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1. Introduction

CHAPTER 1
Introduction

Statistical analysis aims to find patterns in data and to increase understanding of
such data. The beauty of statistics is that it can be applied to a great variety of
fields to answer relevant research questions. The particular field of statistics called
survival analysis is where the topics of this thesis find their place. Survival analysis
deals with life-time data. In this type of data the time from a specific starting point
until an event of interest occurs are recorded. In medical research for example, time
from diagnosis of disease until death could be studied. What characterizes life-time
data, also called survival data, is that it is generally incomplete. Some individuals
in the data might not have experienced the event of interest at the end of the study
period or have dropped out of the study before the event has occurred. These data are
called right-censored. The event time is unknown, it is known however, that the event
had not occurred before the last observation time. To handle this particular type of
missing data, and other similar types, special methodology is necessary summarized
under the term survival analysis. Even though survival analysis is relevant to a large
number of applications, the works in this thesis are all motivated by medical research.
For this reason, examples are given in the context of clinical research.

Survival analysis is used by clinicians to identify risk factors associated with the
occurrence of a clinical event of interest. For example in cancer research, clinicians use
survival models to investigate if a patient’s age, sex, tumor size, and other variables
are associated to the risk of death. To describe the evolution of disease complex
mathematical models are required. Patients may experience several disease related
events in different orders. Multi-state models can be applied in such context. Another
extension of survival models is to add a random effect, also called frailty. Frailty
terms are used to model unobserved covariates which might have an effect on the
event of interest. In all studies not all relevant patient or disease characteristics can
be collected and therefore the survival model is incomplete. Random effects quantify
the so called unobserved heterogeneity resulting from an incomplete model.

Survival models may be used to investigate the effect of risk factors on clinical
events of interest and to predict survival probabilities. Such predictions inform both
patients and clinicians of a patient’s prognosis and may help in the shared decision
making process. Prediction models are available for a variety of diseases and there
is a demand for more and more sophisticated models. Ordinary prediction models
are often limited to a single prediction time point. This means that predictions can
only be made at a particular time, such as at time of diagnosis of disease. When a

1



1. Introduction

C
h
a
pt

er
1 patient comes back for a follow-up visit, such models are not able to provide accurate

predictions. A patient may experience disease related events over time which are not
taken into account by a model that considers only risk factors known at diagnosis or
at start of treatment. Dynamic prediction models provide updated predictions from
different time points during follow-up. They are able to include updated information
as it becomes available. A simple idea to create dynamic prediction models is through
the landmarking approach. Predictions are made from a chosen landmark time point
by using a subset of the data consisting of patients still alive at that time. Multiple
landmark times can be chosen to make predictions from different time points during
follow-up.

The remainder of this chapter introduces basic concepts of survival analysis as
well as more complex models that are used in this thesis. The following Section
provides an introduction to survival analysis and explains simple survival models.
Section 1.2, 1.3, 1.4, 1.5 introduce frailty models, competing risks models, multi-
state models, and dynamic prediction models, respectively. In Section 1.6 and 1.7
the C-index and multiple imputation are explained, respectively. Section 1.8 and 1.9
introduce the motivating soft tissue sarcoma data set and the developed prediction
tool, respectively. The last Section gives an overview of the remaining chapters of
this thesis.

§1.1 Introduction to survival analysis

The concepts and definitions of this Section are introduced as in Klein and Moeschber-
ger [92], which is referred to for further reading.

Survival analysis developed from the need to analyse life-time data. The structure
of such data can be of different kind and often motivates the development of new
methods. A first step in understanding survival concepts is in understanding the data
it has to deal with.

The subject of study is the event time T . In medical research, T could represent
the time from diagnosis until death. The event time for an individual may not be
observed, if he dropped out of the study early, or the study ended before the event
of interest occurred, or another event occurred. Denote by C the right censoring
time for an individual. This is the last time a subject was observed in the study. The
information observed for an individual is T̃ = min(T,C), the minimum between right-
censoring and event time, and δ = 1(T ≤ C), the event time indicator. δ = 1, if the
event time was observed and δ = 0, if it was not. Survival models for right-censored
data assume that the event time T and the right-censoring time C are independent,
sometimes conditional on covariates.

For other types of events, the exact event time cannot be observed directly. In
cancer care for example, after removal of the tumor a patient attends scheduled follow-
up visits where he is screened for recurrence of disease. If recurrence is found it is only
known that it had occurred between the last negative screening and the first positive
screening. The time until recurrence is interval-censored.

To study the distribution of the survival time T different parameters are studied.
The most prominent function of interest is the survival function S(t) = P (T > t),

2
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which at time t is equal to the probability of being event-free at time t. The survival
function is usually modelled by the hazard function

λ(t) = lim
∆t→0

P (t ≤ T < t+ ∆t | T ≥ t)
∆t

.

The hazard function at time t is equal to the conditional probability of experiencing
the event in the next instant conditional on being event-free just before time t. The
survival function can be defined in terms of the hazard function,

S(t) = exp

(
−
∫ t

0

λ(u)du

)
,

and it can be estimated nonparametrically with the Kaplan-Meier estimator [88]. Let
t1 < t2 < ... < tD be the ordered event times, di the number of events at time ti, and
Yi denote the number of individuals at risk at time ti. The Kaplan-Meier estimator
of the survival function is given as follows

Ŝ(t) =

{
1, if t < t1∏
ti≤t

(
1− di

Yi

)
, if t1 ≤ t.

(1.1.1)

An example of survival data set and the corresponding Kaplan-Meier curve are
shown in Figure 1.1. Subject 2 and 10 are right-censored. The Kaplan-Meier curve
changes at event times and remains unchanged at censoring times. The censoring
times however affect the size of the jump the curve makes.

The effect of a covariate vector Z is most commonly modelled with the Cox pro-
portional hazards model [44] in which the hazard is defined as

λ(t | Z) = λ0(t) exp(βTZ),

where λ0(t) is the baseline hazard and β is the vector of regression coefficients. In the
Cox model, the effect of covariates is assumed to be multiplicative on the nonpara-
metric baseline hazard. Let t1 < t2 < ... < tD be the ordered event times, Z(i) the
covariates of the individual who experiences the event at time ti, Zj the covariates
of individual j, and R(ti) denote the set of individuals still at risk at time ti. The
vector of regression coefficients β is estimated, assuming all event times are distinct,
by maximising the partial likelihood

L(β) =

D∏
i=1

exp(βTZ(i))∑
j∈R(ti)

exp(βTZj)
,

and the baseline hazard λ0(t) can then be computed using the Breslow estimator [34].
The covariates Z discussed so far are time-fixed and known at the time origin.

However covariates can also change over time, like blood values which are repeatedly
measured. Let Z(t) be a vector of time-dependent covariates, whose values change
over time. The Cox model with time-dependent covariates is defined as

3
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Figure 1.1: Left panel: survival data for 10 subjects. Right panel: the corresponding condi-
tional Kaplan-Meier survival estimate.

λ(t | Z(t)) = λ0(t) exp(βTZ(t)).

The partial likelihood for this Cox model is defined analogously to the model
with only time-fixed covariates. Let Z(i)(ti) be the covariate vector at time ti of the
individual who experiences the event at time ti, Zj(t) the covariate vector of individual
j at time t, and R(ti) the set of individuals still at risk at time ti. Again assuming
all event times are distinct, the vector of regression coefficients β is estimated by
maximising the partial likelihood

L(β) =

D∏
i=1

exp(βTZ(i)(t))∑
j∈R(ti)

exp(βTZj(t))
.

§1.2 Frailty models

Survival regression models aim to explain the differences of survival times between
individuals using covariate information. If the model is perfectly specified, the remain-
ing variation reflects the randomness of the event time, conditional on the covariate
values. However, often not all relevant covariates can be included in the model. The
variation of survival time accounted for the missing covariates in the model is called
unobserved heterogeneity. The effect of unobserved heterogeneity on the event time
is called frailty [157].
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In survival analysis, frailty can be modelled by a random effect included in a
survival model. The variance of the random effect is a measure of the amount of
unobserved heterogeneity. The frailty variable can be chosen subject specific or it can
be shared for clusters of individuals. In univariate frailty models, a subject specific
frailty models unobserved heterogeneity on the individual level. In multivariate frailty
models, a shared frailty variable is used for a cluster of individuals which models
unobserved heterogeneity on the cluster level.

The random frailty variable can be incorporated in a survival model with a mul-
tiplicative effect on the hazard. The cluster i specific frailty Wi has a multiplicative
effect on the hazard,

λ(t |Wi) = Wiλ0(t),

where λ0(t) is the baseline hazard. Often E(Wi) = 1, then V ar(Wi) describes the
extent of unobserved heterogeneity.A univariate frailty model has cluster size equal to
1. In this case, the estimated frailty variance represents the unobserved heterogeneity
between individuals. For cluster size bigger than 1 the estimated frailty variance
represents the unobserved heterogeneity between clusters. The effect of a covariate
vector Z can be modelled by using a Cox model with frailty term

λ(t |Wi,Z) = Wiλ0(t) exp(βTZ),

where λ0(t) is the baseline hazard and β are the regression coefficients. The frailty
terms Wi are iid random variables with a specific distribution. The gamma distribu-
tion is a popular choice as frailty distribution due to its mathematical properties. An
additional assumption of the frailty model is that censoring does not depend on the
frailty [109].

§1.3 Competing risks models

In some applications, more than one type of terminal event is possible, such as in the
study of different causes of death. A competing risks model is described by a starting
state in which individuals are event-free and several end states, also referred to as
causes of failure, see Figure 1.2.

The survival data of an individual has a different structure. Let T1, T2, ..., TJ be
the event times of J competing events and C the independent right-censoring time.
For an individual, only the minimum of the first event or right-censoring time T =

min(C, T1, T2, ..., TJ) is observed together with an indicator δ = 0, 1, ..., J indicating
the cause of failure or censoring (δ = 0).

A fundamental concept used in competing risks analysis is the cause-specific haz-
ard,

λj(t) = lim
∆t→0

P (t ≤ T < t+ ∆t, δ = j | T ≥ t)
∆t

,

where j, (j = 1, ..., J) is one of the competing events. The cause-specific hazard
represents the conditional probability of experiencing event j in the next instant

5
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Figure 1.2: Competing risks model with J causes of failure.

given still event-free just before time t. Define the cumulative cause-specific hazard
by

Λj(t) =

∫ t

0

λj(u)du.

A Cox model can be used to model the cause-specific hazard together with the
effect of covariates Z,

λj(t | Z) = λj0(t) exp(βTj Z),

where λj0(t) and βj are the cause-specific baseline hazard and the regression coeffi-
cients, respectively.

A quantity of interest, in particular in applications with competing risks, is the
cumulative incidence function. This function corresponds to the probability of exper-
iencing an event j before time t,

Ij(t) = P (T ≤ t, δ = j) =

∫ t

0

λj(u)S(u)du,

where S(u) = P (T > u) is the probability of being event-free at time u. In this
context the survival function depends on all cause-specific hazards,

S(t) = exp

− J∑
j=1

Λj(t)

 ,

where Λj(t) is the cause-specific cumulative hazard at time t. The cumulative incid-
ence function therefore not only depends on cause j but also on the cause-specific
hazards of all the other causes.

In the competing risks setting, the cause-specific cumulative incidences are often
the quantities of interest to answer questions such as, what is the probability of
a recurrence of disease within a certain time frame. The Cox model can be used

6
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to model covariate effects on the cause-specific hazards, however the effects on the
cause-specific cumulative incidences are not straightforward, since they depend on all
other cause-specific hazards simultaneously. Another approach to model the effect of
risk factors was introduced by Fine and Gray [57]. The covariate effects are modelled
directly on the cause-specific cumulative incidence through the subdistribution hazard,

λ̄j(t) = −d log(1− Ij(t))
dt

.

To model covariate effects a proportional hazards model analogous to the Cox
model was proposed,

λ̄j(t | Z) = λ̄j0(t) exp(βTj Z).

This model can be estimated with a partial likelihood approach like the Cox model.
The regression coefficients from Fine and Gray’s model have an intuitive interpretation
because they are regressed on the cause-specific cumulative incidence directly and
therefore can be easily interpreted clinically.

§1.4 Multi-state models

Competing risks models extend standard survival models by adding more end states.
Multi-state models allow multiple end points as well as transition states [119]. Figure
1.3, represents a particular multi-state model referred to as illness-death model. An
individual starts in state 0, he can then move to state 1, which can represent a disease
he may experience and subsequently move to state 2, death.

The transitions from state i to state j are modelled by the transition hazard,

λij(t) = lim
∆t→0

P (t ≤ T < t+ ∆t | T ≥ t)
∆t

,

where T denotes the time of reaching state j from state i. The types and times of the
occurrence of events of an individual define his path through the multi-state model.
A common assumption, is that the multi-state model is a Markov model. Given the
present state and the event history (the trajectory through the multi-state model so

State 0:
Disease-free

State 1:
Disease

State 2:
Death

Figure 1.3: Illness-death model.
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present state.
To model the effect of covariates on the transition hazards in a Markov model the

Cox model can be used,

λij(t | Z) = λij0(t) exp(βTijZ),

where λij0(t) and βij are the transition-specific baseline hazard and regression coef-
ficients, respectively. Here the baseline hazards are transition-specific. One could
however choose a subset of baseline transition hazards to be proportional to each
other. For example in Figure 1.3, the two transitions towards state 2 (the death
state) could be assumed proportional. This model would be similar to a single end
point Cox model with the disease state as a binary (0, 1) time-dependent covariate.
The multi-state model however would have the additional benefit of simultaneously
modelling the rate of occurrence of the time-dependent covariate.

Similar to the competing risks setting the covariate effects are difficult to inter-
pret. The effects act on the transition hazard which is the conditional probability of
moving to state j at time t, given in state i just before t. From those transition haz-
ards however, clinically more relevant and accessible quantities can be computed, for
example, probabilities of future events. Particularly, the conditional probabilities of
future events given a patients event history and covariate information Z. In a Markov
multi-state model instead of the entire event history only the current state is of relev-
ance. For example in cancer care, given that a patient with particular characteristics
is recurrence-free one year past surgery, the probability of getting a recurrence within
the next 5 years may be of interest. Estimating these probabilities, also referred to
as making predictions, is very relevant to patients and clinicians and can be used in
the shared decision making process. The probabilities are expressed as Pij(u, t | Z),
which represents the conditional probability of being in state j at time t given that
the subject is in state i at time u. These probabilities can be computed from the
transition hazards [119].

§1.5 Dynamic prediction

The previously discussed survival models may be used to model disease progression
and to find risk factors for events of interest. They are also used to predict probabilities
of future events. Prediction models are gaining popularity in the medical field, where
they are used to inform clinician and patient about a patient’s future prognosis.
Survival estimates can help in the shared decision making process between patient
and clinician. Many prediction models use baseline covariates; covariates measured
before the time origin, such as time of diagnosis or time of treatment.

Some disease markers however, are measured and updated during follow-up. For
example, blood values could be measured regularly, or recurrence of disease could be
diagnosed during follow-up. Updating predictions over time with new information
is defined as dynamic prediction. Dynamic prediction models can provide survival
predictions at different time points, using all available information at that time point.
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Among the models previously discussed only multi-state models are able to use up-
dated information, if it can be expressed by an intermediate state. For example,
the information of disease recurrence (yes vs. no) could be modelled by a state in a
multi-state model.

Another approach to dynamic prediction is to use a landmark model [13, 149, 151].
Landmarking was introduced to avoid a common mistake in the analysis of tumor
response. Patients were treated with chemotherapy and then followed to see whether
the tumor responded to treatment. A common malpractice was to make two groups
of patients, responders and nonresponders and to compare their survival times from
start of treatment. This is known in literature as immortal time bias. The groups are
compared from time of treatment, the status of response however, is not yet observed
at that time. In this situation information from the future is used. An individual
needs to survive long enough for a response to develop and to be observed. Individuals
who die early and did not have time to develop a response yet are automatically
grouped into the nonresponse group, giving this group an unfair disadvantage. On
the other hand, responders must first survive long enough to become a responder and
have therefore an unfair survival advantage. In this grouping scheme, responders are
immortal until their time of response, hence the name immortal time bias.

A solution proposed by [13] is to evaluate the effect of tumor response with a
landmark model. The idea is to choose a specific time point tLM called landmark
as new time origin for the analysis. At the landmark time the response of patients
is evaluated and can be treated as a baseline covariate. The outcome is survival
from landmark time and the interpretation of the response variable is response before
landmark time. For this analysis only patients who are still in the risk set, meaning
alive and in follow-up, are considered. Patients who developed a response before the
landmark will be grouped in the response group. Patients who did not have a response
before the landmark are grouped in the nonresponse group. Note that patients in the
nonresponse group may develop a response later on. Figure 1.4 shows 3 landmark
data sets and their corresponding Kaplan-Meier curves. The figures for landmark at
time 0 show the original data and corresponding Kaplan-Meier survival curve. At time
t = 0 no patient has developed a tumor response therefor all patients are grouped in
the nonresponse group. The data for landmark at time 5 show that only individuals
still in follow-up at that time are selected and that only individuals who developed
a response before time 5 are grouped into the response group. The other individuals
are grouped in the nonresponse group, even though they may develop a response later
on.

In [151] it was suggested to use landmark models to make dynamic predictions.
The Cox model is applied to the landmark data set to make predictions from the
landmark time tLM up until a prediction horizon tLM + w, defined as

λ(t | Z, tLM , w) = λ0(t | tLM , w) exp(βTLMZ), tLM ≤ t ≤ tLM + w,

where λ0(t | tLM , w) is the baseline hazard for landmark tLM and prediction window
w, βLM are the landmark-specific regression coefficients, and Z are regression coeffi-
cients. The Cox landmark model can be used to predict survival probabilities from
the landmark time, using the updated information of response status of a patient.
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Figure 1.4: Left panel: landmark data sets. Right panel: the corresponding Kaplan-Meier
survival estimate.
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to make predictions from multiple landmarks one can choose to create a different
landmark model for each landmark time, or combine them to a landmark supermodel
[151].

§1.6 AUC and C-index

Survival predictions are important to patients and clinicians. More and more predic-
tion models are becoming available for a variety of diseases. Before such a prediction
model is published its clinical importance must be investigated. Does the model
provide accurate predictions? To validate a prediction model different prediction
aspects are considered [150].

Existing methods, such as sensitivity and specificity, were extended to survival
analysis by [79], [80], and [171]. Sensitivity and specificity were originally defined for
a binary outcome B, where B = 1 is considered a ‘case’ and B = 0 is considered
a ‘control’. For a covariate X and a classification criterion c a simple prediction
rule is to predict individuals to be cases if X > c and otherwise controls. The
correct classification rates, sensitivity(c) = P (X > c | B = 1) and specificity(c) =
P (X ≤ c | B = 0), summarize the accuracy of this classification rule.

A graphical summary which illustrates the whole range of sensitivity and spe-
cificity for different values of c is the Receiver Operation Characteristic (ROC) curve
which plots sensitivity against 1-specificity, illustrating the difference of the marker
distribution between cases and controls. In case the marker distributions are the
same, the ROC curve lies on the 45 degree line, which indicates that the marker
does not contribute in distinguishing cases from controls. A summarizing measure of
concordance between marker and outcome, which can be used to measure predictive
accuracy is the Area Under the ROC Curve (AUC).

Heagerty and Zheng (2005) [80] extended the concepts of sensitivity and specificity
to survival analysis by defining time-specific ‘cases’ and ‘controls’. They give several
different definitions, where particularly their incident cases and dynamic controls is
of interest. At time t incident cases are those individuals that experience the event
at time t and dynamic controls are those individuals who survive beyond time t. The
time-specific AUC based on this definition of cases and controls is a time-specific
measure of discrimination.

Discrimination refers to how well a model can distinguish between high and low
risk individuals. A prediction model discriminates well if it predicts high risk for indi-
viduals who experience the event earlier and lower risk for individuals who experience
the event late or not at all during the follow-up.

A weighted average of the time-specific incident/dynamic AUC coincides with
Harrel’s concordance index (C-index), which is a popular measure of model discrim-
ination [149, 78]. It was originally defined as the proportion of evaluable ordered pairs
for which prediction and outcome are concordant. Ordered pairs are individuals (i, j)

where the observation time of individual i is shorter or equal to the observation time
of individual j. An ordered pair is evaluable if it was observed that i experienced
the event of interest before j. Pairs in which i was censored before j experienced
the event or was censored are not evaluable, since it is unknown who experienced the
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risk for the individual experiencing the event of interest earlier. In the case that both
patients have the same predicted risk 0.5 is added to the count of concordant pairs
instead of 1. The C-index is computed by dividing the number of concordant pairs by
the number of evaluable pairs. The values of the C-index are between 0 and 1, where
a value of 0.5 indicates no discriminative ability.

The incident/dynamic AUC measures the ability of the model to discriminate
at a particular time t. The C-index measures the overall ability of the model to
discriminate between individuals. Considering dynamic predictions, one might be
interested in the ability of the model to discriminate within a time window [t, t+w].
A dynamic C-index can be obtained by computing the proportion of ordered pairs for
which prediction and outcome are concordant, only for individuals who are at risk at
time t and considering event times censored at time t+w [149]. For predictions made
at time t, this index measures the discriminative ability of the model within a time
window [t, t+ w].

In the competing risk setting, [165] proposed a different concordance index by
defining evaluable and concordant patient pairs differently. For the event of interest,
they define an ordered pair as evaluable if the first patient experiences the event at
a time at which the second patient is still at risk. The risk set at time t in this case
is made of patients who did not yet experience any event and are still in follow-up
and those individuals who experienced a competing event. Furthermore, an ordered
evaluable pair is defined as concordant if the first patient to experience the event of
interest has a higher predicted risk than the other patient. In case that both patients
have the same predicted risk 0.5 is added instead of 1 to the count of concordant
pairs.

§1.7 Multiple imputation

Most statistical methods cannot be applied when missing information are present in
the data. By default many statistical programs will remove observations with missing
values and analyse only complete observations. This approach reduces the amount of
subjects and therefor the power of the statistical tests and can lead to biased results
in some cases [100].

Multiple imputation is a general approach to handling missing data which uses all
available information, even for subjects with missing values [125, 126]. The method
increases statistical power and reduces bias compared to a complete case analysis. The
idea behind imputation of missing values is to generate likely values for the missing
values to create a complete data set. Multiple imputation uses an imputation model
to generate multiple complete data sets. For these data sets the observed values are
the same, however the missing values are different. Statistical methods can be applied
to each complete data set and results can be pooled using Rubin’s rule [125].

The concept of multiple imputation was introduced by Rubin [125]. The idea is to
draw m values for each missing value from the posterior predictive distribution of the
missing values under a Bayesian model for the data and the missing-data mechanism.
From the resulting m complete data sets m complete-data statistics Q̂1, ..., Q̂m and
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the corresponding variance-covariance U1, ..., Um can be computed and combined. The
estimate from an analysis using multiple imputation can be computed by averaging
the complete-data estimates

Q̄ =
1

m

m∑
l=1

Q̂l.

The variance-covariance of Q̄ is equal to

T = Ū +
m+ 1

m
B,

where

Ū =
1

m

m∑
l=1

Ul,

and

B =
1

m− 1

m∑
l=1

(Q̂l − Q̄)(Q̂l − Q̄)T .

The terms Ū and B correspond to the within-imputation variability and the between-
imputation variability.

Throughout this thesis the package Amelia II was used to generate multiple im-
putations [82]. The assumptions for the imputation model in Amelia II are that the
data are missing at random and that the complete data are multivariate normal.
Missing at random means that the distribution of missingness only depends on the
observed data. The multivariate normal distribution may only crudely approximate
the true data distribution, however there is evidence that it works well even for cat-
egorical or mixed data [82, 129, 130]. The imputation models employed in this thesis
included all variables used in the analysis together with the event status. Categorical
variables were modelled as such, using the noms option of the amelia function and
age and size were modelled using a square root transformation, so that no negative
values could be imputed. For categorical covariates amelia determined the number of
categories p and substituted them with p−1 binary variables to specify each category.
These variables were treated as if they were continuous variables and missing inform-
ation received continuous imputations. Those were scaled into probabilities for each
category and from the resulting multinomial distribution one category was drawn so
that the original multinomial variable is reconstructed.

The number of imputations was chosen to be equal 5 in Chapter 6 and 8 and 10
in Chapter 7.
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Soft tissue sarcomas (STS) are a rare type of cancer that make up approximately 1%
of all adult cancers [137]. It begins in the bodies connecting tissues, such as muscle,
fat, blood vessels, nerves, tendons and the lining of joints [3]. It can appear anywhere
in the body but most commonly in the extremities (about 60% of STS cases) [41].
The standard treatment for primary STS patients is surgical removal of the tumor
and potentially (neo)adjuvant radiotherapy or chemotherapy [56].

Figure 1.5 shows the different disease states a patient may follow. After surgery a
patient can remain disease free, or develop local recurrence (LR) or distant metastasis
(DM), or die. A LR is diagnosed if evidence of tumor at the previously treated tumor
bed is found, while DM is diagnosed if spread of tumor is found at another location.

Surgery

Local recurrence

Local recurrence &
distant metastasis

Distant metastasis

Death

Figure 1.5: Soft tissue sarcoma data.

Because of the rarity of STS, many studies conducted have been subject to small
sample size and large heterogeneity in the study population [53, 102]. Some prognostic
factors for survival, such as histology, grade, depth and size were generally recognized
[83, 117, 169, 53, 73, 146, 140, 98, 139, 29]. The effect of surgical margin and LR
however, was long unclear [140, 106, 164, 74, 110, 102, 111]. Surgical margin is
the amount of healthy tissue that is removed surrounding the tumor during primary
surgery. Generally, it is desired to remove the tumor surrounded by healthy tissue,
but this can be challenging depending on the tumor location. The effect of surgical
margin has been of great interest, because of the effect on the quality of life after
surgery.

The lack of an established prognostic profile for STS patients motivated a group
of researchers to start an interdisciplinary project between the Leiden University
Medical Center and the Mathematical Institute of Leiden University in 2016. The
aim was to collect STS data on an international scale and to develop statistical models
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to investigate the effect of risk factors on clinical outcomes, with particular interest
in surgical margin, as well as to provide reliable survival predictions for patients.
The funding granted by the Dutch Cancer Society (DCS) - KWF Kankerbestrijding
allowed this project to become reality. The work in this thesis is the result of this
collaboration.

Clinical data was collected retrospectively over the period of this project by con-
tacting tertiary centers treating high-grade STS patients of the extremities. Patients
were selected based on histological subtype, if they were treated surgically with cur-
ative intent from 2000 on, and if they had high-grade disease (as defined by FNCLCC
larger than grade 2 [145]). All the collaborating centers adhered to the guidelines of
the European Society for Medical Oncology for follow-up [56]. Chapter 4 is the first
published article resulting from this collaboration. For each Chapters 5, 6, 7 more
data has been added.

§1.9 Personalised sarcoma care app

For clinical decision making a patients prognosis always has played an important role.
Reliable survival predictions are an important information to clinicians to consider
in the patient care. Nowadays particularly in cancer care, the clinical community
embraces the concept of shared decision making. In the shared decision making ap-
proach, the patient is involved in the choice of treatment. An important information,
for this process are a patient’s survival predictions. Prediction models have become
popular in the clinical world [1, 6, 7]. Their increase and availability for various
disease reflects the demand.

To support the shared decision making process, a prognostic prediction model, the
PERsonalised SARcoma Care (PERSARC) model, for patients with high-grade STS
of the extremities was developed in Chapter 5 [20]. It predicts from time of surgery
a patient’s probability of developing LR and survival. The model was internally
validated by means of discrimination and calibration. To make predictions accessible
to clinicians a mobile application was developed, which is available in the Apple and
Google Play store [4, 5]. In the app patient specific characteristics can be entered and
predictions are returned, see Figure 1.6 for illustration.

A group of researchers from Leiden University Medical Center was granted funding
from the Dutch Cancer Society (KWF) to implement shared decision making for high-
grade soft tissue sarcoma patients in the Netherlands. The goal is to ensure that
soft tissue sarcoma patients receive personalised care, in which risks and benefits of
treatment options and patient preferences are balanced. Part of the implementation
strategy is the introduction of the PERSARC app to clinical practice.

An updated version of the PERSARC app is expected to be released in 2020.
PERSARC version 2.0 will be able to provide dynamic predictions of survival as
described in Chapter 7. Predictions will be made taking LR and DM events, that
occur during follow-up, into account.
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Figure 1.6: PERSARC app. Left panel: patient characteristics interface, with information
of a 50 year old patient, with a 10 cm superficial tumor of type myxofibro sarcoma. Right
panel: his prediction of survival and probability of recurrence within 5 years, with radiotherapy
treatment and a margin of 0.1-2mm.
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§1.10 Outline of thesis

The main objective of this thesis was to develop clinically relevant survival models
for patients with high-grade STS of the extremities, in particular the development
and validation of prediction models for use in clinical practice. The interdisciplinary
collaboration between the Mathematical Institute of Leiden University and the Leiden
University Medical Center resulted in important contributions to the care of STS
patients. Each chapter is briefly summarized below.

In Chapter 2 [17] a novel frailty model is proposed for multi-center data with two
competing risks. Frailty variables are used to model unobserved heterogeneity on the
hospital level; they could be interpreted as the "hospital effect" on the competing
events. The frailty model developed models the hospital effects on the competing
events to be correlated within each hospital.

In Chapter 3, which is to be submitted to Statistics in Medicine [16], the effect
of interval censoring is studied on the predicted accuracy of a binary disease marker.
The motivation comes from cancer care. After surgery a patient is regularly screened
for LR and DM. Once a recurrence is diagnosed , however, it is only known that it
occurred between the last negative and the first positive screening. In this chapter
we investigate through simulations how the assessment of predictive accuracy of re-
currence is affected by the intermittent screening process.

Chapter 4 [21] was the first in a series of publications based on the growing soft
tissue sarcoma data set. A data set of 687 patients was analysed with a multi-state
model. The effect of risk factors on LR and DM/Death were studied, with particular
interest in the effect of surgical margin.

Chapter 5 [20] is the continuation of the STS project, with a data set of 766
patients. Prediction models for survival and probability of local recurrence were
developed and implemented in the PERSARC mobile application. The models are
internally validated in terms of calibration and discrimination.

In Chapter 6 [19] a dynamic prediction model based on 2232 STS patients was
developed. A landmark supermodel was used to provide predictions of additional
5-year survival from different prediction time points during follow-up. Disease related
events, LR and DM, are used to update predictions over time and covariates were
investigated for time-varying effects. The model was internally validated.

In Chapter 7, which is to be submitted to Surgical Oncology [18], the previously
developed dynamic prediction model for STS patients is updated and externally val-
idated. The updated model is based on 3826 patients and now includes grade as
additional covariate in the model. It was externally validated using a cohort of 1111
patients and it is implemented in the updated PERSARC mobile application.

In Chapter 8 [14] a multi-state model was developed for 982 Ewing sarcoma pa-
tients. Adverse events in the multi-state model were LR, DM of the lungs, DM at
other locations, and death. The effect of risk factors was studied with particular
interest in surgical margins, histological response, and radiotherapy.

In Chapter 9 previous chapters are put in broader perspective and future research
directions are suggested.
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CHAPTER 2
Investigating hospital heterogeneity

with a competing risks frailty model

This chapter has been published in Statistics in Medicine 38(2) (2018) 269–288 as
A.J. Rueten-Budde , H. Putter and M. Fiocco, "Investigating hospital heterogeneity
with a competing risks frailty model" [17].

Abstract

Survival analysis is used in the medical field to identify the effect of predictive variables
on time to a specific event. Generally, not all variation of survival time can be
explained by observed covariates. The effect of unobserved variables on the risk of
a patient is called frailty. In multicenter studies, the unobserved center effect can
induce frailty on its patients, which can lead to selection bias over time when ignored.
For this reason, it is common practice in multicenter studies to include a random
frailty term modeling center effect. In a more complex event structure, more than
one type of event is possible. Independent frailty variables representing center effect
can be incorporated in the model for each competing event. However, in the medical
context, events representing disease progression are likely related and correlation is
missed when assuming frailties to be independent. In this work, an additive gamma
frailty model to account for correlation between frailties in a competing risks model
is proposed, to model frailties at center level. Correlation indicates a common center
effect on both events and measures how closely the risks are related. Estimation of
the model using the expectation-maximization algorithm is illustrated. The model
is applied to a data set from a multicenter clinical trial on breast cancer from the
European Organisation for Research and Treatment of Cancer (EORTC trial 10854).
Hospitals are compared by employing empirical Bayes estimates methodology together
with corresponding confidence intervals.
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§2.1 Introduction

Survival data arises where interest lies on the time from a specific time origin until
occurrence of an event of interest. Prominent applications are found in the medical
field, where e. g. time from diagnosis of disease until death could be studied. What
distinguishes survival analysis from other types of statistical analysis is the type of
data it deals with: it is generally incomplete. Since it takes time to observe an event,
it is usually not possible to collect complete information. A popular method to model
the effect of covariates on risk of event occurrence is through the semi-parametric Cox
proportional hazards model [44]. In some situations more than one type of end point
are possible, when e. g. different causes of death are studied. Analogous to the single
endpoint situation the Cox model can be used to model the effect of covariates on the
cause-specific transition hazards [119] of each cause of failure. A more complicated
event structure with intermediate states can be modeled by a multi-state model [119].
Dependence in survival data can be modeled by a random frailty term, which models
heterogeneity between observations or between clusters of observations. The frailty
term represents unobserved covariates on the individual or cluster level that act on
the risk of event occurrence. The frailty variance can be interpreted as a measure of
heterogeneity between clusters or individuals, however it can also be seen as a measure
of dependence within a cluster.

Multicenter studies are a common strategy to collect sufficient data for a clin-
ical study. Patients are clustered within treatment centers and possible correlation
between patients within a center can be modeled by using a shared frailty model.
Shared frailty models are able to model dependence, however these models limit the
unobserved covariates modeled by the frailty to have the same effect within a cluster.
In the presence of competing events the use of one frailty per center acting on all
causes of failure is questionable. Similarly using J independent frailties per center
one for each cause of failure does not yield a complete picture of the data structure.
Frailties for different competing events within a center are likely to be correlated,
since they represent the same unobserved covariates on cluster level. Yashin et al.
[166] first introduced a correlated gamma frailty model to analyze twin survival data.
They decompose a twin’s frailty into a sum of two independent frailties, one of which
is shared by both twins. Petersen et al. [116] use this idea of adding frailty compon-
ents, which act multiplicatively on the individual hazard and describe more complex
variance components models for survival data.

Clustered data in the presence of competing risks further complicate possible de-
pendence structures and different approaches are taken. Extensions of Fine and Gray’s
subdistribution hazard model [57] incorporate a frailty term to model cluster depend-
ence on the cumulative incidence function of the event of interest in the presence
of competing events [89, 131, 51, 172]. Wienke et al. [161, 163] analyze correlated
frailty models in the presence of competing risks, however assuming independence
between risks. The assumption of independence is questionable since related events
(e. g. events representing disease progression) might be influenced similarly by the
same unobserved covariates. Wienke et al. [162] extend the bivariate correlated
gamma frailty model of Yashin et al. [166] to model dependence among competing
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risks based on parametric marginal survival functions. Gorfine and Hsu [72] combine
frailty components multiplicatively to model dependence between competing risks
for clustered survival data. Liquet et al. [99] analyze hospital heterogeneity in multi-
state models using independent and joint frailty models to model dependence between
transition intensities. Rotolo et al. [123] propose to incorporate correlated frailties
in multi-state models acting on the transition-specific hazard functions. They con-
struct frailties by combining a common cluster component and a transition-specific
component multiplicatively.

In this paper we propose an additive gamma frailty model which acts multiplicat-
ively on the cause-specific hazard to model dependence within clusters and between
two competing events. The method can be used to investigate hospital heterogeneity
in a competing risks setting. An elegant estimation procedure using the EM-algorithm
is outlined as well as a strategy to calculate the standard error of the estimates. In
contrast to Wienke et al. [162] who model dependence among competing risks by
using a parametric approach our method is based on the semi-parametric Cox model
[44]. Compared to methods suggested by Gorfine and Hsu [72] and Rotolo et al.
[123] which combine frailty components multiplicatively in this article a gamma de-
composition is proposed to model dependence between risks. The advantage of our
method is its simplicity in construction and estimation, which is based on the math-
ematical properties of the gamma distribution. Additionally, estimation through the
EM-algorithm provides empirical Bayes estimates for each center’s frailty, which can
be used to compare centers.

In Section 2.2 and 2.3 the cause-specific hazards model and frailty model will be
reviewed briefly. The proposed competing risks frailty model is presented in Section
2.4. In Section 2.5 the method is applied to a data example and corresponding results
are presented. A simulation study to investigate the performance of the correlated
frailty model is discussed in Section 2.6. A discussion follows in Section 2.7.

§2.2 Competing risks model

Competing risks models are used when more then one type of failure is possible. An
example is the study of different causes of death. A fundamental concept in competing
risks is the cause-specific hazard. It is the hazard of failing from a particular cause
given still event free at that time.

For right censored survival times the cause-specific hazard of cause j for a subject
i with covariate vector Xi is as follows:

λj(t|Xi) = λj0(t)eβ
T
j Xi , (2.2.1)

where λj0 is the cause-specific baseline hazard for cause j and βj assesses the effect
of the covariates Xi on the progression rate to cause j [119]. Here the effects of co-
variates are quantified on the cause-specific hazard and not on the marginal hazard.
Only if the censoring due to the competing risks is non-informative conditionally on
the covariates in the model, the estimates can also be interpreted as effects on the
marginal hazard.
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§2.3 Frailty model

The concept of frailty introduces random effects in survival models, which represent
the presence of unobserved heterogeneity. The variance of this random component
is a measure used to quantify heterogeneity in the data. Vaupel et al. [157] dis-
cussed univariate frailty models with a gamma distribution and applied this concept
to survival. Clayton [40] used frailties in the multivariate analysis of chronic disease
incidence in families.

A frailty is an unobserved random factor varying over the population of individu-
als, which is assumed to have a multiplicative effect on the hazard of a single individual
or a group or cluster of individuals. In univariate frailty models each individual has
its own independent frailty, while in shared frailty models clustered individuals share
a common frailty.

