) describes the
extent of unobserved heterogeneity.A univariate frailty model has cluster size equal to
1. In this case, the estimated frailty variance represents the unobserved heterogeneity
between individuals. For cluster size bigger than 1 the estimated frailty variance
represents the unobserved heterogeneity between clusters. The effect of a covariate
vector Z can be modelled by using a Cox model with frailty term

λ(t |Wi,Z) = Wiλ0(t) exp(βTZ),

where λ0(t) is the baseline hazard and β are the regression coefficients. The frailty
terms Wi are iid random variables with a specific distribution. The gamma distribu-
tion is a popular choice as frailty distribution due to its mathematical properties. An
additional assumption of the frailty model is that censoring does not depend on the
frailty [109].

§1.3 Competing risks models

In some applications, more than one type of terminal event is possible, such as in the
study of different causes of death. A competing risks model is described by a starting
state in which individuals are event-free and several end states, also referred to as
causes of failure, see Figure 1.2.

The survival data of an individual has a different structure. Let T1, T2, ..., TJ be
the event times of J competing events and C the independent right-censoring time.
For an individual, only the minimum of the first event or right-censoring time T =

min(C, T1, T2, ..., TJ) is observed together with an indicator δ = 0, 1, ..., J indicating
the cause of failure or censoring (δ = 0).

A fundamental concept used in competing risks analysis is the cause-specific haz-
ard,

λj(t) = lim
∆t→0

P (t ≤ T < t+ ∆t, δ = j | T ≥ t)
∆t

,

where j, (j = 1, ..., J) is one of the competing events. The cause-specific hazard
represents the conditional probability of experiencing event j in the next instant
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Figure 1.2: Competing risks model with J causes of failure.

given still event-free just before time t. Define the cumulative cause-specific hazard
by

Λj(t) =

∫ t

0

λj(u)du.

A Cox model can be used to model the cause-specific hazard together with the
effect of covariates Z,

λj(t | Z) = λj0(t) exp(βTj Z),

where λj0(t) and βj are the cause-specific baseline hazard and the regression coeffi-
cients, respectively.

A quantity of interest, in particular in applications with competing risks, is the
cumulative incidence function. This function corresponds to the probability of exper-
iencing an event j before time t,

Ij(t) = P (T ≤ t, δ = j) =

∫ t

0

λj(u)S(u)du,

where S(u) = P (T > u) is the probability of being event-free at time u. In this
context the survival function depends on all cause-specific hazards,

S(t) = exp

− J∑
j=1

Λj(t)

 ,

where Λj(t) is the cause-specific cumulative hazard at time t. The cumulative incid-
ence function therefore not only depends on cause j but also on the cause-specific
hazards of all the other causes.

In the competing risks setting, the cause-specific cumulative incidences are often
the quantities of interest to answer questions such as, what is the probability of
a recurrence of disease within a certain time frame. The Cox model can be used
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to model covariate effects on the cause-specific hazards, however the effects on the
cause-specific cumulative incidences are not straightforward, since they depend on all
other cause-specific hazards simultaneously. Another approach to model the effect of
risk factors was introduced by Fine and Gray [57]. The covariate effects are modelled
directly on the cause-specific cumulative incidence through the subdistribution hazard,

λ̄j(t) = −d log(1− Ij(t))
dt

.

To model covariate effects a proportional hazards model analogous to the Cox
model was proposed,

λ̄j(t | Z) = λ̄j0(t) exp(βTj Z).

This model can be estimated with a partial likelihood approach like the Cox model.
The regression coefficients from Fine and Gray’s model have an intuitive interpretation
because they are regressed on the cause-specific cumulative incidence directly and
therefore can be easily interpreted clinically.

§1.4 Multi-state models

Competing risks models extend standard survival models by adding more end states.
Multi-state models allow multiple end points as well as transition states [119]. Figure
1.3, represents a particular multi-state model referred to as illness-death model. An
individual starts in state 0, he can then move to state 1, which can represent a disease
he may experience and subsequently move to state 2, death.

