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CHAPTER ONE

General introduction



Chapter 1

We literally bend over backwards to make a perfect picture, combine it
with an inspiring quote, post it on social media and ... wait for the likes!
Why do we invest so much effort in being recognized and accepted by
others? And how come that being rejected can fill us with rage? What are
the underlying neural mechanisms of these emotions and behaviors? And
how do these mechanisms develop? In this dissertation, I seek out to shed
light on the nature, nurture and neural mechanisms of social emotion
regulation in childhood.

Social is Salient

The current generation of youth is the first to grow up with smartphones and
tablets from birth on. These children are constantly connected to each other
through multiplayer video gaming and social media. A 2015 survey amongst over
1200 eight-to-twelve-year-old children revealed that they spend on average six
hours on (social) media each day (Common Sense Media Inc., 2015). These
statistics show that children deal with social media and social connectedness
from an early age on. However, relatively little is known about the influence of
this intense form of social connectedness. Some studies have pointed to the
potentially addictive aspects of social media (Blackwell et al., 2017), and popular
media are warning for a society of social junkies always on the lookout for social
confirmation. However, the desire to belong to a social group is not something
new: Social acceptance is, and always has been, of key importance in life
(Baumeister and Leary, 1995). Receiving positive social feedback increases our
self-esteem and gives us a sense of belonging (Leary and Baumeister, 2000;
DeWall et al., 2011). Negative social feedback, in contrast, is related to feelings
of sadness and depression (Nolan et al., 2003) and can lead to frustration and
rage (Twenge et al.,, 2001). The current dissertation examines how children deal
with social evaluation, and what underlying mechanisms come into play. This
thesis aims to answer questions such as: How is it that some children are more
sensitive to social rejection than others? What are the neural mechanisms of
social evaluation and subsequent behavior? And what is a feasible method to
examine social evaluation and social emotion regulation in children?

Studying social interactions can be challenging as it is a complex form of
behavior that is strongly intertwined with our day-to-day lives. In order to
decompose these processes, researchers have often worked with experiments.
The advantage of an experiment is that you examine participants in a controlled
setting, making it possible to study unique aspects of complex behaviors.
Experimental paradigms are also very suitable to use in combination with
psychophysiological measures, which enables to additionally study covert
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General introduction

aspects of information processing. Social acceptance and rejection have been
studied in a variety of experimental settings, for example by manipulating
Instagram likes (Sherman et al., 2018b), by mimicking chat room conversations
(Silk et al., 2012) or by simulating peer feedback on the participant’s profile
(Somerville et al.,, 2006; Gunther Moor et al., 2010b; Dalgleish et al., 2017;
Rodman et al.,, 2017). These studies showed that social rejection can be quite
literally heartbreaking, as negative social feedback can result in cardiac slowing
(Gunther Moor et al., 2010a), which was most pronounced in young adolescents
compared to adults (Gunther Moor et al., 2014). Other studies found that social
rejection resulted in increased pupil dilation (Silk et al., 2012). The pupil becomes
more dilated in response to stimuli with a greater emotional intensity (Siegle et
al., 2003), and is suggested to reflect increased activity in cognitive and affective
processing regions of the brain.

Indeed, a wealth of neuroimaging research has shown that the
significance of social evaluation is deeply rooted in our brain. Social acceptance,
for example, has been associated with increased activity in striatal regions (Guyer
et al., 2009; Davey et al., 2010; Gunther Moor et al., 2010b; Sherman et al., 2018b),
specifically in the ventral striatum (VS, Figure 1). Numerous studies have shown
that the VS is associated with reward processing (Sescousse et al., 2013) and this
heightened activation could reflect the rewarding value of positive feedback.
Social rejection, in contrast, has been related to increased activation in midline
regions of the brain, such as the dorsal and subgenual anterior cingulate cortex
(ACC) and medial prefrontal cortex (MPFC) (Cacioppo et al., 2013; Apps et al.,
2016), see Figure 1. The dorsal ACC, together with the anterior insula (Al, Figure
1), have been suggested to signal social pain, as activity in these regions largely
overlapped with brain activity after physical pain (Eisenberger and Lieberman,
2004; Kross et al., 2011; Rotge et al.,, 2015). However, other studies found the
dorsal ACC and Al to be sensitive to expectancy violation (Somerville et al., 2006;
Cheng et al., 2019) and have suggested that these regions might be important for
evaluating social feedback in general, irrespective of its valence (Dalgleish et al.,
2017).

Previous experimental studies have thus indicated that different neural
processes can be distinguished for social acceptance and rejection in adults and
adolescents, but there remain many unanswered questions. Until now the
paradigms to study social acceptance and rejections have not been consistently
applied to children and young adolescents and there has been little emphasis on
behavioral outcomes. To really understand the effects of social acceptance and
rejection on children and their development we need a new approach, with a
targeted experimental paradigm. Prior studies have provided a solid foundation
for studying social evaluation, but an important next step is to disentangle
between neural activation that is related to general social saliency and neural
activation that is specific for negative social feedback. Understanding the latter
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Chapter 1

is especially important, as social rejection is often related to negative behavioral
outcomes such as anger and frustration.

Regulate or Retaliate?

In some individuals, negative social feedback triggers feelings of anger and
frustration, which can lead to reactive aggression (Twenge et al., 2001; Dodge et
al., 2003; Leary et al., 2006; Nesdale and Lambert, 2007; Nesdale and Duffy, 2011;
Chester et al., 2014). A tragic example of how socially excluded youth can turn
violent are school shootings, of which almost all perpetrators have a long history
of peer rejection and social exclusion (Leary et al.,, 2003). But even incidental
social rejection can lead to aggression. Reactive aggression after social rejection
has been examined experimentally by providing participants with the
opportunity to blast a loud noise towards the peer that had just socially excluded
them (Bushman and Baumeister, 1998; Twenge et al., 2001; Reijntjes et al., 2010).
The participants can set the intensity and duration of the noise blast heard by
the other person, providing them with a way to retaliate (Bushman and
Baumeister, 1998). These studies consistently showed that rejected participants
were considerably more aggressive than accepted participants (Twenge et al.,
2001; Leary et al., 2006; Reijntjes et al., 2010; DeWall and Bushman, 2011; Chester
et al., 2014; Riva et al., 2015).

The effects of social rejection in terms of behavioral aggression might be
associated with a lack of impulse control or inadequate emotion regulation
(Chester et al., 2014; Riva et al., 2015). For example, in adults it was found that
the extent to which individuals responded aggressively after social rejection was
dependent on whether the participant showed high or low executive control
(Chester et al.,, 2014). Participants with high executive control were less
aggressive after social rejection, indicating that executive control might down-
regulate aggression tendencies. It has been suggested that this form of self-
control is dependent on top-down control of the dorsolateral prefrontal cortex
(DLPFC, Figure 1) over subcortical-limbic regions (such as the VS), to inhibit
responses that lead to impulsive actions (Casey, 2015). Evidence for this
hypothesis was provided by a study using transcranial direct current stimulation
(tDCS), a method to increase neural activation in specific brain regions. Riva and
colleagues showed that increased neural activation in the lateral prefrontal cortex
during social rejection was related to decreased behavioral aggression, compared
to participants that did not receive active tDCS (Riva et al., 2015). Moreover,
stronger functional connectivity between the lateral prefrontal cortex and limbic
regions was related to less retaliatory aggression (Chester and DeWall, 2016).
Similar associations have been found for structural connectivity: stronger
connections between subcortical and prefrontal brain regions were related to less
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trait aggression (Peper et al., 2015). These studies in adults thus indicate that the
lateral prefrontal cortex - and specifically the DLPFC - might serve as a regulating
mechanism for aggression after social evaluation. However, relatively few studies
have investigated aggression following social rejection in childhood, despite the
fact that children deal with social evaluations from an early age. Moreover, as the
prefrontal cortex and executive functioning are still developing throughout
childhood, children may be more sensitive to aggressive behavior after social
rejection, as they might experience more difficulty with social emotion
regulation.

LK)

- Ao ACC

Figure 1. Brain regions implicated in social evaluation processing and social emotion
regulation. ACC- anterior cingulate cortex, MPFF- medial prefrontal cortex, DLPFC-
dorsolateral prefrontal cortex, Al- anterior insula, VS- ventral striatum.

Neurodevelopmental models

When it comes to social evaluation processing, studies in adults have shown that
a network of ACC-AI, together with subcortical regions such as the VS, are
involved in the direct effects of social rejection and acceptance. With regards to
controlling social rejection related aggression, it seems that the DLPFC is
involved. Exactly these networks are central to neurodevelopmental models such
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as the Social Information Processing Network (Nelson et al., 2005; Nelson et al.,
2016) and the Imbalance Model (Casey et al., 2008; Somerville et al., 2010). The
Social Information Processing Network (SIPN, Nelson et al. (2005); Nelson et al.
(2016)) states that social information is processed through bi-directional
communication between three nodes: the detection node, the affective node, and
the cognitive-regulation node (Figure 2). The detection node includes regions
that have been found to be important to categorize stimuli as being socially
relevant, such as the fusiform face area. Once a stimulus has been recognized as
a social stimulus, it is further processed by the affective node, which includes -
amongst others - the amygdala and the VS (nucleus accumbens). Finally, social
stimuli are processed in a network dedicated to complex cognitive operations
that is referred to as the cognitive-regulatory node, which includes prefrontal
cortical regions. The SIPN model states that goal directed behavior relies on
interactions between different (dorsal and ventral) regions within the prefrontal
cortex, that process social-emotional information from the affective node (Nelson
et al., 2005). Complementary, the Imbalance Model (Casey et al., 2008; Somerville
et al., 2010) describes the mismatch in developmental trajectories of subcortical
brain regions and the prefrontal cortex. Specifically, the gradual linear increase
of prefrontal cortex maturation is slower than the non-linear increase of affective-
limbic regions such as the VS. This induces an imbalance between bottom-up
limbic regions and top-down control regions, which is most pronounced during
adolescence (Figure 2). The imbalance model suggests that this imbalance
between subcortical and cortical maturation hinders social emotion regulation
and can results in risky, reward driven behavior.

Previous studies and theoretical models have shown that social emotion
regulation is not solely dependent on isolated brain regions, but relies on a
network of integrated connections between subcortical and cortical brain regions
(Olson et al., 2009; Chester et al., 2014; de Water et al., 2014; Peper et al., 2015;
Silvers et al., 2016b; van Duijvenvoorde et al., 2016a). Most of these studies have
focused on adolescence or only included small samples of children. It therefore
remains a question whether these integrated subcortical-cortical brain networks
are already in place during childhood. The developmental phase towards the
teenage years, in which the first friendships are formed, is an underexposed
phase in experimental research. Theoretical perspectives have suggested that the
increase of executive functions and maturation of DLPFC during childhood are
important underlying mechanisms for developing a variety of self-regulation
functions in childhood (Bunge and Zelazo, 2006; Diamond, 2013). Few studies
have investigated the development of social emotion regulation during
childhood, despite empirical findings showing that middle-to-late childhood
marks the most rapid changes in executive functions (Luna et al., 2004; Zelazo
and Carlson, 2012; Peters et al., 2016). This is a gap in the literature that needs
to be investigated. This dissertation takes an important step by focusing
precisely on the age of seven to eleven, the pre- to early pubertal years.
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Figure 2. Neurodevelopmental models of social emotion regulation. Left: a schematic
depiction of the Social Information Processing Network (SIPN), adapted from Nelson,
Pine and Tone (2005). Right: the Imbalance model, adapted from Casey, Jones and Hare
(2008).

Hot vs. Cool Control

In line with the neurodevelopmental models, previous experimental
neuroimaging studies have shown that children become better at regulating their
emotions with increasing age (Silvers et al., 2012), which has been suggested to
be related to the development of cognitive control (Diamond, 2013; Casey, 2015).
The DLPFC has been specifically pointed out as an important region for cognitive
control development (Luna et al., 2004; Luna et al., 2010; Crone and Steinbeis,
2017). Most of these studies have focused on ‘cool’ cognitive control, that is to
say self-control in a non-emotional setting (Welsh and Peterson, 2014). However,
whether the same ‘cool’ regulatory control functions are also important for
regulation of ‘hot’ emotions in social contexts is currently unknown (Zelazo and
Carlson, 2012; Welsh and Peterson, 2014). Previous studies on ‘hot’
emotional control have worked with the now famous delay discounting paradigm
(Mischel et al., 1989), which estimates an individual’s preference for a smaller
immediate reward over larger, delayed rewards (Eigsti et al., 2006; Olson et al.,
2007; Scheres et al., 2014). This classic paradigm has been used extensively, as
it is suitable for participants in all age ranges, and has shown to be predictive of
long-term life outcomes (i.e., Mischel et al. (1989); Casey et al. (2011); but see Watts
et al. (2018) for more nuanced findings using a replication design). These studies showed
that the ability to delay gratification is very difficult for young children and
improves with increasing age (Mischel et al., 1989; Olson et al., 2009; Casey et
al.,, 2011; de Water et al., 2014). Studies in adults and adolescents additionally
showed that stronger structural brain connectivity between subcortical (VS)
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regions and the prefrontal cortex was related to better delay of gratification
abilities (Peper et al., 2013; van den Bos et al., 2015).

Regulating aggression in the case of negative social feedback can been
seen as a similar delay of gratification: For some individuals it might feel good to
retaliate on the short term (Chester and DeWall, 2016), but on the long term this
could result in even more social rejection (Lansford et al, 2010). In fact,
examining aggression following social rejection can provide an excellent case to
study ‘hot’ emotion regulation in an ecological valid social context. This requires
a new social evaluation paradigm that exposes the mechanisms through
experimental design, ideally combined with neuroimaging measures to inform
about brain functions and connections. Such a paradigm can shed light on the
underlying neural mechanisms of social acceptance and rejection, and can
provide information on why some children are more sensitive to social evaluation
than others.