For subject i with covariate vector Xi belonging to cluster k with frailty Wk the
hazard is given as

λ(t|Xi,Wk) =Wkλ0(t)eβ
TXi (2.3.1)

=λ0(t)eβ
TXi+log(Wk).

A convenient choice for the frailty distribution is the gamma distribution, since
its posterior distribution given survival data, stays in the gamma family [116].

§2.4 Competing risks frailty model

Heterogeneity between centers in a competing risks setting can be modeled by assign-
ing each center J frailties, one for each cause of failure. The J frailty terms within a
center may be chosen to be independent, however the effects within a center are likely
to be related which is ignored in such a model. In a more realistic model frailties
within a center are correlated. A model for the dependence structure was first pro-
posed by Yashin et al. [166] in a twin study, decomposing the frailty of each twin as
a sum of two independent frailties one of which is shared. Petersen et al. [116] use an
additive variance components structure on multiplicative gamma frailty models and
outline its estimation. The correlated frailty model proposed in this article follows
their approach.

§2.4.1 Frailty decomposition
In the following, letWk1,Wk2 denote the frailty variables corresponding to two causes
of failure within hospital k (k = 1, ...,K). Correlation between frailties is construc-
ted by decomposing each frailty as the sum of two independent gamma distributed
variables, one of which is common in both frailties [59, 58]. For cause j (j = 1, 2),
frailties are given as

Wkj =
Zk0 + Zkj
ν0 + νj

, (2.4.1)
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where

Zk0 ∼ Γ(ν0, 1), Zkj ∼ Γ(νj , 1). (2.4.2)

The random variables Zk0, Zk1, Zk2 are independent and from now on referred
to as the independent frailty components of hospital k. This results in the following
frailty distribution:

Wkj ∼ Γ(ν0 + νj , ν0 + νj). (2.4.3)

The expectation of the frailty variables is equal to one, which corresponds to no
hospital effect or the average hospital effect. Their variance and correlation are given
as

Var (Wk1) =
1

ν0 + ν1
= ξ1, Var (Wk2) =

1

ν0 + ν2
= ξ2, (2.4.4)

Cor (Wk1,Wk2) = ν0(ξ1ξ2)1/2 = ρ. (2.4.5)

This construction allows for positive correlation only. In many practical situations
however it may be justified to disregard negative correlation, e. g. when competing
events describe disease progression. A further restriction is that not all variance
correlation combinations are possible in this construction. A large correlation does
not allow the variances to be too different, or equivalent, different frailty variances do
not allow the correlation to be (almost) one:

ν1 =
1

ξ1
− ρ√

ξ1ξ2
>0√

ξ2/ξ1 >ρ (2.4.6)

ν2 =
1

ξ2
− ρ√

ξ1ξ2
>0√

ξ1/ξ2 >ρ. (2.4.7)

From (2.4.6) and (2.4.7) it follows that ρ < min(
√
ξ2/ξ1,

√
ξ1/ξ2).

§2.4.2 Model estimation
Model parameters are obtained by maximizing the log-likelihood function based on
the observed data. Since frailties associated to different centers and individuals across
hospitals are independent, the likelihood is the product of hospital likelihoods. For
simplicity only the log-likelihood and necessary quantities of a single center k are
given in the following.

Denote by nk and dkj the number of patients and the number of patients that fail
from cause j (j = 1, 2) in hospital k respectively. LetXki, tki and δki(δki = 0, 1, 2) be
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the covariate vector for patient i treated at hospital k, the event or censoring time and
the event or censoring indicator respectively. In the following let βj be the vector
of regression coefficients, λj0 the baseline hazard and Λj0 the cumulative baseline
hazard for cause j (j = 1, 2). If the frailties were observed the complete data yields
the following log-likelihood for hospital k

`k(β1,β2, λ10, λ20) =

nk∑
i=1

1δki=1

{
log

(
Zk0 + Zk1

ν0 + ν1

)
+ log(λ10(tki)e

βT1Xki)

}
(2.4.8)

+

nk∑
i=1

1δki=2

{
log

(
Zk0 + Zk2

ν0 + ν2

)
+ log(λ20(tki)e

βT2Xki)

}

− Zk0 + Zk1

ν0 + ν1

nk∑
i=1

Λ10(tki)e
βT1Xki − Zk0 + Zk2

ν0 + ν2

nk∑
i=1

Λ20(tki)e
βT2Xki

+ log(f(Zk0, Zk1, Zk2)),

where f is the probability density function of the independent and gamma distributed
frailty components.

Integrating out all frailty components specific to each center in the log-likelihood
yields the observed data log-likelihood, which is computationally challenging to max-
imize (see Appendix 2.A for details). Considering the unobserved frailties as missing
information yields a typical application of the expectation maximization algorithm
(EM-algorithm) [50].

§2.4.3 Implementation

For fixed parameter ν = (ν0, ν1, ν2), the estimation procedure uses the expecta-
tion maximization algorithm (EM-algorithm) to approximate the observed data log-
likelihood to find optimal regression coefficients and baseline hazards [50]. The ap-
proximated observed data log-likelihood is then employed in a three dimensional
search to a find maximum likelihood estimate for ν.

Since ν is fixed throughout the EM iterations, the estimation concerns the regres-
sion coefficients and baseline hazards only. The conditional expectations of the terms
log ((Zk0 + Zkj)/(ν0 + νj)), (j = 1, 2) and of log(f(Zk0, Zk1, Zk2)) given observed
data are irrelevant to the estimation of the complete data case (2.4.8). Therefore
the E-step reduces to the calculation of the conditional expectations of the frailties
Wkj = (Zk0 + Zkj)/(ν0 + νj), (j = 1, 2) given observed data. As a result, defining
Λkj =

∑nk
i=1 Λj0(tki)e

βTj Xki , (j = 1, 2), it is sufficient to consider
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E (Zk0|data k) =

∫
zk0

zk0f(zk0|data k)dzk0 (2.4.9)

=

dk1∑
l=0

dk2∑
m=0

ck(l,m, ν0, ν1, ν2)
dk1 + dk2 + ν0 − l −m(

1 + 1
ν0+ν1

Λk1 + 1
ν0+ν2

Λk2

)
E (Zk1|data k) =

∫
zk1

zk1f(zk1|data k)dzk1 (2.4.10)

=

dk1∑
l=0

dk2∑
m=0

ck(l,m, ν0, ν1, ν2)
l + ν1(

1 + 1
ν0+ν1

Λk1

)
E (Zk2|data k) =

∫
zk2

zk2f(zk2|data k)dzk2 (2.4.11)

=

dk1∑
l=0

dk2∑
m=0

ck(l,m, ν0, ν1, ν2)
m+ ν2(

1 + 1
ν0+ν2

Λk2

) ,
where f is the conditional probability density function of a frailty component given
data, and ck(l,m, ν0, ν1, ν2) is a function over the number of events of each type of
failure for fixed frailty parameters. Details about the computations are outlined in
the Appendix 2.A.

Since the conditional distributions of the frailty components Zk0, Zk1, Zk2 given
observed data are mixtures of gamma distributions (see Appendix 2.A for details),
it is straightforward to compute the quantities (2.4.9)-(2.4.11). Notably the factor
ck(l,m, ν0, ν1, ν2) is the same in all three expectations.

The M-step consists of estimating the updated baseline hazards Λ10(t), Λ20(t) and
coefficient vectors β1, β2, through maximization of the conditional log-likelihood,
given frailties estimated in the E-step. This can be done with existing software, e. g.
using coxph() from the R [122] package survival [142], incorporating the logarithm of
the expected frailties as offset into the cause-specific hazards model. The algorithm
iterates over these two steps and stops once the approximation of the observed data
log-likelihood converged (e. g. change of smaller than 1e-06).

Until now, the frailty parameter ν = (ν0, ν1, ν2) was fixed throughout the
EM iterations. Profile likelihood is used to obtain maximum likelihood estimates
of (ν0, ν1, ν2, β1, β2, Λ10, Λ20); the function optim() is used to find the optimal
ν, maximizing the observed data log-likelihood approximated with the EM-algorithm
(see the supplementary material in this paper).

§2.4.4 Estimation of the standard error
Louis [101] discussed how to obtain the covariance matrix for the regression paramet-
ers, that stays within the EM-algorithm framework, using only derivatives of the com-
plete data log-likelihood. This approach does not yet include the uncertainty caused
by estimating the frailty parameters ν = (ν0, ν1, ν2) outside of the EM-algorithm.
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Putter and van Houwelingen [120, supplementary material] proposed estimation as
described in the following.

Let η̂(ν) = (β̂
T

1 (ν), β̂
T

2 (ν), λ̂
T

10(ν), λ̂
T

20(ν))T denote the maximum likelihood
estimates (MLE) of the regression coefficients and baseline hazards given frailty para-
meters ν, and denote by ν̂ the MLE of ν maximizing the observed data log-likelihood.
The combined covariance matrix of ν̂, η̂ is given as

 Σνν Σνν

(
∂η̂(ν)
∂ν

)T(
∂η̂(ν)
∂ν

)
Σνν Σηη +

(
∂η̂(ν)
∂ν

)
Σνν

(
∂η̂(ν)
∂ν

)T
 , (2.4.12)

where Σνν and Σηη are the covariance matrix of ν and η̂ respectively and the term
∂η̂(ν)
∂ν are the partial derivatives of the regression parameters given ν. The term on

the bottom right of (2.4.12) represents the covariance of η̂(ν̂) where the term η̂(ν̂)

is obtained using a Taylor expansion of η̂(ν) and the score functions of η̂(ν) and ν̂
around the MLEs. The off diagonal terms are covariance matrices of (ν̂, η̂(ν̂)) and
can be derived in a similarly way, see Appendix 2.B for details.

The term Σνν is computed from the Hessian matrix obtained using the hessian()
function from the numDeriv package [69] around the point estimate of ν found by the
optim() function in R [122]. We proceed by inverting the negative of the Hessian
matrix, since the inverse of the observed profile information equals the ν component
of the full observed inverse information evaluated at (ν, η̂(ν)) [167, sec. 8.6.2].

The term ∂η̂(ν)
∂ν is approximated numerically. The derivative around the MLE is

estimated by calculating the slope between parameters for values of ν close to the
MLE.

The term Σηη can be computed as described by Louis [101]. It requires the
gradient vector and second derivative matrix of the complete data log-likelihood, but
not the ones associated to the incomplete data case, see Appendix 2.B for details.

The standard error of the estimated regression parameters η can be calculated
by taking the square root of the corresponding diagonal elements of the covariance
matrix (2.4.12). To obtain the standard error of the frailty variances and correlation
we apply the multivariate delta method on Σνν [39, sec. 5.6]. See the supplementary
material for implementation in R.

§2.4.5 Empirical Bayes estimates
Heterogeneity between hospitals may raise the question of hospital ranking based on
their frailty or relative performance. A popular method to compare institutions is the
empirical Bayes approach introduced to this setting by Thomas et al. [143]. If many
centers are involved, a crude center effect estimate may explode for small centers
due to large variation and not due to a real center effect [153]. The empirical Bayes
estimator helps distinguish observations that are "extreme by nature" and those that
are "extreme by chance" and is very well suited for the analysis of quality comparison
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data [152]. The empirical Bayes approach not only uses information on a particular
center to quantify its performance, but uses information on all centers to help improve
the estimate.

Following van Houwelingen [152], the empirical Bayes principle will be outlined.
Let X1, ..., XK be independent outcomes with densities f(xk, θk) and θ1, ..., θK iid
with distribution G. The optimal estimator under mean squared error loss for each θk
is given by the Bayes estimator d(xk|G) = E(θk|xk, G), when G is known. When G
is unknown, one can estimate E(θk|xk, G) through an estimate of the distribution G.
The resulting estimator is shrunken towards the mean, where the amount of shrinkage
depends on the variance of the underlying distribution. In the context of center
performance Xk represents the outcome and θk the true unobserved performance of
center k.

The E-step of the EM-algorithm estimates the empirical Bayes estimate of the
center frailties given current model parameters and ν. Hence computing a last E-step
based on the MLE of regression parameters and ν after convergence of the algorithm
will give the empirical Bayes estimate of center frailties.

Even though empirical Bayes estimates are preferred to crude performance estim-
ates when analyzing quality comparison data, interpretation of results should be made
with caution as reasons for different outcome may lie outside a center’s responsibility.
Statistical issues in comparing institutions are discussed in more detail in Goldstein
and Spiegelhalter [71].

The conditional distribution of Zk0, Zk1 and Zk2 given data is the weighted sum of
gamma distributions depending on the number of events of each type (see Appendix
2.A for details). To obtain prediction intervals for the empirical Bayes estimates a
simplified sampling procedure is applied.

1) Sample from set of tuples (l,m) from {(0, 0), ..., (dk1, dk2)}, where dk1 and dk2

are the number of events of type 1 and 2 respectively.

2) Sample Zk0, Zk1 and Zk2 from gamma distributions Γ(dk1 +dk2 +ν0− l−m, 1+

Λk1 + Λk2),
Γ(l + ν1, 1 + Λk1) and Γ(m+ ν2, 1 + Λk2) respectively.

Repeating this sampling procedure many times lower and upper confidence limits
can be found by taking the 2.5% and 97.5% quantile.

§2.5 Data application

§2.5.1 Data description
The data used in this work originates from the European Organization for Research
and Treatment of Cancer (EORTC) trial 10854, which studied the effect of one course
of perioperative chemotherapy given directly after surgery on survival [147]. The data
set includes 2795 women treated for invasive stage I or II breast cancer, randomized
for treatment in 15 different centers. Breast cancer is one of the most common types
of cancer in women. The standard treatment for breast cancer is surgery, which may
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be followed by chemotherapy, radiotherapy or both. Disease progression after surgery
can be described in terms of events a patient might experience. A patient can develop
local recurrence (LR), which means that the tumor grows back at the site of surgery
and/or might develop distant metastasis (DM), which corresponds to a tumor growth
not at the site of surgery and/or she might die.

Patients were excluded from this analysis following exclusion criteria of the trial
(n = 41) and if information on relevant covariates was missing (n = 91). Furthermore,
all 5 patients from a particular center were excluded, because of the small amount
of patients treated at this center, leaving a total of 2658 patients from 14 different
centers for analysis.

The competing risks model for this data is illustrated in Figure 2.1. Two competing
events are considered, recurrence of disease (LR or DM) and death. The starting state
is the state a patient enters after surgery, being alive with no evidence of disease after
surgical removal of the primary tumor (ANED).

Table 2.1: Characteristics of 2658 patients.

Variable N (%)
Age
≥50 1602 (60.3)
40–50 762 (28.7)
<40 294 (11.1)

Tumor size
<2cm 798 (30.0)
≥2cm 1860 (70.0)

Nodal status
negative 1407 (52.9)
positive 1251 (47.1)

Surgery
mastectomy 1164 (43.8)
breast conserving 1494 (56.2)

Perioperative chemotherapy
yes 1325 (49.8)
no 1333 (50.2)

Adjuvant chemotherapy
no 2173 (81.8)
yes 485 (18.2)

Adjuvant radiotherapy
no 54 (2.0)
yes 2604 (98.0)
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Figure 2.1: Initially, 2658 patients are alive with no evidence of disease (ANED).

The choice of covariates to analyze is based on a previous study on the same
data [46]. The following prognostic factors are considered in the analysis: age (≥
50, 40 − 50, < 40), tumor size (< 2cm, ≥ 2cm), nodal status (negative, positive),
type of surgery (mastectomy, breast conserving), perioperative chemotherapy (yes,
no), adjuvant chemotherapy (yes, no), adjuvant radiotherapy (yes, no). Patients’
characteristics are provided in Table 2.1.

§2.5.2 Competing risks model with independent frailties
To account for center effect in a cause-specific regression model each cause of failure
within a hospital is assigned its own independent frailty.

The model can be estimated similarly to the classical competing risks model, by
using coxph() together with the frailty() function from the R package survival
[142] or the emfrail() function from the frailtyEM [27] package. The results of the
estimated model with independent gamma frailties are shown in Table 2.2.

A young age (<40) significantly increases the risks of experiencing recurrence (HR:
1.43; CI: 1.16-1.76), as well as a larger tumor size (HR: 1.41; CI: 1.22-1.64), a positive
nodal status (HR: 1.55; CI: 1.34-1.79) and whether or not perioperative chemotherapy
and adjuvant chemotherapy was administered (HR: 1.15; CI: 1.02-1.30 and HR: 0.79;
CI: 0.64-0.97 respectively). The frailty variance for transition 1 is estimated to be
equal to 0.05.

A larger tumor size and a positive nodal status also have a significant effect on
death before recurrence with HR: 1.46 (CI: 1.21-1.76) and HR: 2.22 (CI: 1.87-2.63).
For death also type of surgery has a significant effect with HR equal to 0.82 (CI:
0.70-0.97) for breast conserving therapy compared to mastectomy. This finding is
unexpected and should probably be ascribed to insufficient adjustment for factors
relates to choice of primary surgical treatment. The frailty variance for this transition
is estimated to be equal to 0.13.

A different frailty model assigns to each hospital a shared frailty term for both
causes of failure. Both the independent and shared frailty model are not realistic. The
former assumes an independent effect of the unobserved covariates on the two events
and the latter assumes them to have the same effect on both events. A model allowing
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Table 2.2: Cause-specific hazards model with independent frailties.

ANED → Recurrence ANED → Death
HR 0.95 CI HR 0.95 CI

Age
≥50 1.00 1.00
40–50 1.00 0.85-1.19 0.84 0.68-1.04
<40 1.43 1.16-1.76 1.03 0.79-1.34

Tumor size (≥ 2 vs <2 cm) 1.41 1.22-1.64 1.46 1.21-1.76
NodST (pos. vs neg.) 1.55 1.34-1.79 2.22 1.87-2.63
Surgery (cons. vs mast.) 0.92 0.80-1.05 0.82 0.70-0.97
PeriCT (no vs yes) 1.15 1.02-1.30 1.11 0.96-1.29
AdjCT (yes vs no) 0.79 0.64-0.97 0.82 0.64-1.05
AdjRT (yes vs no) 1.20 0.73-1.98 1.12 0.62-2.00

Variance SE Variance SE
Frailty 0.05 0.03 0.13 0.06
Abbreviations: NodST (pos. vs neg.), Nodal status (positive vs negative); Surgery
(cons. vs mast.), Surgery (breast conserving vs mastectomy); PeriCT, Perioperat-
ive chemotherapy; AdjCT, Adjuvant chemotherapy; AdjRT, Adjuvant radiotherapy;
ANED, alive with no evidence of disease; CI, confidence interval; HR, hazard ratio;
SE, standard error.

for possible correlation between frailties is probably a more accurate representation
of reality.

§2.5.3 Competing risks model with correlated frailties

In Table 2.3 the results for the competing risks frailty model with correlated frailties
are shown.

The hazard ratios for recurrence are almost unchanged compared to the independ-
ent frailty model. However, in the correlated frailty model nodal status and size are
the only significant factors. The hazard ratios for death without recurrence are very
different from the independent frailty model. This can be explained by the small
number of deaths without recurrence in the data set. The variation added by addi-
tionally estimating the frailties, increased the standard errors and fewer variables are
significant.

The variance of the frailty for transition 1 (ANED → Recurrence) is equal to
0.05 with a standard error of 0.03. For transition 2 (ANED → Death) the frailty
variance is equal to 0.27 with a standard error of 0.22. The correlation of the frailties
is estimated to be equal to 0.37 with a standard error of 0.18. Given these frailty
variances the maximum correlation between frailties in this model is 0.43 resulting
from inequalities (2.4.6) and (2.4.7).
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Table 2.3: Cause-specific hazards model with correlated frailties.

ANED → Recurrence ANED → Death
HR 0.95 CI HR 0.95 CI

Age
≥50 1.00 1.00
40–50 1.00 0.69-1.44 0.35 0.05-2.76
<40 1.42 0.92-2.18 0.62 0.06-6.48

Tumor size (≥ 2 vs <2 cm) 1.41 1.05-1.89 0.96 0.25-3.73
NodST (pos. vs neg.) 1.55 1.15-2.08 1.72 0.47-6.27
Surgery (cons. vs mast.) 0.92 0.70-1.22 0.65 0.18-2.31
PeriCT (no vs yes) 1.15 0.89-1.48 1.14 0.35-3.70
AdjCT (yes vs no) 0.79 0.50-1.27 0.80 0.06-10.08
AdjRT (yes vs no) 1.18 0.81-1.71 0.66 0.12-3.72

Variance SE Variance SE
Frailty 0.05 0.03 0.27 0.22

Correlation SE
Correlation 0.37 0.18
Abbreviations: NodST (pos. vs neg.), Nodal status (positive vs negative); Surgery
(cons. vs mast.), Surgery (breast conserving vs mastectomy); PeriCT, Perioperat-
ive chemotherapy; AdjCT, Adjuvant chemotherapy; AdjRT, Adjuvant radiotherapy;
ANED, alive with no evidence of disease; CI, confidence interval; HR, hazard ratio;
SE, standard error.

§2.5.4 Empirical Bayes estimates
Figure 2.2 shows the empirical Bayes estimates of the frailties of each center together
with 95% prediction intervals, for event recurrence and death. A value equal to 1
implies that there is no center effect. Centers are ordered by number of patients
treated. The prediction intervals are computed by sampling from the gamma mixture
distribution of frailties and taking 2.5% and 97.5% quantiles as lower and upper limit.

The left panel of Figure 2.2 shows the frailties for the event recurrence for 14
hospitals ordered by number of patients treated. Two hospitals (9 and 11) have a
significantly increased risk for their patients to develop recurrence. One hospital (12)
has a significantly decreased risk for its patients to develop recurrence. Further one
can see that the width of the prediction intervals decrease with a growing number of
patients in the hospital.

The right panel of Figure 2.2 shows that one hospital (11) has an increased risk for
its patients to move to the state death. One hospital (14) has a marginally significant
decreased risk for its patients to die.

To visualize the relation of the frailties within a hospital the empirical Bayes
estimates of the two frailties for each center are plotted against each other in Figure
2.3, together with the joint empirical distribution of the frailties for two centers with
index 11 and 12.

The hospital effects on a patient can be investigated by looking at the difference
in cumulative hazard and cumulative incidence between the hospitals for a particular
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Figure 2.2: Empirical Bayes estimates of frailties and 95% prediction intervals for event
recurrence and death of 14 centers, sorted by number of patients.

patient. This is shown in Figure 2.4, for a patient whose covariate values correspond
to the mean covariate values in the data.

A pairwise comparison of cumulative incidence curves for an average patient
treated in two hospitals further illustrates the difference in effects. This is depic-
ted in Figure 2.5, which shows the stacked cumulative incidence curves for an average
patient treated in the two hospitals with the lowest and highest frailty for recurrence.
The prognosis shown in the left panel estimates a lower risk for both events, compared
to the right panel. This is explained by the estimated correlation between frailties
(Table 2.3) and the empirical Bayes estimates of the hospitals (Figure 2.3), which
indicate that a hospital with a decreased risk for one cause also has a decreased risk
for the other cause. This makes the hospital corresponding to the left panel more
appealing.
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Figure 2.3: Empirical Bayes estimates of frailties for two causes of failure plotted together for
14 centers. For centers with index 11 and 12 the joint empirical distribution of the frailties
is shown in red and blue respectively.
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Figure 2.4: Upper panels: cumulative hazards for an average patient for recurrence (on the
left) and death (on the right); each line represents a hospital. Lower panels: cumulative
incidence of an average patient for recurrence (on the left) and death (on the right); each
line represents a hospital.
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curves for an average patient treated in hospital with highest estimated frailty for recurrence.
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§2.6 Simulation

To investigate the performance of the correlated frailty model a simulation study is
conducted. Multiple data scenarios are simulated and the results of the independent
and correlated frailty model are compared. Motivated by the data example from
Section 2.5 a similar scenario with 2700 patients distributed equally over 15 centers
is used for simulation. To study how the number of centers affects the estimation,
different scenarios with 5, 30 and 50 centers are considered, while keeping the total
number of patients fixed to 2700 (see Table 2.4).

Table 2.4: Scenarios for simulation.

Scenario n K nk Var (Wk1) Var (Wk2) Cor (Wk1,Wk2) Correlation Bounds
A 2700 5 540 0.25 0.25 0.3 (0, 1)
B 2700 15 180 0.25 0.25 0.3 (0, 1)
C 2700 30 90 0.25 0.25 0.3 (0, 1)
D 2700 50 54 0.25 0.25 0.3 (0, 1)
E 2700 15 180 0.1 0.3 0.8 (0, 0.58)
F 2700 15 180 0.25 0.25 -0.3 (0, 1)
Notation: n, total number of patients; K, number of centers; nk, number of patients
per center; Wkj (j = 1, 2), center-specific frailty for cause j.

Survival times are generated by using two Weibull baseline hazards with a com-
mon shape parameter a and rate parameters b1 and b2 for the two causes of failure
respectively. Weibull parameters are fixed throughout the data scenarios and are
estimated from the data example of Section 2.5 (a = 1.01, b1 = 0.05, b2 = 0.03).

Different frailty variance structures are simulated in the different scenarios. Using
an additive gamma model as presented in Section 2.4 correlated frailties are sampled
with variances equal to 0.25 and correlation equal to 0.3 for scenarios A, B, C and
D. As discussed in Section 2.4 different frailty variances by construction do not allow
too large correlations; in addition correlation is assumed to be positive to use the
proposed method. To study the performance of the method proposed in this article
data scenarios E and F which violate these assumptions are simulated. Center and
patient distribution are set closest to the data example (15 centers with 180 patients
each). Frailties for scenarios E and F in Table 2.4 are sampled from a multivariate
lognormal distribution. Scenario E considers a situation in which the correlation is
too large to be modeled: frailty variances are equal to 0.1 and 0.3 for cause 1 and 2
respectively while correlation is equal to 0.8. Scenario F represents a situation in which
negative correlation is present, with frailty variances equal to 0.25 and correlation
equal to -0.3.

Table 2.4 summarizes all scenarios simulated. Censoring times are simulated from
a uniform distribution between 9 and 14 years, motivated by the data example.

For each scenario, 1000 data sets are simulated for which two models are estimated:
a model with independent frailties for the two causes and the proposed correlated
frailty model. Results for frailty variance and empirical Bayes estimates are shown in
Table 2.5 and Table 2.6, respectively.

Table 2.5 shows that the independent frailty model generally estimates the frailty
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variances to be too high with a large bias and large root-mean-square error (RSME).
This seems to be more apparent in data sets with fewer centers.

The correlated frailty model estimates on average results that are closer to the true
parameter values with bias of less than half the empirical standard error apart from
scenarios E and F. Empirical standard errors are smaller compared to the independent
model and are comparable to the average standard error, which even though close, is
consistently smaller than the empirical standard error. Root-mean-square errors are
generally smaller for the correlated frailty model compared to the independent model.

For scenarios with a larger number of centers better estimation results are ob-
tained. Scenario D with 50 centers per data set shows the best estimation results.
Average standard errors are close to the empirical standard errors and RSMEs are
small. Scenario E showcases a situation in which the correlation is too large to be
modeled with the additive gamma construction. Given frailty variances correlation
is restricted to ρ <

√
0.1/0.3 = 0.58 (see equations (2.4.6-2.4.7)). The method in

this case finds a middle ground and underestimates the frailty variance for cause 2 to
allow for a larger correlation. Scenario F considers negative correlation. In this case
frailty variances are underestimated, however they are still closer to the true values
compared to estimates of the independent model and the correlation estimate is very
close to 0.

Table 2.6 shows summary measures of empirical Bayes estimates over the different
data scenarios. Bias as well as RMSEs are reported together with coverage probabil-
ities of prediction intervals acquired using the sampling method described in Section
2.4 and studied for each scenario. The number of centers has a stronger effect on
the empirical Bayes estimates compared to the frailty variance estimates. Scenario
A with only 5 centers shows very poor coverage of the 95% prediction intervals with
probabilities of 0.394 and 0.492 for empirical Bayes estimates corresponding to cause
1 and 2 respectively. Scenarios with 15 centers (B, E and F) achieved coverage prob-
abilities between 0.749 and 0.864 and scenarios with more centers (C and D) achieved
values between 0.877 and 0.930. Bias and RSME of empirical Bayes estimates ap-
pear consistent over different scenarios. To quantify the performance of the method
on the estimation of the center-specific cumulative incidence, its bias and RMSE are
estimated at quartiles of the theoretical overall event time distribution (t1 = 3.55,
t2 = 8.48, t3 = 16.85). The estimates appear unbiased but worsen for the later
time t3. Interestingly, the bias and RSMEs appear not to be influenced much by the
amount of centers and it even appears to become slightly worse if more centers are
present in the data. An explanation could be that the estimation of the cumulat-
ive incidence becomes more challenging due to the data being generated from many
different hazard rates.

For some of the simulated data sets the standard error of the frailty variance
and correlation estimate could not be obtained because the hessian matrix obtained
during optimization was not positive definite. In this case another attempt was made
by starting the optimization of the frailty components from another starting value.
This procedure was able to compute results in some cases (see Table 2.7). In case
the hessian was not positive definite the data set was discarded. The amount of
failed estimation was strongly dependent on the amount of centers in the data set.
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Percentages of second attempts and discarded data sets are given illustrated in Table
2.7.
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Table 2.7: Failed estimation of standard error.

Scenario Nbr. of
data sets

Successful
runs

Success second
attempt

Failed
estimation

Evaluated

A 1200 1062 80 138 1000
B 1200 1165 17 35 1000
C 1200 1117 1 83 1000
D 1200 1142 0 58 1000
E 1200 1046 232 154 1000
F 1200 1196 0 4 1000
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§2.7 Discussion and Conclusion

Using shared frailty models to account for unobserved covariates in multicenter studies
is common practice to avoid bias and to measure the amount of heterogeneity between
centers. Correlated frailty models extend the shared frailty model by incorporating
dependence structures between related individuals. Dependence among transition
intensities of competing risks have come of interest [162, 99, 123].

The model presented uses correlated gamma frailties to model dependence within
hospitals and between two competing risks. The mathematical properties of the
gamma distribution are exploited to construct and estimate correlated frailties. An
estimation procedure using the EM-algorithm is outlined and estimation of the stand-
ard error is illustrated. The estimation procedure provides empirical Bayes estimates
for hospital frailties, which together with their prediction intervals can be used to
compare hospital effects. The model is applied to breast cancer data and a moderate
correlation between the frailties of the competing events recurrence and death is es-
timated. A simulation study is conducted to investigate performance of the method
in different situations. Data scenarios with differing number of centers and correla-
tion structures are considered and estimates of a model with independent frailties are
compared to the proposed correlated frailty model. The performance of the empirical
Bayes estimates obtained by the method was studied under different conditions.

The independent frailty model showed that it is not capable of accounting for
center frailty in case of correlation between frailties. The correlated frailty model
outperformed it in all data scenarios, concerning estimates as well as size of empirical
standard errors. Its estimation benefits from a larger number of centers in the data. In
data scenarios with unattainable correlation structures it still performed reasonably
well and behaved in an expectable way.

The method is well suited to investigate hospital heterogeneity in the presence of
competing risks. It distinguishes between common and separate effects of a hospital
on two competing events and performed well in a simulation study. The proposed
model can be extended to the case of more then two competing events. Dependence
between risks can be modeled by adding frailty components, where shared components
induce dependence between risks. However, the model is limited to positive correlation
between frailties.

Wienke et al.[162] pointed out that in the case of cause-specific mortality the
presence of risk factors might increase the risk of death with respect to all disease,
making the case for positive dependence between risks. At the same time he argues
that everyone dies eventually, so if the risk of death from one cause is decreased
the risk from another cause must be increased, which suggests negative correlation
between risks. Further study should be dedicated to the nature of dependencies among
competing risks.

Putter and van Houwelingen [121] compare a two-point frailty distribution to a
gamma distribution to model association between transition times in multi-state mod-
els. An advantage of the two-point frailty model is that it allows the two frailty terms
to operate on different scale and that, in contrast to the gamma distribution, it allows
negative association. In their simulation study the two-point frailty outperforms the
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gamma distribution. A similar model could be used in the competing risks setting
modelling dependence between risks, possibly with three or four points.
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Appendix

§2.A Probabilities for E-step

Let zk0, zk1, zk2 be the independent gamma distributed frailty components and let
dkj (j = 1, 2) be the number of failures of type j in hospital k (k = 1, ...,K). Defining
Λkj =

∑nk
i=1 Λj0(tki)e

βTj Xki (j = 1, 2) the conditional probability of the data given
frailty components is given as

f(data k|zk0, zk1, zk2) =
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Integrating over the frailty components yields the following conditional probabilities

f(data k|zk0, zk2) =
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ν0+ν1
Λk1 + 1

ν0+ν2
Λk2

))dk1+dk2+v0−l−m

z
l
k1 exp

(
−zk1

1

ν0 + ν1
Λk1

)

f(data k|zk2) =

∫
zk0

f(zk0)f(data k|zk0, zk2)dzk0

=(ν0 + ν1)
−dk1 (ν0 + ν2)

−dk2 1

Γ(ν0)Γ(ν1)

nk∏
i=1

{
(λ10(tki) exp(β

T
1Xki))

1{δki=1} (λ20(tki) exp(β
T
2Xki))

1{δki=2}
}

dk1∑
l=0

dk2∑
m=0

(dk1
l

)(dk2
m

) Γ(l + ν1)(
1 + 1

ν0+ν1
Λk1

)l+ν1 Γ(dk1 + dk2 + v0 − l−m)(
1 +

(
1

ν0+ν1
Λk1 + 1

ν0+ν2
Λk2

))dk1+dk2+v0−l−m

z
m
k2 exp

(
−zk2

1

ν0 + ν2
Λk2

)

The observed data likelihood is given as

f(data k) =

∫
zk0

f(zk0)f(data k|zk0)dzk0

=(ν0 + ν1)
−dk1 (ν0 + ν2)

−dk2 1

Γ(ν0)Γ(ν1)Γ(ν2)

nk∏
i=1

{
(λ10(tki) exp(β

T
1Xki))

1{δki=1} (λ20(tki) exp(β
T
2Xki))

1{δki=2}
}

dk1∑
l=0

dk2∑
m=0

(dk1
l

)(dk2
m

) Γ(l + ν1)(
1 + 1

ν0+ν1
Λk1

)l+ν1 Γ(m+ ν2)(
1 + 1

ν0+ν2
Λk2

)m+ν2

Γ(dk1 + dk2 + ν0 − l−m)(
1 + 1

ν0+ν1
Λk1 + 1

ν0+ν2
Λk2

)dk1+dk2+ν0−l−m
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The conditional probabilities of the frailty components given the data necessary for
the E-step are given as

f(zk0|data k) =
f(data k|zk0)f(zk0)

f(data k)

=

dk1∑
l=0

dk2∑
m=0

ck(l,m, ν0, ν1, ν2)

(
1 + 1

ν0+ν1
Λk1 + 1

ν0+ν2
Λk2

)dk1+dk2+v0−l−m

Γ(dk1 + dk2 + v0 − l−m)
z
dk1+dk2+ν0−l−m−1

k0

exp

(
−zk0

(
1 +

1

ν0 + ν1
Λk1 +

1

ν0 + ν2
Λk2

))

f(zk1|data k) =
f(data k|zk1)f(zk1)

f(data k)

=

dk1∑
l=0

dk2∑
m=0

ck(l,m, ν0, ν1, ν2)

(
1 + 1

ν0+ν1
Λk1

)l+ν1
Γ(l + ν1)

z
l+ν1−1

k1 exp

(
−zk1

(
1 +

1

ν0 + ν1
Λk1

))

f(zk2|data k) =
f(data k|zk2)f(zk2)

f(data k)

=

dk1∑
l=0

dk2∑
m=0

ck(l,m, ν0, ν1, ν2)

(
1 + 1

ν0+ν2
Λk2

)m+ν2

Γ(m+ ν2)
z
m+ν2−1

k2 exp

(
−zk2

(
1 +

1

ν0 + ν2
Λk2

))

where

c̃k(l,m, ν0, ν1, ν2) =(dk1
l

)(dk2
m

) Γ(l + ν1)(
1 + 1

ν0+ν1
Λk1

)l+ν1 Γ(m+ ν2)(
1 + 1

ν0+ν2
Λk2

)m+ν2

Γ(dk1 + dk2 + v0 − l−m)(
1 + 1

ν0+ν1
Λk1 + 1

ν0+ν2
Λk2

)dk1+dk2+v0−l−m

ck(l,m, ν0, ν1, ν2) =
c̃k(l,m, ν0, ν1, ν2)∑dk1

l=0

∑dk2
m=0 c̃k(l,m, ν0, ν1, ν2)

.

§2.B Observed information of regression parameters

The term Σηη = I−1
ηη can be computed as described by Louis [101].

Let `∗ and ` be the log-likelihood and the conditional log-likelihood given frailties.
The Fisher information for η̂ can be rewritten in terms of the conditional log-likelihood
given as

Iηη(ν) =E ν

(
− ∂2

∂η∂η
`∗(η)

)
(2.B.1)

=E ν

(
− ∂2

∂η∂η
`(η|W )|W ∈ R

)
− E ν

(
∂

∂η
`(η|W )

∂

∂η
`T (η|W )|W ∈ R

)
+

∂

∂η
`∗(η)

∂

∂η
`∗T (η),
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where W are the unobserved frailties and R is the set of possible frailties given the
data. Notably the last term is zero at the MLE and thus a simplified notation for the
Fisher information at the MLE is given as

Iηη = I(full)
ηη − I(loss)

ηη

where the first term represents the full information and the second term represents
the loss of information due to the unobserved frailties.