The transitions from state i to state j are modelled by the transition hazard,

λij(t) = lim
∆t→0

P (t ≤ T < t+ ∆t | T ≥ t)
∆t

,

where T denotes the time of reaching state j from state i. The types and times of the
occurrence of events of an individual define his path through the multi-state model.
A common assumption, is that the multi-state model is a Markov model. Given the
present state and the event history (the trajectory through the multi-state model so

State 0:
Disease-free

State 1:
Disease

State 2:
Death

Figure 1.3: Illness-death model.
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present state.
To model the effect of covariates on the transition hazards in a Markov model the

Cox model can be used,

λij(t | Z) = λij0(t) exp(βTijZ),

where λij0(t) and βij are the transition-specific baseline hazard and regression coef-
ficients, respectively. Here the baseline hazards are transition-specific. One could
however choose a subset of baseline transition hazards to be proportional to each
other. For example in Figure 1.3, the two transitions towards state 2 (the death
state) could be assumed proportional. This model would be similar to a single end
point Cox model with the disease state as a binary (0, 1) time-dependent covariate.
The multi-state model however would have the additional benefit of simultaneously
modelling the rate of occurrence of the time-dependent covariate.

Similar to the competing risks setting the covariate effects are difficult to inter-
pret. The effects act on the transition hazard which is the conditional probability of
moving to state j at time t, given in state i just before t. From those transition haz-
ards however, clinically more relevant and accessible quantities can be computed, for
example, probabilities of future events. Particularly, the conditional probabilities of
future events given a patients event history and covariate information Z. In a Markov
multi-state model instead of the entire event history only the current state is of relev-
ance. For example in cancer care, given that a patient with particular characteristics
is recurrence-free one year past surgery, the probability of getting a recurrence within
the next 5 years may be of interest. Estimating these probabilities, also referred to
as making predictions, is very relevant to patients and clinicians and can be used in
the shared decision making process. The probabilities are expressed as Pij(u, t | Z),
which represents the conditional probability of being in state j at time t given that
the subject is in state i at time u. These probabilities can be computed from the
transition hazards [119].

§1.5 Dynamic prediction

The previously discussed survival models may be used to model disease progression
and to find risk factors for events of interest. They are also used to predict probabilities
of future events. Prediction models are gaining popularity in the medical field, where
they are used to inform clinician and patient about a patient’s future prognosis.
Survival estimates can help in the shared decision making process between patient
and clinician. Many prediction models use baseline covariates; covariates measured
before the time origin, such as time of diagnosis or time of treatment.

Some disease markers however, are measured and updated during follow-up. For
example, blood values could be measured regularly, or recurrence of disease could be
diagnosed during follow-up. Updating predictions over time with new information
is defined as dynamic prediction. Dynamic prediction models can provide survival
predictions at different time points, using all available information at that time point.
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Among the models previously discussed only multi-state models are able to use up-
dated information, if it can be expressed by an intermediate state. For example,
the information of disease recurrence (yes vs. no) could be modelled by a state in a
multi-state model.

Another approach to dynamic prediction is to use a landmark model [13, 149, 151].
Landmarking was introduced to avoid a common mistake in the analysis of tumor
response. Patients were treated with chemotherapy and then followed to see whether
the tumor responded to treatment. A common malpractice was to make two groups
of patients, responders and nonresponders and to compare their survival times from
start of treatment. This is known in literature as immortal time bias. The groups are
compared from time of treatment, the status of response however, is not yet observed
at that time. In this situation information from the future is used. An individual
needs to survive long enough for a response to develop and to be observed. Individuals
who die early and did not have time to develop a response yet are automatically
grouped into the nonresponse group, giving this group an unfair disadvantage. On
the other hand, responders must first survive long enough to become a responder and
have therefore an unfair survival advantage. In this grouping scheme, responders are
immortal until their time of response, hence the name immortal time bias.