Social Network Aggression Task

In order to gain a better understanding of the mechanisms of social acceptance
and rejection, an innovative experimental paradigm is needed that is suitable to
combine with neuroimaging. Task-based functional magnetic resonance imaging
(fMRI) is based on contrasts between different conditions (for a concise overview
of fMRI methodology see Glover (2011)). Most social evaluation studies till date
have included only two conditions: participants receive either positive or
negative social feedback from unknown, same-aged peers (Somerville et al., 2006;
Gunther Moor et al., 2010b; Silk et al., 2014; Rodman et al., 2017). However, such
paradigms are unable to investigate brain regions that are active after both
positive and negative feedback, as these regions are washed out when both
conditions are contrasted against each other. In order to understand the neural
mechanisms of social evaluation, it is important to disentangle if regions are
specifically sensitive to social rejection, or whether they are sensitive to social
evaluation in general, and might signal for social salience (see also Dalgleish et
al. (2017)). Therefore, we developed a new social evaluation paradigm that
included a neutral feedback condition: the Social Network Aggression Task
(SNAT), see Figure 3. This paradigm enables to study regions that signal for
general social salience, by contrasting both positive and negative feedback to a
neutral social feedback condition.

Few studies have investigated the neural mechanisms of ‘hot’ social
emotion regulation during childhood, however, today’s youth is constantly
connected to each other and they find themselves in an inexhaustible and
unceasing pool of social information and subsequent emotions. It is therefore
important that we understand how mechanisms of social emotion regulation
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develop during childhood. In order to experimentally examine developmental
changes in social emotion regulation, we included a retaliation aspect to the
Social Network Aggression Task (SNAT, Figure 3). After the participants viewed
the positive, neutral or negative social feedback, participants got the opportunity
to blast a loud noise towards the peer, allowing us to directly examine aggression
following social evaluation. By examining differences in aggression regulation
after social evaluation within and across individuals, we can examine why some
children might be more sensitive for social rejection. By combining this new
experimental paradigm with neuroimaging, important insights in the underlying
mechanisms of social emotion regulation can be gathered.

[ﬂ) s u-ﬁfliﬂ)))

Figure 3. Social network aggression task (SNAT), a newly developed social evaluation
paradigm that includes positive, neutral and negative social feedback from unknown,
same-aged peers. In response to the peer feedback, participants are able to blast a loud
noise towards the peer, which is used as an index of aggression. The faces used in this
figure are cartoon approximations of the photo stimuli used in Achterberg et al.
(2016D).

Nature and Nurture

In a rapid changing digital world with dense social connectedness, it is important
to understand why some children are more sensitive to social evaluation than
others. Perhaps some children are more sensitive through genetic predisposition.
On the other hand, it is possible that specific environments stimulate certain
social behavior. An important scientific question is to what extent development
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is biologically based or environmentally driven. The caption of this section
specifically states nature and nurture, as a broad range of literature has shown
that these two are strongly intertwined (Polderman et al.,, 2015). But to what
extent nature and nurture contribute to (brain) development has received
relatively little attention in developmental neuroscience. One particularly elegant
way to study this is using a twin design: Monozygotic (MZ) twins share 100% of
their genes, whereas dizygotic (DZ) twins share, on average, 50% of their genes.
Therefore, within-twin correlations that are stronger in MZ twins compared to DZ
twins indicate heritability (Figure 4). Behavioral genetic modeling, a specific
structural equation model based on twin similarities, can provide estimates for
this heritability (Neale et al., 2016). The ‘ACE’ model divides similarities among
twin pairs into similarities due to additive genetic factors (A) and common
environmental factors (C), while dissimilarities are ascribed to unique non-shared
environmental influences and measurement error (E), see Figure 4. High
estimates of A indicate that genetic factors play an important role, whilst C
estimates indicate influences of the shared environment. If the E estimate is the
highest, the variance is mostly accounted for by unique environmental factors
and measurement error (Neale et al., 2016).

K —_ Mz \ N T/WLD\A 7

<
i
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Twin 2 ) Twin B

Figure 4. Twin design: Within-twin correlations that are stronger in monozygotic (MZ)
twins compared to dizygotic (DZ) twins indicate heritability (NB: figure is based on
hypothetical data). Behavioral genetic modeling can provide heritability estimates by
assessing the proportion of variance explained by additive genes (A), common, shared
environment (C) and unique environment and measurement error (E). In this ACE
model, the correlation between factor A is set to r=1 for MZ twins and to r=0.5 for DZ
twins, based on the percentage of overlapping genes. As both MZ and DZ twins share
the same environment, the correlation of factor C is set to 1 for all twins. The E factor
is freely estimated.

-
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Previous studies using behavioral data showed high reliability of trait aggression
(Miles and Carey, 1997; Rhee and Waldman, 2002; Ferguson, 2010; Tuvblad and
Baker, 2011; Porsch et al.,, 2016). However, the majority of these studies have
relied on questionnaire data and very few have used experiments. Also, the
number of studies that have investigated heritability of neural mechanisms is
scarce. The few studies that investigated genetic and environmental influences
on brain function in adults reported significant influences of genetics on
functional connectivity, with little shared environmental influences (for an
overview, see Richmond et al. (2016)). It is important to note that heritability
estimates for brain anatomy and connectivity differ across development such
that heritability estimates are stronger in adulthood than in childhood (Lenroot
et al,, 2009; van den Heuvel et al.,, 2013). Unraveling the extent to which brain
development in childhood is influenced by genetics and environment can provide
important insights in which neural mechanisms might be more sensitive to
environmental influences (Euser et al.,, 2016). Specifically, using a behavioral
genetic approach can provide insights in the etiology of aggression following
social evaluation and might offer a starting point for interventions aimed to
improve social emotion regulation.

Imaging the Childhood Brain

The majority of previous experimental neuroimaging studies in youth were aimed
at adolescence. Some also included children younger than ten years of age, but
the sample sizes were often very small. Why has there been so little emphasis on
imaging pre-pubertal youth? One possible reason for this could be because
scanning children can be very challenging: The MRI scanner is quite imposing
and can induce anxiety in children (Tyc et al., 1995; Durston et al., 2009). Such
scanner related distress makes it less likely for children to successfully finish an
MRI scan, resulting in reduced scan quantity and quality in children compared to
older samples (Poldrack et al., 2002; Satterthwaite et al., 2013). However, in order
to investigate individual differences (i.e., why are some children more sensitive
to social evaluation than others), large sample sizes are required. Not only do we
need large sample sizes to investigate inter-individual (between-person)
differences in social behavior, multiple waves of that same large sample are
needed to capture intra-individual (within-person) differences across
development (Telzer et al., 2018). That is to say, to truly capture development we
need longitudinal studies. Although more and more studies are using
longitudinal methods, these are still not the norm, despite the overall notion that
longitudinal research is the golden standard to study changes across
development (Pfeifer et al., 2018).
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An additional difficulty when it comes to neuroimaging studies in
childhood is that different studies seldom used the same experimental paradigm.
This makes it difficult to study reproducibility of behavioral and neural findings.
Indeed, the (lack of) reproducible results in psychological studies has received a
lot of attention (Ioannidis, 2005; Schmidt, 2009; Open Science, 2015). Moreover,
findings that show no evidence of significance when analyzed individually (i.e.,
due to small sample size and/or low statistical power) might provide stronger
evidence when collapsed across samples (Scheibehenne et al, 2016). One
particularly elegant way to examine a new paradigm is to use a pilot, test and
replication design within the same project and combine results meta-analytically.
However, to be able to divide a childhood sample into subsamples - again -
requires a large sample size.

All of these factors were taken into account when we designed the
longitudinal twin study of the Leiden Consortium on Individual Development (L-
CID), Samen Uniek in Dutch. The L-CID study consists of two cohorts (early
childhood and middle childhood) that are being followed for six constructive
years, with annual home or lab visits (Euser et al., 2016). The majority of studies
in the current thesis (Chapters 2, 4, 5, 6, and 7) are based on data from the
middle childhood cohort. Specifically, I made use of the data of the first wave,
and a follow up measure two years later. The study included 512 children (256
families) between the ages 7 and 9 at time point 1 (mean age: 7.94+0.67; 49%
boys, 55% MZ). This large sample size provides sufficient statistical power to
examine childhood brain development, specifically when taken into account that
neuroimaging data in developmental samples are more prone to data loss and
artifacts due to movement (O'Shaughnessy et al., 2008).

Dissertation OQutline

The large sample size of the L-CID study allowed me to test for within-sample
replication, thereby contributing to the debate about reproducibility of
neuroscientific patterns (Open Science, 2015). In doing so, I first examined the
SNAT paradigm using a design with built-in replication and meta-analysis. In
chapter 2, I tested the SNAT paradigm in separate pilot, test and replication
samples and combined the results meta-analytically. The aim of this study was
to detect robust behavioral patterns and neural signals related to social feedback,
a crucial first step in examining social evaluation processing in childhood. Next,
in chapter 3, I investigated neural processes of social evaluation in adults, were
I additionally investigated brain-behavior associations to shed light on individual
differences in the neural mechanisms for social emotion regulation. Unraveling
these neural patterns in adults provided an index to compare the results in
middle childhood with.
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After validating the experimental paradigm in children and adults, the
next step was to examine to what extend individual variation in social evaluation
were explained by genetics and environmental influences. That is, why are some
children more sensitive to social evaluation than others, and how do nature and
nurture contribute to this? To examine this, in chapter 4 I conducted behavioral
genetic analyses on neural activation during social evaluation using a large
developmental sample. Ultimately, in chapter 5, I examined individual
differences in longitudinal changes of aggression regulation within childhood.
Within-person changes provide a better indication of brain-behavior associations
over time and can provide an actual reflection of development. In order to test
within-person changes, I examined how neural mechanisms changed within
individuals from middle (seven-to-nine-year-old) to late (nine-to-eleven-year-old)
childhood, and to what extent these neural changes were related to changes in
behavioral aggression.

Taken together, the first four chapters are devoted to an in-depth
examination of social emotion regulation using the innovative SNAT paradigm.
This paradigm allows to test neural mechanisms of social acceptance and
rejection, as well as behavioral aggression in response to social feedback.
Previous studies have suggested that social emotion regulation relies on a
network of integrated connections between subcortical and cortical prefrontal
brain regions (Olson et al., 2009; Chester et al., 2014; de Water et al., 2014; Peper
et al., 2015; Silvers et al.,, 2016b; van Duijvenvoorde et al., 2016a). To date it
remains an open question whether these networks are already in place during
childhood, as previous studies often used older samples or only included a small
sample of children. As L-CID compromises a large and statistically strong sample,
I was able to investigate functional brain connectivity specifically in childhood.
In chapter 6, I investigated the heritability of subcortical-PFC functional
connectivity in childhood. The aim of this study was to test whether the
subcortical-cortical connections that are central in neurodevelopmental models
are already in place in childhood. Here I again made use of the large sample by
including an in-sample replication approach to examine the robustness of the
findings. Additionally, in chapter 7, I provide a comprehensive overview of
pitfalls and possibilities in neuroimaging young children, which provides
important methodological insights. Specifically, I examined what environmental
as well as genetic factors contribute to scan quantity and quality. Here I explicitly
compared different MRI modalities, including task-based fMRI, anatomical MRI,
and structural and functional brain connectivity measures.

The ultimate goal of developmental neuroscience is to examine brain
development from childhood, throughout adolescence, into adulthood and relate
neural development to behavioral outcomes. A first step in that direction for
social emotion regulation has been taken by relating structural brain connectivity
to the ability to delay gratification (Olson et al., 2009; de Water et al., 2014; Peper
et al, 2015). In chapter 8 I investigated the development of structural
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subcortical-PFC connectivity and how maturation of this track across
development was predictive for delay discounting skills. For this chapter, I used
the Braintime data set (van Duijvenvoorde et al.,, 2016b), a cohort-sequential
design including participants aged 8-28, which enabled me to investigate both
linear and non-linear brain maturation (see also Braams et al. (2015); Peters and
Crone (2017). Lastly, in chapter 9 the findings of the separate chapters are
summarized and implications that arise from these findings are discussed in
detail.
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Chapter 2

Abstract

Being accepted or rejected by peers is highly salient for developing social
relations in childhood. We investigated the behavioral and neural correlates of
social feedback and subsequent aggression in 7-10-year-old children, using the
Social Network Aggression Task (SNAT). Participants viewed pictures of peers that
gave positive, neutral or negative feedback to the participant’s profile. Next,
participants could blast a loud noise towards the peer, as an index of aggression.
We included three groups (N=19, N=28 and N=27) and combined the results meta-
analytically. Negative social feedback resulted in the most behavioral aggression,
with large combined effect-sizes. Whole brain condition effects for each separate
sample failed to show robust effects, possibly due to the small samples.
Exploratory analyses over the combined test and replication samples confirmed
heightened activation in the medial prefrontal cortex (mPFC) after negative social
feedback. Moreover, meta-analyses of activity in predefined regions of interest
showed that negative social feedback resulted in more neural activation in the
amygdala, anterior insula and the mPFC/anterior cingulate cortex. Together, the
results show that social motivation is already highly salient in middle childhood,
and indicate that the SNAT is a valid paradigm for assessing the neural and
behavioral correlates of social evaluation in children.

Keywords: Social feedback; Social rejection; Aggression; Childhood; Amygdala;
Meta-analysis

26



Social evaluation in childhood

Introduction

Social acceptance is of key importance in life. Receiving positive social feedback
increases our self-esteem and gives us a sense of belonging (Thomaes et al.,
2011). Receiving negative social feedback, in contrast, can induce feelings of
depression, and rejected people often react with withdrawal (Nolan et al., 2003).
Social rejection can, however, also trigger feelings of anger and frustration, and
can lead to reactive aggressive behavior (Dodge et al., 2003; Nesdale and Lambert,
2007; Chester et al., 2014; Riva et al.,, 2015; Achterberg et al.,, 2016b). Most
developmental studies have focused on the withdrawal reaction after social
rejection, while relatively few have examined reactive aggression. The few
studies that examined rejection-related aggression showed that early peer
rejection was associated with an increase in aggression in children aged 6-8
(Dodge et al., 2003; Lansford et al., 2010). Several prior studies have also shown
that rejection can lead to immediate aggression (Chester et al., 2014; Riva et al.,
2015; Achterberg et al., 2016b). These immediate effects may be associated with
emotional responses to rejection and a lack of impulse control. Although several
studies have focused on neural processes involved in negative versus positive
social feedback processing, the neural processes involved in dealing with
negative or positive social feedback versus a neutral baseline in middle childhood
are currently unknown.