Let

• dk1, dk2: number of failures of cause 1 and 2 in hospital k respectively

• d1, d2: number of failures of cause 1 and 2 in total respectively

• dkl′ : number of failures of cause 1 at time tl′ in hospital k

• dkm′ : number of failures of cause 2 at time tm′ in hospital k

• d1l′ : number of failures of cause 1 at time tl′

• d2m′ : number of failures of cause 2 at time tm′

• tkl, l = 1, ..., dk1: ordered event times for cause 1 in hospital k

• tkm,m = 1, ..., dk2: ordered event times for cause 2 in hospital k

• tl′ , (l′ = 1, ..., d1): ordered event times for cause 1

• tm′ , (m′ = 1, ..., d2): ordered event times for cause 2

• Λ10(t) =
∑
tl′≤t

λ10(tl′)

• Λ20(t)
∑
tm′≤t

λ20(tm′)

•
∑nk
i=1 e

βT1XkiΛ10(tki) =
∑d1
l′=1 λ10(tl′)

∑
i:tki≥tl′

eβ
T
1Xki

•
∑nk
i=1 e

βT2XkiΛ20(tki) =
∑d2
m′=1 λ20(tm′)

∑
i:tki≥tm′

eβ
T
2Xki

• Rk(t) = {i : tki ≥ t}: risk set at time t for hospital k

The conditional log-likelihood given frailties can be expressed as

` =
∑
k

dk1 log(
zk0 + zk1

ν0 + ν1
) +

dk1∑
l=1

log(λ10(tkl)) +

dk1∑
l=1

βT1Xkl

− zk0 + zk1

ν0 + ν1

d1∑
l′=1

λ10(tl′)
∑

i∈Rk(tl′ )

eβ
T
1Xki

+ dk2 log(
zk0 + zk2

ν0 + ν2
) +

dk2∑
m=1

log(λ20(tkm)) +

dk2∑
m=1

βT2Xkm

− zk0 + zk2

ν0 + ν2

d2∑
m′=1

λ20(tm′)
∑

i∈Rk(tm′ )

eβ
T
2Xki .
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The term I
(loss)
ηη is the product of the gradient vector of the conditional log-likelihood

with itself. The elements of the gradient vector are:

∂

∂β1j

` =
∑
k


dk1∑
l=1

Xklj −
zk0 + zk1

ν0 + ν1

d1∑
l′=1

λ10(tl′)
∑

i∈Rk(tkl′ )

Xkije
βT1Xki


∂

∂β2j

` =
∑
k


dk2∑
m=1

Xkmj −
zk0 + zk2

ν0 + ν2

d2∑
m′=1

λ20(tm′)
∑

i∈Rk(tm′ )

Xkije
βT2Xki


∂

∂λ10l′
` =

∑
k

 dkl′

λ10l′(tl′)
− zk0 + zk1

ν0 + ν1

∑
i∈Rk(tl′ )

eβ
T
1Xki


=

d1l′

λ10l′(tl′)
−
∑
k

zk0 + zk1

ν0 + ν1

∑
i∈Rk(tl′ )

eβ
T
1Xki

∂

∂λ20m′
` =

d2m′

λ20m′(tm′)
−
∑
k

zk0 + zk2

ν0 + ν2

∑
i∈Rk(tm′ )

eβ
T
2Xki

The second order derivatives to calculate the full information matrix I(full) are:

∂2

∂β1j∂β1h

` =−
∑
k

zk0 + zk1

ν0 + ν1

d1∑
l′=1

λ10(tl′)
∑

i∈Rk(tl′ )

XkijXkihe
βT1Xki

∂2

∂β1j∂β2h

` = 0

∂2

∂β1j∂λ10l′
` =−

∑
k

zk0 + zk1

ν0 + ν1

∑
i∈Rk(tl′ )

Xkije
βT1Xki

∂2

∂β1j∂λ20m′
` = 0

∂2

∂β2j∂β2h

` =−
∑
k

zk0 + zk2

ν0 + ν2

d2∑
m′=1

λ20(tm′)
∑

i∈Rk(tm′ )

XkijXkihe
βT2Xki

∂2

∂β2j∂λ10l′
` = 0

∂2

∂β2j∂λ20m′
` =−

∑
k

zk0 + zk2

ν0 + ν2

∑
i∈Rk(tm′ )

Xkije
βT2Xki

∂2

∂λ10p′∂λ10l′
` = 0,

∂2

∂λ10l′∂λ10l′
` = − d1l′

λ10l′(tl′)2

∂2

∂λ10p′∂λ20m′
` = 0

∂2

∂λ20p′∂λ20m′
` = 0,

∂2

∂λ20m′∂λ20m′
` = − d2m′

λ20m′(tm′)2
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CHAPTER 3
Assessment of predictive accuracy of

an intermittently observed binary
time-dependent marker

This chapter is based on joint work with Hein Putter and Marta Fiocco.

Abstract

Following tumor removal surgery soft tissue sarcoma patients are at risk for disease
recurrence, which can indicate an increased risk of death. The predictive value of
this time-dependent variable can be summarized by the time-specific Area Under the
receiver operating characteristics Curve (AUC). However, the fact that recurrence is
often diagnosed in an interval-censored fashion is frequently ignored when modelling
its effect on survival. Follow-up schemes determine the times at which a patient is dia-
gnosed with recurrence. The effect that ignoring the interval-censored nature of the
observation time has on the time-specific AUC in both incident/dynamic and cumu-
lative/dynamic definition is studied.[80, 171] AUC estimates derived from different
methods for fitting two types of models are compared: the Cox model with time-
dependent covariate and the illness-death model for interval-censored data. Data is
simulated from an illness-death model with Weibull transition hazards and the disease
state is censored at regular observation intervals. The true AUC is determined by
transition probabilities, derived from the Weibull transition hazards. The method is
applied to a data set of 2232 patients with high-grade soft tissue sarcoma and results
are discussed.



3. Assessment of predictive accuracy of an intermittently observed binary
time-dependent marker

C
h
a
pt

er
3

§3.1 Introduction

Survival analysis studies the distribution of time from a time origin to an event of
interest. It is often applied in the medical field where for example the time from
diagnosis to death is studied. The intrinsic particularity of survival data is that it is
generally incomplete: the event of interest cannot always be observed because it takes
time to observe it. Data of individuals who did not experience the event of interest
within a specific time window are right-censored. A frequently used method to study
the effect of covariates on survival time is the Cox proportional hazards model.[44]
In the medical field it is often applied to study the effect of risk factors on a single
event such as death or disease progression. However, in practice disease progression
may be described by more than one type of event. These more complicated event
structures can be modeled simultaneously using multi-state models.[119] The most
simple of such models is the illness-death model, which is described by three states
(see Figure 3.1): an individual is initially disease-free (state 0), he may then develop
disease (state 1) and die (state 2) or he may die without disease. Like in the single
event situation the Cox model can be used to model the effect of covariates on the
transitions between states.

The illness-death model is applicable to a variety of disease settings; a problem
arises, however, if the time of disease cannot be observed exactly. Often, disease can
only be diagnosed at pre-specified follow-up times. An example lies in the care of
patients with soft tissue sarcoma. After initial treatment by tumor removal surgery a
patient may develop distant metastases and then die. Metastases are diagnosed at pre-
specified follow-up visits at which an X-ray of the patient is screened. If metastases
are found, it is therefore only known that they appeared between the last negative
screening and the first positive screening; the data is interval-censored. This type of
data contains two types of missing information: (1) the time of disease is only known
to have happened between two visits, it is interval-censored. (2) If the last disease
screening prior to death or last recorded follow-up was negative the disease status of
a patient between last screening and death or last recorded follow-up is unknown.

The illness-death model for interval-censored data has been previously studied and
it was found that ignoring the observation scheme of the data leads to biased estim-
ates of regression coefficients, baseline hazards, and survival.[64, 86, 65, 168, 97] A
prominent motivation comes from the study of dementia data.[86, 168, 97] Dementia
is diagnosed at infrequent follow-up visits which results in the time to dementia being
interval-censored. Further, if a patient’s last dementia test was negative and he dies
it is not known if he acquired dementia prior to death. Frydman (1995)[64] developed
a non-parametric maximum likelihood procedure for the estimation of the cumulative
transition hazards when times of disease are interval-censored. He does not address
the second form of incompleteness however, i.e. it is assumed that the disease state
is known before death or right-censoring time. Joly et al. (2002)[86] proposed a
non-parametric penalized likelihood method to estimate transition intensities in an
illness-death model with an intermittently observed disease state. Simulations showed
that not adjusting for the interval-censored nature of the data leads to a systematic
bias in the estimation of transition intensities. Frydman and Szarek (2009)[65] ex-
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tended the methodology of Frydman (1995)[64] to incorporate the observations with
unknown intermediate event status. They estimated the distribution of the time to
the first occurrence of disease or death and showed that their method corrects bias.
Yu et al. (2010)[168] used multiple imputation to analyze two aspects concerning
the risk of dementia: the risk of developing dementia and the impact of dementia
on survival. Leffondré et al. (2013)[97] performed simulation studies to show how
interval-censoring affects the estimation of the effect of risk factors.

If event times are observed exactly the illness-death model can be estimated with
several R-packages, such as the survival and the mstate package.[141, 49, 48] The
number of packages that can deal with an interval-censored disease state however is
limited. The msm and the SmoothHazard package can fit an illness-death model for
interval-censored disease times and exact death times.[85, 144] In the msm package
piece-wise constant hazards need to be assumed and in the SmoothHazard package
the user is able to choose between Weibull transition hazards and M-splines. The
coxinterval package can estimate the illness-death model for data with interval-
censored disease times as long as some disease times are observed exactly.[31] While
the effect of ignoring the interval-censored nature of the data on regression coefficients
and baseline hazards has been studied, the effect on the assessment of predictive
accuracy has been neglected so far.

The aim of this article is to study the predictive accuracy of an interval-censored
binary disease marker on survival. How much does the occurrence or absence of disease
contribute to survival predictions over time? The illness-death model for data in which
the disease state is interval-censored is considered. The effect of interval-censoring
on the time-specific Area Under the receiver operating characteristics Curve (AUC)
in both incident/dynamic and cumulative/dynamic definition is evaluated.[80, 171]
Several estimation approaches are compared for two types of models: the Cox model
with time-dependent disease marker and the illness-death model for interval-censored
data as implemented in the msm and SmoothHazard R-packages.[85, 144] For this
purpose a simulation study is conducted where data is simulated from an illness-
death model with Weibull transition hazards.

The remainder of this article is organized as follows. Section 3.2 introduces the
definitions of time-specific AUC for a binary time-dependent marker and the theoret-
ical AUC values for a Weibull illness-death model. In Section 3.3 the different models
considered in this work are illustrated. A simulation study is presented in Section
3.4. In Section 3.5 the different methods are applied to data of soft tissue sarcoma
patients. A discussion follows in Section 3.6.
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State 0:
Disease-free

State 1:
Disease

State 2:
Death

Figure 3.1: Illness-death model.

§3.2 Time-specific AUC for binary marker

Several measures of predictive accuracy have been introduced in the field of survival
analysis. In this article predictive accuracy is assessed using the time-specific defini-
tions of sensitivity and specificity which allow for censoring proposed by Heagerty et
al. (2000)[79], Heagerty and Zheng (2005)[80], and Zheng and Heagerty (2007)[171].

Originally, sensitivity and specificity were defined considering a binary outcome
B. Individuals with outcome B = 1 were considered to be ‘cases’ and individuals with
outcome B = 0 were considered ‘controls’. A covariateX together with a classification
criterion c can then be used as a classification rule: a subject is predicted to be a
‘case’ if the value of the covariate is bigger than c and it is predicted to be a ‘control’
otherwise. The accuracy of this classification rule can be summarized by the correct
classification rates; sensitivity(c) = P (X > c|B = 1) and specificity(c) = P (X ≤
c|B = 0). The full range of sensitivity and specificity for different classification criteria
c can be graphically summarized by the Receiver Operation Characteristic (ROC)
curve which plots sensitivity against 1-specificity. The ROC curve illustrates the
difference of the marker distribution between cases and controls. If the distributions
are the same, which means that the marker is useless to distinguish cases from controls,
then the ROC curve lies on the 45 degree line. The Area Under the Curve (AUC) is
a measure of concordance between the marker and the outcome and can be used to
summarize the predictive accuracy of the marker X. It is defined by

AUC(X) = P (X1 > X0) + 0.5 · P (X1 = X0),

where X1 is the value of a covariate drawn from the distribution of cases (B = 1)
and X0 is the value of a covariate drawn from the distribution of controls (B = 0).
To extend the concept of sensitivity and specificity to allow for censored data several
definitions for cases and controls were studied[79, 80, 171].

In this article a time-dependent binary covariate X(t) representing disease is con-
sidered. The covariate X(t) can take values 0 and 1 which correspond to not having
disease and having disease at time t, respectively. The Markov assumption is assumed
for the studied illness-death model throughout the article.
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§3.2.1 Incident cases and dynamic controls
Heagerty and Zheng (2005)[80] define incident sensitivity and dynamic specificity at
time t as

sensitivityI(c, t) = P (X(t) > c | T = t),

specificityD(c, t) = P (X(t) ≤ c | T > t),

where c is a classification criterion, T is time of death and X(t) is the time-dependent
disease marker evaluated at time t. In this definition the individuals who die at
time t are considered cases and individuals who survive beyond time t are considered
controls. Let i, j be individuals, Xi(t), Xj(t) their marker values at time t, and Ti
and Tj their death times. The incident/dynamic AUC is then defined by[80]

AUCI/D(t) =P (Xi(t) > Xj(t) | Ti = t, Tj > t)

+ 0.5P (Xi(t) = Xj(t) | Ti = t, Tj > t).

In case Xi(t) and Xj(t) are binary covariates the AUCI/D(t) can be rewritten as

AUCI/D(t) = 0.5 + 0.5(p(t)− π1(t)), (3.2.1)

where π1(t) is the probability that a person alive at time t has experienced disease
(prevalence of disease) and p(t) is the probability that a person who dies at time t
has a history of disease (see Appendix 3.A). The disease marker X(t) is related to the
illness-death model of Figure 3.1 in the following way: X(t) = 0 if a patient did not
move to state 1 (disease) before time t (in state 0 or 2 at time t) and X(t) = 1 if a
patient moved to state 1 (disease) before time t (in state 1 or 2 at time t). The terms
π1(t) and p(t) can be expressed by transition probabilities in a multi-state model with
states 0, 1, 2 (Figure 3.1),

π1(t) =P (Xi(t) = 1 | Ti > t) =
P01(t)

P00(t) + P01(t)
, (3.2.2)

p(t) =P (Xi(t−) = 1 | Ti = t) =

λ12(t)
λ02(t)P01(t−)

P00(t−) + λ12(t)
λ02(t)P01(t−)

, (3.2.3)

where t− means just before time t, P0l(t) is the conditional probability of being in
state l, (l = 0, 1) at time t given in state 0 at time 0 and λk2(t) is the transition
hazard at time t for moving from state k, (k = 0, 1) to state 2.

The incident/dynamic AUC at a specific time t measures how well the disease
marker evaluated at time t separates those who die at t from those who survive.
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The difference between p(t) and π1(t) is equal to

p(t)− π1(t) =
γ(t)P01(t)

P00(t) + γ(t)P01(t)
− P01(t)

P00(t) + P01(t)

=(γ(t)− 1)
P01(t)P00(t)

(P00(t) + γ(t)P01(t))(P00(t) + P01(t))
, (3.2.4)

=(γ(t)− 1)
1

(1 + γ(t)P01(t)/P00(t))(1 + P00(t)/P01(t))
,

where γ(t) = λ12(t)
λ02(t) .

From (3.2.1) and (3.2.4) follows that if γ(t) ≡ 1 then AUCI/D(t) = 0.5, if γ(t) > 1

then AUCI/D(t) ≥ 0.5 and if γ(t) < 1 then AUCI/D(t) ≤ 0.5.

§3.2.2 Cumulative cases and dynamic controls

Zheng and Heagerty (2007)[171] define cumulative sensitivity and dynamic specificity
at time t for a time-dependent covariate evaluated at time s as

sensitivityC(c | start = s, stop = t) = P (X(s) > c | T ≥ s, T ≤ t),
specificityD(c | start = s, stop = t) = P (X(s) ≤ c | T ≥ s, T > t),

where T is time of death, X(s) is marker measurement at time s. Cases are individuals
who die within a time window (t− s) from s and controls are individuals who survive
the time window. The cumulative/dynamic AUC is then defined by

AUCC/D(s, t) =P (Xi(s) > Xj(s) | Ti > s, Ti ≤ t, Tj > s, Tj > t)

+ 0.5P (Xi(s) = Xj(s) | Ti > s, Ti ≤ t, Tj > s, Tj > t)

where i, j are individuals, Xi(s), Xj(s) their marker values at time s, and Ti, Tj their
death times. For binary Xi(s) and Xj(s) the AUCC/D can be rewritten as

AUCC/D(s, t) =0.5 + 0.5(p(s, t)− π1(s, t)), (3.2.5)

where π1(s, t) is the probability that a person alive at time t had experienced disease
by time s and p(s, t) is the probability that a person that dies in the time interval
(s, t] had experienced disease by time s (see Appendix 3.A). The quantities π1(s, t)

and p(s, t) can be written in terms of transition probabilities, in the same multi-state
model of Figure 3.1:
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π1(s, t) =P (Xj(s) = 1 | Tj > t) =
P11(s, t)P01(0, s)

P00(0, t) + P01(0, t)
, (3.2.6)

p(s, t) =P (Xi(s) = 1 | Ti > s, Ti ≤ t) =
P12(s, t)P01(0, s)

P02(s, t)P00(0, s) + P12(s, t)P01(0, s)
,

(3.2.7)

where Pkl(u, v) is the conditional probability of being in state l at time v given in
state k at time u.

The cumulative/dynamic AUC at time s measures how well the disease marker
evaluated at time s separates those who die before time t from those who survive until
t.

§3.2.3 AUC for Weibull illness-death model
In this article an illness-death model with Weibull distributed transition hazards is
studied because of its simple transition probabilities. The transition hazards from
state i to state j are defined by

λij(t) = αijkt
k−1, (3.2.8)

where k is the common shape parameter and αij are transition-specific rate paramet-
ers. Let

S0(t) = exp(−(α01 + α02)tk),

S1(t) = exp(−α12t
k).

The transition probabilities are then equal to[119]

P00(u, t) =
S0(t)

S0(u)
,

P11(u, t) =
S1(t)

S1(u)
,

P01(u, t) =


α01

α01 + α02 − α12

(
S1(t)

S1(u)
− S0(t)

S0(u)

)
, if α01 + α02 − α12 6= 0

α01

(
S1(t)

S1(u)
tk − S0(t)

S0(u)
uk
)

, otherwise (note: S1(t) = S0(t)),

P 0
02(u, t) =

α02

α01 + α02

(
1− S0(t)

S0(u)

)
,
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P 1
02(u, t) =



α01

α01 + α02

(
1− S0(t)

S0(u)

)
− α01

α01 + α02 − α12

(
S1(t)

S1(u)
− S0(t)

S0(u)

)
,

if α01 + α02 − α12 6= 0

α01

α01 + α02

(
1− S0(t)

S0(u)

)
− α01

S0(t)

S0(u)

(
tk − uk

)
, otherwise

,

P02(u, t) =P 0
02(u, t) + P 1

02(u, t) = 1− α02 − α12

α01 + α02 − α12

S0(t)

S0(u)
− α01

α01 + α02 − α12

S1(t)

S1(u)
,

P12(u, t) =1− S1(t)

S1(u)
.

These transition probabilities can be used to calculate the time-specific incid-
ent/dynamic and cumulative/dynamic AUC using Equations (3.2.1) and (3.2.5), re-
spectively.

§3.2.4 Estimation
Equations (3.2.1)–(3.2.3)and (3.2.5)–(3.2.7) relate, respectively, the incident/dynamic
and cumulative/dynamic AUC to transition probabilities and hazards. Estimates for
the AUCs can be obtained by replacing transition probabilities and hazards by their
estimated counterparts. Such estimates may be obtained from software packages for
multi-state models, such as the R-packages mstate, msm, and SmoothHazard discussed
in Section 3.3.[49, 48, 85, 144]

§3.2.5 Estimation of incident/dynamic AUC
Equations (3.2.1)–(3.2.3) are used to estimate the incident/dynamic AUC,

ÂUC
I/D

(t) = 0.5 + 0.5(p̂(t)− π̂1(t)), (3.2.9)

where

π̂1(t) =
P̂01(t)

P̂00(t) + P̂01(t)
,

p̂(t) =

λ̂12(t)

λ̂02(t)
P̂01(t−)

P̂00(t−) + λ̂12(t)

λ̂02(t)
P̂01(t−)

,

where t− means just before time t, P̂0l(t) is an estimate of the conditional probability
of being in state l, (l = 0, 1) at time t given in state 0 at time 0 and λ̂k2(t) is an
estimate of the transition hazard at time t for moving from state k, (k = 0, 1) to state
2.
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§3.2.6 Estimation of cumulative/dynamic AUC
Equations (3.2.5)–(3.2.7)are used to estimate the cumulative/dynamic AUC,

ÂUC
C/D

(s, t) = 0.5 + 0.5(p̂(s, t)− π̂1(s, t)),

where

π̂1(s, t) =
P̂11(s, t)P̂01(0, s)

P̂00(0, t) + P̂01(0, t)
,

p̂(s, t) =
P̂12(s, t)P̂01(0, s)

P̂02(s, t)P̂00(0, s) + P̂12(s, t)P̂01(0, s)
,

where P̂kl(u, v) is an estimate of the conditional probability of being in state l at time
v given in state k at time u.

§3.3 Illness-death models

Four different methods to estimate the illness-death model for interval-censored data
were compared: (1) the Cox model with disease state as time-dependent covari-
ate (ignoring the interval-censored nature of the time-dependent covariate), (2) the
piecewise-constant model accounting for interval-censoring using the msm function
from the msm package, (3) the Weibull model accounting for interval-censoring us-
ing the idm function from the SmoothHazard package, and (4) the M-spline model
accounting for interval-censoring using the idm function from the SmoothHazard
package.[85, 144] A sieve estimator for a Cox based multi-state model that accounts
for interval-censoring is implemented in the coxdual function from the coxinterval
package, however, at least some disease times need to be observed exactly for the
estimation procedure to work.[31] Since this is not the case in the motivation for this
study the coxinterval package was not further considered. In the simulation study
presented in Section 3.4 all methods are used and from their transition probabilities
the AUC is estimated.

§3.3.1 Cox model with time-dependent covariate
The Cox model with a binary time-dependent covariate is defined by the following
hazard function:

λ(t|X(t)) = λ0(t) exp(βX(t)),
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where λ0(t) is the baseline hazard, X(t) is the binary disease marker at time t and
β its effect. This model can be estimated by e.g. the coxph R-function from the
survival package[141], however, ignoring the interval-censored nature of the time-
dependent covariate. Disease time is assumed to be the time of diagnosis of disease:
X(t) = 0 if a patient was not diagnosed with disease yet at time t and X(t) =

1 if a patient was diagnosed with disease by time t. The Cox model with time-
dependent covariate corresponds to an illness-death model in which the transition
hazards to the state death are proportional. This allows for the estimation of the
effect of disease on death in form of a hazard ratio (HR). Transition probabilities
can be retrieved from the model using msfit and probtrans functions from the
mstate package.[49, 48] The risksetAUC R-function from the risksetROC package[80]
estimates the incident/dynamic AUC for a Cox model with time-dependent covariate.
Additionally to estimating the AUC using transition probabilities this function is also
used in the simulation study in Section 3.4.

§3.3.2 Piecewise-constant model accounting for interval-
censoring

This Markov model is described in Figure 3.1. Interval-censored data from an illness-
death process are a special case of panel data, in which the state of an individual is
observed at a finite series of times. The likelihood for panel data can be calculated in
closed form if the transition hazards are constant or piece-wise constant.[85] A model
with piecewise-constant hazards given by

λij(t) =


λij1 , if t ≤ c1
λij2 , if c1 < t ≤ c2
...

,

where ck are the times at which the hazard may change is considered. This model
is implemented in the msm package and can account for the interval-censored disease
state.[85] In the simulation study of Section 3.4 the hazards towards the death state are
assumed to be proportional so that an effect of disease on survival can be estimated.

§3.3.3 Weibull model accounting for interval-censoring
This model is a Markov illness-death model (see Figure 3.1) which assumes a Weibull
distribution for the transition hazards given by

λij(t) = αijkijt
kij−1,

where αij and kij are rate and shape parameters for the transition from state i to
state j, respectively. This model is implemented in the SmoothHazard R-package.[144]
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It accounts for interval-censoring and the probability of developing disease between
last disease scan and death or lost to follow-up and it is estimated by maximizing
the likelihood with the idm function. The function does not allow for the transition
hazards to the death state to be set proportional and therefore no effect of disease on
death can be estimated. The package provides prediction of transition probabilities
based on estimated transition hazards.

§3.3.4 M-spline model accounting for interval-censoring
This Markov illness-death model is described in Figure 3.1. The model is estim-
ated using a penalized likelihood approach with non-parametric transition hazards
λ01(t), λ02(t), and λ12(t), approximated by M-splines and it is implemented in the
SmoothHazard R-package.[86, 144] This model as the previous two, accounts for
interval-censoring of the disease state as well as the probability of developing dis-
ease between the last disease scan and death or lost to follow-up. It is estimated by
the idm function from the SmoothHazard R-package in which the option method =
"Splines" is set.[144] By default 7 knots per transition are estimated. As for the
Weibull model, the transition hazards towards the death state can not be set propor-
tional and therefore no HR for disease can be estimated. Transition probabilities can
be obtained using functions provided in the package.

§3.4 Simulation

To study the predictive accuracy of an interval-censored disease marker on survival
a simulation study was conducted. Incident/dynamic and cumulative/dynamic AUC
were computed to quantify the predictive accuracy of the disease marker for differ-
ent estimation procedures of the illness-death model. The methods compared were
the Cox model with time-dependent disease marker, which ignores interval-censoring,
and the illness-death model for interval-censored data estimated with three differ-
ent implementations: the piecewise-constant model implemented in the msm pack-
age, the Weibull model, and the M-spline model which are both implemented in the
SmoothHazard package (see Section 3.3). The piecewise-constant model needs as in-
put pre-specified change points at which the hazard may change. For the simulation
study 4 change points were considered 6, 30, 60, and 90 months. For the M-spline
model the default of 7 knots per transition was used.

Motivated by the clinical data discussed in Section 3.5 multiple data scenarios
were simulated and results from the different methods were compared. The number of
individuals per data set was either equal to 1000 or equal to 2000. Data were generated
from Weibull transition hazards with a common shape parameter k and different rate
parameters α01, α02 and α12 (see Equation (3.2.8)). The Weibull parameters were
based on the data discussed in Section 3.5 and were fixed throughout the simulated
scenarios (α01 = 0.05, α02 = 0.05, α12 = 0.56, k = 0.5).

The survival time was censored according to two different censoring schemes:
either it was censored administratively at 10 years follow-up or censoring times were
sampled from a uniform distribution between 5 and 10 years. The disease state was
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Table 3.1: Simulated scenarios.

Scenario N Censoring Follow-up
A 1000 unif(5, 10) 3
B 1000 unif(5, 10) 6
C 1000 unif(5, 10) 12
D 1000 10 3
E 1000 10 6
F 1000 10 12
G 2000 unif(5, 10) 3
H 2000 unif(5, 10) 6
I 2000 unif(5, 10) 12
J 2000 10 3
K 2000 10 6
L 2000 10 12
Abbreviations: N, total number of patients;
Censoring, type of death censoring, unif(5,
10) means censoring was uniformly sampled
between 5 and 10 years and 10 means that
administrative censoring occurred at 10 years;
Follow-up, time between disease observations
in months.

observed only at pre-specified follow-up visits. The scenarios cover three different
follow-up schemes in which the disease state was observed every 3, 6, or 12 months.
Table 3.1 summarizes the simulated scenarios. Each scenario was simulated 1000
times.

Table 3.2 shows the estimated coefficients and hazard ratios of disease for the
piecewise-constant and the Cox model. For the Weibull and M-spline model no effect
could be estimated, since the idm function does not allow transition hazards to be
proportional. The coefficients from the Cox model were consistently more biased
than from the piecewise-constant model. The Cox model underestimated the true
coefficient and the bias increased for larger follow-up intervals. These results are in
line with Leffondré et al. (2013)[97] who showed that the effect estimates of the Cox
model were biased if the covariate affected both the risk of disease and death.

Simulation results show that the coefficients from the piecewise-constant model
had smaller bias and smaller root mean square error.

AUC results obtained from different methods for scenarios A-F are summarized
in Tables 3.3 and 3.4. For results concerning other scenarios, see Appendix 3.B.
The cumulative/dynamic AUC was estimated every month and the incident/dynamic
AUC was estimated at each event time, because it depends on the transition hazard
evaluated at that time. In Table 3.3 where the AUC at specifc time points was
investigated, the AUC estimate just before that time was considered.

The M-spline model did not converge for many data sets. In some of these cases
this prevented the estimation of the incident/dynamic and cumulative/dynamic AUC.
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The number of invalid estimations is shown in Appendix 3.B, Table 3.B.4. The res-
ults of the M-spline model in Tables 3.3 and 3.4 are based only on valid estimations.
Additionally, for the M-spline model it is not possible to obtain transition probabil-
ities for a time after the last observation time. This restricts the estimation of the
cumulative/dynamic AUC (with prediction window of 5 years) to be estimated only
until 5 years prior to the last observation time, see Figure 3.2.

Table 3.3 shows the bias, empirical standard error, and root mean square error
for estimates of the incident/dynamic AUC at different years. The Weibull model
outperformed the other models in every scenario. This is not surprising since data were
generated according to Weibull distributions. The M-spline model consistently had
the largest standard error as well as the second smallest bias overall. The piecewise-
constant model was slightly less biased than the Cox model for scenarios with 6 and
12 months in between follow-up visits (scenarios B, C, E, F). For the scenarios with
3 months in between follow-up visits the Cox model outperformed the piecewise-
constant model (scenarios A, D) in terms of bias. The incident/dynamic AUC for the
Cox model was estimated by two different approaches. The first approach computes
the AUC from the ROC curve derived from the estimated sensitivity and specificity
and is implemented in the risksetAUC function from the risksetROC R-package[80].
The second approach computes the AUC from estimated transition probabilities as
described in Equation (3.2.9). Since the two estimation procedures for the Cox model’s
AUC gave similar result, only results for the transition probability based AUC are
presented in Table 3.3 (see Appendix 3.B, Table 3.B.2 for all results).

Table 3.4 shows the bias, empirical standard error, and root mean square error for
estimates of the cumulative/dynamic AUC. The piecewise-constant model showed the
worst performance and underestimated the true AUC. The Weibull model, M-spline
and the Cox model provided good results.

In Table 3.3 and 3.4 the AUC estimates were investigated at 1, 3, and 5 years
which coincide with the times of follow-up visits for every scenario. At these times
the Cox model displays less bias compared to times in between follow-up visits (see,
Figure 3.1 and 3.2).

The censoring scheme did not have a large effect on the incident/dynamic and cu-
mulative/dynamic AUC estimates for the Cox, piecewise-constant and Weibull model.
It did however, have an effect on the estimates of the M-spline model. Earlier cen-
soring according to the uniform distribution between 5 and 10 years (scenarios A-C,
G-I) resulted in a larger percentage of invalid estimations (see Appendix 3.B, Table
3.B.4), compared to administrative censoring at 10 years (scenarios D-F, J-L).

The number of individuals per data set did not have a large effect on the mean HRs
for disease, it did however reduce the empirical standard error (Table 3.2). Average
AUC estimates were nearly identical between scenarios where only the size differed
and therefore only results for n = 1000 are shown in Table 3.3 and 3.4 (see Appendix
3.B for results of all scenarios). The number of patients per data set did have an effect
on the percentage of converged M-spline models (see Appendix 3.B, Table 3.B.4).

The follow-up schemes with larger intervals resulted in larger bias of the incid-
ent/dynamic AUC estimates, particularly for the Cox model. The follow-up scheme
with larger intervals resulted in consistently more biased estimates of the cumulat-

63



3. Assessment of predictive accuracy of an intermittently observed binary
time-dependent marker

C
h
a
pt

er
3

ive/dynamic AUC for the piecewise-constant model. The Cox, Weibull and M-spline
model based estimates were of limited bias for the different follow-up schemes.

Figure 3.1 and 3.2 show incident/dynamic and cumulative/dynamic AUC estim-
ates respectively for data scenarios A, B and C with follow-up visits every 3, 6, and
12 months, respectively. Each plot depicts the true AUC in blue and 1000 green lines
which correspond to the AUC estimates of each simulated data set. The Cox model’s
AUC displays jumps at the observation time points. The reason is that at those time
points the proportion of diseased individuals is increased in the risk set. Before the
first observation time point the curve is equal to 0.5, because no disease was observed
yet.

For the incident/dynamic AUC in Figure 3.1 the M-spline model shows a similar
behaviour to the Cox model. No distinct jumps are observed but waves can be seen
that are most defined at the beginning of follow-up time. Since the piecewise-constant
model and the Weibull model make assumptions about the hazard function, the AUC
estimates do not display jumps or waves, like for the Cox and M-spline model.

The variation between curves is much larger for the incident/dynamic AUC es-
timates in Figure 3.1 compared to the cumulative/dynamic estimates in Figure 3.2.
Results indicate that the piecewise-constant model is not flexible enough to follow
the shape of the true AUC curve, particularly in the incident/dynamic case. The
M-spline model displays a larger variance in the incident/dynamic case and shows a
better performance in the cumulative/dynamic case. Its cumulative/dynamic curves
underestimated the true AUC initially but recovered later on. The Weibull model
outperformed the other models, but again one should keep in mind that data were
generated from Weibull distributions.
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AUCI/D(1) = 0.71 AUCI/D(3) = 0.72 AUCI/D(5) = 0.72
Scenario Model Bias SE RMSE Bias SE RMSE Bias SE RMSE
A Cox -0.04 0.01 0.04 -0.02 0.01 0.02 -0.02 0.01 0.02
A Piecewise-constant -0.05 0.01 0.05 -0.03 0.01 0.03 -0.02 0.01 0.03
A Weibull 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.01
A M-spline 0.02 0.02 0.03 0.00 0.02 0.02 -0.01 0.04 0.04
B Cox -0.07 0.02 0.08 -0.04 0.01 0.04 -0.03 0.01 0.03
B Piecewise-constant -0.06 0.01 0.07 -0.04 0.01 0.04 -0.03 0.01 0.03
B Weibull -0.01 0.02 0.02 0.00 0.01 0.01 0.00 0.01 0.01
B M-spline 0.01 0.03 0.03 -0.01 0.03 0.03 0.00 0.04 0.04
C Cox -0.21 0.00 0.21 -0.07 0.01 0.07 -0.06 0.01 0.06
C Piecewise-constant -0.09 0.01 0.09 -0.06 0.01 0.06 -0.05 0.02 0.05
C Weibull -0.01 0.03 0.03 0.00 0.02 0.02 0.00 0.02 0.02
C M-spline -0.05 0.04 0.06 0.00 0.03 0.03 0.00 0.04 0.04
D Cox -0.04 0.01 0.04 -0.02 0.01 0.02 -0.02 0.01 0.02
D Piecewise-constant -0.05 0.01 0.05 -0.03 0.01 0.03 -0.02 0.01 0.03
D Weibull 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.01
D M-spline 0.02 0.02 0.03 -0.01 0.02 0.03 0.00 0.03 0.04
E Cox -0.07 0.02 0.07 -0.04 0.01 0.04 -0.03 0.01 0.03
E Piecewise-constant -0.06 0.01 0.06 -0.04 0.01 0.04 -0.03 0.01 0.03
E Weibull -0.01 0.02 0.02 0.00 0.01 0.01 0.00 0.01 0.01
E M-spline 0.01 0.02 0.03 -0.01 0.03 0.03 0.00 0.04 0.04
F Cox -0.21 0.00 0.21 -0.07 0.01 0.07 -0.06 0.01 0.06
F Piecewise-constant -0.09 0.01 0.09 -0.06 0.01 0.06 -0.05 0.01 0.05
F Weibull -0.01 0.02 0.02 0.00 0.01 0.01 0.00 0.01 0.01
F M-spline -0.05 0.04 0.06 0.00 0.03 0.03 0.00 0.04 0.04
Abbreviations: AUCI/D(x), incident/dynamic AUC at year x; SE, empirical standard error;
RMSE, root mean square error.
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Table 3.4: Time-specific cumulative/dynamic AUC.

AUCC/D(1) = 0.59 AUCC/D(3) = 0.62 AUCC/D(5) = 0.64
Scenario Model Bias SE RMSE Bias SE RMSE Bias SE RMSE
A Cox 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.02 0.02
A Piecewise-constant -0.02 0.01 0.02 -0.01 0.01 0.02 -0.01 0.01 0.02
A Weibull 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.01
A M-spline 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.02 0.02
B Cox 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.02 0.02
B Piecewise-constant -0.04 0.00 0.04 -0.02 0.01 0.03 -0.02 0.01 0.02
B Weibull 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.01
B M-spline 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.02 0.02
C Cox 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.02 0.02
C Piecewise-constant -0.05 0.00 0.05 -0.04 0.01 0.04 -0.03 0.01 0.03
C Weibull -0.01 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.01
C M-spline 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.02 0.02
D Cox 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.01
D Piecewise-constant -0.02 0.01 0.02 -0.01 0.01 0.02 -0.01 0.01 0.02
D Weibull 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.01
D M-spline 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.02 0.02
E Cox 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.01
E Piecewise-constant -0.04 0.00 0.04 -0.03 0.01 0.03 -0.02 0.01 0.02
E Weibull 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.01
E M-spline 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.02 0.02
F Cox 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.01
F Piecewise-constant -0.05 0.00 0.05 -0.04 0.01 0.04 -0.03 0.01 0.03
F Weibull -0.01 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.01
F M-spline 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.02 0.02
Abbreviations: AUCC/D(x), cumulative/dynamic AUC at year x; SE, empirical standard error;
RMSE, root mean square error.
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Figure 3.1: Incident/dynamic AUC for scenario A (3 months), B (6 months) and C (12
months). Abbreviations: Cox ROC, estimate based on risksetAUC function; Cox prob,
estimate based on transition probabilities of Cox model.
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Figure 3.2: Cumulative/dynamic AUC for scenario A (3 months), B (6 months) and C (12
months).
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§3.5 Application

The data analyzed in this section was used for the development of a dynamic pre-
diction model for high-grade soft tissue sarcoma patients.[19] The data set contains
follow-up information of 2232 patients treated surgically with curative intent. Median
follow-up time was 6.42 years. After surgery disease progression can be described by
several adverse events: a patient may develop a local recurrence and/or develop dis-
tant metastasis (DM) and/or die. The analysis discussed in this section focuses on
the effect of DM on death. In total 1034 patients died and 715 patients developed
DM (see Figure 3.1).