A solution proposed by [13] is to evaluate the effect of tumor response with a
landmark model. The idea is to choose a specific time point tLM called landmark
as new time origin for the analysis. At the landmark time the response of patients
is evaluated and can be treated as a baseline covariate. The outcome is survival
from landmark time and the interpretation of the response variable is response before
landmark time. For this analysis only patients who are still in the risk set, meaning
alive and in follow-up, are considered. Patients who developed a response before the
landmark will be grouped in the response group. Patients who did not have a response
before the landmark are grouped in the nonresponse group. Note that patients in the
nonresponse group may develop a response later on. Figure 1.4 shows 3 landmark
data sets and their corresponding Kaplan-Meier curves. The figures for landmark at
time 0 show the original data and corresponding Kaplan-Meier survival curve. At time
t = 0 no patient has developed a tumor response therefor all patients are grouped in
the nonresponse group. The data for landmark at time 5 show that only individuals
still in follow-up at that time are selected and that only individuals who developed
a response before time 5 are grouped into the response group. The other individuals
are grouped in the nonresponse group, even though they may develop a response later
on.

In [151] it was suggested to use landmark models to make dynamic predictions.
The Cox model is applied to the landmark data set to make predictions from the
landmark time tLM up until a prediction horizon tLM + w, defined as

λ(t | Z, tLM , w) = λ0(t | tLM , w) exp(βTLMZ), tLM ≤ t ≤ tLM + w,

where λ0(t | tLM , w) is the baseline hazard for landmark tLM and prediction window
w, βLM are the landmark-specific regression coefficients, and Z are regression coeffi-
cients. The Cox landmark model can be used to predict survival probabilities from
the landmark time, using the updated information of response status of a patient.
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Figure 1.4: Left panel: landmark data sets. Right panel: the corresponding Kaplan-Meier
survival estimate.
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to make predictions from multiple landmarks one can choose to create a different
landmark model for each landmark time, or combine them to a landmark supermodel
[151].

§1.6 AUC and C-index

Survival predictions are important to patients and clinicians. More and more predic-
tion models are becoming available for a variety of diseases. Before such a prediction
model is published its clinical importance must be investigated. Does the model
provide accurate predictions? To validate a prediction model different prediction
aspects are considered [150].

Existing methods, such as sensitivity and specificity, were extended to survival
analysis by [79], [80], and [171]. Sensitivity and specificity were originally defined for
a binary outcome B, where B = 1 is considered a ‘case’ and B = 0 is considered
a ‘control’. For a covariate X and a classification criterion c a simple prediction
rule is to predict individuals to be cases if X > c and otherwise controls. The
correct classification rates, sensitivity(c) = P (X > c | B = 1) and specificity(c) =
P (X ≤ c | B = 0), summarize the accuracy of this classification rule.

A graphical summary which illustrates the whole range of sensitivity and spe-
cificity for different values of c is the Receiver Operation Characteristic (ROC) curve
which plots sensitivity against 1-specificity, illustrating the difference of the marker
distribution between cases and controls. In case the marker distributions are the
same, the ROC curve lies on the 45 degree line, which indicates that the marker
does not contribute in distinguishing cases from controls. A summarizing measure of
concordance between marker and outcome, which can be used to measure predictive
accuracy is the Area Under the ROC Curve (AUC).

Heagerty and Zheng (2005) [80] extended the concepts of sensitivity and specificity
to survival analysis by defining time-specific ‘cases’ and ‘controls’. They give several
different definitions, where particularly their incident cases and dynamic controls is
of interest. At time t incident cases are those individuals that experience the event
at time t and dynamic controls are those individuals who survive beyond time t. The
time-specific AUC based on this definition of cases and controls is a time-specific
measure of discrimination.

Discrimination refers to how well a model can distinguish between high and low
risk individuals. A prediction model discriminates well if it predicts high risk for indi-
viduals who experience the event earlier and lower risk for individuals who experience
the event late or not at all during the follow-up.