Experimental research in adults has examined social evaluation and
aggression using a peer acceptance and rejection task. Initially developed as a
social feedback task (Somerville et al, 2006), a recent adaptation allowed
participants to deliver noise blasts to peers who had rejected them based on a
personal profile (Achterberg et al.,, 2016b), testing the potential expression of
reactive aggression. Negative social feedback signaling rejection was associated
with louder noise blasts and increased activity in bilateral anterior insula and
medial prefrontal cortex (mPFC)/ anterior cingulate cortex (ACC) relative to
neutral feedback (Achterberg et al., 2016b). This latter region is suggested to play
an important role in evaluating others’ behaviors and in estimating others’ level
of motivation (Flagan and Beer, 2013; Apps et al.,, 2016). Interestingly, these
regions were also more active after positive feedback (compared to neutral
feedback), suggesting that both negative and positive feedback leads to social
evaluative processes in adults. Other studies also reported the involvement of
subcortical regions in processing social feedback. Positive social feedback was
found to result in greater activity in striatal regions (Gunther Moor et al., 2010b;
Achterberg et al., 2016b), which possibly reflects the rewarding value of this type
of feedback (Guyer et al.,, 2014). Furthermore, peer interactions have been
associated with increased amygdala activity, indicating their affective salience
(Guyer et al., 2008; Masten et al., 2009; Silk et al., 2014).

Several studies examined the neural correlates of social evaluation in
children and adolescents. These studies reported increased neural activity to
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positive relative to negative feedback in older adolescents and adults (16-25) as
indicated by increased activity in the ventral mPFC, the subcallosal cortex, and
the ACC (Gunther Moor et al, 2010b). Another study found increased pupil
dilation in response to social rejection (compared to acceptance) in children aged
9-17 (Silk et al., 2012). Pupil dilation is an index of increased activity in cognitive
and affective processing regions of the brain, such as the ACC and amygdala (Silk
et al., 2012), and the pupil becomes more dilated in response to stimuli with a
greater emotional intensity (Siegle et al., 2003). Interestingly, the pupil dilation
effect was larger for older participants, indicating that adolescents reacted more
strongly to rejection than children. The current study examined the neural
correlates of social evaluation in middle childhood, prior to adolescence, because
the first long-lasting friendships gradually emerge around this time (Berndt,
2004). Furthermore, we tested whether peer rejection in children results in
behavioral aggression, in a similar way as was previously observed in adults
(Chester et al., 2014; Riva et al., 2015; Achterberg et al., 2016b).

Thus, our aim was to investigate 7-10-year-old children’s responses to
social evaluation in terms of neural activity and reactive behavioral aggression.
For this purpose, we used the Social Network Aggression Task (SNAT), that
elicited robust neural and behavioral responses in adults (Achterberg et al.,
2016b), but has not yet been used with children. During the SNAT, participants
viewed pictures of peers who gave positive, neutral or negative feedback to the
participant’s profile. Next, participants could deliver an imagined noise blast
towards the peer, as an index of (imagined) aggression or frustration. Since recent
studies have reported concerns about the replicability of psychological science
(for example see Open Science (2015)), we used three samples to validate the
paradigm: a pilot sample, a test sample, and a replication sample. Moreover,
findings that may show no evidence of significance when analyzed individually
might provide stronger evidence when collapsed across experiments, as was
recently shown (Scheibehenne et al., 2016). Therefore we also include a meta-
analytic combination of the results across the three samples.

On the behavioral level we expected that the pattern of aggression after
positive, neutral, and negative feedback would be similar across the pilot, test
and replication samples, with negative feedback resulting in the highest levels of
aggressive behavior. On the neural level we examined both the general contrast
of social evaluation (all feedback conditions vs. baseline; see Supplementary
Materials) and the condition-specific contrasts. To further investigate condition
effects, that is the effect of negative vs. neutral vs. positive feedback, we used
regions of interest (ROI) analyses. The individual ROI analyses were meta-
analytically combined in order to test for robust condition effects across our
samples. Based on studies in adults, the predictions were that negative social
feedback would be associated with increased activity in the amygdala (Masten et
al., 2009), bilateral insula, and mPFC/Anterior Cingulate Cortex’ gyrus ACCg
(Somerville et al., 2006; Achterberg et al., 2016b). While prior studies tested only
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adults and adolescents, this study tested for the first time if the same regions are
engaged in children, including not only positive and negative social feedback but
also a neutral social feedback baseline (see Achterberg et al., 2016), and examined
the relations with subsequent aggression.

Methods

Participants

Participants in this study were part of the larger, longitudinal twin study of the
Leiden Consortium on Individual Development (L-CID). Families with a twin born
between 2006 - 2009, living within two hours travel time from Leiden, were
recruited through the Dutch municipal registry and received an invitation to
participate by post. Parents could show their interest in participation using a
reply card. For the larger L-CID study, only same-sex twins were included.
Opposite-sex twins were included only in the pilot study. The pilot sample
consisted of 20 children between the ages of 7 and 10 (11 boys, M=8.16 years,
SD=0.95), including 9 opposite-sex twin pairs. Two additional participants were
recruited from a participant data base at Leiden University. Two months after the
pilot sample, the test and replication samples were recruited. The test and
replication sample consisted of 30 same-sex twin pairs (16 boys, M=8.22 years,
SD=0.67), including 7 monozygotic pairs. After data collection, but prior to data
analyses, first and second born children (within the twin pair) were randomly
assigned to the test and replication sample. For a schematic overview of sample
selection see Figure S.1 (2.Supplementary Materials). The Dutch Central
Committee on Human Research (CCMO) approved the study and its procedures.
Written informed consent was obtained from both parents. All participants were
fluent in Dutch, had normal or corrected-to-normal vision, and were screened for
MRI contra indications. All anatomical MRI scans were reviewed and cleared by a
radiologist from the radiology department of the Leiden University Medical
Center (LUMC). No anomalous findings were reported.

Six participants were excluded due to excessive head motion, which was
defined as >1 mm movement in >20% of the volumes (one from the pilot sample,
two from the test sample and three from the replication sample). The final pilot
sample consisted of 19 participants, including 8 twin pairs (10 boys, M=8.18
years, SD=0.97), the final test sample consisted of 28 participants (12 boys,
M=8.23 vyears, SD=0.67) and the final replication sample consisted of 27
participants (12 boys, M=8.28 years, SD=0.65). Demographics of the final samples
are listed in Table 1. Participants’ intelligence (IQ) was estimated with the subsets
‘similarities’ and ‘block design’ of the Wechsler Intelligence Scale for Children,
third edition (WISC-III; Wechsler, 1997). For all three samples, estimated IQs were
in the normal to high range (see Table 1). In all three samples, IQ scores were
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unrelated to behavioral outcomes of the SNAT (noise blast duration after positive,
neutral, negative feedback, all p’s > .214).

Table 1. Demographic characteristics of the sample.

Pilot Test Replication
N 19 28 27
% boys 53% 43% 44%
Left handed none 3 6
AXIS-I disorder none none 1 (ADHD)
Mean Age (SD) 8.18 (0.97) 8.23 (0.67) 8.28 (0.65)
Age Range 7.20 -10.99 7.03 - 8.97 7.03 - 8.97
Mean IQ (SD) 102.76 (11.54) 101.57 (12.33) 104.54 (10.58)
IQ range 85.00 - 127.50 77.50 - 125.00 85.00 - 132.50

Social Network Aggression Task

The Social Network Aggression Task (SNAT) as described in Achterberg et al.
(2016b) was used to measure (imagined) aggression after social evaluation. The
task was programmed in Eprime (version 2.0.10.356). Prior to the fMRI session,
the children filled in a personal profile at home, which was handed in at least one
week before the actual fMRI session. The profile page consisted of questions such
as: ‘What is your favorite movie?’, ‘What is your favorite sport?’, and ‘What is your
biggest wish?’. Children were informed that their profiles were reviewed by other,
unfamiliar, children. During the SNAT the children were presented with pictures
and feedback from same-aged peers in response to their personal profile. Every
trial consisted of feedback from a new unfamiliar child. This feedback could
either be positive (‘I like your profile’, or ‘I like the same movies and the same
sports’, visualized by a green thumb up); negative (‘I do not like your profile’, or
‘T hate your sport and don’t like that movie’; red thumb down) or neutral (‘I don’t
know what to think of your profile’, or ‘I like your sport, but hate that movie’,
grey circle). Following each peer feedback, the children were instructed to
imagine that they could send a loud noise blast to this peer. We specifically
instructed the children to imagine this to reduce deception, and studies showed
that imagined play also leads to aggression (Konijn et al., 2007). The longer they
pressed the button the more intense the noise would be, which was visually
represented by a volume bar (Figure 1). To keep task demands as similar as
possible between the conditions, participants were instructed to always press the
button, but they could choose whether they wanted a short noise at low intensity
or a long noise at high intensity.
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Unbeknownst to the participants, others did not judge the profile, and the photos
were created by morphing two children of an existing data base (matching the
age range) into a new, non-existing child. Peer pictures were randomly coupled
to feedback, ensuring equal gender proportions for each type of feedback.
Deception was assessed using an exit interview with open questions, such as
‘what did you think of the game’, and ‘what did you think of the noises that you
could delivered’. None of the participants expressed doubts about the cover
story. Participants were familiarized with the MRI scanner with a practice
session in a mock scanner. Then participants received instructions on how to
perform the SNAT and the children were exposed to the noise blast twice during
a practice session: once with stepwise build-up of intensity and once at maximum
intensity. Participants did not hear the noise during the fMRI session, to prevent
that pressing the button would punish the participants themselves. To familiarize
participants with the task, participants performed six practice trials. After the
practice session, one of the twins continued with the actual scanning session,
while the other twin performed the WISC-III and other behavioral tasks. First-born
and second-born children were randomly assigned to the scan session or
behavioral session as their first task. When the first child completed the scanning
session, he/she continued with the WISC-III and behavioral tasks while the other
child participated in the scanning session.

2500 ms
500 ms 3000 — 5000 ms 0—- 11550 ms

Figure 1. Display of one trial of the Social Network Aggression Task (SNAT).

The SNAT consisted of 60 trials, three blocks of 20 trials for each social feedback
condition (positive, neutral, negative), that were presented semi-randomized to
ensure that no condition was presented more than three times in a row. The first
block consisted of 7 positive, 6 neutral, and 7 negative feedback trials; the second
block consisted of 8 positive, 6 neutral, 6 negative feedback trials; and the third
block consisted of 5 positive, 8 neutral, and 7 negative feedback trials. The
optimal jitter timing and order of events were calculated with Optseq 2 (Dale,
1999). Each trial started with a fixation screen (500 ms), followed by the social
feedback (2500 ms). After another jittered fixation screen (3000-5000 ms), the
noise screen with the volume bar appeared, which was presented for a total of
5000 ms. Children were instructed to deliver the noise blast by pressing one of
the buttons on the button box attached to their legs, with their right index finger.
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As soon as the participant started the button press, the volume bar started to fill
up with a newly colored block appearing every 350 ms. After releasing the button,
or at maximum intensity (after 3500 ms), the volume bar stopped increasing and
stayed on the screen for the remainder of the 5000 ms. Before the start of the
next trial, another jittered fixation cross was presented (0 -11550 ms) (Figure 1).
The length of the noise blast duration (i.e., length of button press) was used as a
measure of aggression.

MRI data acquisition

MRI scans were acquired with a standard whole-head coil on a Philips 3.0 Tesla
scanner. The data of the pilot sample were collected on a Philips Achieva TX MR
system, the data of the test and replication sample were collected on a Philips
Ingenia MR system. To prevent head motion, foam inserts surrounded the
children’s heads. The SNAT was projected on a screen that was viewed through a
mirror on the head coil. Functional scans were collected during three runs T2*-
weighted echo planar images (EPI). The first two volumes were discarded to allow
for equilibration of T1 saturation effect. Volumes covered the whole brain with a
field of view (FOV) = 220 (ap) x 220 (r]) x 111.65 (fh) mm; repetition time (TR) of
2.2 seconds; echo time (TE) = 30 ms; flip angle (FA) = 80°; sequential acquisition,
37 slices; and voxel size = 2.75 x 2.75 x 2.75 mm. In the pilot sample the FOV was
220 (ap) x 220 (r]) x 114.68 (fh) mm, with a sequential acquisition of 38 slices. All
other parameters were equal. Subsequently, a high-resolution 3D Tlscan was
obtained as anatomical reference (FOV= 224 (ap) x 177 (r]) x 168 (fh); TR = 9.72
ms; TE = 4.95 ms; FA = 8°; 140 slices; voxel size 0.875 x 0.875 x 0.875 mm). In
the pilot sample the TR = 9.79 and the TE = 4.60, all other parameters were equal.

MRI data analyses

Preprocessing

MRI data were analyzed with SPM8 (Wellcome Trust Centre for Neuroimaging,
London). Images were corrected for slice timing acquisition and rigid body
motion. Functional scans were spatially normalized to T1 templates. Volumes of
all children were resampled to 3x3x3 mm voxels. Data were spatially smoothed
with a 6 mm full width at half maximum (FWHM) isotropic Gaussian kernel.
SPM8’s ARTrepair toolbox (Mazaika et al., 2009) was used to detect and fix bad
slices in preprocessed functional data. Slices with >1 mm scan to scan motion
were detected and repaired. Children with >20% repaired slices were excluded
from further analyses.

First-level analyses
Statistical analyses were performed on individual subjects’ data using a general
linear model. The fMRI time series were modeled as a series of two events
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convolved with the hemodynamic response function (HRF). The onset of social
feedback was modeled as the first event with a zero duration and with separate
regressors for the positive, negative, and neutral peer feedback. The start of the
noise blast was modeled for the length of the noise blast duration (i.e., length of
button press) and with separate regressors for noise blast after positive, negative,
and neutral feedback. Trials on which the participants failed to respond in time
were modeled separately as covariate of no interest and were excluded from
further analyses. On average 7.3% of the trials were invalid (pilot: 7.8%, test: 7.3%,
replication: 6.5%), with similar proportions of positive (6.9%), neutral (7.2%) and
negative (7.3%) invalid trials. All participants had at least 10 trials for each
feedback type. To account for possible motion induced error that had not been
solved by realignment and ARTrepair, we included six additional motion
regressors (corresponding to the three translational and rotational directions) as
covariates of no interest. The least squares parameter estimates of height of the
best-fitting canonical HRF for each condition were used in pairwise contrasts. The
pairwise comparisons resulted in subject-specific contrast images.