Surgery

Distant
metastasis

Death

715

427

607

Figure 3.1: Soft tissue sarcoma illness-death model (n = 2232).

After surgery a common follow-up visit scheme to screen for DM is to see a patient
every 3 months within the first 3 years, then every 6 months until year 5, and from
then on once a year.[66] The data did not contain information about exact follow-up
times and an approximation of disease screening times was applied. For a patient who
was diagnosed with DM during follow-up, the time of DM was interpreted as the first
positive screening for DM. Depending on whether DM was diagnosed within the first
3 years, between 3 and 5, or after 5 years the previous screening was assumed to have
taken place either 3, 6, or 12 months prior. A patient who was never diagnosed with
DM was assumed to have been screened according to the common follow-up scheme
described above.

Table 3.1 shows HRs for DM and estimates for the time-specific AUC at different
years. The HRs estimated by the Cox and piecewise-constant model are similar, with
HRs for the Cox model being slightly larger.

Figure 3.2 displays on the left and the right panel the non-parametric cumulative
baseline hazards and a graphical check of their fit to a Weibull distribution, respect-
ively. For this figure the time of DM was assumed to be equal to the time that DM
was detected during screening. If the hazards were coming from a Weibull distribution
the lines in the right panel of Figure 3.2 would be straight, which is not the case in
particular for the transition from surgery to DM. The Weibull model therefore may
not be appropriate for this data.

Figure 3.3 shows the AUC over time for the different models. The incident/dynamic
AUC of the Weibull model is initially much larger compared to the other models and
declines over time. The incident/dynamic AUC of the piecewise-constant model is
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the lowest of all three methods. The cumulative/dynamic AUC of the Cox model
is generally the largest and the Weibull models the lowest. The M-spline model did
not converge for this data set and consequently the incident/dynamic and cumulat-
ive/dynamic AUC could not be estimated.
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Figure 3.2: Left panel: Cumulative transition hazards. Right panel: plot of ln[H(x)] vs. ln(x)
to empirically check the fit of the Weibull distribution.

Table 3.1: Effect and predictive accuracy for distant metastasis.

HR(DM) AUCI/D(1) AUCI/D(2) AUCI/D(3) AUCI/D(4) AUCI/D(5)
Cox ROC 11.71 0.74 0.76 0.76 0.75 0.74
Cox prob 11.71 0.75 0.76 0.76 0.75 0.74
Piecewise-constant 11.28 0.71 0.73 0.73 0.71 0.70
Weibull 0.81 0.78 0.76 0.74 0.72

AUCC/D(1) AUCC/D(2) AUCC/D(3) AUCC/D(4) AUCC/D(5)
Cox ROC
Cox prob 0.64 0.69 0.70 0.68 0.67
Piecewise-constant 0.62 0.66 0.68 0.66 0.66
Weibull 0.62 0.63 0.64 0.64 0.64
Abbreviations: AUCI/D(x), incident/dynamic AUC at year x; AUCC/D(x), cumulative/dynamic AUC at
year x; Cox ROC, estimate based on Cox model through risksetAUC function; Cox prob, estimate based on
Cox model through transition probabilities; HR(DM), hazard ratio of DM.
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Figure 3.3: Time-specific AUC for distant metastasis. Abbreviations: AUC I/D, incid-
ent/dynamic AUC; AUC C/D, cumulative/dynamic AUC; Cox ROC, estimate based on Cox
model through risksetAUC function; Cox prob, estimate based on Cox model through trans-
ition probabilities.

§3.6 Discussion

The illness-death model is frequently applied to clinical data to describe disease pro-
gression. A patient enters the model disease free, he can then experience disease
and die. In clinical practice however, often the time of disease cannot be observed
exactly. The information is interval-censored or unobserved because of death or cen-
soring. This can lead to bias in the estimation of disease incidence and regression
coefficients.[86, 97]

This article studied the predictive accuracy of a binary time-dependent disease
marker in the context of the illness-death model for interval-censored data. A simu-
lation study with several data scenarios was conducted to study four different mod-
els: the Cox model with disease as time-dependent marker, the piecewise-constant
model implemented in the msm package, the Weibull model, and the M-spline model
implemented in the SmoothHazard package. Both incident/dynamic and cumulat-
ive/dynamic AUC estimates were derived from their transition probabilities and stud-
ied. The methods were applied to a data set of soft tissue sarcoma patients who were
scanned for distant metastasis at scheduled follow-up visits.

The simulation study showed that the HRs from the piecewise-constant model
were less biased than those of the Cox model. The number of patients per data
set (1000 vs 2000) did not have a large effect on the estimates of the HR, AUC
estimates in incident/dynamic and cumulative/dynamic definition except for the M-
spline model. The M-spline model converged more reliably with large data sets. The
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spacing of follow-up visits at which the disease state was observed did have a large
effect on estimates of the incident/dynamic AUC. The Weibull model showed the
best performance, however this model had an unfair advantage since the simulated
data had Weibull distribution. In practice a Weibull distribution may not be a good
fit to the data. The M-spline model showed a good performance when estimating
the incident/dynamic and cumulative/dynamic AUC however was not always able to
converge and provide AUC estimates. The piecewise-constant model under performed.
Even though, incident/dynamic AUC estimates had less bias than the Cox model’s for
scenarios with large spacing between follow-up visits, cumulative/dynamic estimates
had the largest bias of all methods.

Prediction models are becoming more and more important in clinical practice
to provide individualized patient care. Dynamic prediction models can incorporate
time-dependent disease markers and the predictive accuracy of such a marker may
be of interest. In the presence of interval-censored disease time, the results of this
study suggest to take the interval-censoring into account not only when estimating
parameters of the model, but also when evaluating the predictive accuracy of disease.

Simulations performed studied the effect of an interval-censored binary disease
marker. Future research should focus on the predictive accuracy of a time-dependent
covariate that can take more than 2 values as well as continuous markers.
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Appendix

§3.A Derivation of AUC

§3.A.1 Incident/dynamic AUC

Let i, j be individuals, Xi(t), Xj(t) the binary covariate values at time t, and Ti and
Tj the death times. The incident/dynamic AUC is defined as

AUCI/D(t) =P (Xi(t) > Xj(t) | Ti = t, Tj > t) + 0.5P (Xi(t) = Xj(t) | Ti = t, Tj > t)

=P (Xj(t) = 0 | Tj > t)P (Xi(t) = 1 | Ti = t)

+ 0.5[P (Xj(t) = 0 | Tj > t)P (Xi(t) = 0 | Ti = t)+

P (Xj(t) = 1 | Tj > t)P (Xi(t) = 1 | Ti = t)]

=(1− P (Xj(t) = 1 | Tj > t))P (Xi(t) = 1 | Ti = t)

+ 0.5[(1− P (Xj(t) = 1 | Tj > t))(1− P (Xi(t) = 1 | Ti = t))+

P (Xj(t) = 1 | Tj > t)P (Xi(t) = 1 | Ti = t)]

=(1− π1(t))p(t) + 0.5[(1− π1(t))(1− p(t)) + π1(t)p(t)]

=p(t)− π1(t)p(t) + 0.5[1− p(t)− π1(t) + π1(t)p(t) + π1(t)p(t)]

=p(t)− π1(t)p(t) + 0.5− 0.5p(t)− 0.5π1(t) + π1(t)p(t)

=0.5 + 0.5(p(t)− π1(t)),

where

π1(t) =P (Xi(t) = 1 | Ti > t)

p(t) =P (Xi(t−) = 1 | Ti = t).

§3.A.2 Cumulative/dynamic AUC

Let i, j be individuals, Xi(s), Xj(s) their binary covariate values at time s, and Ti
and Tj their death times. The cumulative/dynamic AUC is then
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AUCC/D(s, t) =P (Xi(s) > Xj(s) | Ti > s, Ti ≤ t, Tj > t)+

0.5P (Xi(s) = Xj(s) | Ti > s, Ti ≤ t, Tj > t)

=P (Xj(s) = 0 | Tj > t)P (Xi(s) = 1 | Ti > s, Ti ≤ t)

+ 0.5[P (Xj(s) = 0 | Tj > t)P (Xi(s) = 0 | Ti > s, Ti ≤ t)+

P (Xj(s) = 1 | Tj > t)P (Xi(s) = 1 | Ti > s, Ti ≤ t)]

=(1− P (Xj(s) = 1 | Tj > t))P (Xi(s) = 1 | Ti > s, Ti ≤ t)

+ 0.5[(1− P (Xj(s) = 1 | Tj > t))(1− P (Xi(s) = 1 | Ti > s, Ti ≤ t))+

P (Xj(s) = 1 | Tj > t)P (Xi(s) = 1 | Ti > s, Ti ≤ t)]

=(1− π1(s, t))p(s, t) + 0.5[(1− π1(s, t))(1− p(s, t)) + π1(s, t)p(s, t)]

=p(s, t)− π1(s, t)p(s, t) + 0.5[1− p(s, t)− π1(s, t) + π1(s, t)p(s, t) + π1(s, t)p(s, t)]

=p(s, t)− π1(s, t)p(s, t) + 0.5− 0.5p(s, t)− 0.5π1(s, t) + π1(s, t)p(s, t)

=0.5 + 0.5(p(s, t)− π1(s, t)),

where

π1(s, t) =P (Xj(s) = 1 | Tj > t)

p(s, t) =P (Xi(s) = 1 | Ti > s, Ti ≤ t).
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§3.B Results for all scenarios

Table 3.B.1: Effect of disease.

Scenario N Censoring Follow-up Model Mean(coef) exp(mean(coef)) SE(coef) Bias(coef) RMSE(coef)
Truth 2.42 11.20
A 1000 unif(5, 10) 3 Cox ROC 2.35 10.44 0.09 -0.07 0.11
A 1000 unif(5, 10) 3 Cox prob 2.35 10.44 0.09 -0.07 0.11
A 1000 unif(5, 10) 3 Piecewise-

constant
2.43 11.32 0.09 0.01 0.09

B 1000 unif(5, 10) 6 Cox ROC 2.29 9.91 0.10 -0.12 0.16
B 1000 unif(5, 10) 6 Cox prob 2.29 9.91 0.10 -0.12 0.16
B 1000 unif(5, 10) 6 Piecewise-

constant
2.48 11.90 0.10 0.06 0.12

C 1000 unif(5, 10) 12 Cox ROC 2.24 9.37 0.11 -0.18 0.21
C 1000 unif(5, 10) 12 Cox prob 2.24 9.37 0.11 -0.18 0.21
C 1000 unif(5, 10) 12 Piecewise-

constant
2.41 11.11 0.12 -0.01 0.12

D 1000 10 3 Cox ROC 2.35 10.45 0.09 -0.07 0.11
D 1000 10 3 Cox prob 2.35 10.45 0.09 -0.07 0.11
D 1000 10 3 Piecewise-

constant
2.45 11.59 0.08 0.03 0.09

E 1000 10 6 Cox ROC 2.31 10.05 0.09 -0.11 0.14
E 1000 10 6 Cox prob 2.31 10.05 0.09 -0.11 0.14
E 1000 10 6 Piecewise-

constant
2.50 12.19 0.10 0.08 0.13

F 1000 10 12 Cox ROC 2.25 9.47 0.10 -0.17 0.20
F 1000 10 12 Cox prob 2.25 9.47 0.10 -0.17 0.20
F 1000 10 12 Piecewise-

constant
2.43 11.34 0.11 0.01 0.11

G 2000 unif(5, 10) 3 Cox ROC 2.34 10.43 0.07 -0.07 0.10
G 2000 unif(5, 10) 3 Cox prob 2.34 10.43 0.07 -0.07 0.10
G 2000 unif(5, 10) 3 Piecewise-

constant
2.42 11.30 0.06 0.01 0.06

H 2000 unif(5, 10) 6 Cox ROC 2.29 9.91 0.07 -0.12 0.14
H 2000 unif(5, 10) 6 Cox prob 2.29 9.91 0.07 -0.12 0.14
H 2000 unif(5, 10) 6 Piecewise-

constant
2.47 11.88 0.07 0.06 0.09

I 2000 unif(5, 10) 12 Cox ROC 2.24 9.38 0.08 -0.18 0.20
I 2000 unif(5, 10) 12 Cox prob 2.24 9.38 0.08 -0.18 0.20
I 2000 unif(5, 10) 12 Piecewise-

constant
2.41 11.09 0.08 -0.01 0.08

J 2000 10 3 Cox ROC 2.34 10.40 0.06 -0.07 0.10
J 2000 10 3 Cox prob 2.34 10.40 0.06 -0.07 0.10
J 2000 10 3 Piecewise-

constant
2.44 11.52 0.06 0.03 0.07

K 2000 10 6 Cox ROC 2.30 10.00 0.06 -0.11 0.13
K 2000 10 6 Cox prob 2.30 10.00 0.06 -0.11 0.13
K 2000 10 6 Piecewise-

constant
2.49 12.10 0.07 0.08 0.10

L 2000 10 12 Cox ROC 2.24 9.40 0.07 -0.17 0.19
L 2000 10 12 Cox prob 2.24 9.40 0.07 -0.17 0.19
L 2000 10 12 Piecewise-

constant
2.42 11.24 0.08 0.00 0.08

Abbreviations: SE, empirical standard error; RMSE, root mean square error.

Table 3.B.2: Time-specific incident/dynamic AUC.

AUCI/D(1) = 0.71 AUCI/D(3) = 0.72 AUCI/D(5) = 0.72
Scenario Model Bias SE RMSE Bias SE RMSE Bias SE RMSE
A Cox ROC -0.04 0.02 0.04 -0.02 0.01 0.03 -0.02 0.01 0.02
A Cox prob -0.04 0.01 0.04 -0.02 0.01 0.02 -0.02 0.01 0.02
A Piecewise-constant -0.05 0.01 0.05 -0.03 0.01 0.03 -0.02 0.01 0.03
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Table 3.B.2: (continued)

AUCI/D(1) = 0.71 AUCI/D(3) = 0.72 AUCI/D(5) = 0.72
Scenario Model Bias SE RMSE Bias SE RMSE Bias SE RMSE
A Weibull 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.01
A M-spline 0.02 0.02 0.03 0.00 0.02 0.02 -0.01 0.04 0.04
B Cox ROC -0.07 0.02 0.08 -0.04 0.01 0.04 -0.03 0.01 0.04
B Cox prob -0.07 0.02 0.08 -0.04 0.01 0.04 -0.03 0.01 0.03
B Piecewise-constant -0.06 0.01 0.07 -0.04 0.01 0.04 -0.03 0.01 0.03
B Weibull -0.01 0.02 0.02 0.00 0.01 0.01 0.00 0.01 0.01
B M-spline 0.01 0.03 0.03 -0.01 0.03 0.03 0.00 0.04 0.04
C Cox ROC -0.21 0.00 0.21 -0.07 0.02 0.08 -0.06 0.02 0.06
C Cox prob -0.21 0.00 0.21 -0.07 0.01 0.07 -0.06 0.01 0.06
C Piecewise-constant -0.09 0.01 0.09 -0.06 0.01 0.06 -0.05 0.02 0.05
C Weibull -0.01 0.03 0.03 0.00 0.02 0.02 0.00 0.02 0.02
C M-spline -0.05 0.04 0.06 0.00 0.03 0.03 0.00 0.04 0.04
D Cox ROC -0.04 0.02 0.04 -0.02 0.01 0.02 -0.02 0.01 0.02
D Cox prob -0.04 0.01 0.04 -0.02 0.01 0.02 -0.02 0.01 0.02
D Piecewise-constant -0.05 0.01 0.05 -0.03 0.01 0.03 -0.02 0.01 0.03
D Weibull 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.01
D M-spline 0.02 0.02 0.03 -0.01 0.02 0.03 0.00 0.03 0.04
E Cox ROC -0.07 0.02 0.08 -0.04 0.01 0.04 -0.03 0.02 0.03
E Cox prob -0.07 0.02 0.07 -0.04 0.01 0.04 -0.03 0.01 0.03
E Piecewise-constant -0.06 0.01 0.06 -0.04 0.01 0.04 -0.03 0.01 0.03
E Weibull -0.01 0.02 0.02 0.00 0.01 0.01 0.00 0.01 0.01
E M-spline 0.01 0.02 0.03 -0.01 0.03 0.03 0.00 0.04 0.04
F Cox ROC -0.21 0.00 0.21 -0.07 0.02 0.08 -0.06 0.02 0.06
F Cox prob -0.21 0.00 0.21 -0.07 0.01 0.07 -0.06 0.01 0.06
F Piecewise-constant -0.09 0.01 0.09 -0.06 0.01 0.06 -0.05 0.01 0.05
F Weibull -0.01 0.02 0.02 0.00 0.01 0.01 0.00 0.01 0.01
F M-spline -0.05 0.04 0.06 0.00 0.03 0.03 0.00 0.04 0.04
G Cox ROC -0.04 0.01 0.04 -0.02 0.01 0.02 -0.02 0.01 0.02
G Cox prob -0.04 0.01 0.04 -0.02 0.01 0.02 -0.02 0.01 0.02
G Piecewise-constant -0.05 0.01 0.05 -0.03 0.01 0.03 -0.02 0.01 0.03
G Weibull 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.01
G M-spline 0.02 0.02 0.03 0.00 0.02 0.02 -0.01 0.02 0.03
H Cox ROC -0.07 0.01 0.08 -0.04 0.01 0.04 -0.03 0.01 0.03
H Cox prob -0.07 0.01 0.08 -0.04 0.01 0.04 -0.03 0.01 0.03
H Piecewise-constant -0.06 0.01 0.06 -0.04 0.01 0.04 -0.03 0.01 0.03
H Weibull -0.01 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.01
H M-spline 0.01 0.02 0.02 -0.01 0.02 0.02 -0.01 0.03 0.03
I Cox ROC -0.21 0.00 0.21 -0.07 0.01 0.07 -0.06 0.01 0.06
I Cox prob -0.21 0.00 0.21 -0.07 0.01 0.07 -0.06 0.01 0.06
I Piecewise-constant -0.09 0.01 0.09 -0.06 0.01 0.06 -0.05 0.01 0.05
I Weibull -0.01 0.02 0.02 0.00 0.01 0.01 0.00 0.01 0.01
I M-spline -0.04 0.03 0.05 0.00 0.02 0.02 0.00 0.03 0.03
J Cox ROC -0.04 0.01 0.04 -0.02 0.01 0.02 -0.02 0.01 0.02
J Cox prob -0.04 0.01 0.04 -0.02 0.01 0.02 -0.02 0.01 0.02
J Piecewise-constant -0.05 0.01 0.05 -0.03 0.01 0.03 -0.02 0.01 0.03
J Weibull 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.01
J M-spline 0.02 0.01 0.03 -0.01 0.02 0.02 -0.01 0.02 0.03
K Cox ROC -0.07 0.01 0.07 -0.04 0.01 0.04 -0.03 0.01 0.03
K Cox prob -0.07 0.01 0.07 -0.04 0.01 0.04 -0.03 0.01 0.03
K Piecewise-constant -0.06 0.01 0.06 -0.04 0.01 0.04 -0.03 0.01 0.03
K Weibull -0.01 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.01
K M-spline 0.01 0.02 0.02 -0.01 0.02 0.02 0.00 0.02 0.03
L Cox ROC -0.21 0.00 0.21 -0.07 0.01 0.07 -0.06 0.01 0.06
L Cox prob -0.21 0.00 0.21 -0.07 0.01 0.07 -0.06 0.01 0.06
L Piecewise-constant -0.09 0.01 0.09 -0.06 0.01 0.06 -0.05 0.01 0.05
L Weibull -0.01 0.02 0.02 0.00 0.01 0.01 0.00 0.01 0.01
L M-spline -0.04 0.03 0.05 0.00 0.02 0.02 0.00 0.03 0.03
Abbreviations: AUCI/D(x), incident/dynamic AUC at year x; SE, empirical standard error; RMSE, root
mean square error.
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Table 3.B.3: (continued)

AUCC/D(1) = 0.59 AUCC/D(3) = 0.62 AUCC/D(5) = 0.64
Scenario Model Bias SE RMSE Bias SE RMSE Bias SE RMSE

Table 3.B.3: Time-specific cumulative/dynamic AUC.

AUCC/D(1) = 0.59 AUCC/D(3) = 0.62 AUCC/D(5) = 0.64
Scenario Model Bias SE RMSE Bias SE RMSE Bias SE RMSE
A Cox 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.02 0.02
A Piecewise-constant -0.02 0.01 0.02 -0.01 0.01 0.02 -0.01 0.01 0.02
A Weibull 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.01
A M-spline 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.02 0.02
B Cox 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.02 0.02
B Piecewise-constant -0.04 0.00 0.04 -0.02 0.01 0.03 -0.02 0.01 0.02
B Weibull 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.01
B M-spline 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.02 0.02
C Cox 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.02 0.02
C Piecewise-constant -0.05 0.00 0.05 -0.04 0.01 0.04 -0.03 0.01 0.03
C Weibull -0.01 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.01
C M-spline 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.02 0.02
D Cox 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.01
D Piecewise-constant -0.02 0.01 0.02 -0.01 0.01 0.02 -0.01 0.01 0.02
D Weibull 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.01
D M-spline 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.02 0.02
E Cox 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.01
E Piecewise-constant -0.04 0.00 0.04 -0.03 0.01 0.03 -0.02 0.01 0.02
E Weibull 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.01
E M-spline 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.02 0.02
F Cox 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.01
F Piecewise-constant -0.05 0.00 0.05 -0.04 0.01 0.04 -0.03 0.01 0.03
F Weibull -0.01 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.01
F M-spline 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.02 0.02
G Cox 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.01
G Piecewise-constant -0.02 0.00 0.02 -0.01 0.01 0.01 -0.01 0.01 0.01
G Weibull 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.01
G M-spline 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.01
H Cox 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.01
H Piecewise-constant -0.04 0.00 0.04 -0.02 0.01 0.02 -0.02 0.01 0.02
H Weibull 0.00 0.00 0.01 0.00 0.01 0.01 0.00 0.01 0.01
H M-spline 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.01
I Cox 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.01
I Piecewise-constant -0.05 0.00 0.05 -0.04 0.01 0.04 -0.03 0.01 0.03
I Weibull -0.01 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.01
I M-spline 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.01
J Cox 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.01
J Piecewise-constant -0.02 0.00 0.02 -0.01 0.01 0.01 -0.01 0.01 0.01
J Weibull 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00
J M-spline 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.01
K Cox 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.01
K Piecewise-constant -0.04 0.00 0.04 -0.02 0.01 0.03 -0.02 0.01 0.02
K Weibull 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.01
K M-spline 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.01
L Cox 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.01
L Piecewise-constant -0.05 0.00 0.05 -0.04 0.01 0.04 -0.03 0.01 0.03
L Weibull -0.01 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.01
L M-spline 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.01
Abbreviations: AUCC/D(x), cumulative/dynamic AUC at year x; SE, empirical stand-
ard error; RMSE, root mean square error.
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Table 3.B.4: Invalid estimations for M-spline model.

Scenario
A B C D E F G H I J K L

invalid AUCI/D 379 442 555 17 34 88 201 292 378 1 7 19
invalid AUCC/D 381 444 560 17 34 89 201 296 381 1 7 19
Number of invalid estimations of AUCI/D and AUCC/D from 1 year based on
1000 data sets.

§3.C Incident/dynamic AUC for scenarios D–L
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Figure 3.C.1: Incident/dynamic AUC for scenario D (3 months), E (6 months) and F (12
months). Abbreviations: Cox ROC, estimate based on risksetAUC function; Cox prob,
estimate based on transition probabilities of Cox model.
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Figure 3.C.2: Incident/dynamic AUC for scenario G (3 months), H (6 months) and I (12
months). Abbreviations: Cox ROC, estimate based on risksetAUC function; Cox prob,
estimate based on transition probabilities of Cox model.
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Figure 3.C.3: Incident/dynamic AUC for scenario J (3 months), K (6 months) and L (12
months). Abbreviations: Cox ROC, estimate based on risksetAUC function; Cox prob,
estimate based on transition probabilities of Cox model.
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§3.D Cumulative/dynamic AUC for scenarios D–L
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Figure 3.D.1: Cumulative/dynamic AUC for scenario D (3 months), E (6 months) and F
(12 months).
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Figure 3.D.2: Cumulative/dynamic AUC for scenario G (3 months), H (6 months) and I
(12 months).
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Figure 3.D.3: Cumulative/dynamic AUC for scenario J (3 months), K (6 months) and L
(12 months).
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CHAPTER 4
Individualised risk assessment for

local recurrence and distant
metastases in for patients with

high-grade soft tissue sarcomas of
the extremities: a multistate model

This chapter has been published in BMJ Open 7(2) (2017) doi: 10.1136/bmjopen-
2016-012930 as A.J. Rueten-Budde, et al., "Individualised risk assessment for local
recurrence and distant metastases in a retrospective transatlantic cohort of 687 pa-
tients with high-grade soft tissue sarcomas of the extremities: a multistate model"
[21].

Abstract

Objectives: This study investigates the effect of surgical margins and radiotherapy,
in the presence of individual baseline characteristics, on survival in a large population
of high-grade soft tissue sarcoma of the extremities using a multistate model.
Design: A retrospective multicentre cohort study.
Setting: 4 tertiary referral centres for orthopaedic oncology.
Participants: 687 patients with primary, nondisseminated, high-grade sarcoma only,
receiving surgical treatment with curative intent between 2000 and 2010 were in-
cluded.
Main outcome measures: The risk to progress from ’alive without disease’ (ANED)
after surgery to ’local recurrence’ (LR) or ’distant metastasis (DM)/death’. The effect
of surgical margins and (neo)adjuvant radiotherapy on LR and overall survival was
evaluated taking patients’ and tumour characteristics into account.
Results: The multistate model underlined that wide surgical margins and the use of
neoadjuvant radiotherapy decreased the risk of LR but have little effect on survival.
The main prognostic risk factors for transition ANED to LR are tumour size (HR
1.06; 95% CI 1.01 to 1.11 (size in cm)) and (neo)adjuvant radiotherapy. The HRs
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for patients treated with adjuvant or no radiotherapy compared with neoadjuvant
radiotherapy are equal to 4.36 (95% CI 1.34 to 14.24) and 14.20 (95% CI 4.14 to 48.75),
respectively. Surgical resection margins had a protective effect for the occurrence of
LR with HRs equal to 0.61 (95% CI 0.33 to 1.12), and 0.16 (95% CI 0.07 to 0.41)
for margins between 0 and 2 mm and wider than 2 mm, respectively. For transition
ANED to distant metastases/Death, age (HR 1.64 (95% CI 0.95 to 2.85) and 1.90
(95% CI 1.09 to 3.29) for 25- 50 years and >50 years, respectively) and tumour size
(1.06 (95% CI 1.04 to 1.08)) were prognostic factors.
Conclusions: This paper underlined the alternating effect of surgical margins and
the use of neoadjuvant radiotherapy on oncological outcomes between patients with
different baseline characteristics. The multistate model incorporates this essential
information of a specific patient’s history, tumour characteristics and adjuvant treat-
ment modalities and allows a more comprehensive prediction of future events.
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§4.1 Introduction

Soft tissue sarcomas (STS) are a rare, heterogeneous group of tumours account-
ing for ~1% of all adult cancers.[137] Approximately 60% of all STS occur in the
extremities.[41] High-grade STS are a select subgroup (representing 38% of all STS
in one series [83]) of highly aggressive and infiltrative subtypes with an overall poor
prognosis.[117, 169] At present, limb salvage surgery with (neo) adjuvant radiother-
apy is the standard of care for most patients, while the role of chemotherapy is more
controversial.[56] However, locally recurrent disease (LR), distant metastases (DM)
and poor survival remain of great concern. Although the risk factors for the occur-
rence of these adverse events have been the subject of many studies, a solid prognostic
profile for individual patients is still lacking.

Considering an individual patient’s treatment, two types of prognostic factors
can be identified: those that are set at the moment of diagnosis and those that
are treatment-related. Prognostic factors such as histology, grade, depth and size
[83, 117, 169, 53, 73, 146, 140, 98, 139, 29] are generally recognised and set at the
moment of diagnosis. At present, surgical resection margin and the administration of
(neo) adjuvant radiotherapy/chemotherapy are the only treatment factors that can be
influenced. The intended resection margin is part of an intricate balance between the
best oncological outcome and maintenance of quality of life, including limb function.
Whether limb function should be sacrificed to achieve a negative or wide margin
should be based on its effect on the overall prognosis of that specific patient.

Although the increased risk of LR following an intralesional margin resection is
generally recognised,[73, 139, 91] the presence of possible associations between margin
status and overall survival (OS) or between LR and OS is still under discussion.
Results have been published confirming the absence [140, 106, 164] and presence
[29, 23][74, 110, 102, 111] of a prognostic role for margins as well as LR on OS.

Unfortunately, current literature on prognostic factors for STS faces several dif-
ficulties: small sample sizes, heterogeneity of study populations and differences in
statistical methods applied.[53, 102] Results from prior studies may, therefore, be mis-
leading when applied to an individual patient with a high-grade STS. In an era where
clinicians are moving towards individualised patient treatment, it would be preferable
to consider the results of planned resection margins for each patient individually. The
great importance of individualised cancer treatment is generally accepted because
awareness has been created that certain patients have a higher risk of disease recur-
rence or death than others, and others are more susceptible to possible adverse effects
of treatment.

This study aims to investigate the effect of margins and radiotherapy, considering
individual patient characteristics, on LR and survival in a large population with only
high-grade STS of the extremities using a multistate model. Better stratification of
risks will lead to better treatment decisions and improved clinical results for patients
with high-grade STS.
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§4.2 Patients and methods

A retrospective multicentre analysis of patients surgically treated between 2000 and
2010 for primary, nondisseminated, high-grade (as defined by FNCLCC larger than
grade 2) sarcoma, including angiosarcoma, malignant peripheral nerve sheath tumour,
synovial sarcoma, spindle cell sarcoma, myxofibrosarcoma and (pleomorphic) STS
not-otherwise-specified was performed. All cases were discussed preoperatively in
multidisciplinary teams and pretreatment staging was performed with lung CT scans.
Postoperative surveillance strategies were comparative between all centres with yearly
MRI for local control and chest X-ray/CT scan every 3-4 months according to ESMO
guidelines.[56]

Patients were identified from the local sarcoma databases of the four participating
institutions, all tertiary referral centres for orthopaedic oncology. Exclusion criteria
were metastatic disease at the time of diagnosis, presentation with recurrent disease,
treatment without curative intent (ie, no primary intent of (limb-sparing) surgery with
intended sufficient margins), adjuvant treatment other than radiotherapy or chemo-
therapy and an unknown margin status. Initially, 709 patients received treatment
in 1 of 4 participating centres and met the inclusion criteria. Five patients met the
exclusion criteria and were excluded. Seventeen patients were excluded because there
was insufficient information on all covariates.

Medical records including surgical notes and pathology reports were reviewed and
the following information was recorded: age (<25; 25-50; >50 years[148]), gender,
presentation status (no treatment/biopsy only vs incomplete excision elsewhere prior
to referral), tumour size (cm), depth (superficial vs deep to investing fascia), location
(upper vs lower extremity), surgical margin, (neo) adjuvant therapy (neoadjuvant,
adjuvant, no radiotherapy; chemotherapy vs no chemotherapy) and follow-up data.

Experienced musculoskeletal pathologists in each centre defined the closest surgical
margin. Owing to the lack of an international consensus on the definition of margin
descriptions, the resection margins were categorised quantitatively: tumour at the
inked surface of the resection specimen (0 mm); tumour within 2 mm of ink; tumour
at more than 2 mm of ink. The 2 mm cut-off point was based on previous research
that identified this as the most optimal differentiating distance.[164, 87]

The decision concerning the use of (neo) adjuvant treatment was not uniform
during the study period due to variation in management over time and by centre,
although the majority of patients (75%) received radiotherapy. The most common
radiotherapy regimens were 50 Gy preoperatively (22.4%) or 50-66 Gy postoperatively
(52.3%).

LR was defined as the first radiological or pathological manifestation of tumour
within or contiguous to the previously treated tumour bed, 2 or more months after
primary treatment. DM was defined by clinical or radiological evident systemic spread
of tumour outside the primary tumour bed, including nodal metastasis. Dates of death
were extracted from the medical records and local or national death registries.
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§4.2.1 Statistical analysis

Multivariate Cox regression model

The effect of prognostic factors on OS was estimated with a Cox regression model with
LR included as a timedependent covariate. The following risk factors were included
in the model: age at diagnosis, presentation, tumour location, size, depth, histopath-
ology subtype, surgical margin, limb sparing and radiotherapy. HRs based on the
multivariate Cox regression model and their corresponding 95% CIs were estimated.

Multistate model

Disease progression was investigated with a multistate model.[119] A multistate model
is a model for time-to-event data, in which all individuals start in one or possibly more
starting states (eg, surgery) and eventually may move in one (or more) state(s), for
example, progressive distant disease, LR or death. In this approach, transitions are
assessed during the course of the disease and prognostic factors for each transition are
studied. Figure 4.1 shows the multistate model applied in this study to describe the
disease progression. We propose three possible states in which a patient may be at
any time. After surgery, a patient may be alive with no evidence of disease (ANED),
alive with LR or may have developed DM and subsequent death (Death). In this
analysis, the two states death and DM were pooled into one state (DM/Death) since
DM will, with very few exceptions, inevitably lead to death; among the 288 patients
who developed metastatic disease, 88% had died. Patients with concurrent LR and
DM (diagnosed within 3 months of each other; n=30) were registered as entering the
state of DM/Death. The direction of arrows in Figure 4.1 indicates the transitions
between states. The time scale used is months since definitive surgery.

To estimate the effect of age at diagnosis, presentation, tumour location, size
(in cm), depth, histopathology subtype, surgical margin achieved, limb sparing, and
radiotherapy on each transition, a Cox proportional hazards (PH) model was used.
For transition 3 (LR to DM/Death), the effects of tumour depth, histopathology
subtype, surgery type and radiotherapy could not be estimated due to the relatively
small number of patients in this transition. Therefore, these covariates were omitted
from the model for this specific transition. The PH assumption in the Cox model was
tested for each transition.

Individual risk assessment

Multistate models[119] can be used with two different purposes. The first aim is to
obtain more biological insight into the disease/recovery process of a patient. It is
of interest to determine how certain prognostic factors influence different phases of
the evolution of the disease. The second purpose is prediction, as these models help
clinicians to obtain more accurate predictions on survival and to adjust predictions
by incorporating the occurrence of intermediate events. Predictions are made by
estimating the conditional probabilities of future events, given the treatment and
patient characteristics.
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Patient-specific state occupation probabilities presented in stacked charts provide
insight into the effect of margins on the occurrence of events after surgery, given the
characteristics of a patient. The stacked charts present a visual aid for surgeons to
investigate the effect of margin on the probability of being in different states (LR
or DM/Death) at different time points after surgery. The multistate model provides
information on the ever-changing nature of a specific patient’s history and allows a
more comprehensive understanding of the data.

The beginning and end of follow-up corresponded to the date of definitive surgery
and the last date of follow-up or death, respectively. The median follow-up was
assessed by employing the reverse Kaplan-Meier method.[133] The effect of risk factors
was estimated by adjusted HRs along with their 95% CIs. p Values at or below 0.05
were considered significant. In the analysis, the variable ‘centre’ was included to
account for the presence of heterogeneity between the four treatment centres. All
analyses concerning the multistate model were performed using the R-package mstate
(R Development Core Team. R: a language and environment for statistical computing.
R Foundation for Statistical Vienna, Austria 2011. http://www.r-project. org/).[48,
49]

§4.3 Results

Table 4.1 summarises patients’ demographics and treatments at baseline for the in-
cluded 687 patients.

The estimated 5-year OS was 52.7% (95% CI 48.8% to 56.6%) with a median
follow-up of 71 (95% CI 67 to 75) months. In total, 106 patients (15%) developed LR;
however, only 59 patients (9%) developed isolated LR, while the other 47 patients
(6%) developed LR synchronous or following DM. In total, 288 (42%) developed DM.
Seventy-two patients (10%) died without known DM or LR.

A traditional multivariate Cox regression model with LR as a time-dependent
covariate showed a significant effect of age (HR 2.22; 95% CI 1.25 to 3.92 for >50 years
compared with <25 years), tumour size (HR 1.06 for every cm; 95% CI 1.04 to 1.08)
and actual LR (HR 3.42; 95% CI 2.55 to 4.60) on OS (Table 4.2). Note that tumour
size is given in centimetre, implying that a ‘k’ cm change in size multiplies the hazard
by HRk. For example, an HR equal to 1.34 (95% CI 1.22 to 1.47) and 1.79 (95% CI
1.48 to 2.16) are associated with a tumour of size 5 and 10 cm, respectively. Estimated
HRs for histopathology with respect to the reference group angiosarcoma are shown
in Table 4.2. Radiotherapy violated the PH assumption and was incorporated in the
analysis by fitting a stratified Cox model in which a separate baseline hazard is used
for patients with and without (neo) adjuvant radiotherapy.