A weighted average of the time-specific incident/dynamic AUC coincides with
Harrel’s concordance index (C-index), which is a popular measure of model discrim-
ination [149, 78]. It was originally defined as the proportion of evaluable ordered pairs
for which prediction and outcome are concordant. Ordered pairs are individuals (i, j)

where the observation time of individual i is shorter or equal to the observation time
of individual j. An ordered pair is evaluable if it was observed that i experienced
the event of interest before j. Pairs in which i was censored before j experienced
the event or was censored are not evaluable, since it is unknown who experienced the
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risk for the individual experiencing the event of interest earlier. In the case that both
patients have the same predicted risk 0.5 is added to the count of concordant pairs
instead of 1. The C-index is computed by dividing the number of concordant pairs by
the number of evaluable pairs. The values of the C-index are between 0 and 1, where
a value of 0.5 indicates no discriminative ability.

The incident/dynamic AUC measures the ability of the model to discriminate
at a particular time t. The C-index measures the overall ability of the model to
discriminate between individuals. Considering dynamic predictions, one might be
interested in the ability of the model to discriminate within a time window [t, t+w].
A dynamic C-index can be obtained by computing the proportion of ordered pairs for
which prediction and outcome are concordant, only for individuals who are at risk at
time t and considering event times censored at time t+w [149]. For predictions made
at time t, this index measures the discriminative ability of the model within a time
window [t, t+ w].

In the competing risk setting, [165] proposed a different concordance index by
defining evaluable and concordant patient pairs differently. For the event of interest,
they define an ordered pair as evaluable if the first patient experiences the event at
a time at which the second patient is still at risk. The risk set at time t in this case
is made of patients who did not yet experience any event and are still in follow-up
and those individuals who experienced a competing event. Furthermore, an ordered
evaluable pair is defined as concordant if the first patient to experience the event of
interest has a higher predicted risk than the other patient. In case that both patients
have the same predicted risk 0.5 is added instead of 1 to the count of concordant
pairs.

§1.7 Multiple imputation

Most statistical methods cannot be applied when missing information are present in
the data. By default many statistical programs will remove observations with missing
values and analyse only complete observations. This approach reduces the amount of
subjects and therefor the power of the statistical tests and can lead to biased results
in some cases [100].

Multiple imputation is a general approach to handling missing data which uses all
available information, even for subjects with missing values [125, 126]. The method
increases statistical power and reduces bias compared to a complete case analysis. The
idea behind imputation of missing values is to generate likely values for the missing
values to create a complete data set. Multiple imputation uses an imputation model
to generate multiple complete data sets. For these data sets the observed values are
the same, however the missing values are different. Statistical methods can be applied
to each complete data set and results can be pooled using Rubin’s rule [125].

The concept of multiple imputation was introduced by Rubin [125]. The idea is to
draw m values for each missing value from the posterior predictive distribution of the
missing values under a Bayesian model for the data and the missing-data mechanism.
From the resulting m complete data sets m complete-data statistics Q̂1, ..., Q̂m and
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the corresponding variance-covariance U1, ..., Um can be computed and combined. The
estimate from an analysis using multiple imputation can be computed by averaging
the complete-data estimates

Q̄ =
1

m

m∑
l=1

Q̂l.

The variance-covariance of Q̄ is equal to

T = Ū +
m+ 1

m
B,

where

Ū =
1

m

m∑
l=1

Ul,

and

B =
1

m− 1

m∑
l=1

(Q̂l − Q̄)(Q̂l − Q̄)T .

The terms Ū and B correspond to the within-imputation variability and the between-
imputation variability.