Higher-level group analyses

Subject-specific contrast images were used for the group analyses. Given that the
all feedback > fixation baseline generally results in strong and robust activity, we
validated our replication approach using this contrast (for results see
Supplementary Material). Our main analyses focus on the condition specific
contrasts (e.g. ‘positive vs. negative’ feedback), using t-tests. Results were False
Discovery Rate (FDR) cluster corrected (pFDR<.05), with a primary voxel-wise
threshold of p<.005 (uncorrected) (Woo et al., 2014). Cluster-extend based
thresholding has relatively high sensitivity (Smith and Nichols, 2009) and takes
into account that individual voxel activations are not independent of the
activations of voxels nearby (Heller et al., 2006). We set the primary p-value at
p<.005 to strike the balance between too liberal cluster defining primary
thresholds (e.g. p<.01; which can induce Type I errors) and more conservative
primary thresholds (e.g. p<.001; which can induce Type II errors). Recently,
cluster corrections have been debated for potential high Type I errors (Eklund et
al.,, 2016), but the current three-sample design should reduce the risk for
coincidental findings. Coordinates for local maxima are reported in MNI space.

Region of Interest analyses

To extract patterns of activation in functionally defined clusters, SPM8’s MarsBaR
toolbox (Brett et al., 2002) was used. Besides ROIs derived from whole brain
comparisons, we also performed analyses on three predefined ROIs based on
adult social evaluation literature. These were the amygdala (from the Automated
Anatomical Labeling (AAL) atlas (Tzourio-Mazoyer et al.,, 2002), left and right
combined, center of mass (x,y,z) right: 27,-1, -19; left: -24, -2, -19), the anterior
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insula (from the conjunction contrast of Achterberg et al. (2016b); left and right
combined, center of mass (x,y,z) right: 34, 21, 0; left: -32, 20, -6) and the
mPFC/ACCg (from the conjunction contrast of (Achterberg et al., 2016b)), see
Figure 4a. Parameter estimates (PE, average Beta values) were extracted for the
ROI analyses.

Statistical analyses

For noise blast duration, we first computed split-half reliability analyses.
Positive, neutral and negative trials were randomly split in half and Pearson’s
correlation coefficients were calculated between both halves for each condition
in all three samples. Split-half reliability analyses showed that the SNAT
displayed excellent reliability in all three conditions: noise blast duration after
positive (pilot: r=.85, test: r=.96, replication: r=.96; all p’s<.001), neutral (pilot:
r=.83, test: r=.90, replication: r=.89; all p’s<.001) and negative social feedback
(pilot: r=.89, test: r=.94, replication: r=.84; all p’s<.001). Next, we used repeated
measures ANOVA to investigate the noise blast duration after positive, neutral,
and negative feedback in the three samples. Greenhouse-Geisser corrections were
applied when the assumption of sphericitiy was violated. Pairwise comparisons
were Bonferroni corrected. When outliers were detected (Z-value <-3.29 or >3.29),
scores were winsorized (Tabachnick and Fidell, 2013). To compare the behavioral
and neural effects over the different samples, we computed combined effect
sizes using the Comprehensive Meta-Analysis (CMA) program (Borenstein et al.,
2005).

Results

Behavioral results: Noise blast duration

For each of the three samples (pilot, test, and replication) we performed a
repeated measures ANOVA on noise blast duration after positive, negative, and
neutral feedback. Results of the pilot sample showed a significant main effect of
type of social feedback on noise blast duration, F(2, 36)=29.55, p<.001, w?= 0.46),
see Figure 2. Pairwise comparisons revealed that noise blast duration after
negative feedback (M=2718 msec, SD=629) in the pilot sample was significantly
longer than noise blast duration after neutral feedback (M=1725 msec; SD=470,
p<.001, d= 1.78), and after positive feedback (M=1274 msec; SD=782, p<.001, d=
2.04). Noise blast duration after neutral feedback was significantly longer than
after positive feedback (p=.007, d= 0.62). These results were confirmed in the test
sample (F(2, 54)=29.72, p<.001, w2 = 0.30). Participants in the test sample also
gave significant longer noise blasts after negative feedback (M=2882 msec;

34



Social evaluation in childhood

SD=790), compared to neutral feedback (M=2024 msec; SD=775, p<.001, d=1.10),
and positive feedback (M=1501 msec; SD=966, p<.001, d= 1.57). Noise blast
duration after neutral feedback was also significantly longer than after positive
feedback (p<.001, d= 0.57), see Figure 2. A similar pattern was found in the
replication sample (F(2, 52)=34.18, p<.001, ®»3%0.39). Participants in the
replication sample also gave significant longer noise blast after negative feedback
(M=2967 msec; SD=573) compared to neutral feedback (M=1967 msec; SD=636,
p<.001, d= 1.65) and positive feedback (M=1537 msec; SD=942, p<.001, d= 1.86).
Noise blast duration after neutral feedback was also significantly longer than
after positive feedback (p=.007, d= 0.50), see Figure 2.

To combine the results of the three different samples, we performed a
meta-analysis. The difference between neutral and negative feedback showed a
large combined effect size (d=1.41, 95% confidence interval (CI): 0.97-1.84,
p<.001). The difference between positive and negative feedback also showed a
large combined effect size (d=1.74, 95% CI: 1.19-2.29, p<.001). The combined
effect for the difference between positive and neutral was medium in size
(d=0.55, 95% CI: 0.39 - 0.723, p<.001). Study outcomes were homogeneous; there
was no heterogeneity in the results.
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Figure 2. Noise blast duration across the different social feedback conditions for the
pilot, test, and replication sample. Error bars display standard error of mean. °
significant differences for sample with matching color. * significant combined effect
sizes in the meta-analysis.
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Neural activity: Whole brain and ROI analyses

The general contrast (all feedback conditions vs. baseline) showed a robust
pattern of activation. Most regions that were active in the pilot sample could be
confirmed in the test sample, and all regions that were active in the test sample
were replicated in the replication sample (see Supplementary Materials). To test
for differences between conditions, full factorial ANOVA’s were performed that
were then decomposed by pair-wise comparisons. Moreover, we performed
exploratory whole brain analyses in the combined test and replication groups
(N=55), for which data were collected using the same MR scanner. Lastly, we
performed ROI analyses in the three separate samples on three predefined ROIs:
the amygdala (anatomically defined), the anterior insula and the mPFC/ACCg
(based on Achterberg et al. (2016b)). To combine the results, we performed meta-
analyses across the three samples for each of these ROIs.

Whole brain condition effects per sample

Pilot sample

All significant pairwise comparisons are displayed in Table 2. The contrasts
positive>negative and positive>neutral feedback both resulted in one cluster of
heightened activation in the lateral occipital cortex. The contrast negative >
neutral feedback resulted in two significant clusters: one in the left lateral
occipital cortex and one in the left orbitofrontal cortex, extending into the left
insula.

Test sample

All significant pairwise comparisons are displayed in Table 2. The

contrasts positive>negative and positive>neutral feedback in the test sample also
resulted clusters of heightened activation in the (lateral) occipital cortex. The
contrast negative>neutral feedback resulted in two significant clusters, both in
the lateral occipital cortex, extending into the fusiform gyrus.

Replication sample

All significant pairwise comparisons are displayed in Table 2. The contrasts
positive>negative and positive>neutral feedback did not result in significant
activation in the replication sample. Negative>positive feedback resulted in
increased activation in the left inferior frontal gyrus, the left amygdala, and left
lateral occipital cortex. Last, negative>neutral feedback resulted in increased
activation of the left and right lateral occipital cortex, extending into the fusiform

gyrus.
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Whole brain condition effects in the combined test and
replication samples

A full factorial ANOVA was computed based on the combined test and replication
groups (N=55). All significant pairwise comparisons are displayed in Table 3. The
contrast negative>neutral and positive>neutral feedback resulted in heightened
activation in the lateral occipital cortex. The contrast negative>positive feedback
resulted in significant heightened activation in the right and left orbitofrontal
cortex, the medial prefrontal cortex, the paracingulate gyrus, the left insula and
the left superior temporal cortex (see Figure 3a, Table 3). Figure 3b presents a
visual representation of mPFC activation after positive and negative social
feedback for the combined test and replication group, as well as for the test and
replication sample separately. The reversed contrast, positive>negative feedback
did not resulted in any significant clusters.
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Figure 3. a) whole brain results of the contrast negative vs. positive feedback in the test
and replication samples combined (N=55, p<.005, FDR cluster corrected). b) Mean
parameter estimates for negative > positive feedback activation in the medial PFC
cluster in the test and replication samples combined (N=55, as displayed in Figure 3A),
as well as for the samples separately (center of mass (x,y,z): -1, 55, 31). Note that this
graph is purely for visual representation and is not used for statistical inferences. Error
bars indicate standard error of mean.
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Table 2. Whole brain condition effects per sample.

Area of Activation Volume  x y z T PFDR
Pilot: positive > negative
Lateral occipital cortex 649 3 -70 7 5.75 <.001
Cuneal cortex 3 -76 25 5.03
Supracalcarine cortex -67 16 5.01
Pilot: positive > neutral
Lateral occipital cortex 2560 -45 -82 7 6.83 <.001
Lingual gyrus 6 -67 4 6.43
Lingual gyrus 18 -64 -2 6.22
Pilot: negative > neutral
Left lateral occipital cortex 348 -45 -82 7 5.04 <.001
Left middle temporal gyrus -51 -58 10 3.82
Left lateral occipital gyrus -39 -64 13 3.77
Left orbitofrontal cortex 271 -36 23 -14 4.00 .009
Left orbitofrontal cortex -42 17 -14 3.90
Left insula -36 8 -5  3.86
Test: positive > negative
Lingual gyrus 337 -15 -88 -5 5.24 .016
Lingual gyrus 9 -76 -5  4.30
Occipital pole 21 -94 -17 3.79
Test: positive > neutral
Occipital pole 1031 -15 -91 -5 6.17 <.001
Occipital fusiform gyrus 24 -73 -5 5.96
Lingual gyrus 9 -79 -5 5.36
Test: negative > neutral
Occipital pole 348 -6 -97 7 5.13 .008
Lateral occipital cortex -45 -85 4 4.13
Lateral occipital cortex -54 -79 4 3.84
Lateral occipital cortex 274 48 -70 -5 3.86 .013
Occipital fusiform gyrus 27 -73 -2 3.54
Occipital fusiform gyrus 21 -82 -2 3.51
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Area of Activation Volume X y z T  pFDR
Replication: negative > positive
Left inferior frontal gyrus 325 -54 29 4 4.86 .012
Left amygdala -24 -1 -26 4.15
Left frontal operculum cortex -45 23 1 3.99
Left lateral occipical cortex 402 42 -79 4 4.38 .008
Left lateral occipical cortex 42  -76 22 3.71
Lingual gyrus -12 -57 -5 3.61
Replication: neutral > positive
Left precentral gyrus 1318 -15 -19 70 5.25 <.001
Right precentral gyrus 27 -16 70  5.17
Right precentral gyrus 9 -25 70 5.03
Replication: neutral > negative
Right precentral gyrus 293 30 -16 70  4.11 .018
Left precentral gyrus -9 -16 73 3.78
Left precentral gyrus -15 22 79 3.37
Replication: negative > neutral
Left lateral occipital cortex 707 -42  -82 4 6.55 <.001
Left lateral occipital cortex -48  -73 -5 4.71
Left occipital fusiform cortex -39 49 -14 4.36
Left occipital pole 193 -12 94 22 6.28 .027
Left occipital pole -6 -97 13 5.18
Left lateral occipital cortex -15 -85 40 3.53
Right lateral occipital cortex 844 36 -76 -2 5.01 <.001
Right lateral occipital cortex 48 -67 -2 497
Right lateral occipital cortex 48 -76 4 4.85
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Table 3. Whole brain condition effects combined test and replication sample.

Area of Activation Volume  x y z T pFDR
Negative > neutral
Left lateral occipital cortex 1080  -45 -82 4 6.90 <.001
Left lateral occipital cortex -6 -97 10 6.82
Left occipital pole -15 94 22 5.93
Right lateral occipital cortex 1053 48 -67 -5 6.10 <.001
Right lateral occipital cortex 33 -76 -2 5.98
Right occipital fusiform gyrus 18 -82 -2 5.60
Positive > neutral
Right occipital fusiform gyrus 1478 24 73  -§ 6.60 <.001
Left occipital pole -15 91 -2 5.97
Left occipital fusiform gyrus 24 -76 -5 5.86
Neutral > negative
Right precentral gyrus 475 30 -13 67 4.21 .002
Right middle frontal gyrus 33 14 43 4.19
Right middle frontal gyrus 33 11 67 4.04
Negative > positive
Right orbitofrontal cortex 27 21 47 -2 4.94 .039
Left orbitofrontal cortex 225 -27 50 -2 4.45 .038
Left inferior frontal gyrus 51 26 4 4.18
Medial prefrontal cortex 18 59 4 3.49
Medial prefrontal cortex 559 15 47 40 4.11 032
Medial prefrontal cortex -6 62 31 4.07
Paracingulate gyrus -6 53 22 3.65
Leftinsula 836 .45 -10 7  4.05 <001
Left parietal operculum cortex 30 -34 2?2 3.99
left superior temporal cortex 54 -4 7 3.85
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ROI analyses in the three samples and combined effect
sizes

Amygdala

Results for each of the three samples separately and the meta-analytic
combination of results are displayed in Figure 4b and Table 3. The pilot and
replication samples showed significantly more amygdala activation after negative
compared to positive feedback, but the test sample did not show an effect. The
meta-analysis revealed that the difference in amygdala activation between
negative and neutral feedback was not significant (d=0.21, 95% CI: -0.12-0.54,
p=.204). The combined effect size for the difference in amygdala activation
between positive and neutral was also not significant (d=0.16, 95% CI: -0.15-0.48,
p=.299). However, the difference in amygdala activation between positive and
negative feedback showed a significant combined effect size (d=0.47, 95% CI:
0.09-0.84, p=.015), being larger for negative feedback. The study outcomes were
homogeneous; there was no heterogeneity in the results.