In the multistate model depicted in Figure 4.1, the number of patients moving
from one state to the other is illustrated. The majority moved from the state ANED
to DM/Death directly (n=340; 49%). In 42% of the patients (n=288), no further
disease was detected; therefore, they remained in their postoperative state ANED. A
small group (n=59; 9%) developed LR first, after which 36 of these 59 patients (61%)
moved to the final state DM/ Death. To estimate the adjusted HRs for each transition,
a multivariate Cox proportional hazard regression model was employed (Table 4.3).
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Table 4.1: Patient demographics and treatment characteristics

Characteristics
Age, mean (SD), years 57.9 (19.8)
Age, no. (%)
<25 49 (7.1)
25-50 170 (24.7)
>50 468 (68.1)

Gender, no. (%)
Male 389 (56.6)
Female 298 (43.4)

Tumour presentation, no. (%)
Primary 555 (80.8)
’Whoops’* 132 (19.2)

Tumour location, no. (%)
Upper extremity 162 (23.6)
Lower extremity 525 (76.4)

Tumour size, mean (SD), cm 10.0 (6.2)
Depth, no. (%)
Deep 531 (77.3)
Superficial 115 (16.7)
Deep and superficial 41 (6)

Histopathology, no. (%)
Angiosarcoma 19 (2.8)
MPNST 81 (11.8)
Myxofibrosarcoma 217 (31.6)
Synovial sarcoma 134 (19.5)
Spindle cell sarcoma 165 (24.0)
Sarcoma NOS 17 (2.5)
MFH/UPS 54 (7.9)

Surgical margin, no. (%)
0 mm 114 (16.6)
≤2 mm 325 (47.3)
>2 mm 248 (36.1)

Type of surgery, no. (%)
Limb-sparing 611 (88.9)
Amputation 76 (11.1)

Radiotherapy, no. (%)
Neoadjuvant 154 (22.4)
Adjuvant 359 (52.3)
No radiotherapy 174 (25.3)

(Neo)Adjuvant chemotherapy, no. (%)
Yes 82 (11.9)
No 605 (88.1)

Notation: *Incomplete excision elsewhere prior to referral;
MPNST, malignant peripheral nerve sheath tumour; NOS, not
otherwise specified; MFH/UPS, malignant fibrous histiocyt-
oma/undifferentiated pleomorphic sarcoma.
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Table 4.2: Cox regression analysis for overall survival

Variable p Value HR 95% CI
Age
<25 1
25-50 0.115 1.59 0.89–2.82
>50 0.006 2.22 1.25–3.92

Tumour presentation (’whoops’* vs primary) 0.828 1.04 0.75–1.43
Tumour location (lower vs upper) 0.336 1.14 0.87–1.50
Tumour size, cm 0.000 1.06 1.04–1.08
Depth
Deep 1
Superficial 0.561 0.90 0.64–1.28
Deep and superficial 0.877 1.04 0.63–1.71

Histopathology
Angiosarcoma 1
MPNST 0.005 3.29 1.43–7.54
Myxofibrosarcoma 0.060 2.15 0.97–4.78
Synovial sarcoma 0.027 2.59 1.12–6.02
Spindle cell sarcoma 0.030 2.51 1.09–5.77
Sarcoma NOS 0.057 2.66 0.97–7.27
MFH/UPS 0.025 2.68 1.13–6.37

Surgical margin (mm)
0 1
≤2 0.433 0.89 0.66–1.20
>2 0.319 0.83 0.58–1.20

Type of surgery (limb-sparing vs amputation) 0.478 0.86 0.56–1.31
Local recurrence (yes vs no)** 0.000 3.42 2.55–4.60
Notation: *Incomplete excision elsewhere prior to referral; MPNST, malig-
nant peripheral nerve sheath tumour; NOS, not otherwise specified; MFH/UPS,
malignant fibrous histiocytoma/undifferentiated pleomorphic sarcoma; ** time-
dependent variable.
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Figure 4.1: Disease progression of high-grade soft tissue sarcomas represented in a multistate
model. Blue, transition number; black, number of patients moving from one state to another.
ANED, alive, no evidence of disease; LR, local recurrence; DM, distant metastasis.

The main prognostic risk factors for transition 1 (ANED to LR) are tumour size (HR
1.06; 95% CI 1.01 to 1.11 with size in cm) and (neo) adjuvant radiotherapy. The HRs
for patients treated with adjuvant or no radiotherapy compared with neoadjuvant
radiotherapy are equal to 4.36 (95% CI 1.34 to 14.24) and 14.20 (95% CI 4.14 to
48.75), respectively (Table 4.3). Surgical resection margins had a protective effect
on the occurrence of LR with HRs equal to 0.61 (95% CI 0.33 to 1.12) and 0.16
(95% CI 0.07 to 0.41) for margins between 0 and 2 mm and wider than 2 mm,
respectively. No statistically significant effect of margins was detected when patients
move directly to the state DM/Death from ANED (transition 2). The effect of age
on the transition between ANED and DM/Death (transition 2) is equal to 1.64 (95%
CI 0.95 to 2.85) and 1.90 (95% CI 1.09 to 3.29) for patients aged 25-50 years and >50
years, respectively, compared with patients <25 years of age. The HR for tumour
size (in cm) is equal to 1.06 (95% CI 1.04 to 1.08). There was no significant effect of
prognostic factors on the transition hazards between LR and DM/ Death (transition
3). There was no significant difference between the centres for each outcome in the
classical Cox model and the multistate model.

The estimated multistate model was used to predict outcome probabilities for
each specific patient. Estimates of these probabilities are based on the results ob-
tained from the Cox model on the transition hazards between the states. Different
resection margins and patient characteristics are considered. The patientspecific state
occupation probabilities at different time points after surgery are visualised in stacked
charts (Figure 4.2). For any individual patient, three separate charts show the effect
of resection margins, in the presence of patient, tumour and (neo) adjuvant treatment
characteristics. The distance between two curves represents the probability of being
in a specific state (ANED, or LR or DM/Death) at a specific time point. Figure 4.2
illustrates the three margin scenarios for three different patients. After surgery, the
probability of occupying the state ‘LR’ (green area) decreases as margins increase in
the two patients receiving adjuvant radiotherapy, while the probability of occupying
the state ‘ANED’ (light blue area) increases as margins increase. The probability of
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Table 4.3: HRs and 95% CIs for all prognostic factors and all transitions in the multistate
model

Trans 1:
ANED →LR

Trans 2:
ANED →DM/Death

Trans 3:
LR →DM/Death

Variable p Value HR 95% CI p Value HR 95% CI p Value HR 95% CI
Age
<25 1 1 1
25-50 0.649 0.76 0.23–2.50 0.077 1.64 0.95–2.85 0.413 0.50 0.10–2.60
>50 0.955 1.03 0.32–3.31 0.023 1.90 1.09–3.29 0.302 0.47 0.11–1.97

Tumour presentation
(’whoops’* vs primary)

0.344 1.43 0.68–3.03 0.586 0.91 0.66–1.26 0.539 1.39 0.48–4.03

Tumour location
(lower vs upper)

0.116 0.61 0.33–1.13 0.919 1.01 0.78–1.32 0.474 1.43 0.54–3.83

Tumour size, cm 0.018 1.06 1.01–1.11 0.000 1.06 1.04–1.08 0.114 1.05 0.99–1.12
Depth
Deep 1 1
Superficial 0.093 0.51 0.23–1.12 0.653 0.92 0.66–1.30
Deep and superficial 0.226 0.26 0.03–2.33 0.253 1.31 0.82–2.09

Histopathology
Angiosarcoma 1 1
MPNST 0.034 0.23 0.06–0.90 0.845 1.08 0.51–2.26
Myxofibrosarcoma 0.085 0.34 0.10–1.16 0.777 0.90 0.44–1.84
Synovial sarcoma 0.023 0.21 0.05–0.80 0.972 0.99 0.47–2.07
Spindle cell sarcoma 0.078 0.32 0.09–1.14 0.910 0.96 0.46–2.01
Sarcoma NOS 0.918 0.90 0.13–6.14 0.702 0.82 0.31–2.22
MFH/UPS 0.032 0.19 0.04–0.87 0.560 1.26 0.58–2.76

Surgical margin (mm)
0 1 1 1
≤2 0.113 0.61 0.33–1.12 0.211 0.82 0.61–1.12 0.746 1.15 0.50–2.62
>2 0.000 0.16 0.07–0.41 0.193 0.80 0.56–1.12 0.949 1.04 0.32–3.36

Type of surgery
(limb-sparing vs ampu-
tation)

0.486 1.55 0.45–5.32 0.717 0.93 0.61–1.40

Radiotherapy
Neoadjuvant 1 1
Adjuvant 0.015 4.36 1.34–14.24 0.840 0.96 0.63–1.46
No radiotherapy 0.000 14.20 4.14–48.75 0.340 1.24 0.80–1.91

Notation: *Incomplete excision elsewhere prior to referral; MPNST, malignant peripheral nerve sheath tumour;
NOS, not otherwise specified; MFH/UPS, malignant fibrous histiocytoma/undifferentiated pleomorphic sarcoma;
** time-dependent variable.
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occupying the state ‘DM/Death without LR’ (red area) decreases slightly for patient
A (upper panels) as margins increase, while for patient B (middle panels), the probab-
ility remains almost the same for the first two margin scenarios and even increases for
a margin wider than 2 mm. The probability of occupying the state ‘DM/ Death after
LR’ (orange area) decreases as the margin increases in patients A and B. Patient C
received neoadjuvant radiotherapy and for this patient, the probability of occupying
the state ‘LR’ (green area) is very low and it is not affected by the margin. A wider
margin also appears to have little effect on the probability of occupying the state
‘DM/Death without LR’ (red area).

0 20 40 60 80 100 120

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0mm

Months since surgery

St
ac

ke
d 

pr
ob

ab
ilit

ie
s

0 20 40 60 80 100 120

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

<= 2mm

Months since surgery

St
ac

ke
d 

pr
ob

ab
ilit

ie
s

0 20 40 60 80 100 120

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

> 2mm

Months since surgery

St
ac

ke
d 

pr
ob

ab
ilit

ie
s

0 20 40 60 80 100 120

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0mm

Months since surgery

St
ac

ke
d 

pr
ob

ab
ilit

ie
s

0 20 40 60 80 100 120

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

<= 2mm

Months since surgery

St
ac

ke
d 

pr
ob

ab
ilit

ie
s

0 20 40 60 80 100 120

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

> 2mm

Months since surgery

St
ac

ke
d 

pr
ob

ab
ilit

ie
s

0 20 40 60 80 100 120

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0mm

Months since surgery

St
ac

ke
d 

pr
ob

ab
ilit

ie
s

0 20 40 60 80 100 120

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

<= 2mm

Months since surgery

St
ac

ke
d 

pr
ob

ab
ilit

ie
s

0 20 40 60 80 100 120

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

> 2mm

Months since surgery

St
ac

ke
d 

pr
ob

ab
ilit

ie
s

ANED LR DM/Death after LR DM/Death without LR

<= 2 mm

St
ac

ke
d

pr
ob

ab
ili

tie
s

0 mm > 2 mm

Months since surgery

0 mm

0 mm

Months since surgery

Months since surgery

Months since surgery

Months since surgery

Months since surgery

Months since surgery

Months since surgery

Months since surgery

<= 2 mm

<= 2 mm

> 2 mm

> 2 mm

St
ac

ke
d

pr
ob

ab
ili

tie
s

St
ac

ke
d

pr
ob

ab
ili

tie
s

St
ac

ke
d

pr
ob

ab
ili

tie
s

St
ac

ke
d

pr
ob

ab
ili

tie
s

St
ac

ke
d

pr
ob

ab
ili

tie
s

St
ac

ke
d

pr
ob

ab
ili

tie
s

St
ac

ke
d

pr
ob

ab
ili

tie
s

St
ac

ke
d

pr
ob

ab
ili

tie
s

0 20 40 60 80 100 120

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0mm

Months since surgery

St
ac

ke
d 

pr
ob

ab
ilit

ie
s

0 20 40 60 80 100 120

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

<= 2mm

Months since surgery
St

ac
ke

d 
pr

ob
ab

ilit
ie

s

0 20 40 60 80 100 120

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

> 2mm

Months since surgery

St
ac

ke
d 

pr
ob

ab
ilit

ie
s

0 20 40 60 80 100 120

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0mm

Months since surgery

St
ac

ke
d 

pr
ob

ab
ilit

ie
s

0 20 40 60 80 100 120

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

<= 2mm

Months since surgery

St
ac

ke
d 

pr
ob

ab
ilit

ie
s

0 20 40 60 80 100 120

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

> 2mm

Months since surgery

St
ac

ke
d 

pr
ob

ab
ilit

ie
s

0 20 40 60 80 100 120

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0mm

Months since surgery

St
ac

ke
d 

pr
ob

ab
ilit

ie
s

0 20 40 60 80 100 120

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

<= 2mm

Months since surgery

St
ac

ke
d 

pr
ob

ab
ilit

ie
s

0 20 40 60 80 100 120

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

> 2mm

Months since surgery

St
ac

ke
d 

pr
ob

ab
ilit

ie
s

ANED LR DM/Death after LR DM/Death without LRANED DM/Death after LRLR DM/Death without LR

0     20    40    60      80  100   120 

0     20    40    60      80  100   120 0     20    40    60      80  100   120 

0     20    40    60      80  100   120 

0     20    40    60      80  100   120 0.
0 

 0
.2

   
0.

4 
 0

.6
  0

.8
  1

.0

0.
0 

 0
.2

   
0.

4 
 0

.6
  0

.8
  1

.0

0.
0 

 0
.2

   
0.

4 
 0

.6
  0

.8
  1

.0

0.
0 

 0
.2

   
0.

4 
 0

.6
  0

.8
  1

.0

0.
0 

 0
.2

   
0.

4 
 0

.6
  0

.8
  1

.0

0.
0 

 0
.2

   
0.

4 
 0

.6
  0

.8
  1

.0
0.

0 
 0

.2
   

0.
4 

 0
.6

  0
.8

  1
.0

0     20    40    60      80  100   120 

0.
0 

 0
.2

   
0.

4 
 0

.6
  0

.8
  1

.0

0     20    40    60      80  100   120 0     20    40    60      80  100   120 

0     20    40    60      80  100   120 

0.
0 

 0
.2

   
0.

4 
 0

.6
  0

.8
  1

.0

Figure 4.2: Stacked state occupation probabilities for patients for different margins after
surgery, based on the model in figure 1. Upper panels: patient A: a woman aged 74 years
with a large (>10 cm), high-grade myxofibrosarcoma of the upper leg, resection with adjuvant
radiotherapy. Middle panels: patient B: a man aged 60 years with a 7 cm angiosarcoma of the
arm, resection with adjuvant radiotherapy. Lower panels: patient C: a woman aged 70 years
with a large (>10) synoviosarcoma of the upper leg, resection after neoadjuvant radiotherapy.
From left to right: Left panels: a 0 mm margin. Middle panels: margins smaller than or
equal to 2 mm. Right panels: margins wider than 2 mm.
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§4.4 Discussion

High-grade STS are associated with frequent LRs and poor survival. Since several
prognostic factors are set at baseline (ie, tumour size, grade), the resection margin
and indication or timing of radiotherapy might be the only prognostic factors that
can be affected by the multidisciplinary team. The results of this study stress the
importance of individual prediction of survival, considering the different prognostic
effects of radiotherapy and surgical margins between patients.

This study brings a new element into the discussion of the effect of margins by
using a multistate model. The estimated state occupation probabilities based on the
multistate model show the different effect of margins on outcomes between patients
with different baseline characteristics and adjuvant treatment modalities. This implies
that, in the discussion of the effect of margins, margins cannot be considered as a
single entity, but only in combination with patient-specific baseline characteristics
and additional radiotherapy. Although previous studies on the effect of margins take
patient characteristics into account in their multivariate analysis, it has not earlier
been emphasised and visualised how much these characteristics influence the effect
of margins. To the best of our knowledge, the stacked charts presented here are
the first visualisation of the complex relationship between prognostic factors and
probabilities of disease progression for individual patients. An additional asset of
the multistate model is that future disease progression can be estimated based on
the baseline characteristics of a patient at diagnosis, as well as on his known disease
progression after surgery. This enables real-time updates of future outcomes when
additional information becomes available over time.

The results from this study can be applied in clinical practice by taking the prob-
abilities of future state occupation for a specific patient into account when weighing
invasive surgery against maintaining quality of life, especially in cases with limited
expected survival. However, the authors acknowledge that the presented data are too
intricate to directly apply in daily practice. Therefore, a user-friendly web-based tool
based on the multistate model presented in this study will be developed.

This study presents new knowledge on the effect of neoadjuvant radiotherapy in
patients with high-grade STS. In clinical practice, the difference in the effect of pre-
operative and postoperative use of radiotherapy on LR, DM and survival of patients
with high-grade STS of the extremities remains the subject of discussion. Surgery is
delayed ~3 months in patients receiving preoperative radiotherapy, compared with pa-
tients receiving no or postoperative radiotherapy. Therefore, it is important to assess
the effect of our surgical planning and the use of radiotherapy on the course of the dis-
ease. The current results show that patients receiving neoadjuvant radiotherapy were
less likely to develop LR when compared with patients with no or adjuvant radiother-
apy, even though the 95% CI was large. This is consistent with previously published
results,[10] although others did not find a true difference in the risk of LR.[112, 108]
One recent large retrospective database study showed that neoadjuvant radiotherapy
was associated with improved survival.[127] This is in contrast to several other studies
that showed no significant effect of timing of radiotherapy on overall survival.[170, 94]
Since all these trials face the limitations of retrospective studies, a firm conclusion is
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still not possible. Possibly, a larger randomised trial will be able to provide a decisive
answer on which sequence is superior.

Undeniably, the question of the definition of a marginal or wide margin remains.
Multiple different descriptions are used in the literature.[81] In contrast to its contin-
ued use, the Enneking classification[55] is not considered detailed enough in respect
of (large) STS with close involvement of essential structures such as vessels, nerves
and bone.[111] In addition, the use of (neo) adjuvant radiotherapy has decreased the
necessity for radical or even wide margins.[111] The dichotomous classification pro-
posed by Trovik et al[146] may be too simplistic regarding adequate or inadequate
margins. While the poor prospect associated with macroscopically intralesional re-
sections is evident, the implications of microscopically positive or marginal resections
should not be regarded as identical.[111, 87] The quantitative measurement as ap-
plied in this study did not take into account the type of tissue of which the margin
consisted (eg, fascia, fat), which might also influence the required minimum width
of a margin.[111, 90] As Hoang et al[81] recently proposed, a universally updated
surgical margin reporting system would improve communication and understanding
regarding surgical treatment of STS. To create a broad basis for such a global system,
international collaboration is needed.

The main strengths of this study are its large cohort of high-grade extremity STS
only and the use of a multistate model to investigate the evolution of the disease
and to estimate the probabilities of clinical future events, given a set of individual
patient characteristics. The estimates of these probabilities are based on the results
obtained from the Cox model on the transition hazards between the states. The study
population is limited to high-grade extremity tumours of the most common sarcoma
types, and thus, the results are not attenuated by a diversity of low-grade, low-impact
STS. Finally, this study introduces the possibility of a practical aid for clinical practice
that would allow for individually tailored treatments, in contrast to many previous
studies that provide general prognostic factors for treatment decisions based on groups
of patients. Several limitations exist in this study. First, the inherent effects of a
retrospective study design, such as selection bias, are present. Second, owing to the
multicentre aspect of the study, a revision of all histological data was not possible.
However, all centres reported pathology results in the same manner. Margin width
as stated in the pathology reports was used for the analyses instead of descriptive
results. Additionally, all analyses were corrected for centre effect and there was no
significant difference between centres. Despite the limitations, the current analysis is
the largest investigation into the effect of margins on LR and OS for patients with
high-grade extremity STS.

This study stresses the importance of patient-specific characteristics when evaluat-
ing the effect of surgical margins and (neo) adjuvant radiotherapy. On the basis of the
estimated state occupation probabilities, the effect of margin differs significantly in
individual cases depending on baseline characteristics and the administration of (neo)
adjuvant radiotherapy. To use prognostic factors for LR and DM/Death in daily prac-
tice and thereby enable personalised care, a user-friendly webbased tool (application)
based on the model presented in this study will be validated and published.
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CHAPTER 5
A prediction model for treatment
decisions in high-grade extremity
soft-tissue sarcomas: Personalised

sarcoma care (PERSARC)

This chapter has been published in European Journal of Cancer 83 (2017) 313–323 as
A.J. Rueten-Budde, et al., "A prediction model for treatment decisions in high-grade
extremity soft-tissue sarcomas: Personalised sarcoma care (PERSARC)" [20].

Abstract

Background: To support shared decision-making, we developed the first prediction
model for patients with primary soft-tissue sarcomas of the extremities (ESTS) which
takes into account treatment modalities, including applied radiotherapy (RT) and
achieved surgical margins. The PERsonalised SARcoma Care (PERSARC) model,
predicts overall survival (OS) and the probability of local recurrence (LR) at 3, 5 and
10 years.
Aim: Development and validation, by internal validation, of the PERSARC predic-
tion model.
Methods: The cohort used to develop the model consists of 766 ESTS patients who
underwent surgery, between 2000 and 2014, at five specialised international sarcoma
centres. To assess the effect of prognostic factors on OS and on the cumulative
incidence of LR (CILR), a multivariate Cox proportional hazard regression and the
Fine and Gray model were estimated. Predictive performance was investigated by
using internal cross validation (CV) and calibration. The discriminative ability of the
model was determined with the C-index.
Results: Multivariate Cox regression revealed that age and tumour size had a sig-
nificant effect on OS. More importantly, patients who received RT showed better
outcomes, in terms of OS and CILR, than those treated with surgery alone. Internal
validation of the model showed good calibration and discrimination, with a C-index
of 0.677 and 0.696 for OS and CILR, respectively.
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Conclusions: The PERSARC model is the first to incorporate known clinical risk
factors with the use of different treatments and surgical outcome measures. The de-
veloped model is internally validated to provide a reliable prediction of post-operative
OS and CILR for patients with primary high-grade ESTS.
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§5.1 Introduction

Multimodality treatment of high-grade soft-tissue sarcomas of the extremities (ESTS)
has improved over the years; however, local recurrence (LR), distant metastasis (DM)
and poor survival remain of great concern [164]. Although the effect of several patient-
related prognostic factors on overall survival (OS) and LR is well described, the lack of
a validated prediction model that includes treatment modalities complicates decision-
making aimed at balancing oncologic cure and minimising the risk of disability after
treatment.

Factors such as vascular invasion[54], peripheral tumour growth[54], tumour size
[54, 107, 74, 29], infiltrative growth[54], necrosis[54], site[107], adjuvant chemo- and/or
radiotherapy (RT) [45], histological grade [107, 74, 29] (for fibro- and liposarcomas
[145]) and histological subtype [107, 74] have been shown to have a significant im-
pact on survival. While some studies indicate that the prognostic value of tumour
depth[54], state at presentation [45], tumour site [102] and age [102] remains unclear,
others found some of these factors to be good predictors of outcome[107, 74, 29]. The
effect of limb sparing surgery and neoadjuvant chemotherapy and/or RT remains de-
batable [45]. Surgical margins have an impact on LR [164, 74], but no clear association
with OS has been established [164, 74].

In 2003, a prognostic model based on 175 patients with ESTS became available
[77] and expanded twice [38, 128]. The first update included patients who were dia-
gnosed at a time (1967) when magnetic resonance imaging (MRI) was not part of the
standard care. Prognostic factors included in those studies were tumour size, vas-
cular invasion, necrosis, grade, peripheral growth, depth and location, whereas age,
gender, recurrence and metastasis, margins and histology were not included in the
model. Callegaro et al. (2016) developed two nomograms for soft-tissue sarcomas of
the ESTS and trunk using age, tumour size, histological grade and subtype, using
exclusively patients with macroscopically complete surgical resections [37]. In addi-
tion, several models only provide prognosis for OS and DM, whereas others underline
the relevance of LR. Willeumier et al. (2017) underlined the importance of individual
prognostication of LR and OS based on different combinations of surgical margins
and possible (neo) and/or adjuvant therapy, while also taking different patient and
tumour characteristics into account [21].

To support shared decision-making between patients and physicians, this study
aims to develop a prognostic Personalised Sarcoma Care (PERSARC) model to predict
the cumulative incidence of LR (CILR) and OS for a patient with high-grade ESTS
with specific clinical characteristics and possible treatment modalities at baseline.
The prediction model is internally validated by calibration and discrimination.

§5.2 Methods

This multicentre study was approved by each of our hospitals’ human subjects review
boards.
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§5.2.1 Study population
The study population included a consecutive series of 838 patients with primary
high-grade ESTS who underwent surgical treatment at one of the five international
collaborating hospitals between January 2001 and December 2014. Due to missing
values for 72 patients, 766 individuals were included in development of the PERSARC
model. Eligible diagnoses included high-grade (Fédération Nationale des Centres de
Lutte Contre le Cancer [FNCLCC] grade III) angiosarcoma, malignant peripheral
nerve sheath tumour, synovial sarcoma, spindle cell sarcoma, myxofibrosarcoma and
(pleomorphic) soft-tissue sarcomas not-otherwise-specified. Excluded patients include
those that were treated without curative intent, had LR or DM within 2 months after
primary treatment (ruled out by pre-treatment and follow-up (FU) staging with lung
computed tomography (CT) scan), had a tumour in their abdomen, thorax, head or
neck or received (neo) adjuvant treatment other than RT or chemotherapy.

All collaborating sarcoma centres implemented the guidelines of the European
Society for Medical Oncology for soft-tissue sarcoma FU [56]. Patients visited the
outpatient clinic for their scheduled clinical and radiographic FU: every 3-4 months
in the first 2-3 years, then every 6 months and after 5 years yearly. It was common
that FU was ended after 10 years evidence of no disease.

§5.2.2 Study design
This was a retrospective observational study, in which clinical information was gathered
retrospectively (medical records) and by using existing prospective sarcoma data-
bases (including documentation of clinic visits, operation reports, histology and ra-
diographic reports). This information included demographics (centre, patient gender
and age at presentation, event and FU), tumour characteristics (presentation, local-
isation, depth, diameter, histology and grade), treatment characteristics (goal, time of
operation [weeks], resection margin and categorical, type and dose of [neo] adjuvant
therapy), development of LR and/or DM and last known status. All patients had
a minimal FU of 2 years or experienced an event (LR, DM or death) before. The
primary outcome measure was survival, if the patient was alive at their last docu-
mented visit information on the tumour status was gathered. Secondary outcome
measure was LR. Long-term FU was obtained through reviewing documentation of
all clinical and radiographic FU.

A sarcoma was considered primary if it was previously untreated, a biopsy or
whoops excision had been performed before presentation at one of the five contrib-
uting specialised sarcoma centres, with no evidence of metastatic disease. LR was
defined as the presence of viable tumour at the site of the original tumour bed con-
firmed by clinical findings, pathological tissue diagnosis or radiological reports more
than 2 months after primary surgery. Distant recurrence was defined by clinical or
radiological evidence of systemic spread of tumour outside the primary tumour bed.

Tumour size was defined as maximum diameter at pathologic analysis. In pa-
tients that received neo-adjuvant RT and/or chemotherapy, tumour size was defined
as maximum diameter measured by CT or MRI before treatment. Surgical margin
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was defined as follows: intralesional for tumour cells present at the margin of the
resection specimen (<0.1 mm), marginal for tumour cells found within 0.1-2 mm of
the margin and free for tumour cells found at least 2 mm away from the margin
citewilleumier, rueten2017, kainhofer2016. Tumour grade was classified as high-grade
based on established criteria of the FNCLCC.

§5.2.3 Statistical analysis
Multivariate Cox regression model

To assess the effect of prognostic factors on OS a multivariate Cox proportional haz-
ards regression model was used. Predictor variables incorporated in the model were
age, tumour size, depth, histology subtype, surgical margin and RT. Initially, tumour
site and tumour presentation were considered; however, previous studies [37] and
an initial multivariate analysis (Wald test p-value: tumour site p = 0.818, tumour
presentation p = 0.696) showed no strong predictive value.

Fine and Gray model

To estimate the effect of risk factors on the CILR, a competing risks model, which
accounts for the competing event death was used (Appendix 5.A, Figure 5.A.1) [119].
After surgery, a patient may be alive with no evidence of disease. He may then
develop LR or die. The cumulative incidence function is defined as the probability
of the event occurring before a certain time point. Fine and Gray’s method models
the effect of covariates on the cumulative incidence in the presence of competing
events. Subdistribution hazard ratios (sHRs) estimate the effect of risk factors on the
probability of event occurrence directly. The same covariates used in the Cox model
were considered.

Prediction and validation

Predictions for OS and LR at 3, 5 and 10 years after surgery together with 95%
confidence intervals (95% CIs), which indicate the uncertainty surrounding the estim-
ates are provided. To justify their use in clinical practice, predictive performance of
the prediction models was assessed internally by using leave-one-out cross validation
(CV). CV is a technique to simulate model performance on new data.

Following van Houwelingen (2000), a prognostic model is defined as a rule to
compute probabilities, given the relevant covariates and their validity can be argued
on the basis of model calibration.

Calibration refers to how well predicted probabilities agree with observed prob-
abilities. A common practice is to group patients from ‘good’ to ‘bad’ prognosis. A
model is well calibrated if true and predicted group probabilities do not differ.

The prediction model can be used to categorise patients based on their prognosis.
A patient’s risk factor information can be summarised into a prognostic index (PI),
which is a weighted mean of prognostic variables, where weights are derived from the
prognostic model. Patients with a higher value of PI have a higher predicted risk.
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Hence, the PI can be used to divide data into four equal sized groups as follows: ‘good
prognosis’, ‘fairly good prognosis’, ‘fairly poor prognosis’ and ‘poor prognosis’.

Calibration plots visualise model calibration on a given set of data [150, 165].
Data are divided into prognostic groups. At specific time points the groups’ observed
outcome (OS or CILR) is plotted against their predicted outcome. If the points
are scattered around the diagonal (x = y), the model is valid without adjustment.
To investigate calibration for data subgroups, one-sampled T-tests are used, where
predicted outcomes were considered the ‘fixed’ value and observed outcomes as the
evaluated variable [47].

Discrimination refers to the ability of the model to assign higher predicted risk
to patients who experience the event earlier compared with those experiencing the
event later or not at all. To visualise this aspect, non-parametric curves are plotted
showing the observed outcome (OS or CILR) for different prognostic groups [124].
The spread of the curves indicates how well a model can discriminate. The C-index
quantifies discrimination as the proportion of patient pairs that experience events
in the order of risk predicted [149]. It can be adjusted for competing risks [165]
and can be interpreted as follows: a C-index of 1 means that the model has perfect
discrimination and a C-index of 0.5 means that the model predicts just as well as
flipping a coin [9].

All statistical analysis was conducted using R software [122]. A p-value of 0.05
was defined as statistically significant.

§5.3 Results

Table 5.1 summarises patients’ characteristics at baseline for the included 766 patients
from the five international sarcoma centres. The median FU was 71.8 months (95%
CI: 67.6-75.9), assessed with the reverse Kaplan-Meier method. In total, 369 patients
died and 116 developed an LR. The majority of patients with an LR died (n = 83;
72%). OS was estimated to be equal to 63%, 53% and 39% at 3, 5 and 10 years,
respectively. CILR was estimated to be equal to 13.3% (95% CI: 10.9-15.8), 15.1%
(95% CI: 12.4-17.7) and 17.2% (95% CI: 13.9-20.5) at 3, 5 and 10 years, respectively.
The centre effect on disease progression was investigated but no significant effect was
found.

Age, tumour size and additional RT show an independent significant effect on OS
(Table 5.2). Patients with larger tumours have a significantly increased risk of dying
with HR equal to 1.068 (95% CI: 1.052-1.085) for a unit increase of 1 cm. Older age is
associated with a higher risk of death with HR equal to 1.195 (95% CI: 1.116-1.268)
for a 10-year increase in age. Note that age and size are included as linear terms
in the model, implying that a ‘k*10’ year change in age and a ‘k’ cm change in size
multiply the hazard by HRk. Surgical margin has a marginally significant effect on
OS, with HR equal to 0.786 (95% CI: 0.599-1.033) and 0.711 (95% CI: 0.524-0.964) for
margin equal to 0.1-2 mm and >2 mm, respectively (reference category 0 mm). RT
treatment is associated with a decreased risk of dying compared with surgery alone
with HRs equal to 0.548 (95% CI: 0.399-0.753) and 0.638 (95% CI: 0.486-0.837) for
neoadjuvant and adjuvant RT, respectively.
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Table 5.1: Patient characteristics

Characteristics N(%)
Total 766
Age, mean (SD), years 58.28 (19.39)
Age (%)
30-60 years 281 (36)
< 30 years 82 (11)
> 60 years 403 (53)

Sex (%)
Male 435 (57)
Female 331 (43)

Depth (%)
Deep 579 (76)
Superficial 134 (17)
Deep and superficial 53 (7)

Tumour size, mean (SD), cm 10.06 (6.21)
Tumour location, no. (%)
Upper extremity 182 (24)
Lower extremity 584 (76)

Tumour presentation (%)
Primary 622 (81)
’Whoops’* 144 (18)

Histopathology (%)
Myxofibrosarcoma 238 (31)
MPNST 91 (12)
Synovial sarcoma 142 (18)
Spindle cell sarcoma 167 (22)
MFH/UPS 77 (10)
Other 51 (7)

Surgical margin (%)
0 mm 140 (18)
≤2 mm 343 (45)
>2 mm 283 (37)

Limb-sparing (%)
No 81 (11)
Yes 685 (89)

Radiotherapy, no. (%)
Neoadjuvant 184 (24)
Adjuvant 400 (52)
No radiotherapy 182 (24)

Notation: N, number of patients; *Incomplete ex-
cision elsewhere prior to referral; MPNST, malignant
peripheral nerve sheath tumour; NOS, not otherwise
specified; MFH/UPS, malignant fibrous histiocyt-
oma/undifferentiated pleomorphic sarcoma; Depth:
relative to the investing fascia.
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Table 5.2: Multivariate Cox model for overall survival: hazard ratio (HR) along with 95%
confidence interval (n = 766).

HR 95% CI p-Value
Age 1.195 1.116–1.268 <0.001
Tumour size 1.068 1.052–1.085 <0.001
Depth 0.377
Deep 1
Superficial 0.813 0.591–1.117
Deep and superficial 1.110 0.736–1.674

Histopathology 0.492
Myxofibrosarcoma 1
MPNST 1.422 0.989–2.044
Synovial sarcoma 1.261 0.869–1.831
Spindle cell sarcoma 1.211 0.884–1.661
MFH/UPS 1.293 0.890–1.876

Surgical margin 0.080
0 mm 1
≤2 mm 0.786 0.599–1.033
>2 mm 0.711 0.524–0.964

Radiotherapy
No RT 1
Neoadjuvant 0.548 0.399–0.753
Adjuvant 0.638 0.486–0.837

The HR of age corresponds to a unit increase of 10 years, and the
HR of size corresponds to a unit increase of 1 cm. Notation:
CI, confidence interval; HR, hazard ratio; MFH/UPS, malig-
nant fibrous histiocytoma/undifferentiated pleomorphic sarcoma;
MPNST, malignant peripheral nerve sheath tumour; RT, radio-
therapy. Depth: relative to the investing fascia. Depth: relative
to the investing fascia
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Figure 5.1: Calibration plots for overall survival. Observed survival obtained using Kaplan-
Meier estimator is plotted against predicted survival for patients in eight equal sized risk
groups identified by their predicted survival at (A) 3 years, (B) 5 years and (C) 10 years, as
assessed by cross validation.

Figure 5.1 shows calibration plots for OS at 3, 5 and 10 years. The 3-, 5- and
10-year calibration plots show points (representing risk groups) scattered close to the
diagonal, which is contained in the 95% CIs of the observed group survival.

A detailed comparison of observed and predicted survival at 3, 5 and 10 years
for data subgroups is given in Table 5.3. Observed and predicted outcome do not
differ significantly; however, for smaller and medium sized tumours (<5 cm, 5-10 cm)
survival is underestimated at 3, 5 and 10 years, respectively.

Figure 5.2 shows good discrimination of the model visualised by the spread of
the Kaplan-Meier estimates (solid lines). Model-based estimates (dotted lines) show
the mean predicted survival per group close to the observed survival, indicating good
calibration.

The C-index for OS was estimated to be 0.677 (95% CI 0.643-0.701).
In the Fine and Gray model, tumour size, surgical margin and RT show a sig-

nificant effect on CILR (Table 5.4). Bigger tumours are associated with a higher
probability of LR with sHR equal to 1.031 (95% CI: 1.001-1.063) for a unit increase
of 1 cm. Patients with larger margins have a significantly lower CILR with sHR equal
to 0.635 (95% CI: 0.406-0.992) and 0.282 (95% CI: 0.159-0.500) for 0.1-2 mm and
>2 mm, respectively. RT treatment is associated with a lower CILR compared with
surgery alone with sHRs equal to 0.312 (95% CI: 0.146-0.668) and 0.700 (95% CI:
0.417-1.175) for neoadjuvant and adjuvant RT, respectively.

Calibration plots for LR are shown in Figure 5.3. Points are scattered around
the lower diagonal that lies within the 95% CIs of the observed cumulative incid-
ence, indicating a good calibration. However, the small distance between lower risk
groups and the fact that groups observed outcome not always monotonically increases
indicate the relative difficulty to discriminate among patients with lower risk profiles.

Figure 5.4 shows crude cumulative incidence curves (solid lines) and model-based
estimates (dotted lines) computed as the mean predicted cumulative incidence for
LR. The high-risk groups can clearly be distinguished from the rest. However, the
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Figure 5.2: Survival curves for four prognostic index groups. Kaplan-Meier survival curves
(solid lines) plotted with the model-based survival curves (dotted lines) for four different
prognostic index groups. The numbers of patients at risk was 423, 265 and 33 at 3, 5 and 10
years, respectively. Black: patients with good; red: fairly good; green: fairly poor and blue:
poor prognosis.
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Figure 5.3: Calibration plots for local recurrence. Observed local recurrence (LR) is plotted
against predicted LR for patients in eight equal sized risk groups identified by their predicted
probability for LR, as assessed by cross validation.

113



5. A prediction model for treatment decisions in high-grade extremity soft-tissue
sarcomas: Personalised sarcoma care (PERSARC)

C
h
a
pt

er
5

Table 5.4: Fine and Gray model for local recurrence. Subdistribution hazard ratio (sHR)
along with 95% confidence interval (n = 766).

sHR 95% CI p-Value
Age 1.051 0.942-1.184 0.337
Size 1.031 1.001-1.063 0.042
Depth* 0.559
Deep 1.000
Superficial 0.907 0.536-1.535
Deep & superfiscial 0.563 0.198-1.604

Histology 0.864
Myxofibrosarcoma 1.000
MPNST 1.079 0.580-2.009
Synovial sarcoma 0.779 0.379-1.602
Spindle cell sarcoma 0.979 0.570-1.681
MFH/UPS 1.096 0.557-2.156

Margin <0.001
0 mm 1.000
0.1-2 mm 0.635 0.406-0.992
>2 mm 0.282 0.159-0.500

RT 0.010
No RT 1.000
Neoadjuvant 0.312 0.146-0.668
Adjuvant 0.700 0.417-1.175

The sHR of age corresponds to a unit increase of 10 years
and the sHR of size corresponds to a unit increase of 1
cm. Notation: MFH/UPS, malignant fibrous histiocyt-
oma/undifferentiated pleomorphic sarcoma; MPNST, ma-
lignant peripheral nerve sheath tumour; RT, radiotherapy.*
Depth: relative to the investing fascia.

curves of the lower risk groups are located very close to each other, which indicates
some difficulty to discriminate between patients with low risk resulting from the small
number of LRs observed in those groups.