Throughout this thesis the package Amelia II was used to generate multiple im-
putations [82]. The assumptions for the imputation model in Amelia II are that the
data are missing at random and that the complete data are multivariate normal.
Missing at random means that the distribution of missingness only depends on the
observed data. The multivariate normal distribution may only crudely approximate
the true data distribution, however there is evidence that it works well even for cat-
egorical or mixed data [82, 129, 130]. The imputation models employed in this thesis
included all variables used in the analysis together with the event status. Categorical
variables were modelled as such, using the noms option of the amelia function and
age and size were modelled using a square root transformation, so that no negative
values could be imputed. For categorical covariates amelia determined the number of
categories p and substituted them with p−1 binary variables to specify each category.
These variables were treated as if they were continuous variables and missing inform-
ation received continuous imputations. Those were scaled into probabilities for each
category and from the resulting multinomial distribution one category was drawn so
that the original multinomial variable is reconstructed.

The number of imputations was chosen to be equal 5 in Chapter 6 and 8 and 10
in Chapter 7.
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Soft tissue sarcomas (STS) are a rare type of cancer that make up approximately 1%
of all adult cancers [137]. It begins in the bodies connecting tissues, such as muscle,
fat, blood vessels, nerves, tendons and the lining of joints [3]. It can appear anywhere
in the body but most commonly in the extremities (about 60% of STS cases) [41].
The standard treatment for primary STS patients is surgical removal of the tumor
and potentially (neo)adjuvant radiotherapy or chemotherapy [56].

Figure 1.5 shows the different disease states a patient may follow. After surgery a
patient can remain disease free, or develop local recurrence (LR) or distant metastasis
(DM), or die. A LR is diagnosed if evidence of tumor at the previously treated tumor
bed is found, while DM is diagnosed if spread of tumor is found at another location.

Surgery

Local recurrence

Local recurrence &
distant metastasis

Distant metastasis

Death

Figure 1.5: Soft tissue sarcoma data.

Because of the rarity of STS, many studies conducted have been subject to small
sample size and large heterogeneity in the study population [53, 102]. Some prognostic
factors for survival, such as histology, grade, depth and size were generally recognized
[83, 117, 169, 53, 73, 146, 140, 98, 139, 29]. The effect of surgical margin and LR
however, was long unclear [140, 106, 164, 74, 110, 102, 111]. Surgical margin is
the amount of healthy tissue that is removed surrounding the tumor during primary
surgery. Generally, it is desired to remove the tumor surrounded by healthy tissue,
but this can be challenging depending on the tumor location. The effect of surgical
margin has been of great interest, because of the effect on the quality of life after
surgery.

The lack of an established prognostic profile for STS patients motivated a group
of researchers to start an interdisciplinary project between the Leiden University
Medical Center and the Mathematical Institute of Leiden University in 2016. The
aim was to collect STS data on an international scale and to develop statistical models
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to investigate the effect of risk factors on clinical outcomes, with particular interest
in surgical margin, as well as to provide reliable survival predictions for patients.
The funding granted by the Dutch Cancer Society (DCS) - KWF Kankerbestrijding
allowed this project to become reality. The work in this thesis is the result of this
collaboration.

Clinical data was collected retrospectively over the period of this project by con-
tacting tertiary centers treating high-grade STS patients of the extremities. Patients
were selected based on histological subtype, if they were treated surgically with cur-
ative intent from 2000 on, and if they had high-grade disease (as defined by FNCLCC
larger than grade 2 [145]). All the collaborating centers adhered to the guidelines of
the European Society for Medical Oncology for follow-up [56]. Chapter 4 is the first
published article resulting from this collaboration. For each Chapters 5, 6, 7 more
data has been added.

§1.9 Personalised sarcoma care app

For clinical decision making a patients prognosis always has played an important role.
Reliable survival predictions are an important information to clinicians to consider
in the patient care. Nowadays particularly in cancer care, the clinical community
embraces the concept of shared decision making. In the shared decision making ap-
proach, the patient is involved in the choice of treatment. An important information,
for this process are a patient’s survival predictions. Prediction models have become
popular in the clinical world [1, 6, 7]. Their increase and availability for various
disease reflects the demand.