Anterior Insula

Results are displayed in Figure 4c and Table 3. All samples showed increased
anterior insula activation after negative vs neutral feedback, but the difference
was only significant in the replication sample. The meta-analysis showed that the
difference in anterior insula activation between negative and neutral feedback
showed a significant combined effect size (d=0.40, 95% CI: 0.11-0.69, p=.007),
being larger for negative feedback. The combined effect size for the difference in
anterior insula activation between positive and neutral was not significant
(d=0.15, 95% CI: -0.12-0.42, p=.282). Furthermore, the combined effect size for
the difference in anterior insula activation between positive and negative
feedback was not significant (d=0.24, 95% CI: -0.06-0.53, p=.123). The study
outcomes were homogeneous; there was no heterogeneity in the results.

Medial PFC/ ACC gyrus

Results for each of the three samples separately are displayed in Figure 4d and
Table 3. Although the pattern of neural activation across conditions was similar
to that of the anterior insula, there were no significant condition effects in the
separate samples. However, the meta-analysis showed a significant combined
effect size for the difference in mPFC/ACCg activation between negative and
neutral feedback (d=0.33, 95% CI: 0.01-0.66, p=.045), with more mPFC/ACCg
activation after negative feedback. The combined effect size for the difference in
mPFC/ACCg activation between positive and neutral feedback was in the expected
direction (being larger for positive feedback) but not significant (d=0.22, 95% CI:
-0.03-0.46, p=.080). Furthermore, the combined effect size for the difference in
mPFC/ACCg activation between positive and negative feedback was not
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significant (d4=0.09, 95% CI: -0.19-0.36, p=.539). The study outcomes were
homogeneous; there was no heterogeneity in the results.
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Figure 4. a) visual representation of the ROIs: i) amygdala, ii) anterior insula and iii)
medial PFC/ACC gyrus. b) Amygdala activation across the different social feedback
conditions for the pilot, test, and replication sample. c) Anterior insula activation across
the different social feedback conditions for the pilot, test, and replication sample. d)
Medial PFC/ ACC gyrus activation across the different social feedback conditions for the
pilot, test, and replication sample. *significant difference for sample with matching
color. *significant combined effect size in the meta-analysis. Error bars indicate
standard error of mean.

Brain-behavior correlations

Finally, we tested for brain-behavior correlations. Specifically, we correlated the
meta-analytically significant brain results with noise blast duration. There were
no significant results for negative>positive amygdala activation and aggressive
behavior; nor for negative>neutral insula activation and aggression; nor for
negative > neutral mPFC activation and aggression. Thus, we did not found
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significant brain-behavior relations, not in the samples separately, nor with a
meta-analytical approach (see Supplementary Materials).

Table 4. Comprehensive Meta-Analyses of the condition effects.

95% CI 95% CI
d lower limit upper limit
Amygdala
Negative > Positive Pilot 0.70 * 0.06 1.34
Test 0.05 -0.52 0.62
Replica 0.61 *= 0.20 1.02
Meta 0.47 * 0.09 0.84
Negative > Neutral Pilot 0.54 -0.05 1.14
Test -0.02 -0.41 0.36
Replica 0.30 -0.22 0.81
Meta 0.21 -0.12 0.54
Neutral > Positive  Pilot 0.09 -0.52 0.69
Test 0.07 -0.42 0.55
Replica 0.36 -0.20 0.91
Meta 0.17 -0.15 0.48
Anterior Insula
Negative > Positive Pilot 0.40 -0.29 1.09
Test 0.06 -0.44 0.55
Replica 0.31 -0.14 0.75
Meta 0.24 -0.06 0.53
Negative > Neutral Pilot 0.57 -0.08 1.21
Test 0.22 -0.28 0.72
Replica 0.46 * 0.03 0.90
Meta 0.40 ** 0.11 0.69
Positive > Neutral Pilot 0.20 -0.30 0.07
Test 0.11 -0.32 0.55
Replica 0.14 -0.34 0.62
Meta 0.15 -0.12 0.42

* p<.05, ** p<.01
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Table 4. (continued)

95% CI 95% CI
d lower limit upper limit
Dorsal Anterior Cingulate Cortex
Negative > Positive Pilot 0.23 -0.45 0.90
Test 0.11 -0.46 0.67
Replica 0.04 -0.32 0.40
Meta 0.09 -0.19 0.36
Negative > Neutral Pilot 0.40 -0.30 1.10
Test 0.27 -0.32 0.86
Replica 0.34 -0.12 0.81
Meta 0.33 * 0.01 0.66
Neutral > Positive  Pilot 0.19 -0.31 0.68
Test 0.15 -0.22 0.52
Replica 0.32 -0.10 0.73
Meta 0.22 -0.03 0.46

* p<.05, ** p<.01
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Discussion

This study investigated the behavioral and neural correlates of social evaluation
in middle childhood, using a new experimental paradigm: the Social Network
Aggression Task (SNAT, Achterberg et al. (2016b)). With the combination of a
replication design and a meta-analytical approach we thoroughly tested this new
experimental paradigm in 7-to-10-year-old children. Overall, we found consistent
findings over the pilot, test and replication samples for behavioral aggression
following negative social feedback, showing significantly more aggression after
negative social feedback compared to positive or neutral social feedback The
neural effects indicated increased activity in the amygdala, insula and
mPFC/ACCg after negative feedback, but these effects were only significant in
part of the samples and in the meta-analyses. The specific social evaluation
effects and methodological considerations for future research are described in
more detail below.

Social evaluation in childhood

The SNAT showed reliable and consistent behavioral results, with stronger
behavioral aggression (noise blast duration) after social rejection. The meta-
analysis showed medium to (very) large combined effect sizes over the three
samples. This study complements the large number of prior studies that focused
mainly on withdrawal, as we showed that social rejection feedback also elicits
aggression in children. This is in line with previous results in adults (Achterberg
et al., 2016b), suggesting that children make similar distinctions between social
evaluation as adults do. Moreover, these results are consistent with questionnaire
studies that show more (teacher reported) aggression after social rejection in
children (Dodge et al., 2003; Nesdale and Lambert, 2007; Lansford et al., 2010).

The next question concerned whether neural activation differed
depending on whether the participant received positive, neutral or negative
social feedback. The separate samples did show the same significant condition
effects. In the pilot sample, we found significant heightened activation in the
insula after negative vs. neutral social feedback, similar to the effects reported
in adults (Achterberg et al., 2016b). However, whole brain analyses did not reveal
this effect in the test or replication samples. Moreover, although heightened
activation in the visual cortex (including the fusiform gyrus) after positive
compared to negative and neutral feedback was consistent over the pilot and test
sample, we could not confirm this in the replication sample. Our relatively small
samples (with sample sizes ranging between n=19 and n=28) might not have had
sufficient power to detect robust condition effects in whole brain analyses.

In the larger combined sample (including twin siblings, N=55) rejection
feedback was associated with increased activity in mPFC. This region borders the
mPFC/ACCg region observed in adults, with increased activity in response to
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negative and positive feedback (Achterberg et al., 2016b). Indeed, an ROI analysis
of this mPFC/ACCg region based on the adult study (Achterberg et al., 2016)
confirmed elevated activity after rejection in children. A recent review on the ACC
and social cognition (Apps et al., 2016) describes an anatomical and function
subdivision between the anterior cingulate cortex’ sulcus and gyrus. The region
described as the ACC gyrus (ACCg; located adjacent and dorsal to the genu of the
corpus callosum in humans) shows overlap with the region that showed increased
activation after negative social feedback in children (this study) and for general
social evaluation in adults (Achterberg et al., 2016b). The ACCg region has been
suggested to be sensitive to factors determining the others’ motivation (see Apps
et al. (2016)). Moreover, the meta-analysis showed that the anterior insula was
more active after negative compared to neutral feedback, which is in line with
the results reported in adults (Achterberg et al., 2016b). The anterior insula has
been shown to have strong connections (both structurally as functionally) with
this ACCg region (Apps et al., 2016) and several neuroimaging studies have
pointed towards the anterior insula and midline areas of the brain as important
brain regions responding to social rejection (for meta-analysis see Cacioppo et al.
(2013); Rotge et al. (2015)).

In addition, the meta-analysis showed significantly more activation in the
amygdala after negative feedback compared to positive feedback. A recent cross-
sectional study of 112 participants with ages ranging from 6-23 years showed
decreased amygdala reactivity over age, suggesting a shift from bottom-up
amygdala based processing to a more top-down processing in adolescence and
adulthood (Silvers et al., 2016a). That study focused on the processing of negative
and positive scenes and showed strongest reactivity for emotional scenes in
general (independent of valence) in younger participants. This may indicate that
the amygdala serves as an important region for processing affectively salient
stimuli in childhood in particular. An interesting question for future research is
to examine how amygdala response to social feedback relates to social behavior
in childhood and how it unfolds over time during childhood and adolescence.

Interestingly, in the meta-analyses, we did not find significantly more
activation in any of the regions after positive feedback (compared to neutral
feedback), which is not in line with previous adult findings (Achterberg et al.,
2016b) or with prior studies that focused on adolescents using similar paradigms
(Gunther Moor et al., 2010b; Silk et al., 2012). Positivity biases are thought to be
larger in childhood than in adolescence or adulthood (Mezulis et al., 2004),
possibly indicating that children have a stronger belief that they will be positively
evaluated by others. This may result in more salience of neutral or negative
feedback relative to positive feedback. Thus, although we found that behaviorally
children reacted in a similar way to social evaluation as adults do, the similarities
in neural findings between children and adults are more mixed. The neural
signature of social rejection in terms of anterior insula and mPFC/ACCg activation
was found to be present in middle childhood, but it was less pronounced than in
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adults (only detectable in larger samples and meta-analysis). This was the first
study to test whether children engage similar brain regions in processing social
evaluation as adults. By using various approaches (whole brain analyses, three
different samples, meta-analysis) we had the opportunity to investigate these
regions in detail. However, there are several methodological considerations that
follow from the current study.

Methodological considerations

First, whole brain analyses in this age range may need larger samples, since the
use of fMRI in children is more affected by motion (O'Shaughnessy et al., 2008),
but also because there is substantial individual variation in the timing of brain
maturation (Pfeifer and Allen, 2016). Some of our independent (one sample) ROI
analyses did not show significant effects, while meta-analytically combining the
results did reveal significant effects (see for similar results Scheibehenne et al.
(2016)). This highlights the importance not only of internal replication but also
of incorporating a meta-analytical approach. By applying meta-analysis in the
context of one study testing a paradigm in different subsamples, we can
minimize the risk that meta-analytic results in the (broader) field of neuroimaging
studies are distorted due to publication bias (i.e., the bias resulting from selective
publication of significant results (Franco et al., 2014)).

The current study is the first neuroimaging study to use both a replication
and meta-analytical approach to test a new experimental paradigm in children.
Our test and replication sample consisted of same-sex twin pairs of which the
first and second born twin were randomly assigned to one of the two samples.
Therefore these samples are not independent, which could result in more
equivalent results. However, additional meta-analyses in which we treated the
test and replication samples as if they consisted of the same participants (which
is too conservative), and then combined the effect size with the effect size of the
pilot sample, showed similar combined effect-sizes, with somewhat larger
confidence intervals due to the lower N. Moreover, for an exact replication this
can be considered an advantage as it reduces the influence of third variables (for
example when the replication sample is older or more intelligent), and
methodologically this type of replicability is considered one of the important
cornerstones of science (Van IJzendoorn, 1994; Gabrieli et al., 2015).
Nevertheless, this does have implications for the whole brain analyses with the
test and replication samples combined. These are exploratory, and the results
need to be confirmed in future larger and independent samples.

Ultimately, results of different, but comparable, social evaluation
paradigms in children should be combined to unravel the neural underpinnings
of social evaluation in a developmental perspective. Moreover, although the
current study shows increased aggression and increased neural activation after
rejection, we could not identify significant brain-behavior correlations, probably
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due to our limited sample sizes. Nevertheless, these individual differences in
brain activation during social evaluation in children could be informative, as we
recently showed that individual differences in dorsal lateral PFC activation during
social evaluation in adults was related to individual differences in behavioral
aggression (Achterberg et al., 2016b). Future studies should include larger
developmental samples to investigate these associations, and explore why some
children react with more aggression after negative social feedback than others.

Limitations

In addition to the methodological considerations, some limitation regarding the
social evaluation paradigm used in this study need to be acknowledged. First,
although the noise blast is often used as a measure of aggression, our cover story
explicitly stated that the peers would not hear the noise blast. That is to say, the
aggression measure reflects hypothetical aggression or frustration. This decision
was based on previous studies using a similar design (Konijn et al., 2007), but
future studies may separate real aggression from hypothetical aggression to test
the neural differences in these two types of aggression. Secondly, our social
evaluation paradigm included a neutral condition. However, our neutral feedback
was not purely neutral, but more mixed (not specifically positive and not
specifically negative). Nevertheless, the neutral condition was in between
positive and negative feedback, therefore making this condition a solid baseline
comparison condition.
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Conclusion

Using both a replication and a meta-analytical approach, we showed that the
Social Network Aggression Task reveals robust and reliable behavioral results.
Negative social feedback resulted in the highest levels of behavioral aggression.
Moreover, meta-analyses on predefined ROIs revealed that negative social
feedback resulted in more neural activation in the amygdala (compared to
positive feedback) and in the anterior insula and mPFC/ACCg (compared to
neutral feedback). Exploratory whole brain analyses confirmed heightened
activation in the medial prefrontal cortex (mPFC) after negative relative to neutral
social feedback. Future research should examine how neural responses to social
feedback and subsequent aggression are related, using larger samples that allow
for testing correlates of individual differences in aggression after negative social
feedback. The current findings show that the Social Network Aggression Task is
a reliable paradigm for the investigation of social evaluation and aggression in
children, and indicate that this paradigm is feasible for use in larger and
longitudinal developmental studies.
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Figure S1. Schematic overview of sample selection. Head motion exclusion was defined
as >1 mm movement in >20% of the volumes.