Figure 5.5 shows the effect of RT on OS and CILR for two patients with the
same risk factors (70 years old, 9 cm tumour size, deep depth, malignant fibrous
histiocytoma/undifferentiated pleomorphic sarcoma, resection margin of 0.1-2 mm)
with and without neo- adjuvant RT. The patient without RT (red lines) has worse
OS and higher CILR.

Detailed comparisons of observed and predicted probabilities for LR for data sub-
groups are shown in Table 5.5. No significant differences between observed and pre-
dicted outcomes were evident. The C-index for LR was 0.696 (95% CI 0.629-0.743).
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Figure 5.4: Cumulative incidence of local recurrence for four prognostic index groups. Crude
cumulative incidence curves (solid lines) plotted with the model-based cumulative incidence
curves (dotted lines) for four different prognostic index groups. The numbers of patients at
risk were 388, 237 and 29 at 3, 5 and 10 years, respectively. Black: patients with good; red:
fairly good; green: fairly poor and blue: poor prognosis. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)

Figure 5.5: Survival and CILR for patient of 70 years, tumour size 9 cm, deep depth,
MFH/UPS and resection margin 0.1-2 mm. In red: curves for patient treated with neo-
adjuvant RT. In black: patient without RT. Solid lines: survival curves. Dotted lines: cu-
mulative incidence for LR. LR, local recurrence; RT, radiotherapy. (For interpretation of
the references to colour in this figure legend, the reader is referred to the Web version of this
article.)
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§5.4 Discussion

In cancer care, patient characteristics are generally set at presentation, whereas the
combination and timing of treatment(s) is a clinical decision based on each patient’s
specific circumstances. Previously, we developed a multistate model to investigate
how these variables affect patient outcomes [21]. In this study, we developed the
PERSARC model which uniquely presents clinicians with the possibility to accurately
predict outcome of OS and CILR and compare different treatment modalities, for pa-
tients with high-grade ESTS that undergo surgical resection with curative intent. It
clearly shows the possible added value of (neo) adjuvant RT at an individual patient
level (Figure 5.5). Surgical margins, adjuvant therapies and individual baseline char-
acteristics are all incorporated in this model. To assess the predictive value of this
model, internal validation was performed.

This prognostic model illustrates that as the tumour size increases, the prognosis
worsens for LR and OS with sHR equal to 1.031 (95% CI: 1.001-1.063) and HR equal
to 1.068 (95% CI: 1.052-1.085), respectively. These findings are similar to results
reported by other groups. As expected, age was an adverse prognostic risk factor
for OS[107], which can only be partially explained by comorbidities. Margins are
clearly associated with LR and seem to have a marginally significant effect on OS
(Tables 5.2 and 5.4). The effect of recurrence on OS might be attributed to biological
aggressiveness of the tumour rather than margins itself (Tables 5.2 and 5.4) [164, 75].

Patients who received RT seem to have better outcomes than those who did not
(Tables 5.2 and 5.4) [112]. These patients may have been selected out of the total
group of ESTS patients based on clinical characteristics, presenting scenarios or cap-
ability to undergo neoadjuvant RT [111]. All patients included in this study were
treated at one of the five high-volume sarcoma centres following discussion of their
case at a multidisciplinary tumour board. Although selection bias may be present,
it only reflects every day care decisions. There are two prospective randomised tri-
als on this topic; in both studies, adjuvant RT has shown a decrease in LR but had
no significant impact on survival. However, both studies also included patients with
low-grade tumours. Furthermore, due to low number of events (death) per arm, they
could only detect a minimal benefit of 20% (as mentioned in the trial that had the
most patients per arm) [33, 28]. Previous studies along with the results from this
investigation suggest that neoadjuvant RT should be considered at multidisciplinary
tumour board discussions for all patients undergoing surgery for primary high-grade
ESTS [112, 10, 108, 127, 170]. Patients treated with neoadjuvant radiation are at
significantly increased risk of wound healing complications, whether they receive con-
ventional treatment or intensity-modulated RT [112]. Therefore, certain patients such
as the elderly, those with significant medical comorbidities or those with prosthetic
implants adjacent to the location of the sarcoma, may be considered inappropriate
candidates for neoadjuvant radiation.

The outcomes presented above must be interpreted with caution because this
model is based on clinical routine data and is therefore, susceptible to selection bias.
In addition, margin categories are based on millimetres, and histology was not re-
evaluated centrally. Therefore, margin assessment and evaluation of specific margins
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‘close’ to anatomic structures; e. g. periosteum, perineurium or fascia may be sub-
jective to variability [111]. For patients treated in centres where other margin criteria
(e. g. Enneking) are in place, this model may be less applicable. Further research
should focus on evaluating the different classification methods and agreeing on one
standardised margin description for patients with ESTS [55, 90, 81].

While some patients may accept the increased risk of an LR and potential need for
subsequent treatment by opting for less aggressive therapy including minimal mar-
gins, others may want to minimise the risk of another surgery, for example because
of age and comorbidities or because of the potential effect on survival. These trade-
offs are delicate and have to be based on clinical experience and substantial evidence.
The prediction model developed in this study provides some indication about the pos-
sible evolution of the disease and helps in shared decision-making. The Personalised
Sarcoma Care model is freely available in the Appstore and Google apps.
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Appendix

§5.A Competing risks model

Figure 5.A.1: Competing risk model. A patient enters the state of being alive with no evidence
of disease (ANED) after surgery and may move to the state of local recurrence (LR) or death.
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CHAPTER 6
Dynamic prediction of overall

survival for patients with high-grade
extremity soft tissue sarcoma

This chapter has been published in Surgical Oncology 27 (2018) 695–701 as A.J.
Rueten-Budde, et al., "Dynamic prediction of overall survival for patients with high-
grade extremity soft tissue sarcoma" [19].

Abstract

Purpose: There is increasing interest in personalized prediction of disease progression
for soft tissue sarcoma patients. Currently, available prediction models are limited
to predictions from time of surgery or diagnosis. This study updates predictions of
overall survival at different times during follow-up by using the concept of dynamic
prediction.
Patients and methods: Information from 2232 patients with high-grade extremity
soft tissue sarcoma, who underwent surgery at 14 specialized sarcoma centers, was
used to develop a dynamic prediction model. The model provides updated 5-year
survival probabilities from different prediction time points during follow-up. Baseline
covariates as well as time-dependent covariates, such as status of local recurrence and
distant metastases, were included in the model. In addition, the effect of covariates
over time was investigated and modelled accordingly in the prediction model.
Results: Surgical margin and tumor histology show a significant time-varying effect
on overall survival. The effect of margin is strongest shortly after surgery and di-
minishes slightly over time. Development of local recurrence and distant metastases
during follow-up have a strong effect on overall survival and updated predictions must
account for their occurrence.
Conclusion: The presence of time-varying effects, as well as the effect of local re-
currence and distant metastases on survival, suggest the importance of updating pre-
dictions during follow-up. This newly developed dynamic prediction model which
updates survival probabilities over time can be used to make better individualized
treatment decisions based on a dynamic assessment of a patient’s prognosis.
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§6.1 Introduction

High-grade soft tissue sarcomas (STS) are highly aggressive tumors with poor pro-
gnosis [117, 169]. Soft tissue sarcomas of the extremities account for approximately
60% of all STS diagnoses [41]. The effect of prognostic factors measured at the time
of surgery (e. g. age, surgical margin, radiotherapy, tumor size, depth, and histology
subtype) on overall survival has been previously investigated [117, 169, 41, 20, 37, 21]
and is used in the form of prediction tools such as nomograms and online applications
to make patient-specific predictions of disease progression [20, 37]. The continuous
prediction of OS during treatment and follow-up has proven its clinical benefit in
shared decision making and choosing the optimal individualized treatment strategy
in several carcinoma cohorts [1, 6, 7].

A weakness of current sarcoma models is that they are designed for use at baseline,
such as at the time of diagnosis or surgery, and cannot be used to make adequate pre-
dictions at later time points during follow-up. After surgery approximately 10% of
high grade STS patients develop local recurrence (LR) with or without synchronous
distant metastases (DM). Both will have a significant impact on future disease pro-
gression and the difference in prognosis should be incorporated in future treatment
protocols. Even the fact that a patient survived a length of time after surgery might
give an indication about his future prognosis. In addition, the effect of prognostic
factors may change over time (time-varying effect), which has not yet been studied.
For example, surgical margin and radiotherapy might have a strong impact on sur-
vival in the immediate time after surgery; however, their effect may change during
follow-up. The use of time-dependent covariates, such as LR and DM status, and
time-varying effects to update survival probabilities during follow-up is known as dy-
namic prediction [151]. To the best of our knowledge, no previous prediction model
has been published taking the time-varying effect of risk factors into account for pa-
tients with STS. This study fills a gap in current research by investigation the effect
of risk factors for death in high-grade extremity STS patients over time.

The aim of this study was to develop a dynamic prediction model for high-grade
(FNCLCC grade II and III [145]) extremity STS patients that updates overall survival
probabilities during follow-up. The effect of prognostic factors over time was studied
and modelled accordingly in the dynamic model. The model predicts a patient’s
probability of surviving an additional five years from different prediction time points
(tp) after resection of their sarcoma. Specific patient examples are used to illustrate
how predicted probabilities change at different prediction time points during follow-
up. To implement these findings in clinical practice, this model will be made available
in the updated PERSARC app and online [20].
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§6.2 Methods

§6.2.1 Study design
In this study a dynamic prediction model, using a retrospectively collected cohort of
patients with STS of the extremities, was developed and internally validated. Clinical
data were collected between January 1st, 2000 and December 31st, 2014, at 14 dif-
ferent international specialized sarcoma centers, thereby creating the largest multina-
tional dataset of high-grade surgically treated extremity STS patients in the world.
Included centers are Leiden University Medical Center (Leiden, the Netherlands),
Royal Orthopaedic Hospital (Birmingham and Stanmore, UK), Netherlands Cancer
Institute (Amsterdam, the Netherlands), Mount Sinai Hospital (Toronto, Canada),
the Norwegian Radium Hospital (Oslo, Norway), Aarhus University Hospital (Aar-
hus, Denmark), Skåne University Hospital (Lund, Sweden), and Medical University
Graz (Graz, Austria). The outcome measure used was overall survival, which was
defined as time from surgery to death from any cause or last recorded follow-up. The
prediction model estimates the dynamic probability of surviving an additional five
years from a prediction time point tp called dynamic overall survival (DOS). From
time of surgery predictions of 5-year DOS can be estimated based on updated patient
information.

§6.2.2 Patients and variables
Ethical approval for this study was waived by the institutional review board, be-
cause clinical data was collected from medical records. Patients were selected from
each hospital’s own sarcoma registry based on histological diagnosis. Eligible dia-
gnoses included high-grade (FNCLCC grade II and III [145]) angiosarcoma, malig-
nant peripheral nerve sheath tumor (MPNST), synovial sarcoma, spindle cell sar-
coma, myxofibrosarcoma, liposarcoma, leiomyosarcoma, malignant fibrous histiocyt-
oma/undifferentiated pleomorphic sarcoma (MFH/UPS), (pleomorphic) soft tissue
sarcomas not-otherwise-specified (NOS), malignant rhabdoid tumor, alveolar soft part
sarcoma, epithelioid sarcoma, clear cell sarcoma, rhabdomyosarcoma (adult form)
and conventional fibrosarcoma. Patients were excluded if they were initially treated
without curative intent, presented with LR or DM, had Kaposi’s or rhabdomyosar-
coma (pediatric form), had a tumor in their abdomen, thorax, head or neck, or
received isolated limb perfusion as (neo-)adjuvant treatment. For follow-up all collab-
orating sarcoma centers adhered to the guidelines of the European Society for Medical
Oncology [56].

In the following, baseline and time-dependent variables that were included into the
dynamic model are defined. Predictors measured at baseline were: age (years), tumor
size by the largest diameter measured at pathological examination (centimeters), tu-
mor depth in relation to investing fascia (deep/superficial), and histological subtype
according to WHO classification [61]. Radiotherapy (yes/no) was further specified
as being either neoadjuvant or adjuvant treatment. Chemotherapy was not included
in the model because it was seldom given to patients for primary tumors. Surgical
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margins were categorized according to the categorical R-system: ‘R0’ for a negative
margin and ‘R1-2’ for a positive margin with tumor cells in the inked surface of the
resection margin [76]. The potential effect modifier grade was not included, since all
included patients had high-grade tumors. Local recurrence was defined as the pres-
ence of pathologically and/or radiologically confirmed tumor at the site where it was
originally detected, more than two months after primary surgery. Distant metastases
were defined as radiological evidence of systemic spread of tumor distant from the
primary tumor site.

Initially 2427 patients were considered, however, those who underwent surgery
before January 1st, 2000 (n = 187) and those with missing outcome information (n
= 8) were excluded leaving a total of 2232 patients for analysis.

§6.2.3 Statistical analysis
To estimate a prediction model for 5-year DOS a proportional landmark supermodel
was used [151, 149]. A landmark model is able to make predictions from a particular
landmark time tLM, by using all (updated) information of patients in follow-up at
that time. A landmark supermodel combines several landmark models corresponding
to distinct landmark time points to make predictions at different prediction times tp
during follow-up.

To fit such a model, landmark time points tLM were chosen every three months
between zero and five years after surgery. At each of these time points a Cox propor-
tional hazards model was estimated on the subset of patients still at risk: patients
alive and in follow-up at time tLM . The status of LR and DM is determined at land-
mark time point tLM for each patient and considered fixed. These Cox models were
then combined into a landmark supermodel.

The main covariates as well as the linear and quadratic effect of time in form of
the term tLM and t2LM were included into the model. Some histology subtypes were
not sufficiently represented in the data (n ≤ 35) and it was not possible to estimate
a separate effect for them on survival. For this reason, they were grouped together
under the label "Other".

A backward selection procedure was used to select further time- varying covariates.
The time-varying effect of a covariate is modelled by the interaction term between
the covariate and time. Initially all interactions of covariates with tLM and t2LM were
included in the model, after which interactions with t2LM without significant effect were
removed. In the next step, interactions for these prognostic factors with tLM were
considered and removed from the model if they had no significant effect. A p-value of
≤0.05 was considered significant. The validity of the prediction model was assessed
in terms of model calibration, which refers to how well predicted probabilities agree
with observed probabilities. The model was internally calibrated using the heuristic
shrinkage factor [154]. Shrinkage of a linear prognostic index towards the mean can
improve the predictions of a prognostic model [149]. The estimated shrinkage factor
on new data is an estimate of necessary calibration needed to improve the model fit
on new data. Without an external data set the shrinkage factor can be determined
using a heuristic formula and may take values between zero and one, where values
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close to one represent a good calibration.
Model discrimination refers to the ability of the model to predict higher risks

for patients with an early event compared to those with later or no event and was
assessed using the dynamic cross-validated C-index [149]. A C-index equal to one
means that the model has perfect discrimination and a C-index of 0.5 means that the
model predicts just as well as flipping a coin [9].

Most statistical methods are not able to include observations with missing values,
which leads to the removal of patients with missing information. To make optimal
use of the collected data multiple imputation was applied. The R-package Amelia II
was used to impute five complete data sets with plausible values [82]. Across these
data sets observed values stay the same, however missing values were inserted with
a distribution that reflects the uncertainty surrounding the missing data. Statistical
methods were applied to each individual complete data set and the results were then
combined following Rubin’s rule [126]. The analysis was adjusted for country effect by
including country as a fixed covariate into the model. The items on both the checklist
of STrengthening the Reporting of OBservational studies in Epidemiology (STROBE)
and the Transparent Reporting of a multivariable prediction model for Individual
Prognosis Or Diagnosis (TRIPOD) we considered during model development [158, 42].
All statistical analyses were performed in the R-software environment [122].

§6.3 Results

The number of patients used for this analysis was 2232, with a median follow-up of
6.42 years (95% confidence interval: 6.17-6.72), assessed with the reverse Kaplan-
Meier method [133]. Table 6.1 provides a summary of the patient characteristics.

An overview of the number of patients used at each landmark time point is given
in Figure 6.1 together with information about their disease status at that time. In
total 1034 patients died, 143 patients developed LR, 556 DM, and 159 developed both.

Table 6.2 shows hazard ratios (HR) together with 95% confidence intervals (95%CI)
for the risk factors included in the Cox proportional hazard model. Hazard ratios for
covariates with time-constant and time-varying effects are shown in the upper and
lower part of the table respectively.
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Table 6.1: Patient demographics.

Characteristics Overall
Total 2232
Age, mean (SD), years 60.86 (18.74)
Gender (%)
Male 1203 (53.9)
Female 1029 (46.1)

Tumour size in cm mean (SD) 8.95 (5.85)
Tumor depth* (%)
Deep 1269 (56.9)
Superficial 551 (24.7)
Unknown 412 (18.5)

Histology (%)
Myxofibrosarcoma 432 (19.4)
MPNST 167 ( 7.5)
Synovial sarcoma 277 (12.4)
Sarcoma – NOS 108 ( 4.8)
Spindle cell sarcoma 492 (22.0)
MFH/UPS 604 (27.1)
Other 152 ( 6.8)

Margin (%)
R1-2 274 (12.3)
R0 1890 (84.7)
Unknown 68 (3.0)

Radiotherapy (%)
No radiotherapy 916 (41.0)
Neoadjuvant 265 (11.9)
Adjuvant 1004 (45.0)
Unknown 47 ( 2.1)

Chemotherapy (%)
No chemotherapy 1876 (84.1)
Neoadjuvant 98 ( 4.4)
Adjuvant 228 (10.2)
Unknown 30 ( 1.3)

Notation: N, number of patients; sd, standard deviation;
cm, centimeters; MPNST, malignant peripheral nerve sheath
tumor; sarcoma – NOS, (pleomorphic) soft tissue sarcomas
not-otherwise-specified; MFH/UPS, malignant fibrous histiocyt-
oma/undifferentiated pleomorphic sarcoma; Histology "Other",
angiosarcoma, leiomyosarcoma, liposarcoma, malignant rhabdoid
tumor, alveolar soft part sarcoma, epithelioid sarcoma, clear
cell sarcoma, rhabdomyosarcoma (adult form) and conventional
fibrosarcoma. *Depth: relative to the investing fascia.
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Figure 6.1: Number of patients at risk at each landmark time point tLM . A) Red, patients
with local recurrence; blue, patients without local recurrence. B) Red, patients with distant
metastases; blue, patients without distant metastases.

Table 6.2: Dynamic prediction model for overall survival: hazard ratio (HR) along with 95%
confidence interval (n = 2232).

HR 95% CI P-value
Covariates with time-constant ef-
fects
Age (ref: 60 years, per 10 years)
Age 1.444 1.381 - 1.510 <0.001
Age2 1.065 1.048 - 1.082 <0.001

Tumor size (ref: 0 cm, per 1 cm)
Size 1.120 1.072 - 1.169 <0.001
Size2 0.997 0.996 - 0.999 0.002

Tumor depth (superficial vs. deep) 0.784 0.654 - 0.940 0.020
Radiotherapy (RT)
No RT 1
Neoadjuvant 0.773 0.572 - 1.044 0.095
Adjuvant 0.903 0.763 - 1.068 0.238

Local recurrence (yes vs. no) 1.998 1.622 - 2.461 <0.001
Distant metastasis (yes vs. no) 7.572 6.501 - 8.818 <0.001
Covariates with time-varying ef-
fects
Prediction time (ref: time of surgery,
per year)
tp 0.431 0.330 - 0.562 <0.001
t2p 1.127 1.066 - 1.192 <0.001

Histology
Constant
Myxofibrosarcoma 1
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Table 6.2: (continued)

HR 95% CI P-value
MPNST 1.807 1.270 - 2.571 0.001
Synovial sarcoma 1.323 0.971 - 1.801 0.076
Sarcoma – NOS 1.181 0.784 - 1.781 0.426
Spindle cell sarcoma 0.819 0.638 - 1.051 0.117
MFH/UPS 1.000 0.789 - 1.269 0.974
Other 1.229 0.828 - 1.825 0.307

Linear time-varying effect
Myxofibrosarcoma 1
MPNST 0.916 0.692 - 1.212 0.539
Synovial sarcoma 1.368 1.084 - 1.727 0.008
Sarcoma – NOS 1.067 0.739 - 1.540 0.730
Spindle cell sarcoma 1.184 0.959 - 1.461 0.116
MFH/UPS 1.256 1.024 - 1.540 0.029
Other 1.050 0.742 - 1.486 0.781

Quadratic time-varying effect
Myxofibrosarcoma 1
MPNST 0.985 0.930 - 1.044 0.618
Synovial sarcoma 0.913 0.864 - 0.964 0.001
Sarcoma – NOS 0.983 0.913 - 1.058 0.648
Spindle cell sarcoma 0.990 0.947 - 1.035 0.660
MFH/UPS 0.968 0.928 - 1.010 0.137
Other 0.985 0.913 - 1.062 0.689

Margin
Constant
R0 vs. R1-2 0.764 0.606 - 0.964 0.024

Linear time-varying effect
R0 vs. R1-2 1.417 1.127 - 1.783 0.003

Quadratic time-varying effect
R0 vs. R1-2 0.947 0.902 - 0.993 0.026

Notation: HR, hazard ratio; CI, confidence interval; tp, prediction time
points; MPNST, malignant peripheral nerve sheet tumor; sarcoma – NOS,
(pleomorphic) soft tissue sarcomas not-otherwise-specified; MFH/UPS, ma-
lignant fibrous histiocytoma/undifferentiated pleomorphic sarcoma. Depth:
relative to the investing fascia.

Age, tumor size, and depth show a significant time-constant effect on 5-year DOS.
Age and tumor size are modelled by both a linear and quadratic term (age in steps
of 10 years, size in cm), due to significant nonlinearity. The HR corresponding to
a particular age and size consists of two components: their linear effect HRlin and
their quadratic effect HRquad. For the risk factor age the HR of a 70-year-old patient
compared to a 60-year-old patient (reference) is equal to

HRsteplin ×HRstep
2

quad =1.444× 1.065 = 1.538
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where ‘step’ in the computation represents the age difference between the two patients,
and one step corresponds to a 10-year increase.

The HR of an 80-year-old patient (20-year increase, corresponding to a step of 2)
compared to a 60-year-old one is equal to 1.4442× 1.0654 = 2.682.

Both LR and DM show a significant time-constant effect with HR equal to 1.998
(95%CI: 1.622-2.461) and 7.572 (95%CI: 6.501-8.818) respectively. The occurrence
of LR significantly decreases the 5-year DOS predictions (Figure 6.2). Figure 6.2
shows the probability of dying within five years for patients with different baseline
characteristics and states of disease progression, from different prediction time points
tp. In Figure 6.2A the probability of dying within five years is displayed for two
61-year old patients with 9 cm deep myxofibrosarcoma, R0 margin, no radiotherapy
treatment and no DM. The blue and red lines represent the probability of dying within
five years for patients with the previous characteristics in the absence and presence
of LR at prediction time point tp respectively. If still alive at one year after surgery,
the probability of dying within five years is 30% and 52% for the patient without
and with LR respectively. Figure 6.2B shows that patients with the same risk factors
as individuals in Figure 6.2A who developed DM before the prediction time point tp
have a much higher dynamic prediction of death within five years. Figure 6.2C and D
illustrate a very different prediction pattern for a patient with other characteristics.

Surgical margin and histology subtype show a significant time-varying effect. To
explain how the time component is incorporated in the model and affects a patient’s
risk, the HR at one year after surgery for a patient with an R0 margin compared to
a patient with an R1-2 margin is calculated by using the following formula

HR =[constant× (linear time-varying effect)tp × (quadratic time-varying effect)tp
2

]

=0.764× 1.417× 0.947 = 1.025

where tp = 1 and t2p = 1 (Table 6.3).

Table 6.3: Values of HR for 5-year dynamic overall survival for a patient operated with an
R0 margin at different prediction time points tp (reference: R1-2).

tp constant linear time-
varying
effect

quadratic
time-varying
effect

HR 95% CI P-value

0 0.76 1.4170 0.9470 0.764 0.606 - 0.964 0.024
1 0.76 1.4171 0.9471 1.025 0.828 - 1.269 0.821
2 0.76 1.4172 0.9474 1.234 0.943 - 1.614 0.128
3 0.76 1.4173 0.9479 1.332 0.965 - 1.838 0.085
4 0.76 1.4174 0.94716 1.289 0.859 - 1.934 0.232
5 0.76 1.4175 0.94725 1.119 0.628 - 1.992 0.730
tp prediction time point; HR, hazard ratio; CI, confidence interval.

The HR changes from 0.764 at time of surgery to 1.025 one year after surgery. At
a prediction time point of two years after surgery, the HR further increases to 1.234.
The change in HRs over time for margin is depicted in Figure 6.3. The figure shows
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Figure 6.2: 5-year probability of death estimates for patients with different characteristics
and at different states of disease progression. A and B: 61 years, tumor of 9 cm, deep
myxofibrosarcoma, treated with an R0 margin and no radiotherapy. (A) Without DM at time
of prediction (tp). (B) diagnosed with DM before time of prediction (tp). C and D: 45 years,
5 cm superficial synovial sarcoma, treated with an R0 margin, and adjuvant radiotherapy.
(C) Without DM at time of prediction (tp). (D) diagnosed with DM before time of prediction
(tp). Blue: without LR; red: with LR.

130



§6.3. Results

C
h
a
pter

6

0 1 2 3 4 5

0.
2

0.
5

1.
0

2.
0

5.
0

10
.0

Prediction time in years since surgery

H
az

ar
d 

ra
tio

R0

R1−2

Figure 6.3: Time-varying hazard ratio for surgical margin. Blue: R0 margin; red: R1-2
margin (reference). Dashed line: pointwise confidence interval for HR of R0 margin.

that an R0 margin right after surgery appears to have a protective effect on 5-year
DOS. However, the effect decreases with time.

The (time-varying) effect of histology subtype may be calculated analogously to
the margin example. The interpretation of its effect however, is more difficult since
all HRs are given relative to the chosen reference category myxofibrosarcoma.

Figure 6.4 displays the time-varying effect of histology subtype on two example
patients. The left panels (A, C, and E) display the 5-year probability of death for a
61 year old patient with a 9 cm deep tumor, treated with no radiotherapy and R0
margin. Panel A shows the probabilities in case this specific patient had no adverse
event at time of prediction. Panel C and E show the probabilities of death in case
the patient had LR or DM at time of prediction respectively. Different colored lines
correspond to different histology subtypes. Analogously, the left panels (B, D, and
F) show probabilities for a 45 year old patient with 5 cm superficial tumor, treated
with adjuvant radiotherapy and R0 margin.

Good model calibration was indicated by a heuristic shrinkage factor equal to
0.996. The discriminative ability of the model was measured with dynamic cross-
validated C-indices of 0.694, 0.777, 0.813, 0.810, 0.798, and 0.781 at 0-, 1-, 2-, 3-, 4-,
and 5-years after surgery respectively. The C-indices are quite high, implying a very
good discriminative ability of the model. The reason for this is the strong predictive
value that DM has for survival. A patient with DM will have a much worse prognosis
compared to a patient without DM.
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Figure 6.4: 5-year probability of death estimates for patients with different characteristics
and at different states of disease progression. A, C, and E: 61 years, 9 cm deep tumor, with
R0 margin and no radiotherapy. (A) Without LR or DM at time of prediction (tp). (C)
diagnosed with LR before time of prediction (tp). (E) diagnosed with DM before time of
prediction (tp). B, D, and F: 45 years, 5 cm superficial tumor, with R0 margin and adjuvant
radiotherapy. (B) Without LR or DM at time of prediction (tp). (D) diagnosed with LR
before time of prediction (tp). (F) diagnosed with DM before time of prediction (tp).
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§6.4 Discussion

The prediction model developed in this study is able to provide estimates for the
probability of surviving an additional five years from a prediction time point after
surgery (tp). It can be used from time of surgery up until five years post-surgery to
make updated predictions for patients with high-grade STS of the extremities treated
surgically with curative intent. This allows for optimization of evidence based shared
decision-making and may improve the personalization of sarcoma treatment. Inform-
ation about a patient’s LR and DM status is used in the model, since those factors
significantly influence a patient’s prognosis. Additionally, it allows for personalization
of the treatment options in progressive disease. Internal calibration using the heur-
istic shrinkage factor showed that the model was well calibrated and dynamic cross-
validated C-indices demonstrate its ability to discriminate between high- and low-risk
patients.

Additionally, this study investigated the effect of prognostic factors over time
and found a significant time-varying effect for surgical margin and histology subtype
on overall survival. Initially an R0 margin is associated with a better 5-year DOS
compared to an R1-2 margin, however, this effect changes over time. At later time
points during follow-up, no significant effect of margin on 5-year DOS could be found.
This result should be interpreted with caution since the majority of patients were
treated with (neo)adjuvant radiotherapy (see Table 6.1).

The strength of this research is that the data were collected from a very large
number of relatively homogeneous sarcoma patients world-wide and patients were
not selected (i.e. this is a ‘real world’ patient population). A limitation of this study
is that re-evaluations of tumor histology could not be performed due to practical
and logistical constraints. Additionally, when a patient has developed DM and/or is
receiving care in the palliative setting, the routine checks for LR are not always per-
formed and therefore underestimation of the total incidence of LR might be possible.

To the best of the authors’ knowledge, this is the first dynamic prediction model
for patients with high-grade extremity STS, which allows for prediction of 5-year DOS
during follow-up. A similar model has been used to make dynamic predictions for
breast cancer patients [62]. This model is an essential addition to current models,
since it provides updated predictions after surgery (instead of at the time of surgery
alone).

The results of this study will be made freely available through the updated PER-
sonalized SARcoma Care (PERSARC) mobile application. With the app it will be
possible to make personalized dynamic predictions during follow-up, taking specific
patient, tumor, and treatment characteristics into account [20].
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CHAPTER 7
External Validation and Adaptation
of a Dynamic Prediction Model for

Patients with High-Grade Extremity
Soft Tissue Sarcoma

This chapter is joined work with Michiel van de Sande, Veroniek van Praag, the
PERSARC studygroup, and Marta Fiocco.

Abstract

Background: A dynamic prediction model for patients with soft tissue sarcoma of
the extremities has been previously developed and published to predict updated over-
all survival probabilities from time of surgery and throughout follow-up. This study
updates and externally validates the dynamic model to allow for further implement-
ation in clinical practice.
Methods: Data from 3826 patients with high-grade extremity soft tissue sarcoma,
treated surgically with curative intent were used to update the dynamic Personalised
Sarcoma Care (PERSARC) model. More patients were added to the original model
development cohort and grade was included in the model. The model was externally
validated with data from 1111 patients treated at a single tertiary sarcoma center.
Results: Calibration plots, to compare observed and predicted survival for the ex-
ternal data set show good calibration. Dynamic C-indices suggest that the model can
adequately discriminate between high and low risk patients. Values for the dynamic
C-indices at 0-, 1-, 2-, 3-, 4-, and 5-years after surgery were equal to 0.697, 0.790,
0.822, 0.818, 0.812, and 0.827 respectively.
Conclusion: Results from the external validation show that the dynamic PERSARC
model is reliable and robust in predicting the probability of surviving an additional
5 years from a specific prediction time point during treatment and follow-up. The
model combines patient characteristics, treatment-specific and time-dependent vari-
ables such as local recurrence and distant metastasis to provide reliable and accurate
predictions of overall survival during follow-up and is available through the PERSARC
App.
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§7.1 Introduction

Extremity soft tissue sarcomas (eSTS) not only represent a wide variety of histological
subtypes, sizes and grades but also affect patients of all age groups. This reflects
the clear and substantial differences in their clinical course and prognosis [61]. As
treatment protocols differ for specific patients between institutes and countries, several
prognostic prediction models for overall survival (OS) and local recurrence have been
developed [103, 35, 37, 20, 36, 114, 115]. However, these models are designed to
estimate prognosis at the time of treatment or diagnosis and do not take new events
that occur during treatment and follow-up into account. In addition, they do not
account for possible time-varying effects of baseline risk factors.

A dynamic prediction model for patients with eSTS was therefore developed, the
dynamic Personalised Sarcoma Care (PERSARC) model, to predict the probability
of surviving an additional 5 years from a prediction time point during follow-up [19].
Before the introduction of the dynamic PERSARC model, prediction models for eSTS
patients were limited to predictions from baseline, e. g. time of surgery or diagnosis
[103, 35, 37, 20, 36, 114, 115]. The dynamic PESARC model uses updated patient
information such as occurrence of local recurrence (LR) and distant metastasis (DM)
which become available during follow-up, to update predictions over time. Addi-
tionally, it accounts for the time-varying effects of histology subtype and surgical
margin on survival. The dynamic model has been internally validated through the
use of cross-validation, but so far, no external validation has been performed for
any dynamic model in sarcoma prediction. As the original publication on dynamic
PERSARC did not account for grade, the model is updated to meet current clinical
demands and improve possibilities for implementation.

The aim of this study was to update and improve the existing dynamic prediction
model as well as to validate it using a large external data set. The model was adapted
in two ways: (1) new patients were added to the model development cohort, and (2)
the grade of disease was included in the model.

§7.2 Methods

§7.2.1 Study design
In this study the original dynamic prediction model developed by Rueten-Budde et
al. (2018) [19] was updated and externally validated, using a retrospectively collected
cohort of patients with eSTS. The model development data was augmented for the
update and contained data from Leiden University Medical Center (Leiden, the Neth-
erlands), Royal Orthopaedic Hospital (Birmingham and Stanmore, UK), Netherlands
Cancer Institute (Amsterdam, the Netherlands), Mount Sinai Hospital (Toronto,
Canada), the Norwegian Radium Hospital (Oslo, Norway), Aarhus University Hos-
pital (Aarhus, Denmark), Skåne University Hospital (Lund, Sweden), Medical Univer-
sity Graz (Graz, Austria), Royal Marsden Hospital (London, UK), Daniel den Hoed
(Rotterdam, the Netherlands), Radboud University Medical Center (Nijmegen, the

137



7. External Validation and Adaptation of a Dynamic Prediction Model for Patients
with High-Grade Extremity Soft Tissue Sarcoma

C
h
a
pt

er
7

Netherlands), University Medical Center Groningen (Groningen, the Netherlands),
Haukeland University Hospital (Bergen, Norway), Helios Klinikum Berlin-Buch (Ber-
lin, Germany), MedUni Vienna (Vienna, Austria), Vienna General Hospital (Vienna,
Austria), and the EORTC trial 62931, a randomized controlled trial which studied
the effect of intensive adjuvant chemotherapy on several outcome measures.

External data were provided by Istituto Nazionale dei Tumori (Milan, Italy). For
both, the model development and external cohort data were collected from centers
between January 1st, 2000 and December 31st, 2014. Data from the EORTC trial
62931, which is part of the development cohort, where collected between February
1995, and December 2003.

The outcome of interest was overall survival, defined as time from surgery to death
due to any cause or last recorded follow-up. The dynamic model predicts 5-year dy-
namic overall survival (DOS) from a particular prediction time point during follow-up.
For example, at one-year post-surgery the model predicts the probability of surviv-
ing an additional five years (therefore until 6 years post-surgery). To determine the
predictive performance of the model, calibration and discrimination were evaluated
with the external data set. Ethical approval for this study was waived by the institu-
tional review board CME (G16.022), because clinical data was collected from medical
records and were pseudo-anonymized.

§7.2.2 Patients and Variables
Selection and exclusion criteria were identical for the model development cohort and
the external cohort [19]. All patients were selected from the sarcoma registry based
on histological diagnosis from each hospital. Histologically, tumors were classified ac-
cording to the WHO’s criteria [61] and patients were grouped into eight categories. In-
cluded eSTS subtypes included high-grade (FNCLCC grade II and III [145]) angiosar-
coma, malignant peripheral nerve sheath tumor (MPNST), synovial sarcoma, spindle
cell sarcoma, myxofibrosarcoma, liposarcoma, leiomyosarcoma, malignant fibrous his-
tiocytoma/undifferentiated pleomorphic sarcoma (MFH/UPS), (pleomorphic) soft tis-
sue sarcomas not-otherwise-specified (NOS), epithelioid sarcoma, clear cell sarcoma,
rhabdomyosarcoma (adult form), conventional fibrosarcoma, giant cell sarcoma, ma-
lignant granular cell tumor, unclassified soft tissue sarcoma and undifferentiated sar-
coma.

Patients were excluded if they were initially treated without curative intent, presen-
ted with LR or DM, had Kaposi’s or rhabdomyosarcoma (pediatric form), had tumor
in their abdomen, thorax, head or neck, or received isolated limp perfusion as (neo-)
adjuvant treatment.

Three types of risk factors were included into the dynamic model. Patient specific
predictors assessed at baseline were: age (years), tumor size by the largest diameter
measured at pathological examination (centimeters), tumor depth in relation to in-
vesting fascia (deep/superficial), grade (II/III), and histological subtype according to
the WHO classification [61]. Treatment related predictors measured at baseline were:
radiotherapy ((neo)adjuvant/no radiotherapy), surgical margin categorized according
to the categorical R-system, ‘R0’ for negative margin and ‘R1-2’ for a positive margin
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with tumor cells in the inked surface of the resection margin [76]. Risk factors meas-
ured during follow-up were: local recurrence defined as the presence of pathological
and/or radiologically confirmed tumor at the site where it was originally detected,
more than two months after primary surgery and distant metastasis defined as radi-
ological evidence of systemic spread of tumor distant from the primary tumor site.

The original dynamic prediction model was based on 2232 patients [19]. For
the revised model additional data was collected resulting in 3826 patients for the
development of the updated dynamic model. For external validation 1111 patients
were considered.

§7.2.3 Statistical analysis

The dynamic prediction model developed in Rueten-Budde et al. (2018) [19] was
revised by adding more patients and the variable grade to the model. The prediction
model was based on landmark methodology. Technical details about landmark models
for dynamic prediction are provided in van Houwelingen and Putter (2012) [149].
Additionally, the association between chemotherapy and survival was investigated.