To support the shared decision making process, a prognostic prediction model, the
PERsonalised SARcoma Care (PERSARC) model, for patients with high-grade STS
of the extremities was developed in Chapter 5 [20]. It predicts from time of surgery
a patient’s probability of developing LR and survival. The model was internally
validated by means of discrimination and calibration. To make predictions accessible
to clinicians a mobile application was developed, which is available in the Apple and
Google Play store [4, 5]. In the app patient specific characteristics can be entered and
predictions are returned, see Figure 1.6 for illustration.

A group of researchers from Leiden University Medical Center was granted funding
from the Dutch Cancer Society (KWF) to implement shared decision making for high-
grade soft tissue sarcoma patients in the Netherlands. The goal is to ensure that
soft tissue sarcoma patients receive personalised care, in which risks and benefits of
treatment options and patient preferences are balanced. Part of the implementation
strategy is the introduction of the PERSARC app to clinical practice.

An updated version of the PERSARC app is expected to be released in 2020.
PERSARC version 2.0 will be able to provide dynamic predictions of survival as
described in Chapter 7. Predictions will be made taking LR and DM events, that
occur during follow-up, into account.
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Figure 1.6: PERSARC app. Left panel: patient characteristics interface, with information
of a 50 year old patient, with a 10 cm superficial tumor of type myxofibro sarcoma. Right
panel: his prediction of survival and probability of recurrence within 5 years, with radiotherapy
treatment and a margin of 0.1-2mm.
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§1.10 Outline of thesis

The main objective of this thesis was to develop clinically relevant survival models
for patients with high-grade STS of the extremities, in particular the development
and validation of prediction models for use in clinical practice. The interdisciplinary
collaboration between the Mathematical Institute of Leiden University and the Leiden
University Medical Center resulted in important contributions to the care of STS
patients. Each chapter is briefly summarized below.

In Chapter 2 [17] a novel frailty model is proposed for multi-center data with two
competing risks. Frailty variables are used to model unobserved heterogeneity on the
hospital level; they could be interpreted as the "hospital effect" on the competing
events. The frailty model developed models the hospital effects on the competing
events to be correlated within each hospital.

In Chapter 3, which is to be submitted to Statistics in Medicine [16], the effect
of interval censoring is studied on the predicted accuracy of a binary disease marker.
The motivation comes from cancer care. After surgery a patient is regularly screened
for LR and DM. Once a recurrence is diagnosed , however, it is only known that it
occurred between the last negative and the first positive screening. In this chapter
we investigate through simulations how the assessment of predictive accuracy of re-
currence is affected by the intermittent screening process.

Chapter 4 [21] was the first in a series of publications based on the growing soft
tissue sarcoma data set. A data set of 687 patients was analysed with a multi-state
model. The effect of risk factors on LR and DM/Death were studied, with particular
interest in the effect of surgical margin.

Chapter 5 [20] is the continuation of the STS project, with a data set of 766
patients. Prediction models for survival and probability of local recurrence were
developed and implemented in the PERSARC mobile application. The models are
internally validated in terms of calibration and discrimination.

In Chapter 6 [19] a dynamic prediction model based on 2232 STS patients was
developed. A landmark supermodel was used to provide predictions of additional
5-year survival from different prediction time points during follow-up. Disease related
events, LR and DM, are used to update predictions over time and covariates were
investigated for time-varying effects. The model was internally validated.

In Chapter 7, which is to be submitted to Surgical Oncology [18], the previously
developed dynamic prediction model for STS patients is updated and externally val-
idated. The updated model is based on 3826 patients and now includes grade as
additional covariate in the model. It was externally validated using a cohort of 1111
patients and it is implemented in the updated PERSARC mobile application.

In Chapter 8 [14] a multi-state model was developed for 982 Ewing sarcoma pa-
tients. Adverse events in the multi-state model were LR, DM of the lungs, DM at
other locations, and death. The effect of risk factors was studied with particular
interest in surgical margins, histological response, and radiotherapy.

In Chapter 9 previous chapters are put in broader perspective and future research
directions are suggested.
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