All feedback conditions vs. baseline

To investigate the consistency in neural activation in the general contrast of
social evaluation (positive, neutral and negative feedback vs. fixation) across the
three samples we conducted the analyses in two steps. First, patterns of
activations found in the pilot sample were masked with anatomical masks and
these ROIs were then used to extract PE values from the test sample. Secondly,
we repeated this procedure with the test sample as starting point. The ROIs from
the test sample were used to extract PE values from the replication sample. This
was done because some regions might not show up in samples as small as our
pilot sample.

Functional clusters from the general contrast of social evaluation were
masked with anatomical regions. That is to say, we overlapped all functional
clusters from the whole brain contrast with anatomical regions from the
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Automated Anatomical Labeling (AAL) atlas (Tzourio-Mazoyer et al., 2002). The
overlap between functional activation and anatomical regions were then used as
regions of interest. All regions from the whole brain contrast were investigated.
To mask the medial orbitofrontal cortex (mOFC) we combined the medial OFC left
and right. The subcallosal cortex was masked with the subcallosal mask from the
Harvard/Oxford atlas (Desikan et al., 2006).

One sample t-tests (one-sided) were used to test whether the activation
was significantly different from 0. We specifically chose one sided t-tests (a=0.1),
because replication is tested in the same direction as in the hypothesis-
generating sample. Alpha level was Bonferroni corrected depending on the
number of extracted ROIs (i.e., 0.1 divided by the number of ROIs).

Examination of pilot results in the test sample

The contrast ‘all feedback vs. fixation’ in the pilot sample resulted in activation
with local maxima in the bilateral lateral occipital lobes, the bilateral fusiform
cortex, the bilateral amygdala, the bilateral thalamus, the medial prefrontal
cortex (PFC), and the posterior cingulate cortex (PCC), see Figure S2a and Table
S1. From this whole brain contrast, we selected 8 ROIs: the right and left
amygdala, the right and left fusiform cortex, the right and left thalamus, the
mPFC and the PCC (Figure S2b). These ROIs were used to extract PE values from
the test sample. Bonferroni corrected alpha was set at ¢=0.013 (0.1/8 ROIs). As
Figure S2c shows, activation of the left and right amygdala, the left and right
fusiform cortex, and the mPFC was significantly different from 0 in the test
sample, and thus the pilot results were confirmed in the test sample (all p’s<.013,
see Table S2). The test sample showed no significant activation in the left and
right thalamus, nor in the PCC.

Examination of test results in the replication sample

The contrast ‘all feedback vs. fixation’ in the test sample resulted in activation
with local maxima in the bilateral occipital lobes, the bilateral fusiform cortex,
the bilateral amygdala, the cerebellum, the mPFC, the bilateral inferior
orbitofrontal cortex (OFC), the medial OFC and the subcallosal cortex, see Figure
S2d and Table S1. We selected five ROIs concerning anatomical regions that were
also found and confirmed in step 1: the left and right amygdala, the left and right
fusiform cortex and the mPFC. Activation in four addition regions were observed
and masked as ROI: the subcallosal cortex, the medial OFC and the left and right
inferior OFC (Figure S2e). In total 9 ROIs were used to extract PE values from the
replication sample, therefore Bonferonni corrected alpha was set at «=0.011
(0.1/9 ROIs). Activation in all regions was statistically significantly different from
0 in the replication sample, indicating that the test results were replicated in the
replication sample (all p’s<.011, see Figure S2f and Table S2). Whole brain results
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from the ‘all feedback vs. fixation’ contrast in the replication sample are shown
in Figure S3 and Table S1.

Consistency in neural activation in the general contrast

The whole brain analyses resulted in robust activity in the extended face
processing network (Scherf et al, 2012), including the FFA and amygdala.
Interestingly, these findings were consistent across pilot, test, and replication
samples, showing that the task elicits reliable responses in 7-10-year-old
children. Even though most activated regions in the pilot sample could be
confirmed in the test sample (i.e., bilateral amygdala, bilateral fusiform cortex,
and the mPFC), not all regions were confirmed: the PCC and bilateral thalamus
were not significantly activated in the test sample. The smaller pilot sample has
a reduced chance of detecting a true effect, but a small sample also reduces the
likelihood that a significant result reflects a true effect (Button et al., 2013), which
shows the need to replicate findings in small samples. This is especially
important in developmental neuroimaging studies, since the use of fMRI in
children remains a challenging undertaking due to both practical and
methodological issues such as more biological noise and motion (Kotsoni et al.,
2006; O'Shaughnessy et al., 2008; Thomason, 2009). We therefore repeated the
procedure with the test and replication sample and showed that all activated
brain regions that were found in the test sample - which was somewhat larger
than the pilot sample - could be replicated in the replication sample. Taken
together, these findings indicate that the SNAT elicits reliable and consistent
neural activation for the general contrast all feedback > fixation.

Brain-behavior correlations

To test for brain-behavior correlations, we correlated the significant meta-
analytical brain results with the subsequent behavior. Negative>positive
amygdala activation and negative>positive noise blast duration were not
significantly correlation in the separate samples (pilot: r=-.02, p=.921; test: r=.28,
p=.152; replication: r=-.03, p=.892), nor when tested in a meta-analyses (d=0.14,
95% CI: -0.48-0.76, p=.664). Negative>neutral insula activation and
negative>neutral noise blast duration were not significantly correlation in the
separate samples (pilot: r=.05, p=.848; test: r=.32, p=.096; replication: r=.04,
p=.856), nor when tested in a meta-analyses (d=0.27, 95% CI: -0.35-0.90, p =.394).
Lastly, Negative>neutral mPFC/ACCgyrus activation and negative>neutral noise
blast duration were not significantly correlation in the separate samples (pilot:
r=.17, p=.485; test: r=-.10, p=.600; replication: r=.13, p=.530), nor when tested in
a meta-analyses (d=0.14, 95% CI: -0.48-0.76, p =.659). Thus, no significant brain-
behavior correlations were found.
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Social Evaluation: replication
All feedback vs. fixation

Figure S3. Whole brain results of the replication sample for the all feedback vs. fixation
contrast.
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Table S1. MNI coordinates for local maxima of the general contrasts in the three
samples. The results were FDR cluster corrected (pFDR<.05), with a primary voxel-
wise threshold of p<.005.

Area of Activation X y z Voxels T

all feedback vs. fixation (pilot sample)

Right Occipital Fusiform Gyrus 18 -79 -8 4260 15.23
Left Lateral Occipital Cortex -21 -94 10 14.28
Left Lateral Occipital Cortex -45 -82 -11 13.74
Left Thalamus -21 -28 4 128 7.77
Right Thalamus 21 -28 4 90 6.99
Right Amygdala 21 -4 -17 67 6.69
Medial Prefrontal Gyrus 9 53 25 100 5.87
Medial Prefrontal Gyrus -3 53 31 3.77
Posterior Cingulate Cortex 6 -46 31 270 5.75
Right Parietal Cortex 27 -55 40 4.93
Posterior Cingulate Cortex -6 -37 31 3.64
Left Amygdala -21 -4 -17 100 5.70
Left Orbitofrontal Cortex -30 11 -20 4.80
Left Amygdala -27 2 -20 4.70
Right Precentral Gyrus 42 -13 70 71 5.05
Right Precentral Gyrus 51 -13 64 4.90
Right Precentral Gyrus 42 -4 67 4.02
Right Middle Frontal Gyrus 30 11 28 136 4.70
Right Middle Frontal Gyrus 48 23 28 4.13
Right Inferior Frontal Gyrus 57 32 16 4.07
all feedback vs. fixation (test sample)

Right Lateral Occipital Cortex 39 -73 -14 4757 13.14
Left Occipital Fusiform Cortex -33 -52 -20 12.54
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Table S1. (continued)

Area of Activation X Y ‘ Voxels r
all feedback vs. fixation (test sample)

Right Lateral Occipital Cortex 27  -97 7 11.39
medial Orbitofrontal Cortex 3 62 -14 225 6.66
medial Orbitofrontal Cortex -9 65 -17 5.83
medial Prefrontal Cortex -6 59 34 336 5.33
medial Prefrontal Cortex -9 50 49 5.17
medial Prefrontal Cortex 6 65 31 4.59
all feedback vs. fixation (replica sample)

Right Lateral Occipital Cortex 39 82 -11 3884 17.88
Right Occipital Fusiform Cortex 39 52 -17 15.42
Left Lateral Occipital Cortex -15 -97 4 12.76
medial Orbitofrontal Cortex 6 62 -14 1209 7.34
medial Orbitofrontal Cortex -3 74 -8 5.70
medial Prefrontal Cortex 6 50 43 5.49
Right Amygdala 21 -4 -17 860 6.24
Right Middle Temporal gyrus 57 8 -26 5.97
Right Orbitofrontal Cortex 51 26 -17 5.90
Left Orbitofrontal Cortex -30 11 -17 369 6.13
Left Amygdala -18 -7 -14 4.31
Left Orbitofrontal Cortex -45 32 -11 4.24
Right Inferior Frontal Gyrus 48 20 31 417 6.11
Right Inferior Frontal Gyrus 57 29 16 4.14
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Table S2. One Sample T-tests on the social evaluation contrast.

ROIs Mean SD T 1% d
Pilot ROIs tested in Test sample

Amygdala (L) 3.02 4.41 3.62 .001 0.69
Amygdala (R) 2.27 3.20 3.75 .001 0.71
Fusiform Cortex (L) 7.23 3.52 10.87 <.001 2.05
Fusiform Cortex (R) 7.50 3.87 10.26 <.001 1.94
Medial PFC 0.96 1.70 2.97 .006 0.57
Thalamus (L) -1.40 5.72 -1.30 .205 0.25
Thalamus (R) -0.36  5.49 -0.34 .733 0.07
Posterior Cingulate Cortex 0.38 4.27 0.47 .640 0.09
Test ROIs tested in Replication sample

Amygdala (L) 3.24 4.63 3.63 .001 0.70
Amygdala (R) 3.72 3.56 5.44 <.001 1.05
Fusiform Cortex (L) 5.87 3.30 9.23 <.001 1.78
Fusiform Cortex (R) 9.67 3.99 12.59 <.001 2.42
medial Prefrontal Cortex 2.01 2.33 4.50 <.001 0.86
inferior Orbitofrontal Cortex (L) 1.30 2.31 2.93 .007 0.56
inferior Orbitofrontal Cortex (R) 2.43 2.41 5.23 <.001 1.01
medial Orbitofrontal Cortex 2.87  2.49 6.00 <.001 1.15
Subcallosal Cortex 1.84 2.19 4.36 <.001 0.84
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Chapter 3

Abstract

Negative social feedback often generates aggressive feelings and behavior. Prior
studies have investigated the neural basis of negative social feedback, but the
underlying neural mechanisms of aggression regulation following negative social
feedback remain largely undiscovered. In the current study participants viewed
pictures of peers with feedback (positive, neutral, or negative) to the participant’s
personal profile. Next, participants responded to the peer feedback by pressing
a button, thereby producing a loud noise towards the peer, as an index of
aggression. Behavioral analyses showed that negative feedback led to more
aggression (longer noise blasts). Conjunction neuroimaging analyses revealed
that both positive and negative feedback were associated with increased activity
in the medial prefrontal cortex (mPFC) and bilateral insula. In addition, more
activation in the right dorsal lateral PFC (dIPFC) during negative feedback versus
neutral feedback was associated with shorter noise blasts in response to negative
social feedback, suggesting a potential role of dIPFC in aggression regulation, or
top-down control over affective impulsive actions. This study demonstrates a
role of the dIPFC in the regulation of aggressive social behavior.

Keywords: social evaluation; social rejection; social acceptance; emotion
regulation; functional magnetic resonance imaging (fMRI)
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Introduction

People are strongly motivated to be accepted by others and to establish a sense
of belonging. Receiving negative social feedback, therefore, is a distressing
experience, related to serious negative consequences such as feelings of
depression and anxiety (Nolan et al.,, 2003). For some individuals, receiving
negative social feedback can result in aggression towards people who have
negatively evaluated or rejected them (Twenge et al.,, 2001; Leary et al., 2006;
DeWall and Bushman, 2011; Chester et al., 2014; Riva et al., 2015; Chester and
DeWall, 2016). However, the relation between negative social feedback and
subsequent aggression is not well understood. In the current study we
investigated the relation between receiving negative social feedback and
subsequent aggression using neuroimaging, which allowed us to 1) examine the
neural correlates of negative social feedback relative to neutral or positive
feedback, 2) examine aggressive responses towards the person signaling
negative social feedback, and 3) examine the association between the neural
correlates of negative social feedback and behavioral aggression.

Social rejection and negative social feedback have previously been
studied using a variety of experimental paradigms that manipulate social
contexts. For example, the negative feelings associated with social rejection have
been extensively studied using Cyberball, an online ball tossing game in which
three players toss balls to each other, until at some point in the game, one of the
players is excluded. It is consistently found that this type of social exclusion
leads to feelings of distress, negative mood, and a decreased satisfaction of the
need for a meaningful existence (Williams et al., 2000; Williams, 2007).
Neuroimaging studies point to a role of the midline areas of the brain, specifically
the dorsal and subgenual anterior cingulate cortex (ACC), as well as the anterior
insula, as important brain regions responding to social exclusion (Cacioppo et al.,
2013; Rotge et al.,, 2015). Other studies have used a peer feedback social
evaluation paradigm to study responses to both positive and negative social
feedback. In such paradigms, participants believe they are socially evaluated by
same-aged peers, based on first impressions of their profile picture (Somerville
et al., 2006; Gunther Moor et al., 2010b; Hughes and Beer, 2013). These studies
showed that dorsal ACC (dACC) activation was particularly activated in response
to unexpected social feedback, irrespective of whether this was positive or
negative (Somerville et al., 2006), whereas ventral mPFC and ventral striatum
activation was larger for positive feedback compared to negative feedback (Guyer
et al., 2009; Davey et al., 2010; Gunther Moor et al., 2010b).