The predictive ability of the updated model was assessed in terms of calibration
and discrimination using an external data set. Model discrimination refers to how
well the model is able to discriminate between high and low risk patients; dynamic
C-indices [149] were computed to evaluate the performance of the model. A C-index
equal to one corresponds to perfect discrimination and a C-index of 0.5 means that the
model predicts just as well as flipping a coin [9]. Model calibration on the external
data refers to how well predicted and observed survival probabilities have similar
values and was assessed with yearly calibration plots.

Calibration plots visualize calibration at a particular prediction time point (e. g.
1 year post-surgery). Patients at risk at a specific time were divided into 8 prognostic
groups based on their predicted survival. This means that the dynamic model was
used to predict 5-year DOS for patients in the external data set and based on these
probabilities, patients were grouped into 8 different risk groups. Five years after the
prediction time point (e. g. 6 years post-surgery) the observed survival probabilities
of the risk groups were estimated by applying Kaplan-Meier’s method. In the calib-
ration plot the observed survival is plotted against the predicted survival, where each
point represents a risk group. If the points lay on the diagonal (x=y), predicted and
observed survival are the same, implying that the predictions for the risk groups were
perfect. The arbitrary choice for the number of risk groups was made based on the
number of patients at risk over time; initially 1111 patients were at risk, however 5
years after surgery only 529 patients remain in the risk set. To have a reasonable
number of patients per risk group even at 5 years post-surgery, 8 risk groups were
chosen.

The items on the checklist of the Transparent Reporting of a multivariable predic-
tion model for Individual Prognosis Or Diagnosis (TRIPOD) were considered during
model development [42]. Statistical analyses were performed in the R-software envir-
onment [122].
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Figure 7.1: Kaplan-Meier curves for development and external cohort.

§7.3 Results

The model was developed on a cohort of 3826 patients with median follow-up equal to
6.00 years (95% confidence interval (CI): 5.86-6.18), assessed with the reverse Kaplan-
Meier method [133]. The external validation cohort consisted of 1111 patients with
a median follow-up equal to 6.89 years (95% CI: 6.47-7.61). Table 7.1 provides a
summary of the patient characteristics for the cohort used to develop the dynamic
model and the external cohort.

Figure 7.1 shows Kaplan-Meier survival curves for both development and external
cohort.

An overview of the number of patients at risk in the development and external
data set is given in Figure 7.2 together with information about the disease status. In
the development cohort in total 1602 patients died, 241 patients developed LR, 949
DM, and 385 developed both. In the external cohort 306 patients died, 70 had LR,
279 DM and 77 developed both.

Table 7.2 shows hazard ratios (HR) together with 95% CI for the risk factors
included in the revised dynamic model. Age and tumor size are both modelled by
a linear and a quadratic term (age in steps of 10 years and size in steps of 1 cm).
This means that the HRs consist of two components: the linear (HRlin) and the
quadratic effect (HRquad). For example, for the risk factor age the HR of an 80-year
old compared to a 60-year old patient (reference) is equal to
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Table 7.1: Patient demographics for the two cohorts used to develop and to validate the
model.

Characteristics Development External
Total 3826 1111
Age mean (sd) 59.40 (18.10) 55.46 (17.03)
Gender (%)
Female 1680 (43.9) 504 (45.4)
Male 2011 (52.6) 607 (54.6)
Unknown 135 ( 3.5) 0 ( 0.0)

Tumor size in cm mean (sd) 9.04 (5.77) 8.33 (5.66)
Margin (%)
R1-2 515 (13.5) 142 (12.8)
R0 3028 (79.1) 969 (87.2)
Unknown 283 ( 7.4) 0 ( 0.0)

Histology (%)
Myxofibrosarcoma 689 (18.0) 197 (17.7)
MPNST 261 ( 6.8) 60 ( 5.4)
Synovial sarcoma 411 (10.7) 122 (11.0)
MFH/UPS and NOS 1204 (31.5) 202 (18.2)
Spindle cell 191 ( 5.0) 0 ( 0.0)
LMS 368 ( 9.6) 150 (13.5)
LPS 388 (10.1) 167 (15.0)
Other 314 ( 8.2) 213 (19.2)

Tumor depth (%)
deep 2493 (65.2) 802 (72.2)
superficial 912 (23.8) 309 (27.8)
Unknown 421 (11.0) 0 ( 0.0)

Grade
2 639 (16.7) 432 (38.9)
3 3111 (81.3) 679 (61.1)
Unknown 76 ( 2.0) 0 ( 0.0)

Radiotherapy (%)
No radiotherapy 1331 (34.8) 474 (42.7)
Neoadjuvant 517 (13.5) 138 (12.4)
Adjuvant 1878 (49.1) 499 (44.9)
Unknown 100 ( 2.6) 0 ( 0.0)

Chemotherapy (%)
No 3189 (83.4) 739 (66.5)
Yes 470 (12.3) 372 (33.5)
Unknown 167 ( 4.4) 0 ( 0.0)

Notation: sd, standard deviation; cm, centimeters; MPNST, malignant
peripheral nerve sheath tumor; sarcoma - NOS, (pleomorphic) soft tis-
sue sarcomas not-otherwise-specified; MFH/UPS, malignant fibrous histio-
cytoma/undifferentiated pleomorphic sarcoma; LMS, leiomyosarcoma; LPS,
liposarcoma ; Histology ‘Other’, angiosarcoma, epithelioid sarcoma, clear cell
sarcoma, rhabdomyosarcoma (adult form), giant cell sarcoma, malignant gran-
ular cell tumor, conventional fibrosarcoma, unclassified soft tissue sarcoma and
undifferentiated sarcoma. Tumor depth: relative to the investing fascia.
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Figure 7.2: Number of patients at risk in development and external data set respectively.
Red: patients with local recurrence and distant metastasis; pink: patients with distant meta-
stasis; green: patients with local recurrence; blue: patients without local recurrence or distant
metastasis.

HRsteplin ×HRstep
2

quad =1.3662 × 1.0524 = 2.285

where ‘step’ corresponds to the age difference between the two patients in units of 10
years.

Surgical margin and histology subtype are modelled as time-varying variables,
which means that the effect on the outcome changes over time. For example, the HR
one-year postop for a patient with R0 margin compared to a R1-2 margin is equal to

HR =[constant× (linear time-varying effect)tp × (quadratic time-varying effect)tp
2

]

=0.827× 1.334× 0.954 = 1.052

where tp = 1 and t2p = 1. The HR changes from 0.827 at time of surgery to 1.052 one
year later. The model shows that the effect of surgical margin changes from being
protective at surgery time to having no effect on survival after one year.
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Table 7.2: Dynamic prediction model for overall survival: hazard ratio (HR) along with 95%
confidence interval (n = 3826).

HR 95% CI P-value
Covariates with time-constant ef-
fects
Age (ref: 60 years, per 10 years)
Age 1.366 1.304 - 1.431 <0.001
Age2 1.052 1.028 - 1.076 <0.001

Tumor size (ref: 0 cm, per 1 cm)
Size 1.158 1.116 - 1.202 <0.001
Size2 0.996 0.995 - 0.998 <0.001

Tumor depth (superficial vs. deep) 0.790 0.673 - 0.927 0.004
Grade (3 vs. 2) 1.425 1.174 - 1.730 <0.001
Radiotherapy (RT)
No RT 1
Neoadjuvant 0.719 0.583 - 0.886 0.002
Adjuvant 0.818 0.716 - 0.936 0.003

Local recurrence (yes vs. no) 2.232 1.892 - 2.634 <0.001
Distant metastasis (yes vs. no) 6.446 5.662 - 7.338 <0.001
Covariates with time-varying ef-
fects
Prediction time (ref: time of surgery,
per year)
tp 0.507 0.415 - 0.621 <0.001
t2p 1.095 1.050 - 1.141 <0.001

Histology
Constant
Myxofibrosarcoma 1
MPNST 2.132 1.633 - 2.783 <0.001
Synovial sarcoma 1.458 1.145 - 1.856 0.002
MFH/UPS and NOS 1.207 1.004 - 1.452 0.045
Spindle cell 1.396 1.054 - 1.848 0.020
LMS 1.065 0.819 - 1.386 0.638
LPS 0.915 0.706 - 1.185 0.501
Other 1.419 1.095 - 1.841 0.008

Linear time-varying effect
Myxofibrosarcoma 1
MPNST 0.845 0.669 - 1.068 0.159
Synovial sarcoma 1.261 1.037 - 1.534 0.020
MFH/UPS and NOS 1.002 0.851 - 1.179 0.981
Spindle cell 1.058 0.824 - 1.357 0.660
LMS 1.166 0.941 - 1.444 0.160
LPS 1.010 0.812 - 1.256 0.929
Other 0.863 0.663 - 1.124 0.276

Quadratic time-varying effect
Myxofibrosarcoma 1
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Table 7.2: (continued)

HR 95% CI P-value
MPNST 1.000 0.947 - 1.056 1.000
Synovial sarcoma 0.939 0.897 - 0.983 0.007
MFH/UPS and NOS 1.009 0.976 - 1.044 0.585
Spindle cell 0.972 0.906 - 1.043 0.434
LMS 0.989 0.946 - 1.034 0.636
LPS 1.011 0.967 - 1.058 0.622
Other 1.019 0.963 - 1.078 0.510

Margin
Constant
R0 vs. R1-2 0.827 0.698 - 0.981 0.029

Linear time-varying effect
R0 vs. R1-2 1.334 1.114 - 1.597 0.002

Quadratic time-varying effect
R0 vs. R1-2 0.954 0.918 - 0.990 0.014

Notation: HR, hazard ratio; CI, confidence interval; tp, prediction time
points; MPNST, malignant peripheral nerve sheet tumor; sarcoma - NOS,
(pleomorphic) soft tissue sarcomas not-otherwise-specified; MFH/UPS, ma-
lignant fibrous histiocytoma/undifferentiated pleomorphic sarcoma; LMS,
leiomyosarcoma; LPS, liposarcoma; Histology ‘Other’, angiosarcoma, epi-
thelioid sarcoma, clear cell sarcoma, rhabdomyosarcoma (adult form), giant
cell sarcoma, malignant granular cell tumor, conventional fibrosarcoma, un-
classified soft tissue sarcoma and undifferentiated sarcoma. Tumor depth:
relative to the investing fascia.

In a preliminary analysis, the association of risk factors to the outcome chemother-
apy treatment (yes (neoadjuvant or adjuvant) vs. no) was evaluated. Most baseline
risk factor showed a significant association (age, tumor size, depth, histology, radio-
therapy, grade). Country of treatment was significantly associated to chemotherapy
treatment. This means that, correcting for the other risk factors (age, tumor size,
depth, margin, histology, radiotherapy, grade) in the model, countries had different
approaches in giving chemotherapy treatment. The association of chemotherapy to
survival was investigated by including this risk factor in the dynamic model and no
significant effect was found (chemotherapy yes vs. no; HR = 1.131; 95% CI: 0.946-
1.352; p value = 0.178). Chemotherapy was therefore not included in the updated
dynamic prediction model.

The quality of the model can be assessed from the calibration plots (Figure 7.3A-
F). Each point in the plot represents a risk group; the figure shows they are relatively
close to the diagonal line implying that predictions are accurate. Figure 7.3 also
suggests that the model generally slightly underestimated survival.

The discriminative ability of the model was assessed with dynamic C-indices, with
values equal to 0.697, 0.790, 0.822, 0.818, 0.812, and 0.827 at 0-, 1-, 2-, 3-, 4-, and
5-years after surgery respectively. High values for the C-indices are due to the strong
predictive value of DM on survival. A patient who experience DM has much worse
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Figure 7.3: Calibration plots for predictions of 5-year DOS from 0-, 1-, 2-, 3-, 4- and 5-years
post-surgery.
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prognosis compared to a patient without DM.
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§7.4 Discussion

The previously developed dynamic prediction model has been updated and success-
fully externally validated. The sample size of the model development cohort was
increased from 2232 to 3826 patients and the risk factor grade was added to the up-
dated model [19]. The model can estimate the probability of surviving an additional
5 years from a prediction time point during follow-up. It can be used from time of
surgery up until 5 years post-surgery for patients with high-grade eSTS treated with
curative intent.

Even though calibration plots showed that predicted survival was close to ob-
served survival the model generally underestimated survival in the external cohort.
Kaplan-Meier curves estimated for the development and external cohort indicate that
the external cohort had better survival. There are several possible reasons for the
underestimation of survival: the effect of risk factors might be different in the devel-
opment cohort compared to the external cohort, or patients might differ in terms of an
unobserved covariate which might affect survival and cannot be taken into account.

The association of chemotherapy with survival is controversial, and its indication
greatly depends on other risk factors (indication bias). When added to the dynamic
model, chemotherapy showed no significant association with survival.

The updated dynamic prediction models will be implemented in the updated
PERSARC application; available for free at the Apple Store and Google Play Store.
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CHAPTER 8
Individual risk evaluation for local

recurrence and distant metastasis in
Ewing sarcoma: a multistate model

This chapter has been published in Pediatric Blood & Cancer 66 (2019) Article e27943
as A.J. Rueten-Budde, et al., "Individual risk evaluation for local recurrence and
distant metastasis in Ewing sarcoma: a multistate model" [14].

Abstract

Background: We investigated the effects of surgical margins, histological response,
and radiotherapy on local recurrence (LR), distant metastasis (DM), and survival in
Ewing sarcoma.
Procedure: Disease evolution was retrospectively studied in 982 patients with Ewing
sarcoma undergoing surgery after chemotherapy using a multistate model with initial
state surgery, intermediate states LR, pulmonary metastasis (DMpulm), other DM ±
LR (DMother), and final state death. Effect of risk factors was estimated using Cox
proportional hazard models.
Results: The median follow-up was 7.6 years (95% CI, 7.2-8.0). Risk factors for
LR are pelvic location, HR 2.04 (1.10-3.80), marginal/intralesional resection, HR
2.28 (1.25-4.16), and radiotherapy, HR 0.52 (0.28-0.95); for DMpulm the risk factors
are <90% necrosis, HR 2.13 (1.13-4.00), and previous pulmonary metastasis, HR
4.90 (2.28-8.52); for DMother are 90% to 99% necrosis, HR 1.56 (1.09-2.23), <90%
necrosis, HR 2.66 (1.87-3.79), previous bone/other metastasis, HR 3.08 (2.03-4.70);
and risk factors for death without LR/DM are pulmonary metastasis, HR 8.08 (4.01-
16.29), bone/other metastasis, HR 10.23 (4.90-21.36), and <90% necrosis, HR 6.35
(3.18-12.69). Early LR (0-24 months) negatively influences survival, HR 3.79 (1.34-
10.76). Once DMpulm/DMother arise only previous bone/other metastasis remain
prognostic for death, HR 1.74 (1.10-2.75).
Conclusion: Disease extent and histological response are risk factors for progression
to DM or death. Tumor site and surgical margins are risk factors for LR. If disease
progression occurs, previous risk factors lose their relevance. In case of isolated LR,
time to recurrence is important for decision-making. Radiotherapy seems protective
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for LR especially in pelvic/axial. Low percentages of LR in extremity tumors and
associated toxicity question the need for radiotherapy in extremity Ewing sarcoma.
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§8.1 Introduction

Ewing sarcoma is an aggressive primary bone tumor, predominantly affecting children
and young adults.[61] At the time of diagnosis, 20% to 25% of the patients present
with pulmonary (70-80%) and/or osseous (40-50%) metastases. A multimodal ap-
proach to treatment drastically improved survival of patients with localized Ewing
sarcoma, with a 10-year overall survival (OS) of 55% to 65% nowadays. However,
local recurrence, distant metastasis, and poor survival in patients with metastatic
disease with a 5-year OS of 20% to 35% still remain of great concern.[95, 68] One of
the strongest risk factors is the presence of metastasis at diagnosis[96, 52] and site
of metastatic lesions; patients with extrapulmonary metastasis do significantly worse
than patients with pulmonary metastasis alone.[95, 43] Other well-known risk factors
are the primary tumor site[11, 30, 84] and tumor volume and/or size.[43, 25, 67, 63]
Principles of treatment consist of neoadjuvant chemotherapy followed by local treat-
ment of the primary tumor, either by surgery, radiotherapy, or both, and adjuvant
chemotherapy. The histological response, assessed after surgery, is a strong addi-
tional prognostic factor for OS.[11, 25, 67] The effect of surgical margins on survival
is controversial. The risk of local relapse is significantly lower after wide resection
compared with marginal or intralesional resections.[113, 26] How the occurrence of
a local recurrence may affect OS is not yet clearly established.[84, 22] If surgery
with or without radiotherapy is superior compared with radiotherapy only in order
to maximize local control alone is also under debate. Existing evidence is based on
retrospective, nonrandomized trials.[134, 136] Several studies show advantage of post-
operative radiotherapy (PORT) for patients with marginal or intralesional resections
in terms of improved local control and event-free survival.[25, 63, 113, 134, 160] Pos-
sible associations between PORT and overall survival, and between local recurrence
and OS, are not yet clearly established. The main problem in current studies on pro-
gnostic factors for Ewing sarcoma is that they are hampered by the choice of outcome
variable. In general, overall survival, local recurrence-free survival, and disease-free
survival are reported. Multiple analyses for these different endpoints are usually
utilized; however, the relationship between those different endpoints cannot be in-
vestigated by using separate models. Multistate models can overcome these problems
since the evolution of the disease and the occurrence of intermediate events, such as
local recurrence and distant metastasis, which occur after surgery, are incorporated
in the model, which provides useful insights into their relation with the considered
endpoint, usually death.[12, 119, 21]

This study aims to investigate the effect of surgical margins, histological response,
and radiotherapy, on local recurrence (LR), distant metastasis (DM), and OS in a large
cohort of patients with Ewing sarcoma treated according to the EURO-E.W.I.N.G
99 protocol (EUROpean Ewing tumor Working Initiative of National Groups-Ewing
Tumor Studies).
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§8.2 Methods

This retrospective study was reviewed and approved by the institutional review board
of the Leiden University Medical Center (Leiden, the Netherlands), and a waiver for
informed consent was granted. A retrospective analysis of patients from the GPOH
registry (Gesellschaft für Pädiatrische Onkologie und Hämatologie) treated in or ac-
cording to the EURO-E.W.I.N.G 99 (EE99) protocol[8] was performed. All patients
were treated between 1999 and 2009, and followed up until the end of 2017. All pa-
tients were treated according to the protocol with the aim to administer six cycles
of VIDE (vincristine, ifosfamide, doxorubicin, etoposide) induction chemotherapy fol-
lowed by local treatment of the primary tumor. The choice of local treatment, sur-
gery with or without radiotherapy or definitive radiotherapy, was directed by specific
guidelines in the protocol; however, the choice of the local multidisciplinary team
prevailed. According to the EE99, protocol surgery was favored whenever feasible;
only in case of an inoperable lesion that cannot be completely resected or a tumor
in a critical site where complete surgery would cause unacceptable morbidity, defin-
itive radiotherapy is indicated. Preoperative radiotherapy was indicated in case of
clinical progression under chemotherapy or anticipated marginal or intralesional re-
spectability. PORT was indicated in intralesional or marginal surgery and advised in
cases with a poor histological response (<90% necrosis) regardless of surgical mar-
gins. Advised radiotherapy doses were 44.8-54.4 Gy, with a boost to a maximum
of 64 Gy using a shrinking field technique. After local treatment, patients received
maintenance chemotherapy. Only patients who underwent surgery (with or without
radiotherapy) of the primary tumor after induction chemotherapy were eligible for
inclusion in this study. A total of 982 patients, 470 study patients and 512 registry
patients (who were treated according to the protocol but not randomized), were found
to be eligible for inclusion in this study.

§8.2.1 Measures

The following data were extracted from the GPOH registry: age (0-10 years; 11-18
years; >18 years), gender, disease extent (localized, pulmonary metastasis only, other
metastasis), tumor volume (<200 mL/≥ 200 mL), tumor location (extremity/axial
nonpelvic/pelvic), PORT (yes/no), surgical margin (wide/marginal/intralesional),
histological response (<90%/90-99%/100% necrosis), and follow-up data on LR, dis-
tant metastasis pulmonary (DMpulm), distant metastasis extrapulmonary with or
without pulmonary metastasis (DMother). Histological response and resection mar-
gins were assessed on the surgical specimen by experienced local pathologists. Local
recurrence was defined as local regional recurrence after initial complete response.
Distant metastasis was defined as new metastatic disease or recurrence of metastatic
disease after initial complete response.
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Figure 8.1: Multistate model for Ewing sarcoma

§8.2.2 Statistical analysis

OS was measured from the date of surgery, until the last day of follow-up, or date of
death and evaluated using Kaplan-Meier estimates. To model disease progression, the
multistate model illustrated in Figure 8.1 was estimated. The following five states
are considered: alive after surgery without adverse events (state 1, surgery); alive
with LR (state 2, LR); alive with pulmonary DM (state 3, DMpulm); alive with other
DM (state 4, DMother); death (state 5). The effect of risk factors on each specific
transition was estimated by using a Cox proportional hazard regression model; hazard
ratios (HRs) along with their 95% confidence intervals (95% CI) were estimated.

§8.2.3 Missing data

For 776 (79%) of the 982 patients, information on all the covariates of interest was
complete. Missing data were observed for the variable histological response (19%) and
surgical margins (5%). In order to make full use of the available data, missing values
were imputed using multiple imputation. Five complete data sets were generated.
The multistate model was estimated on each of the imputed data sets, and the results
were then combined using the Rubin rule.[126] Multiple imputation is a well-known
technique used to reconstruct data when there is a small percentage of missing data.
Another common approach is to drop cases with missing values and only analyze
complete cases; however, this reduces the number of patients and therefore the power
of the statistical tests and may even lead to biased results in some scenarios.[138]

All analyses were performed using R version 3.5.1.[122] The R-package mstate[49]
was used to estimate the multistate model and to compute the occupation probabil-
ities. The R-package Amelia II was used to impute the missing data.[82]

153



8. Individual risk evaluation for local recurrence and distant metastasis in Ewing
sarcoma: a multistate model

C
h
a
pt

er
8

§8.3 Results

Table 8.1 summarizes patient and tumor characteristics and treatment for the 982
included patients, 470 study and 512 registry patients, at the time of surgery. The
median follow-up, estimated with reversed Kaplan-Meier analysis, was 7.6 years (95%
CI, 7.2-8.0 years). The 5-year OS was 74% (71-77%) for localized disease, 56% (47-
55%) for pulmonary metastasis, and 43% (33-53%) for extrapulmonary metastasis.
For patients who only had surgery as local treatment, 5-year OS was 75% (71-79%)
for localized disease, 52% (39-65%) for pulmonary metastasis, and 41% (28-54%)
for extrapulmonary metastasis. For patients who had surgery with radiotherapy,
the 5-year OS was 74% (69-79%) for localized disease, 59% (47-71%) for pulmonary
metastasis only, and 48% (31-65%) for extrapulmonary metastasis. In the group of
patients treated with surgery and radiotherapy, there were more pelvic tumors (21%
vs 15% in the surgery group), more marginal and intralesional surgical margins (39%
vs 21% in the surgery group), and fewer patients with 100% tumor necrosis (33% vs
52% in the surgery group). The other patient and tumor characteristics were similar
between both groups; see also Appendix 8.A.

In total, 53 patients of 982 (5%) developed isolated LR, 8% (14 of 169) of pelvic
tumors, 8% (30 of 388) of nonpelvic axial tumors, and 2% (9 of 425) of extremity
tumors. The percentage of LR was similar for patients treated with surgery and sur-
gery with radiotherapy, 6% versus 5%, respectively. Seventy-six (7%) of the patients
moved from surgery to DMpulm, and 28 (of 128) patients with isolated pulmonary
metastasis at diagnosis developed new pulmonary metastasis during follow-up. The
percentage of patients who developed new pulmonary metastasis was similar for pa-
tients treated with surgery and surgery with radiotherapy, 7% versus 8%, respectively.
Two hundred six (21%) of the patients moved from surgery to DMother, and 39% (33
of 84) patients with previous bone/other metastasis and 21% (27 of 128) of patients
with pulmonary metastasis only developed new extrapulmonary metastasis during
follow-up. The percentage of patients who developed new extrapulmonary metastasis
was similar for patients treated with surgery and surgery with radiotherapy, 20%
versus 22%, respectively. Table 8.2 provides more details of the patient and tumor
characteristics of patients who developed local recurrence, pulmonary metastasis, and
other/bone metastasis with or without local recurrence with respect to the local treat-
ment modality used. Sixty-five (7%) of the patients died without the occurrence of
LR or DM. Sixty percent (39/65) of these patients had metastatic disease at dia-
gnosis and died of progressive disease. Nine percent (6/65) died of therapy-related
complications, and 15% (10/65) due to a secondary malignancy. For the remaining
10 patients, the cause of death was unknown. In total, 339 patients (35%) died.

HRs for each risk factor along with their 95% CI for each transition are reported in
Table 8.3. The main prognostic factors for moving from surgery to LR are primary tu-
mors located in the pelvis (HR 2.04; 95% CI, 1.10-3.80) and marginal or intralesional
resection margins (HR 2.28; 95% CI, 1.25-4.16). The administration of radiotherapy
seems protective for LR for all tumor sites combined (HR 0.52; 95% CI, 0.28-0.95).
Radiotherapy was not randomized in this study, but was recommended, in the EE99
protocol, in case of intralesional or marginal resection and in case of poor histological
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Table 8.1: Patient demographics and treatment characteristics after surgery for the 982 in-
cluded patients

Study Registry
Characteristic n (%) n (%) n (%)
Total 982 470 512
Gender
Male 590 (60) 280 (60) 310 (60)
Female 392 (40) 190 (40) 202 (40)

Age
0-10 years 252 (26) 117 (25) 135 (26)
11-18 years 452 (46) 225 (48) 227 (44)
>18 years 278 (28) 128 (27) 150 (30)

Primary tumor localization
Pelvic 169 (17) 75 (16) 94 (18)
Non-pelvic 813 (83) 395 (84) 418 (82)
Extremity 425 (43) 224 (48) 201 (40)
Axial 388 (40) 171 (36) 217 (42)

Volume at diagnosis
<200 ml 577 (59) 311 (66) 266 (52)
≥200 ml 405 (41) 159 (34) 246 (48)

Disease extent at diagnosis
Localized 770 (78) 417 (89) 353 (69)
Pulmonary metastasis 128 (13) 53 (11) 75 (15)
Extrapulmonary metastasis 84 (9) 0 (0) 84 (16)

Surgical margin
Wide 717 (73) 352 (75) 365 (71)
Marginal 161 (16) 74 (16) 87 (17)
Intralesional 104 (11) 44 (9) 60 (12)

Histological response
100% 426 (43) 225 (48) 202 (39)
90-99% 284 (29) 151 (32) 133 (26)
<90% 271 (28) 94 (20) 177 (35)

Post-operative radiotherapy
No 550 (56) 284 (60) 266 (52)
Yes 432 (44) 186 (40) 246 (48)
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Table 8.2: Patient, tumor, and treatment characteristics of patients who developed local
recurrence, pulmonary metastasis, and other/bone metastasis with or without local recurrence

Surgery Surgery +
radiotherapy

Characteristic Total, n (%) (n = 550) (n = 432)
Local recurrence 53/982 (5) 33 (6) 20 (5)
Location primary tumor
Extremity 9/425 (2) 7 2
Non-pelvic axial 30/388 (8) 16 14
Pelvic 14/169 (8) 10 2

Surgical margin
Wide 30/717 (4) 23 7
Marginal 12/161 (7) 4 8
Intralesional 11/104 (11) 6 5

Histological response
100% 16/426 (4) 13 3
90-99% 19/284 (7) 11 8
<90% 18/271 (7) 9 9

Distant metastasis - pulmonary 76/982 (8) 41 (7) 35 (8)
Disease extent
Localized 46/770 (6) 24 22
pulmonary metastasis 28/128 (22) 15 13
Bone/other metastasis 2/84 (2) 2 0

Histological response
100% 25/426 (6) 18 7
90-99% 26/284 (9) 15 11
<90% 25/271 (9) 8 17

Distant metastasis - bone/other with or
without LR

206 (21) 110 (20) 96 (22)

Disease extent
Localized 146/770 (19) 76 70
Metastatic pulmonary 27/128 (21) 11 16
Metastatic bone/other 33/84 (39) 23 10

Histological response
100% 65/426 (15) 37 28
90-99% 60/284 (21) 35 25
<90% 81/271 (30) 38 43
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response (<90% necrosis) regardless of surgical margins. Guidelines were not always
followed: 143 patients (97/266 [36%] registry and 46/284 [16%] study patients) treated
with surgery alone had, based on the protocol guidelines, an indication for PORT and
190 patients (106/246 [43%] registry and 84/186 [45%] study patients) who received
PORT had no indication for it based on the protocol guidelines. The main prognostic
factor for patients moving from surgery to new pulmonary metastasis is a histolo-
gical response of less than 90% necrosis (HR 2.13; 95% CI, 1.13- 4.00) and previous
pulmonary metastasis (HR 4.90; 95% CI, 2.28-8.52). Risk factors for the transition
surgery to new bone/other DM with or without LR are histological response (HR
1.56; 95% CI, 1.09-2.23 for 90-99% necrosis and HR 2.66; 95% CI, 1.87-3.79 for <90%
necrosis) and previous bone/other metastasis with or without pulmonary metastasis
(HR 3.08; 95% CI, 2.03-4.70). Disease extent (HR 8.08; 95% CI, 4.01-16.29 for pul-
monary metastasis and HR 10.23; 95% CI, 4.90- 21.36 for bone/other metastasis)
and histological response (HR 6.35; 95% CI, 3.18-12.69 for <90% necrosis) are risk
factors for transition surgery to death. The administration of radiotherapy, which is
not given randomly, seems to be protective (HR 0.45; 95% CI, 0.26-0.76). The effect
of time to recurrence is prognostic for survival with an HR of 3.79 (95% CI, 1.34-
10.76) for recurrence in the first 0 to 24 months. Histological response and disease
extent are risk factors for DMpulm, but in the presence of new pulmonary disease, no
statistically significant effect of histological response and disease extent on survival
was observed. Histological response was also a risk factor for transition surgery to
DMother, but in the presence of new metastatic disease, only previous bone/other
metastasis with or without pulmonary metastasis remains of prognostic value in the
presence of new metastatic disease (HR 1.74; 95% CI, 1.10-2.75).

The estimated multistate model was used to estimate outcome probabilities for
specific patients Figure 8.1 visualizes the effect of local treatment modality on the
patient-specific state occupation probabilities at different time points after surgery.
The distance between two curves represents the probability of being in a specific state
at a specific time point. After surgery, the probability of occupying the state "local
treatment" decreases. The probabilities of occupying the states "local recurrence",
"DMpulm", and "DMother" are similar for patients treated with surgery and sur-
gery with radiotherapy regardless of the tumor site, surgical margins and histological
response. However, radiotherapy was not randomized, so these results should be
interpreted with caution.
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§8.4 Discussion

In Ewing sarcoma, local recurrence, distant metastasis, and poor survival in patients
with metastatic disease remain of great concern. Associations between local treat-
ment modality, local recurrence, distant metastasis, and death are not yet clearly
established. In this study, we investigated the effect of surgical margins, histolo-
gical response, and radiotherapy on the intermediate events local recurrence, distant
metastasis, and on survival in a large cohort of patients with Ewing sarcoma using a
multistate model.

Marginal or intralesional surgical margins are an important risk factor for trans-
ition from surgery to LR, and when a patient reaches the LR state, it was observed
that the probability of death is higher in case of early LR (0-24 months), so time to
recurrence could be considered as most relevant in these situations. Histological re-
sponse is a strong prognostic factor for transition from surgery to distant metastasis
and death. When a patient experiences new distant metastasis (either pulmonary,
bone, other, or combined), histological response loses relevance as a risk factor as the
occurrence of distant metastasis more dramatically affects survival. Administration
of radiotherapy seems to be protective for LR. Other prognostic factors identified
in this study were the primary tumor site and disease extent. A pelvic tumor site
is an important risk factor for transition from surgery to LR. Previous pulmonary
metastasis is a risk factor for transition to new pulmonary disease, but when a pa-
tient experiences new pulmonary disease, previous pulmonary metastasis is no longer
prognostic factor for survival. Previous pulmonary or bone/other metastasis is a risk
factor for transition to new bone/other metastasis with or without simultaneous LR.
When reaching the DMother state only previous bone/other metastasis remains of
prognostic value for survival.

The prognostic value of disease extent,[95, 96, 52, 43] histological response,[11, 25]
primary tumor site,[11, 30, 84] and surgical margins[25, 113, 26, 22] observed in this
study is consistent with previous studies. Several large studies show an advantage of
PORT for patients with marginal or intralesional resections.[25, 63, 113, 134, 160] In
addition to previous studies, this study has extended the knowledge about the effect
of prognostic factors for intermediate events and final event death in Ewing sarcoma.
We showed that prognostic factors have different effects on different transitions and
that the impact on the next state in the evolution of the disease depends on the
state a patient occupies. Apart from the patient’s history, the time element is also
of paramount importance for decision-making. LR within 2 years or the occurrence
of distant metastasis with or without subsequent LR significantly affects survival
chances, and despite our efforts as physicians almost all patients who experience such
an event died of progressive disease. Therefore, the balance between the toxicity
of intensive salvage treatments and quality of life in the remaining life span of these
patients should be carefully considered. In case of late local recurrence (at least 2 years
after treatment) there is no standard approach. The patients’ age and preferences,
previous treatment and tumor characteristics such as location, should all be considered
and discussed in a multidisciplinary setting.

Radiotherapy seems protective for LR in all tumor sites combined, even in case
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of good histological response. However, radiotherapy is not given randomly and is
strongly correlated to patient and tumor characteristics; therefore, a note of caution
in the interpretation of the results is required here. Patients treated with PORT gen-
erally have more tumor located in the pelvic, more inadequate surgical margins, and
poorer histological response, which could have biased the results (see also Appendix
8.A). The incidence of local recurrence, especially in extremity Ewing sarcoma, is
low. Only 2% (9 of 425) of the patients with extremity tumors developed isolated
LR versus 8% (14 of 169) of the pelvic tumors and 8% (30 of 388) of the non-pelvic
axial tumors. The number needed to treat (NNT) with surgery and radiotherapy to
prevent the occurrence of a single LR is 72 for all tumor sites combined. In contrast,
the NNT for extremity tumors is 80 and the NNT for pelvic tumors is 10. Which
questions the value of radiotherapy in patients with an extremity Ewing sarcoma,
where an individual patient with an extremity Ewing sarcoma might benefit, only
few really are in need for this potentially toxic treatment, especially in the growing
child. Radiotherapy is associated with a significant risk for secondary radiotherapy-
induced malignancies, growth disturbance and postoperative complications of surgical
reconstructions.[70] In case of Ewing sarcoma in a high-risk location, such as the pel-
vic or axial skeleton, this study showed that the administration of radiotherapy seems
protective for LR, proton beam therapy could, in theory, be the solution in these cases;
however, long-term data on radiation-induced late effects of proton beam radiation
are not available yet. Prevention of distant metastasis and local recurrence appears to
be the key to improve outcome in Ewing sarcoma, but distant metastases are still the
main cause of treatment failure, and the results suggest that the use of radiotherapy
is not protective for the occurrence of distant metastasis.

We compared the results presented in this article, which were computed using
multiple imputation for missing data, to 776 complete cases and found that HRs were
of similar magnitude. More details can be found in Appendix 8.B. We used a large
cohort of patients with Ewing sarcoma, which strengthens this study. However, sev-
eral limitations exist. Some subgroups are small; therefore, we cannot ensure that
our findings of no effect of certain risk factors are not a result of the low number of
events in these subgroups. Secondly, histological response and surgical margins were
assessed by the local pathologist. The design of the study, in which a retrospective
analysis was performed using a prospectively collected cohort, made revision of sur-
gical margins and histological response not possible. Clear definitions were stated in
the protocol, but differences in interpretation and evaluation could still exist. Third,
cohorts often contain more variables than can reasonably be used for prediction, and
for sufficient power one needs at least 10 events per variable. We therefore choose to
select the most predictive and sensible predictors to be included in the analysis. Using
a more extensive variable profile would have led to reduced predictability. Lastly, the
recommendations for the use of radiotherapy were not consistently followed, and the
results from this study are subjected to confounding by indication. Therefore, caution
is needed when interpreting these results. Since the cohort used in this study is large
and treated according to one protocol, we feel that the cohort adequately represents
the population of interest and that the results are generalizable.
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§8.5 Conclusion

Disease extent at diagnosis and histological response are the main risk factors for
progression to distant metastasis or death after surgery. Tumor site and surgical
margins are important risk factors for local recurrence. In case disease progression
occurs, previous risk factors lose significance. Only time to recurrence is important for
decision-making, since early LR (0-24 months) negatively influences survival. Both
local recurrence and distant metastasis significantly affect survival, and despite our
efforts as physicians, almost all patients who experience an event died of progressive
disease. Therefore, the balance between the toxicity of intensive salvage treatments
and quality of life in the remaining life span of these patients should be carefully
considered in these cases. Radiotherapy seems protective for LR when all tumor
sites are combined. However, a very low percentage of local recurrence in extremity
tumors and the associated long-term toxicity with the use of radiotherapy questions
the indication of radiotherapy in all extremity cases. Indications for radiotherapy
should be explored further, preferably in a prospective randomized setting.
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Appendix

§8.A Patient characteristics

Table 8.A.1

Characteristic Surgery Surgery +
radiotherapy

n (%) n (%)
Total 550 432
Gender
Male 335 (61) 255 (59)
Female 215 (39) 177 (41)

Age
0-10 years 149 (27) 103 (24)
11-18 years 235 (43) 217 (50)
>18 years 166 (30) 112 (26)

Primary tumor localization
Pelvic 80 (15) 89 (21)
Non-pelvic 470 (85) 343 (79)
Extremity 272 (50) 153 (35)
Axial 198 (35) 190 (44)

Volume at diagnosis
<200 ml 336 (61) 241 (56)
≥ 200 ml 214 (39) 191 (44)

Disease extent at diagnosis
Localized 431 (78) 339 (79)
Pulmonary metastasis 62 (11) 66 (15)
Extrapulmonary metastasis 57 (10) 27 (6)

Surgical margin
Wide 453 (82) 264 (61)
Marginal 58 (11) 105 (24)
Intralesional 39 (7) 65 (15)

Histological response
100% 284 (52) 142 (33)
90-99% 165 (30) 119 (28)
<90% 100 (18) 171 (39)

Transition to state
Local recurrence 33 (6) 20 (5)
DMpulm 41 (8) 36 (8)
Extrapulmonary metastasis 113 (21) 99 (23)

Alive without disease 359 (65) 284 (66)

§8.B Complete case analysis
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CHAPTER 9
Discussion and future perspectives

This thesis aimed at developing clinically relevant survival models, in particular the
development and validation of prediction models for use in clinical practice. In the
medical field statistical models need to address the research questions asked by clini-
cians and take into account the particular data structure of the problem at hand.
Models used for prediction need to additionally be validated before they can be used
in clinical practice. This final chapter, summarizes and discusses previous chapters.
They are put in broader perspective and future research directions are suggested.