More insight into the neural and behavioral correlates of social evaluation
and rejection has been derived from studies testing the relation between social
rejection and subsequent aggression. One study combined the Cyberball task in
the scanner with a subsequent aggression index using a noise blast task outside
of the scanner (Chester et al., 2014). Individuals responded more aggressively
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following the experience of social rejection, but intriguingly, these effects were
dependent on whether the participant showed low or high executive control.
Participants who scored high on executive control displayed lower aggression
after social rejection, suggesting that executive control abilities may down-
regulate aggression tendencies. It has been suggested that self-control relies
strongly on the lateral prefrontal cortex (PFC), which is thought to exert top-down
control over subcortical, affective, brain regions (such as the striatum) to
suppress outputs that otherwise lead to impulsive response and actions (Casey,
2015). Transcranial magnetic stimulant (TMS) studies have indeed implicated a
causal role for the lateral PFC in executing self-control when choosing long-term
rewards (Figner et al., 2010). Similarly, lateral PFC may have an important role in
down-regulating aggression following rejection or negative social feedback. This
hypothesis finds support in a study where participants had the opportunity to
aggress to peers who had excluded them during Cyberball while undergoing
transcranial direct current stimulation (tDCS) (Riva et al., 2015). TDCS of the right
ventrolateral (vl) PFC reduced participants’ behavioral aggression to the
excluders.

Taken together, prior studies suggested an important role of dorsal and
ventral mPFC regions in processing negative and positive social feedback, but the
exact contributions of these regions are not consistent across studies and may
depend on the experimental paradigm. The first goal of this study was to
disentangle effects of positive and negative feedback in a social evaluation
paradigm (Somerville et al., 2006). A novel component of this study relative to
prior studies is that we included a neutral baseline condition, in which
participants received neutral feedback on a subset of the trials. Based on prior
research, we expected that positive social feedback would result in increased
activation in the subgenual ACC (Somerville et al., 2006) and the ventral striatum
(Guyer et al., 2009; Davey et al., 2010; Gunther Moor et al., 2010b). In contrast,
we expected that negative social feedback would be associated with increased
activity in the dACC/ dorsal medial PFC (dmPFC) and the insula. Prior studies
remained elusive about whether dACC/mPFC and insula activity were associated
with salient events per se (Somerville et al., 2006) or social rejection specifically
(Eisenberger et al., 2003; Kross et al., 2011). Therefore, we conducted conjunction
analyses for both positive and negative feedback versus neutral baseline, as well
as direct contrasts testing for differences between positive and negative social
feedback.

Importantly, there may be individual differences in how participants
respond to negative social feedback, which may be associated with increased
neural activity in lateral PFC, as has been found in social rejection studies
(Chester and DeWall, 2016). The second goal of this study was therefore to
examine how individuals respond to negative social feedback, and if lateral PFC
activity is related to aggression regulation following negative social feedback.
Therefore, the paradigm included a second event where participants could
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directly retaliate to the peer who judged them, by sending a loud noise blast
(Twenge et al., 2001; Chester et al., 2014). Noise blast duration was measured
after each trial within the fMRI task and therefore we could examine how neural
activity related to individual differences in noise blast duration. On a behavioral
level, we hypothesized that negative social feedback would trigger reactive
aggression, i.e. longer noise blasts (Twenge et al., 2001; Reijntjes et al., 2011;
Riva et al., 2015). In addition, we hypothesized that less aggression (i.e., more
aggression regulation, shorter noise blasts) would be related to increased
activation in lateral PFC (Casey, 2015; Riva et al., 2015) particularly during
negative feedback.

Methods

Participants

Thirty participants between the ages of 18 and 27 participated in this study (15
females, M=22.63 years, SD=2.62). They were either contacted from a participant
database or they responded to an advert placed online. The institutional review
board of the Leiden University Medical Center (LUMC) approved the study and its
procedures. Written informed consent was obtained from all participants. All
participants were fluent in Dutch, right-handed, and had normal or corrected-to-
normal vision. Participants were screened for MRI contra indications and had no
history of neurological or psychiatric disorders. All anatomical MRI scans were
reviewed and cleared by a radiologist from the radiology department of the
LUMC. No anomalous findings were reported.

Participants’ intelligence quotient (IQ) was estimated with the subsets
‘similarities’ and ‘block design’ of the Wechsler Intelligence Scale for Adults, third
edition (WAIS-III; Wechsler (1997)). All estimated IQs were in the normal to high
range (95 to 135; M=113.92, SD=9.23). 1Q scores were not correlated to behavioral
outcomes of the Social Network Aggression Task (noise blast duration after
positive, neutral, negative feedback and noise blast difference scores, all p’s >
.244)

Social Network Aggression Task

The Social Network Aggression Task (SNAT) was based on the social evaluation
paradigm of Somerville et al. (2006) and Gunther Moor et al. (2010b). Prior to the
fMRI session, participants filled in a profile page at home, which was handed in
at least one week before the actual fMRI session. The profile page consisted of
personal statements such as: “My favorite sport is...”, “This makes me happy:...”,
“My biggest wish is...”. Participants were informed that their profiles were viewed
by other individuals. During the SNAT participants were presented with pictures
and feedback from same-aged peers in response to the participants’ personal
profile. This feedback could either be positive (‘I like your profile’, visualized by
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a green thumb up); negative (‘I do not like your profile’; red thumb down) or
neutral (‘I don’t know what to think of your profile’, grey circle), see Figure 1a.
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Figure 1. Social Network Aggression Task. (a) The different feedback types: positive,
neutral and negative. (b) Visual representation of intensity buildup of the volume bar.
(c) Display of one trial and timing of the SNAT. (d) Noise blast duration across the
different social feedback conditions. Asterisks indicate significant differences with
p<.05.
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Following each peer feedback (positive, neutral, negative), participants were
instructed to send a loud noise blast to this peer. The longer they would press a
button the more intense the noise would be, which was visually represented by a
volume bar (Figure 1b). Participants were specifically instructed that the noise
was not really sent to the peer, but that they had to imagine that they could send
a noise blast to the peer, with the volume intensity of the participants’ choice.
This was done to reduce deception, and prior studies showed that imagined play
also leads to aggression (Konijn et al., 2007). Unbeknownst to the participants,
the profile was not judged by others, and the photos were taken from an existing
data base with pictures matching participants’ age range (Gunther Moor et al.,
2010Db). Peer pictures were randomly coupled to feedback, ensuring equal gender
proportions for each condition. None of the participants expressed doubts about
the cover story.

Prior to the scan session, the noise blast was presented to the participants twice
during a practice session: once with stepwise buildup of intensity and once at
maximum intensity. Two evaluation questions were asked after hearing the
maximum intensity: ‘How much do you like the sound?’ and ‘How much do you
dislike the sound?. Participants rated the sound on a 7-point scale, with 1
representing very little and 7 representing very much. In order to prevent that
pressing the button during the experimental task would punish the participants
themselves, they only heard the intensity of the noise blast during the practice
session and not during the fMRI session. To familiarize participants with the task,
participants performed six practice trials.

The SNAT consists of two blocks of 30 trials (60 trials in total), with 20
trials for each social feedback condition (positive, neutral, negative), that are
presented semi randomized to ensure that no condition is presented more than
three times in a row. Figure 1c displays an overview of one SNAT trial. Each trial
starts with a fixation screen (500 ms), followed by the social feedback (2500 ms).
After another fixation screen (jittered between 3000 and 5000 ms), the noise
screen with the volume bar appears, which is presented for a total of 5000 ms.
As soon as the participants starts the button press, the volume bar starts to fill
up with a newly colored block appearing every 350 ms. After releasing the button,
or at maximum intensity (after 3500 ms), the volume bar stops increasing and
stays on the screen for the remaining of the 5000 ms. Before the start of the next
trial, a fixation cross was presented (jittered between 0 and 11550 ms). The
optimal jitter timing and order of events were calculated with Optseq 2 (Dale,
1999).

Exit questions

Following the MRI session, three exit questions were asked: ‘How much did you
like reactions with a thumb up?’, ‘How much did you like reactions with a circle?’,
and ‘How much did you like reactions with a thumb down?’. Participants rated the
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reactions on a 7-point scale, with 1 representing very little and 7 representing
very much.

MRI data acquisition

MRI scans were acquired with a standard whole-head coil on a Philips 3.0 Tesla
scanner (Philips Achieva TX). The SNAT was projected on a screen that was viewed
through a mirror on the head coil. Functional scans were collected during two
runs T2*-weighted echo planar images (EPI). The first two volumes were discarded
to allow for equilibration of T1 saturation effect. Volumes covered the whole
brain with a field of view (FOV)= 220 (ap) x 220 (rl) x 114.68 (fh) mm; repetition
time (TR) of 2.2 seconds; echo time (TE) = 30 ms; sequential acquisition, 38 slices;
and voxel size=2.75 x 2.75 x 2.75 mm. Subsequently, a high-resolution 3D T1scan
was obtained as anatomical reference (FOV= 224 (ap) x 177 (r]) x 168 (fh); TR=9.76
ms; TE=4.95 ms; 140 slices; voxel size 0.875 x 0.875 x 0.875 mm).

MRI data analyses

Preprocessing

MRI data were analyzed with SPM8 (Wellcome Trust Centre for Neuroimaging,
London). Images were corrected for slice timing acquisition and rigid body
motion. Functional scans were spatially normalized to T1 templates. Due to T1
misregistration, one participant was normalized to an EPI template. Volumes of
all participants were resampled to 3x3x3 mm voxels. Data were spatially
smoothed with a 6 mm full width at half maximum (FWHM) isotropic Gaussian
kernel. Translational movement parameters never exceeded 1 voxel (<3 mm) in
any direction for any participant or scan (movement range: 0.001-1.22 mm,
M=0.055, SD=0.036).

First-level analyses

Statistical analyses were performed on individual subjects’ data using a general
linear model. The fMRI time series were modeled as a series of two events
convolved with the hemodynamic response function (HRF). The onset of social
feedback was modeled as the first event with a zero duration and with separate
regressors for the positive, negative, and neutral peer feedback. The start of the
noise blast was modeled for the length of the noise blast duration (i.e., length of
button press) and with separate regressors for noise blast after positive, negative,
and neutral feedback. Trials on which the participants failed to respond in time
were marked as invalid. Note that his happened rarely, on average 3.78% of the
trials were invalid. The least squares parameter estimates of height of the best-
fitting canonical HRF for each condition were used in pairwise contrasts. The
pairwise comparisons resulted in subject-specific contrast images.
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Higher-level group analyses

Subject-specific contrast images were used for the group analyses. A full factorial
ANOVA with three levels (positive, negative, and neutral feedback) was used to
investigate the neural response to the social feedback event. We calculated the
contrasts ‘Positive versus Negative feedback’, ‘Positive versus Neutral feedback’
and ‘Negative versus Neutral feedback’. To investigate regions that were activated
both after negative social feedback and after positive social feedback, we
conducted a conjunction analysis to explore the main effect of social evaluation.
Based on Nichols et al. (2005), we used the ‘logical AND’ strategy. The ‘logical
AND’ strategy requires that all the comparisons in the conjunction are
individually significant (Nichols et al., 2005).

All results were False Discovery Rate (FDR) cluster corrected (pFDR<.05),
with a primary voxel-wise threshold of p<.005 (uncorrected) (Woo et al., 2014).
Coordinates for local maxima are reported in MNI space. To further visualize
patterns of activation in the clusters identified in the whole brain regression
analysis, we used the MarsBaR toolbox (Brett et al, 2002)
(http://marsbar.sourceforge.net).

In all behavioral repeated measures analyses, Greenhouse-Geisser (GG)
corrections were applied when the assumption of sphericitiy was violated. When
outliers were detected (Z-value <-3.29 or >3.29), scores were winsorized
(Tabachnick and Fidell, 2013).

Results

Behavioral analyses

Noise blast manipulation check

The ratings of how much participants liked the maximum intensity noise blast
indicated that overall the noise blast was not liked (M=1.47, SD=0.78; range 1-4)
and much disliked (M=5.67, SD=1.30; range 1-7). These results show that the
noise blast was indeed perceived as a negative event by the participants.

Social feedback manipulation check

To verify whether participants differentially liked the social feedback conditions
(positive, negative, neutral), , we analyzed the exit questions with a repeated
measures ANOVA. Analyses showed a significant main effect of type of feedback
on feedback liking, F(2, 58)=53.63, p<.001 (GG corrected), with a large effect size
(w2 =0.53). Pairwise comparisons (Bonferroni corrected) showed that participants
liked negative feedback (M=3.13, SD=0.14) significantly less than neutral
feedback (M=4.23, SD=0.14, p<.001) and positive feedback (M=5.23, SD=0.16,
p<.001). Participants also liked neutral feedback significantly less than that
positive feedback (p<.001).
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Noise blast duration

A repeated measures ANOVA was performed on noise blast duration after
positive, negative, and neutral feedback. Results showed a significant main effect
of type of social feedback on noise blast duration, F(2, 58)=75.57, p<.001 (GG
corrected), with a large effect size (n?2=0.41), see Figure 1d. Pairwise comparisons
(Bonferroni corrected) revealed that noise blast duration after negative feedback
(M=1517.08, SD=126.94) was significantly longer than noise blast duration after
neutral feedback (M=930.41; SD=84.77, p<.001), and after positive feedback
(M=483.62; SD=47.19, p<.001). Noise blast duration after neutral feedback was
significantly longer than after positive feedback (p<.001).