§9.1 Custom-made models

Statistical research is often motivated by a practical problem. A statistician is as-
signed to answer an important research question with an often already collected data
set. Many times standard techniques can be applied to analize the data. However,
frequently the data does not perfectly meet the criteria for standard techniques or the
research question suggests to use more advanced techniques. In some cases, existing
methods cannot properly address the problem at hand and new methodology needs
to be developed.

Survival methodology for example, was developed to analyze time to event data.
This type of data is incomplete because not for all subjects the event of interest can be
observed, referred to as right-censoring. This is the most common type of censoring
found in survival data, however there are many more types of missing information
that occur in practice. Methods have been developed to deal with different kinds of
missing information.

Some survival methods such as the Kaplan-Meier estimator, the log-rank test and
the Cox model are well established in clinical literature [60]. These methods are often
adequate to answer clinically relevant research questions and clinicians can understand
the output of these methods. Sometimes however, when the research question or the
data are complex other statistical methods need to be used. Even though a variety of
statistical models have been developed by statisticians there seems to be a disconnect
between available methods and methods used for clinical research [118, 159, 132].
Several reasons for this exist. First, clinical researchers may not be aware of the best
method to answer the research question. Second, a lack of understanding of complex
methods and the output leads to them being undesirable. Third, a lack of available
software makes methods difficult to apply.
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Regardless the reason for the discrepancy between available statistical methods
and methods applied in clinical research a close collaboration between statistician and
clinician can contribute to the solution. Additionally, statisticians can benefit from
such a collaboration twofold. On the one hand, statisticians can demonstrate the
application of their methods and popularize them while at the same time benefiting
clinical research. On the other hand, inspiration for new statistical methods may
come from interesting clinical research questions. The interdisciplinary collaboration
between statistician and clinician is of tremendous importance and may deliver great
contributions to both fields [60, 132].

An example of statistical models that are under used in clinical practice are com-
peting risks models [93, 156, 24]. In a frail patient population in which a non terminal
event of interest is studied the competing risk of death may prevent the event of in-
terest to be observed. Ignoring the risk of death will lead to wrong conclusions about
the incidence of the event of interest and the effect of risk factors on the event of
interest. A correct analysis of competing risks is therefore of great importance. In
Chapter 2 we proposed a new competing risks model for two competing events that
is able to quantify hospital heterogeneity using correlated frailties. The cause-specific
proportional hazards model is used to model the risk of the two competing events
and additionally frailties on the hospital level are modelled with gamma distribution.
The model was developed for multi-center data which is data that was collected from
multiple treatment centers. This is often necessary to obtain sufficient data for rare
disease. The model adjusts for competing risks while at the same time quantifying the
difference in risk between hospitals using Empirical Bayes methodology. It is a delic-
ate task to compare the performance of hospitals and Empirical Bayes methodology is
used to take the larger variances of smaller hospitals into account. In Chapter 5 Fine
and Gray’s model for competing risks was used to predict the cumulative incidence of
local recurrence in soft tissue sarcoma patients. Local recurrence is an adverse event
for patients who were surgically treated to remove the primary tumor. It means that
tumor growth was found at site of surgery and its occurrence may mean additional
surgery for some patients. It is therefore an important event for patients and clini-
cians and the predicted probability of local recurrence is an important information
that can be used in patient care.

Multi-state models naturally extend competing risks models. The evolution of
disease can sometimes be described by a series of events such as relapse, recovery and
death that a patient may experience. These can be directly modelled with a multi-
state model. Even though multi-state models can describe disease progression close to
reality they are seldom applied in clinical practice. Apart from being more difficult to
apply they are also still not well known in the clinical world. If applied they need to be
carefully explained so that parameters are interpreted properly. Multi-state models
are however an important tool that can give a deeper insight into the association of risk
factors and the different states of disease which should be exploited in clinical research.
In Chapter 4 and 8 multi-state models were used to understand the disease process
for soft tissue sarcoma patients and Ewing sarcoma patients, respectively. In Chapter
4 a multi-state model to investigate the association of risk factors and adverse disease
events for soft tissue sarcoma patients was proposed. Several prognostic factors such
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as histology, grade, depth and size [83, 117, 169, 53, 73, 146, 140, 98, 139, 29] were
already identified. An increase in risk for local recurrence following an intralesional
margin resection was recognised [73, 139, 91], the association between margin status
and survival and between local recurrence and survival however was still unclear
[140, 106, 164, 29, 23, 74, 110, 102, 111]. After surgery a patient is alive with no
evidence of disease and may then have local recurrence, distant metastasis or die.
We proposed a three state multi-state model to obtain more insight into how certain
prognostic factors affect phases of the evolution of disease with particular interest in
surgical margin and radiotherapy. In our analysis distant metastasis and death were
modelled as a single state, leading to three states (starting state, local recurrence,
distant metastasis/death). The multi-state model showed that wide surgical margins
and the use of (neo)adjuvant radiotherapy decreased the risk of local recurrence but
had little effect on the risk of distant metastasis/death without local recurrence. This
study contributed to a better understanding of the effect of risk factors on the different
states of disease progression. In Chapter 8 we developed a multi-state model for
Ewing sarcoma patients that were treated surgically to gain insight into the effect of
surgical margin, histological response and radiotherapy on disease progression. Other
studies had conducted single end point analyses of risk factors for adverse events in
Ewing sarcoma. Multi-state models can estimate the effect of risk factors on different
disease states simultaneously. Five states of disease progression were considered in
the multi-state model. After surgery a patient enters the starting state, from here he
may develop local recurrence, distant metastasis in the lungs, distant metastasis at a
different site and he may die. The data only contained information of the first adverse
event a patient experienced, so transitions from adverse events to other non terminal
events were not possible. It was found that disease extent at start of treatment and
histological response had a strong association for the transitions to distant metastasis
and death. For the transition to local recurrence the location of the tumor and surgical
margin were important risk factors.

Competing risks and multi-state models are natural model choices when the evol-
ution of disease can be represented by multiple events. Another reason to apply more
complex models lies in the data collection process. Methods for survival analysis were
developed to deal with the common issue of right-censoring and other forms of miss-
ing information that can be present in survival data. Sometimes the event of interest
cannot be observed exactly because it may only be diagnosed at pre-specified follow-
up visits by for example a blood test. If the test is positive then it is only known
that the event had occurred prior to the test. If regular tests are conducted then it
is known that the event occurred between the time of the last negative and the first
positive test. This type of censoring is referred to as interval-censoring. Methods for
interval-censored data have been developed but they are not frequently used in clinical
practice. We studied the effect that ignoring interval-censoring has on the predictive
accuracy of a binary time-dependent marker in Chapter 3. The binary time-dependent
marker may represent the presence or absence of disease that can be acquired over
time. Prediction models for survival outcomes can inform patient and clinician and
give an indication of a patients prognosis. Dynamic prediction models are able to
incorporate updated information from time-dependent variables into the predictions
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as they become available. The predictive accuracy of such time-dependent marker is
therefore a parameter of interest. We conducted a simulation study to investigate the
predictive accuracy of a binary time-dependent marker for the outcome death in the
presence of interval-censoring. The marker may represent the presence or absence of
disease that a patient can acquire over time. We studied several data scenarios and
compared four different models, one of them ignoring interval-censoring. Different
interval lengths between the observation of the time-dependent marker were studied.
We used Area Under the Curve (AUC) measures that were adapted to survival out-
comes to quantify the predictive accuracy of the time-dependent marker and found
that the spacing between observation times did have a large effect on the AUC. The
results of this study suggest to take interval-censoring into account when evaluating
the predictive accuracy of a time-dependent marker.

The choice of statistical method can be motivated from the research question and
the collected data. There are however choices to be made like for example regarding
the selection of variables to be included in the model. Throughout this thesis clinical
researchers chose the variables that were included in the models. In Chapter 4 and
8 multi-state models were estimated and not all covariate effects were estimated for
all transitions. The reason for this was the limited number of patients that made
some transitions. The selection of covariates for these transitions was done by clinical
experts. Categorization of covariates and dichotomization of continuous covariates
have been motivated clinically as well and these have changed throughout the time
of this research. In Chapter 4 the variable age has been modelled in three categories
while in Chapter 5, 6, and 7 age has been modelled continuously. The choice to include
a quadratic effect of age into the models of Chapter 6, and 7 have been based on the
significant nonlinearity of this variable. For the dynamic prediction model of Chapter
6, and 7 the covariates have been chosen by clinical experts, the interactions with
time have been chosen using a backward selection procedure described in Chapter 6.

§9.2 Prediction models in clinical practice

Statistical models are able to make predictions as well as provide interpretable para-
meters, which contribute to the understanding of the underlying event process. The
main goal of prediction models is to make good predictions which can be verified by
validating predictions using a data set that has not been used in the model build-
ing process. In Chapter 5, 6 and 7 we developed and validated prediction models
that predict the probability of local recurrence and survival for soft tissue sarcoma
patients. In the first two chapters the models were validated internally using cross
validation and in the last chapter the prediction model was validated externally using
an external data set.

The parameters of the prediction models can be interpreted clinically and con-
tribute to the understanding of the underlying disease process. The variables used
in the models were chosen from clinical experts. The baseline covariates included in
the models were of two different kinds: (1) they included patient- and disease-specific
covariates, such as age, histology subtype, and tumor size. (2) they included treat-
ment related covariates, such as surgical margin and radiotherapy treatment. The
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first type of covariates are given and cannot be influenced. The treatment related co-
variates however, can be influenced by the treating clinician. In Chapter 4 and 5 we
found that a wider surgical margin and radiotherapy treatment were associated with
a decreased probability of local recurrence compared to an intralesional margin and
no radiotherapy treatment. In Chapter 6, 7 we found that a wider surgical margin
was associated to longer survival for a prediction time point just after surgery, but
as the patient survived a period of time after surgery, no association with survival
was found. Because of these associations the predictions of survival probability for a
wider margin and radiotherapy treatment are higher than for an intralesional margin
and no radiotherapy treatment. However these predictions do not make a fair com-
parison between treatment options because the prediction models developed in this
thesis depend on current treatment practice. The data used for model development
are not randomized controlled trials. For this reason they cannot be used to base
treatment decisions on.

§9.3 Future perspectives

In this thesis clinically relevant survival models have been developed. In Chapter
3, 4 and 8 we used multi-state methodology to investigate risk factors for soft tissue
sarcoma and Ewing sarcoma. The hazard ratios estimated with these models illustrate
the association between covariates and disease related events and are very informative
for clinicians. Because of the large number of parameters and insufficient transitions
between states not all possible transitions between disease related events could be
considered in the multi-state models. In Chapter 4 the event distant metastasis and
death were combined because of the small number of patients transitioning from local
recurrence to these states. Additionally, because of the small number of patients
making some transitions it was not possible to estimate the effect of all relevant
covariates for each transition. The soft tissue sarcoma data set has grown since the
research conducted in Chapter 4 and now would allow for a more sophisticated multi-
state model, one with more states and transitions and more covariates per transition.
At the moment a project on the construction of a more complex multi-state model
for soft tissue sarcoma patients is ongoing. In Chapter 8 a multi-state model for
Ewing sarcoma was estimated based on data from the GPOH registry (Gesellschaft
für Pädiatrische Onkologie und Hämatologie) treated in or according to the EURO-
E.W.I.N.G 99 (EE99) protocol [8]. This data comprises only half of the total available
data. At the moment researchers at Leiden University are working on receiving the
second half of this data to conduct a more sophisticated analysis.

In Chapter 5, 6 and 7 we developed prediction models for patients with soft tissue
sarcoma. We started with two models to be used at baseline just after surgery which
were implemented in the PERSARC mobile application. They predict the probability
of overall survival and local recurrence at 3, 5, and 10 years post surgery. In Chapter 6
a dynamic prediction model for soft tissue sarcoma patients was developed to predict
the probability of surviving an additional 5 years from a prediction time point dur-
ing follow-up. This dynamic model was updated and externally validated in Chapter
7 and is in the process of being implemented in the PERSARC mobile application.
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Implementation of prediction tools into clinical practice remains challenging despite
their utility. The adoption of prediction models to support shared decision making
in clinical practice is a current subject of interest. A group of researchers from the
Leiden University Medical Center were granted funding to implement shared decision
making in treatment decisions in high-grade soft tissue sarcoma of the extremities
in the Netherlands. The goal is to ensure that soft tissue sarcoma patients receive
personalised care, in which risks and benefits of treatment options and patient pref-
erences are balanced. Part of the implementation strategy is the introduction of the
PERSARC mobile application to clinical practice through educational outreach. This
type of research may lead to improved prediction tools and facilitate their introduction
to clinical practice.

Finally, we stress the importance of future interdisciplinary collaboration between
statisticians and clinicians. Multi-state models and dynamic prediction models are
important tools that are underused in the clinical field. Other complex available
methods should be introduced and explained carefully by statisticians to the clinical
community so that they are able to benefit from their advantages.
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Summary

Summary

Statistical analysis aims to find data based answers to important research questions
in a variety of research areas. The Field of statistics called survival analysis is where
the topics of this thesis find their place. Survival analysis deals with life-time data.
In this type of data the time from a specific starting point until an event of interest
occurs are recorded. In medical research for example, time from diagnosis of disease
until death could be studied. What characterizes life-time data, also called survival
data, is that it is generally incomplete. Some individuals in the data might not have
experienced the event of interest at the end of the study period or have dropped out
of the study before the event has occurred. These data are called right-censored. The
event time is unknown, it is known however, that the event had not occurred before
the last observation time. To handle this particular type of missing data, and other
similar types, special methodology is necessary summarized under the term survival
analysis.

Survival analysis is used by clinicians to identify risk factors associated with the
occurrence of a clinical event of interest. For example in cancer research, clinicians use
survival models to investigate if a patient’s age, sex, tumor size, and other clinically
relevant variables are associated to the risk of death. To describe the evolution of
disease complex mathematical models are required. Patients may experience several
disease related events in different orders. Multi-state models can be applied in such
context. Another extension of survival models is to add a random effect, also called
frailty. Frailty terms are used to model unobserved covariates which might have an
effect on the event of interest. In all studies not all relevant patient or disease char-
acteristics can be collected and therefore the survival model is incomplete. Random
effects quantify the so called unobserved heterogeneity resulting from an incomplete
model.

Survival models may be used to investigate the effect of risk factors on clinical
events of interest and to predict survival probabilities. Such predictions inform both
patients and clinicians of a patient’s prognosis and may help in the shared decision
making process. Prediction models are available for a variety of diseases and there
is a demand for more and more sophisticated models. Ordinary prediction models
are often limited to a single prediction time point. This means that predictions can
only be made at a particular time, such as at time of diagnosis of disease. When a
patient comes back for a follow-up visit, such models are not able to provide accurate
predictions. A patient may experience disease related events over time which are not
taken into account by a model that considers only risk factors known at diagnosis or
at start of treatment. Dynamic prediction models provide updated predictions from
different time points during follow-up. They are able to include updated information
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as it becomes available. A simple idea to create dynamic prediction models is through
the landmarking approach. Predictions are made from a chosen landmark time point
by using a subset of the data consisting of patients still alive at that time. Multiple
landmark times can be chosen to make predictions from different time points during
follow-up.

The main objective of this thesis was to develop clinically relevant survival models
for patients with high-grade soft tissue sarcoma of the extremities, in particular the
development and validation of prediction models for use in clinical practice. The in-
terdisciplinary collaboration between the Mathematical Institute of Leiden University
and the Leiden University Medical Center resulted in important contributions to the
care of soft tissue sarcoma patients [2, 4, 5].

In Chapter 1 basic concepts of survival analysis are introduced as well as more
complex models that are used in this thesis. After a short introduction of general
concepts, such as the hazard and survival function, frailty models are discussed which
add random effects to a survival model. Later on, the simple one end-point survival
model for a single event of interest is extended to multiple end-points by introducing
competing risks models. More complicated event structures are described thereafter
using multi-state models, in which transitioning states where an individual can move
through are allowed. Next, dynamic prediction models are introduced as well as
measures of discrimination that assess the predictive accuracy of survival prediction
models. Some information about the motivating soft tissue sarcoma data set are
given. Finally, the developed prediction tool is discussed. An outline of this thesis
ends the chapter.

In Chapter 2 a novel frailty model for multi-center data with two competing events
is proposed. In practice not all relevant covariates to explain the variance of event
times between subjects can be collected. Random effects, called frailty, quantify
the unobserved heterogeneity resulting from an incomplete model. Frailty variables
that are shared by individuals who were treated in the same hospital are used to
model unobserved heterogeneity on the hospital level; they could be interpreted as
the "hospital effect" on the competing events. The patients treated in some hospitals
may, corrected for covariates, live longer than those treated in other hospitals. This
"hospital effect" may be an interest of study. The novelty of the proposed frailty
model lies in the construction of the frailty variables. Two frailty variables, one for
each competing event, are constructed from three independent gamma distributed
frailty components. Each frailty is the sum of two frailty components, a cause-specific
and a shared frailty component. This allows for the two frailties to be correlated. The
model is estimated using the expectation-maximization algorithm which additionally
provides empirical Bayes estimates for each hospital’s frailties.

In Chapter 3 the effect of interval censoring is studied on the predicted accuracy
of a binary disease marker. The motivation comes from cancer care. After surgery
a patient is regularly screened for local recurrence and distant metastasis. Once a
recurrence is diagnosed, however, it is only known that it occurred between the last
negative and the first positive screening. Additionally, if a patient dies after a negative
recurrence screening, then it is unknown whether he developed a recurrence between
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the last screening and death. The predictive value of this time-dependent recur-
rence variable can be summarized by time-specific Area Under the receiver operating
characteristics Curve (AUC) measures. The effect that ignoring the interval-censored
nature of the observation time has on the time-specific AUC in both incident/dynamic
and cumulative/dynamic definition is studied through simulations. AUC estimates
derived from different methods for fitting two types of models are compared: the
Cox model with time-dependent covariate, which ignores interval-censoring and the
illness-death model for interval-censored data.

Chapter 4 is the first in a series of publications based on the growing soft tissue
sarcoma data set. A data set of 687 patients with high-grade soft tissue sarcoma of
the extremities treated surgically was collected from 4 international tertiary centers.
The effect of risk factors on local recurrence and distant metastasis/death was studied
using a 3-state multi-state model. Multi-state models describe the evolution of the
disease close to reality and allow detailed insights into the effect of risk factors on
disease progression. After surgery a patient starts in the starting state "alive without
evidence of disease", he can then move to the local recurrence state and subsequently
to the distant metastasis/death state or move to distant metastasis/death directly.
For each of the three transitions the effect of risk factors was studied allowing for the
effects to differ between transitions. Of particular interest was the effect of surgical
margin. Surgical margin describes the amount of healthy tissue surrounding the
tumor that is dissected during tumor removal surgery. The association with survival
and local recurrence was of great interest for clinicians as it impacts the functional
outcome after surgery.

Chapter 5 is the continuation of the soft tissue sarcoma project, with a data set
of 766 patients collected from 5 international tertiary centers. The motivation came
from the need of clinicians for an easy to use prediction tool for patients with soft
tissue sarcoma. Two prediction models one for survival and one for the probabil-
ity of local recurrence were developed using Cox and Fine and Gray’s methodology.
The survival model is a simple one end-point model, the model for local recurrence
however, needs to consider the competing risk of death. The models predict the prob-
ability of surviving 3, 5, and 10 years as well as the probability of developing a local
recurrence within 3, 5, and 10 years from time of surgery respectively. The advantage
of using Fine and Gray’s model for competing risks to model covariate effects on the
probability of developing local recurrence is that estimated regression coefficients are
more intuitive to interpret for clinicians compared to the cause-specific hazards model.
The prediction models were implemented in the PERSARC mobile application to be
used by clinicians to improve patient care [4, 5]. An internal validation considering
calibration plots and the C-index demonstrated good calibration and discrimination
of the prediction models.

In Chapter 6 a dynamic prediction model based on the growing soft tissue sarcoma
data set was developed. Data of 2232 soft tissue sarcoma patients was collected from
a total of 14 international tertiary centers. The aim was to develop a prediction
tool able to make updated survival predictions for patients during follow-up. After
surgery a patient has scheduled follow-up visits to monitor him and to screen for
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adverse events. Events like local recurrence and distant metastasis affect the future
prognosis. Also the fact that a patient survived a length of time after surgery may
give an insight into the future prognosis. This requires dynamic predictions for a
patient to be updated over time. For this purpose a landmark supermodel was used
to predict the probability of surviving an additional 5-years from different prediction
time points during follow-up. Local recurrence and distant metastasis, are used to
update predictions over time and covariates were investigated for time-varying effects.
The model was internally validated.

In Chapter 7 the previously developed dynamic prediction model for soft tissue
sarcoma patients is updated and externally validated. The updated model is based
on 3826 patients collected from 17 international tertiary centers and a randomized
controlled trial. Data for external validation consisted of 1111 patients from a single
tertiary center. The updated dynamic prediction model now includes grade as addi-
tional covariate in the model. This important covariate was initially omitted because
the previously collected data contained mainly grade III patients. During this re-
search, the data set has been significantly augmented and now includes a large cohort
of grade II patients. A successful external validation showed that the model was able
to adequately predict the probability of surviving an additional 5-years from different
prediction time points during follow-up. The model is implemented in the updated
PERSARC mobile application [4, 5].

In Chapter 8 a multi-state model was developed for 982 Ewing sarcoma patients
that were treated surgically according to the EURO-E.W.I.N.G99 protocol. The
starting time of analysis is the time of surgery, from which a patient can move to
different states corresponding to disease progression. Adverse events considered in
the multi-state model were local recurrence, distant metastasis of the lungs, distant
metastasis at other locations, and death. The effect of risk factors was studied on
the transitions between disease states and the effect was allowed to differ between
transitions. A particular interest lay in the effects of surgical margins, histological
response, and radiotherapy treatment.
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Samenvatting

Statistische analyse streeft ernaar om antwoorden te vinden op belangrijke onder-
zoeksvragen in verscheidene onderzoeksgebieden door gebruik te maken van data. De
onderwerpen in dit proefschrift behoren tot het statistisch gebied overlevingsanalyse.
Overlevingsanalyse houdt zich bezig met levensduurdata. Voor dit type data wordt
de tijd van een specifiek beginpunt tot een gebeurtenis waar de interesse naar uitgaat
geregistreerd. Bijvoorbeeld in medisch onderzoek kan men de tijd van diagnose van
een ziekte tot overlijden bestuderen. Wat karakteristiek is voor levensduurdata, ook-
wel overlevingsdata genoemd, is dat het vaak onvolledig is. Voor sommige individuen
in de data heeft de gebeurtenis nog niet plaatsgevonden aan het einde van de studie of
zijn ze uit de studie weggevallen voordat de gebeurtenis heeft plaatsgevonden. Deze
data wordt rechtsgecensureerde data genoemd. Hoewel het moment van de gebeurte-
nis niet bekend is, is het wel bekend dat de gebeurtenis nog niet heeft plaatsgevonden
bij de laatste observatie. Om om te gaan met dit soort missende data, zijn speciale
methoden nodig die zich laten samenvatten onder de noemer overlevingsanalyse.

Overlevingsanalyse wordt gebruikt door clinici om risicofactoren te identificeren
die worden geassocieerd met het plaatsvinden van een clinische gebeurtenis waar de
interesse naar uitgaat. Bijvoorbeeld in kankeronderzoek waar clinici overlevingsmo-
dellen gebruiken om te onderzoeken of een patiënt zijn leeftijd, sex, tumor grootte
en andere clinisch relevante variabelen geassocieerd kunnen worden met de kans op
overlijden. Om het beloop van een ziekte te beschrijven zijn complexe wiskundige
modellen nodig. Patiënten kunnen verschillende, met de ziekte geassocieerde, ge-
beurtenissen ervaren in verschillende volgorden. Multi-state-modellen kunnen worden
toegepast in deze context. Een andere uitbreiding van overlevingsmodellen is om
een willekeurig effect toe te voegen genaamd fragiliteit. Fragiliteitstermen worden
gebruikt om niet geobserveerde covariaten te modelleren die misschien een effect heb-
ben op de gebeurtenis waar de interesse naar uitgaat. Namelijk, niet alle relevante
karakteristieken van de patiënt of ziekte worden in alle studies verzameld. Daarom is
het overlevingsmodel incompleet. Willekeurige effecten kwantificeren de zogenoemde
ongeobserveerde heterogeniteit als resultaat van een incompleet model.

Overlevingsmodellen kunnen worden gebruikt om de effecten van risicofactoren op
clinische gebeurtenissen te onderzoeken en om te voorspellen wat de overlevingskan-
sen zijn. Dergelijke voorspellingen geven zowel de patiënten als de clinici informatie
over de prognose en kunnen helpen in de gezamelijke besluitvorming. Voorspellings-
modellen zijn bruikbaar voor een verscheidenheid aan ziektes en er is vraag naar
steeds geavanceerdere modellen. Gebruikelijke voorspellingsmodellen zijn vaak be-
perkt tot een enkel voorspellingsmoment. Dit betekent dat voorspellingen alleen op
één bepaald tijdstip, zoals het moment van diagnose van de ziekte, gemaakt kunnen
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worden. Wanneer een patiënt terugkomt voor een vervolgbezoek, kunnen zulke model-
len geen nauwkeurige voorspelling geven. Een patiënt kan over tijd ziekte-gerelateerde
gebeurtenissen ervaren waarmee geen rekening wordt gehouden wanneer een model
alleen risicofactoren meeneemt die gemeten zijn op het moment van diagnose of aan de
start van de behandeling. Dynamische voorspellingsmodellen verschaffen bijgewerkte
voorspellingen vanaf verschillende tijdstippen gedurende een vervolgbehandeling. Ze
kunnen dus informatie gebruiken zodra het beschikbaar is. Een simpele manier om
een dynamisch voorspellingsmodel te creëren is door middel van de herkenningspunten
aanpak. Voorspellingen worden gemaakt vanaf een gekozen herkenningspunttijdstip
door gebruikt te maken van het deel van de data bestaande uit patiënten die op
dat tijdstip nog in leven zijn. Meerdere herkenningspunttijdstippen kunnen worden
gekozen om voorspellingen te maken vanaf verschillende tijdstippen tijdens een ver-
volgbehandeling.

Het hoofddoel van dit proefschrift is om clinisch relevante overlevingsmodellen
te ontwikkelen voor patiënten met een hoogwaardig zacht weefselsacroom op een le-
demaat met in het bijzonder de ontwikkeling en valorisatie van overlevingsmodellen
voor gebruik in de clinische praktijk. De interdisciplinaire samenwerking tussen het
Mathematisch Instituut van Universiteit Leiden en het Leids Universitair Medisch
Centrum heeft geleid tot belangrijke bijdragen in de verzorging van patiënten met
zachte weefselsacroma’s [2, 4, 5].

In hoofdstuk 1 worden de basisconcepten van overlevingsanalyse geïntroduceerd
evenals de complexere modellen die worden gebruikt in dit proefschrift. Na een
korte introductie van algemene concepten, zoals de hazard- en overlevingsfunctie,
komen fragiliteitsmodellen aan de orde die willekeurige effecten toevoegen aan een
overlevingsmodel. Later in het hoofdstuk wordt een simpel overlevingsmodel met
een enkel eindpunt uitgebreid naar een overlevingsmodel met meerdere eindpunten
door concurrerende-risicomodellen te introduceren. Daarna worden ingewikkeldere
gebeurtenisstructuren beschreven die gebruikmaken van multi-state-modellen waarin
transitietoestanden worden toegelaten waar een individu zich doorheen kan bewe-
gen. Vervolgens worden zowel dynamische voorspellingmodellen geïntroduceerd als
maatstaven van onderscheiding die de nauwkeurigheid van voorspellingen van over-
levingsvoorspellingmodellen schatten. Er wordt informatie gegeven over de zacht
weefselsacroom dataset wat de motivatie was voor dit onderzoek. De ontwikkelde
voorspellingstool wordt ook besproken. Het hoofdstuk sluit af met een uitleg over de
hoofdlijnen van dit proefschrift.

In hoofdstuk 2 wordt een vernieuwend fragiliteitsmodel voor meerdere-centra-data
met twee concurrerende gebeurtenissen voorgelegd. In de praktijk kunnen niet alle
relevante covariaten worden verzameld die de variantie tussen de tijdstippen waarop de
gebeurtenissen van patiënten plaatsvinden verklaren. Willekeurige effecten, genaamd
fragiliteit, kwantificeren de ongeobserveerde heterogeniteit die veroorzaakt wordt door
een incompleet model.

Voor individuen die in hetzelfde ziekenhuis worden behandeld worden dezelfde
fragiliteitsvariabelen gebruikt om ongeobserveerde heterogeniteit op ziekenhuisniveau
te modelleren; ze kunnen worden geïnterpreteerd als het "ziekenhuiseffect"voor de
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concurrerende gebeurtenissen. Patiënten die worden behandeld in bepaalde zieken-
huizen zouden, gecorrigeerd voor de covariaten, langer kunnen leven dan diegene die
worden behandeld in een ander ziekenhuis. Dit "ziekenhuiseffect"zou interessant kun-
nen zijn om te bestuderen. De vernieuwing van het voorgestelde fragiliteitsmodel
zit in de constructie van de fragiliteitsvariabelen. Twee fragiliteitsvariabelen, één
voor elke concurrerende gebeurtenis, worden geconstrueerd vanuit drie onafhankelijke
gamma-verdeelde fragiliteitscomponenten. Elke fragiliteit is de som van twee fragi-
liteitscomponenten, één oorzaakspecifieke en één gedeeld fragiliteitscomponent. Dit
geeft de mogelijkheid voor de twee fragiliteiten om gecorreleerd te zijn. Het model
wordt geschat door gebruik te maken van het verwachting-maximalisatie-algoritme
wat ook empirische Bayes-schatters geeft voor de fragiliteiten van elk ziekenhuis.

In hoofdstuk 3 wordt het effect van intervalcensurering op de voorspelde nauw-
keurigheid van een binaire ziektemarker bestudeerd. Dit is gemotiveerd vanuit de
kankerzorg. Na een operatie wordt een patiënt regelmatig onderzocht voor lokale te-
rugkeer en metastase op afstand. Wanneer er terugkeer wordt gediagnosticeerd is het
alleen bekend dat het teruggekomen is tussen de laatste negatieve en de eerste posi-
tieve test. Daarbij komt dat wanneer een patiënt komt te overlijden na een negatieve
herhalingstest het onbekend is of hij een herhaling heeft ontwikkeld tussen de laatste
test en het moment van overlijden. De voorspellende waarde van deze tijdafhankelijke
variable over terugkeer kan worden samengevat door tijdspecifieke Area Under the re-
ceiver operating characteristics Curve (AUC) maten. Wat het effect van het negeren
van de intervalgecensureerde aard van de observatietijd heeft op de tijdspecifieke AUC
in zowel de incidentele/dynamische en cumulatieve/dynamische definitie wordt bestu-
deerd door middel van simulaties. AUC schatters worden vergeleken die zijn afgeleid
van verschillende methoden om twee soorten modellen te berekenen: het Cox mo-
del met tijdafhankelijke covariaten welke interval censuur negeert en het ziekte-dood
model voor intervalgecensureerde data.

Hoofdstuk 4 is de eerste in een serie van publicaties gebaseerd op de groeiende
zacht weefselsarcoom dataset. Een dataset, bestaande uit data van 687 patiënten met
hoogwaardige zacht weefselsacroma’s op ledematen die chirurgisch behandeld zijn,
is verzameld door 4 internationale tertiaire centra. Het effect van risicofactoren op
lokale terugkeer en verre metastasis/dood is bestudeerd met behulp van van een 3-
toestanden multi-state-model. Multi-state-modellen beschrijven het beloop van de
ziekte realistisch en geven gedetailleerd inzicht in het effect van de risicofactoren op
dit beloop. Na de operatie begint een patiënt in de "levend zonder teken van ziekte-
toestand. Vervolgens kan hij bewegen naar de "lokale terugkeer-toestand en hierop
volgend naar de "verre metastasis/dood-toestand of direct naar de "metastasis/dood-
toestand. Voor elk van de drie overgangen worden de effecten van de risicofactoren
bestudeerd waarbij deze effecten verschillend mogen zijn bij elke overgang. In het
bijzonder ging er interesse uit naar het effect van chirurgische marge. Chirurgische
marge beschrijft de hoeveelheid gezond weefsel rondom de tumor dat weggehaald is
tijdens de verwijderingsoperatie. De associatie met overleving en lokale terugkeer was
erg interessant voor clinici, omdat het invloed heeft op de functionele uitkomst van
een operatie.
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Hoofdstuk 5 is de voortzetting van het zacht weefselsacroma’s project met een
dataset van 766 patiënten wat verzameld is door 5 internationale tertiaire centra. De
motivatie kwam van de vraag van clinici om een voorspellingstool voor patiënten met
een zacht weefselsarcoom te maken die makkelijk is in gebruik. Twee voorspellings-
modellen, één voor overleving en één voor de kans op lokale terugkeer, zijn ontwikkeld
met behulp van Cox en Fine en Gray’s methodologie. Het overlevingsmodel is een
simpel enkel eindpunt model. In het model voor lokale terugkeer moet echter ook het
concurrerende risico van doodgaan meegenomen worden. De modellen voorspellen
zowel de kans op het overleven voor 3, 5 en 10 jaar als de kans op lokale terugkeer
binnen 3, 5 en 10 jaar vanaf het moment van opereren. Het voordeel van het gebruik
van Fine en Gray’s model voor concurrerende risico’s voor het modelleren van de
effecten van covariaten op de kans van de ontwikkeling van lokale terugkeer is dat de
geschatte regressiecoëficiënten intuïtiever zijn om te interpreteren voor clinici in ver-
gelijking met het oorzaak-specifieke hazardmodel. De voorspellingsmodellen werden
geïmplementeerd in de PERSARC mobiele applicatie wat gebruikt wordt door clinici
om de zorg voor patiënten te verbeteren [4, 5]. Een interne validatie door calibratie-
plots en de C-index laten een goede calibratie en onderscheidend vermogen zien van
de voorspellingsmodellen.

In hoofdstuk 6 wordt een dynamisch voorspellingsmodel gebaseerd op de groeiende
zacht weefselsarcoom dataset ontwikkeld. De data van 2232 zacht weefselsarcoom pa-
tiënten werd verzameld door 14 internationale tertiaire centra. Het doel was om
een voorspellingstool te ontwikkelen die het mogelijk maakt om bijgewerkte overle-
vingsvoorspellingen te maken voor patiënten tijdens een vervolgbehandeling. Na een
operatie werd een vervolgbezoek ingepland om de patiënt te monitoren en te testen
op bijwerkingen. Gebeurtenissen als lokale terugkeer en metastase op afstand hebben
invloed op de prognose. Het feit dat een patiënt nog een bepaalde tijd leeft na een
operatie kan inzicht geven in de prognose. Dit vergt dynamische voorspellingen voor
de patiënt om de prognose over tijd aan te passen. Voor dit doeleinde is een herken-
ningspunt supermodel gebruikt om een voorspelling te geven van de kans op een extra
5 jaar overleven vanaf verschillende voorspellingstijdpunten tijdens een vervolgbehan-
deling. Lokale terugkeer en metastase op afstand worden gebruikt om voorspellingen
over tijd bij te werken en covariaten werden onderzocht voor tijdsveranderlijke effec-
ten. Het model is intern gevalideerd.

In hoofdstuk 7 wordt het eerder ontwikkelde dynamische voorspellingsmodel voor
zacht weefselsarcoom patiënten aangepast en extern gevalideerd. Het aangepaste mo-
del is gebaseerd op data van 3826 patiënten wat verzameld is door 17 internationale
tertiaire centra en een gerandomiseerde gecontroleerde studie. Data voor externe
validatie bestond uit 1111 patiënten van een enkel tertair centrum. Het aangepaste
dynamische voorspellingsmodel bevat nu graad als extra covariaat in het model. Deze
belangrijke covariaat was aanvankelijk weggelaten, omdat de eerder verzamelde data
vooral graad III patiënten bevatte. Tijdens dit onderzoek is de dataset significant
aangevuld en bevat het een groot cohort van graad II patiënten. Een succesvolle
externe validatie laat zien dat het model in staat was om adequaat de kans op een
extra 5 jaar overleven te voorspellen vanaf verschillende voorspellingstijdpunten tij-
dens vervolgbehandeling. Het model is geïmplementeerd in de aangepaste PERSARC
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mobiele applicatie [4, 5].

In hoofdstuk 8 is een multi-state-model ontwikkeld voor 982 Ewing sarcoom pa-
tiënten die chirurgisch behandeld zijn volgens het EURO-E.W.I.N.G99 protocol. De
starttijd van de analyse is het moment van de operatie waar vanuit de patiënt zich
kan verplaatsten naar verschillende toestanden corresponderende met de ontwikke-
ling van de ziekte. Bijwerkingen die zijn meegenomen in het multi-state-model waren
lokale terugkeer, metastasis op afstand van de longen, metastatis op afstand van an-
dere locaties en overlijden. Het effect van risicofactoren op de transitie tussen zieke
toestanden werd bestudeerd en daarbij mogen deze effecten verschillend zijn bij elke
overgang. In het bijzonder is men geïnteresseerd in het effect van chirurgische marge,
histologische reactie en radiotherapie.
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