To derive a measure indicative of individual differences in aggression we
calculated the differences in noise blast duration between negative versus neutral
feedback and positive versus neutral feedback. The noise blast difference for
positive-neutral was significantly negatively correlated to the noise blast
difference for negative-neutral (r= -.48, p=.008), indicating that shorter noise
blasts after positive feedback (compared to neutral feedback) were related to
longer noise blasts after negative feedback (compared to neutral feedback). Next,
noise blast differences were correlated with the exit questions. The difference of
negative-neutral was positively correlated to the feedback liking of positive
feedback (r= .39, p=.032) and negatively correlated to the feedback liking of
negative feedback (= -.57, p=.001), indicating that longer noise blasts after
negative feedback were related to a stronger preference for positive social
feedback and a stronger disfavor of negative social feedback see Figures Sla and
S1b. Similarly, the noise blast difference of positive-neutral was negatively
correlated to the feedback liking of positive feedback (r= -.42, p=.021) and
positively correlated to the feedback liking of negative feedback (r= .73, p<.001),
indicating that a stronger preference for positive social feedback and a stronger
disfavor of negative social feedback were related to shorter noise blasts after
positive feedback (see Figures S1c and S1d).

fMRI whole brain analyses

Social evaluation

The first goal was to examine neural activity in the contrast positive versus
negative feedback at the moment of peer feedback. The contrast Positive >
Negative feedback resulted in activation with local maxima in the bilateral lateral
occipital lobes, left postcentral, and activation in the right and left striatum,
extending into subgenual ACC (see Figure 2a, Table S1). The contrast Negative >
Positive feedback did not result in any significant clusters of activation. Next, we
tested how neural activity to positive and negative social feedback related to a
neutral baseline condition. The contrast Negative > Neutral feedback resulted in
activity in the bilateral insula and mPFC, see Figure 2b (Table S2). The reversed
contrast (Neutral > Negative feedback) did not result in any significant clusters
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of activation. The contrast Positive > Neutral feedback also revealed widespread
activation in the bilateral insula and mPFC. In addition, the contrast resulted in
increased activity in the ventral striatum, the subgenual ACC, as well as regions
such as the occipital lobe, as shown in Figure 2c (Table S2). The reversed contrast
(Neutral > Positive feedback) resulted in activity in the right insula and right
postcentral gyrus (Table S2).

Social evaluation conjunction

The analyses above suggested partially overlapping activation patterns for
positive and negative social feedback, relative to a neutral baseline. To formally
investigate the regions that were activated both after negative social feedback
and after positive social feedback, we conducted a conjunction analyses to
explore a main effect of social evaluation. Common activation across both
positive and negative social feedback were observed in the insula and the mPFC,
as well as the bilateral occipital lobes, including left Fusiform Face Area (FFA), see
Figure 2d (Table S3).

Brain-Behavior associations

Noise blast duration

To test the association between brain activity and behavior in response to
negative social feedback, we conducted a whole brain regression analysis at the
moment of receiving negative social feedback (relative to neutral feedback;
Negative > Neutral), with the difference in noise blast duration after negative and
neutral feedback as a regressor. This way, we tested how initial neural responses
to feedback were related to subsequent aggression. The analyses revealed that
increased activation in the right dorsal lateral PFC (dIPFC) was associated with
smaller increases in noise blast duration after negative social feedback compared
to neutral feedback, see Figure 3. A similar relation was observed for the left
amygdala, left hippocampus, and bilateral superior parietal cortex (Table S4). The
reversed contrast (positive relation between Negative> Neutral feedback and
noise blast length difference) did not result in any significant activation.
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Positive > Negative Feedback

Figure. 2. Whole brain full factorial ANOVA conducted at group level for the contrasts
(a) Positive>Negative feedback, (b) Negative>Neutral feedback, (c) Positive>Neutral
feedback and (d) the conjunction of the Positive>Neutral and Negative>Neutral
feedback contrasts. Results were FDR cluster corrected (PFDR<0.05), with a primary
voxel-wise threshold of P<0.005 (uncorrected).
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Figure 3. Brain regions in the contrast Negative>Neutral feedback that were
significantly negatively correlated with the difference in noise blast duration after
negative vs neutral feedback trials. Results were FDR cluster corrected (PFDR<0.05),
with a primary voxel-wise threshold of P<0.005 (uncorrected). The right panel shows
the negative relationship between difference in noise blast duration and right dIPFC (for
visual illustration only, no statistical tests were carried out on the region of interest).

Discussion

This study investigated the relation between negative social feedback and
subsequent aggression, using neuroimaging. The goals of this study were
threefold: 1) to disentangle neural signals of positive and negative social
feedback, 2) to examine aggressive responses towards the person signaling
negative social feedback, and 3) to test whether lateral PFC activity is related to
aggression regulation after experiencing negative social feedback. To these ends,
we developed a new social peer evaluation paradigm that included neutral
feedback (to be able to compare positive and negative feedback to a neutral
baseline) and the possibility to retaliate to the peer that gave the feedback (to be
able to study aggression related to social feedback). In line with prior behavioral
studies we found that negative social feedback was related to applying a longer
noise blast towards the peer (Chester et al., 2014). At the neural level, conjunction
analyses showed that both negative and positive social feedback resulted in
increased activity in the mPFC and the bilateral insula. Comparing the
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conjunction analyses with the separate contrasts of negative and positive versus
neutral feedback showed that positive feedback resulted in increased activity in
the striatum and the ventral mPFC, whereas negative feedback activation merely
overlapped with dorsal mPFC and insula activation observed following both
positive and negative feedback. Finally, we found that increased lateral PFC
activity after negative social feedback was associated with relative shorter noise
blast durations after negative feedback, indicative of more aggression regulation.

Results of prior studies left undecided whether there is a unique neural
coding for negative social feedback compared to positive social feedback. In this
study we found that, consistent with prior studies (Guyer et al., 2009; Davey et
al., 2010; Gunther Moor et al., 2010b) there was increased activity in the ventral
mPFC and the striatum after positive feedback. Numerous studies have shown
that the striatum is involved in reward processing (for a review, see Sescousse et
al. (2013)) and this fits well with theories suggesting that positive evaluations
and social acceptance activates brain regions overlapping with those that are
activated by the primary feelings of reward (Lieberman and Eisenberger, 2009).
Notably, there was no neural activation that was specific for negative social
feedback. In Cyberball paradigms, a number of studies observed specific
heightened activity in insula and ACC in response to social rejection, which was
interpreted as the feeling of social pain (Eisenberger and Lieberman, 2004;
Lieberman and Eisenberger, 2009). There are several differences in the
experimental paradigms, however, that may explain the divergent results. That is
to say, in Cyberball paradigms social rejection is unexpected (for example,
exclusion after a period of inclusion) and is therefore likely to violate social
expectations. In contrast, in social evaluation paradigms such as used in the
current study, equal proportions of negative, positive, and neutral feedback are
presented, which may result in more equal saliency of negative and positive
feedback. The current findings, which show enhanced insula and mPFC activity
following both positive and negative feedback (relative to neutral feedback),
suggest that the insula and mPFC in social evaluation paradigms might work as a
salience network, and signal events that are socially relevant (Guroglu et al.,
2010; van den Bos et al., 2011). Resting-state fMRI studies confirm that these
regions are often active in concert, and have referred to this network as a salience
network (Damoiseaux et al., 2006; Jolles et al., 2011; van Duijvenvoorde et al.,
2016a). Future research may disentangle the role of expectation violation in more
detail by asking participants to make predictions about whether they expect to
be liked (Somerville et al., 2006; Gunther Moor et al. 2010), in combination with
positive, negative, and neutral feedback.

An additional goal of this study was to examine the association between
brain activation and behavioral responses to negative social feedback. A vast line
of research has already shown that social rejection can result in retaliation
(Twenge et al., 2001; Leary et al., 2006; DeWall and Bushman, 2011; Chester et
al., 2014; Riva et al, 2015). Our study shows that receiving negative social
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feedback is also followed by more aggressive behavior (i.e., by a longer noise
blast towards the peer). In addition, we show that more activity in the right dIPFC
is related to less aggression after negative social feedback (compared to neutral
feedback), indicating that the lateral PFC is an important neural regulator of social
aggression. Several studies on structural brain development have shown that the
quality of brain connectivity between the PFC and the striatum is related to
impulse control (Peper et al.,, 2013; van den Bos et al., 2014). That is to say, a
large study on structural brain connectivity in typically developing individuals
(258 participants, aged 8-25) revealed that less white matter integrity between
subcortical and prefrontal brain regions was associated with more trait
aggression (Peper et al., 2015). Moreover, Chester and DeWall (2016) recently
demonstrated that more functional connectivity between the nucleus accumbens
and the lateral PFC during decisions about aggressive acts was related to less
behavioral aggression. This study is the first study to investigate aggressive
responses after positive, neutral, and negative feedback, and shows a role of the
dIPFC in individual differences in the regulation of aggressive behavior.

Some limitations regarding this study need to be acknowledged. First,
although the noise blast is often used as a measure of aggression (e.g., Bushman
(2002); Chester et al. (2014); Riva et al. (2015)), our cover story stated that the
peers would not hear the noise blast. That is to say, the aggression measure may
reflect frustration and anger, and hypothetical aggression. Future research
should further test the ecological validity of the noise blast as a measure of
aggression by including additional measures of aggression or information on
participants’ histories of aggressive behavior. Secondly, our paradigm did not
include an ‘opt out’ option, that is, we told participants to always push the noise
blast button, even after positive feedback. This was done to keep task demands
as similar as possible between the conditions. We explained that the noise would
be very short and at very low intensity if the button was released as quickly as
possible. However, participants may have wanted to refrain from any noise blast
after positive feedback. Future research could take this into account by
implementing options to respond either positive, neutral, or negative towards the
peer, as can for example be implemented by using symbols (Jarcho et al., 2013).
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Conclusion

In conclusion, we found evidence that the insula and mPFC generally respond to
socially salient feedback, with no significant differentiation between negative
and positive feedback. Positive social feedback received less attention in prior
research and it has often been used as a baseline, but our findings show
activation in the ventral mPFC and the striatum that is stronger for positive
feedback. Additionally, the lateral PFC emerged as an important modulator for
individual differences in aggression regulation. This may imply that individuals
who show strong activation in the lateral PFC after negative social feedback may
be better able to regulate behavioral impulses, and speculatively, impulsive
responses in general (Casey et al, 2011). This hypothesis that should be
addressed in longitudinal research, including more general measures of
impulsivity. An interesting direction for future research is to examine the neural
mechanisms underlying social evaluation and aggression regulation processes in
populations that are known for difficulties with response control and affect
regulation, such as ADHD (Evans et al., 2015), externalizing problems (Prinstein
and La Greca, 2004), and depression (Nolan et al., 2003; Silk et al., 2014).
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Supplementary materials

Table S1. MNI coordinates for local maxima activated for the contrasts Positive >
Negative feedback. The results were FDR cluster corrected (pFDR<.05), with a
primary voxel-wise threshold of p<.005 (uncorrected).

Area of Activation X y z Voxels T

Positive > Negative feedback

Lingual Gyrus 0 -73 4 5491 12.99
R Intracalcarine Cortex 3 -76 13 12.91
Cuneal Cortex 0 -79 22 11.17
L Supramarginal Gyrus -39 -37 40 951 6.61
L Supramarginal Gyrus -48 -34 43 5.53
L Postcentral Gyrus -54 -28 46 5.19
L Caudate -12 23 -5 76 4.72
L Caudate -21 29 -2 4.17
L Supplementary Motor Cortex -12 2 52 206 4.43
L Supplementary Motor Cortex -9 -10 55 3.95
R Supplementary Motor Cortex 3 -1 55 3.89
R Orbito Frontal Cortex 15 23 -8 90 4.34
R Orbito Frontal Cortex 18 17 -14 4.04
R Orbito Frontal Cortex 27 26 -8 2.84
R Superior Frontal Gyrus 18 11 46 102 4.30
R Middle Frontal Gyrus 30 8 52 4.27
R Middle Frontal Gyrus 33 14 64 3.48
L Precentral Gyrus -60 5 28 82 4.08
L Precentral Gyrus -54 -1 37 3.79
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Table S2. MNI coordinates for local maxima activated for the contrasts Negative
> Neutral feedback, Positive > Neutral feedback and Neutral > Positive feedback.
Results were FDR cluster corrected (pFDR<.05), with a primary voxel-wise
threshold of p<.005 (uncorrected).

Area of Activation X y z Voxels T

Negative> Neutral feedback

L Lateral Occipital Cortex -48 -76 -2 3122 12.89
L Occipital Pole -15 -97 22 8.82
L Occipital Pole -9 -94 28 8.71
L Orbital Frontal Cortex -33 20 -14 500 6.48
L Frontal Operculum Cortex -36 29 4 5.51
L Insular Cortex -33 23 2 5.02
R Inferior Frontal Gyrus 57 26 7 346 6.12
R Orbital Frontal Cortex 45 29 2 4.98
R Insular Cortex 36 17 -11 4.94
L Frontal Pole -12 41 49 379 4.89
R Anterior Cingulate Cortex 6 35 16 4.65
L Frontal Pole -12 50 46 4.56

Positive > Neutral feedback

L Lingual Gyrus -3 -76 1 14183 14.39
R Lingual Gyrus 6 -73 1 12.87
R Lingual Gyrus 18 -73 -8 11.25
R Precentral Gyrus 45 -1 49 62 4.71
R Middle Frontal Gyrus 33 8 43 3.14
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Table S2. (continued)

Area of Activation X y z Voxels T

Positive> Neutral feedback

R Middle Frontal Gyrus 30 23 52 107 4.07
R Superior Frontal Gyrus 21 35 49 4.03
R Middle Frontal Gyrus 39 23 46 3.65
R Middle Frontal Gyrus 45 26 25 79 4.03
R Precentral Gyrus 36 5 31 3.47
R Middle Frontal Gyrus 39 32 31 3.35
L Superior Frontal Gyrus -12 -4 67 110 3.98
L Superior Frontal Gyrus -12 5 73 3.88
L Superior Frontal Gyrus -18 -7 73 3.81

Neutral > Positive feedback

R Insular Cortex 36 -22 4 289 5.72
R Insular Cortex 30 -22 16 4.88
R Superior Temporal Gyrus 63 -16 4 4.75
R Postcentral Gyrus 33 -25 58 236 5.39
R Precentral Gyrus 33 -25 67 5.11
R Precentral Gyrus 33 -22 49 4.61
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Table S3. MNI coordinates for local maxima activated for the conjunction of
Positive > Neutral and Negative > Neutral. Results were FDR cluster corrected
(pFDR<.05), with a primary voxel-wise threshold of p<.005 (uncorrected).

Area of Activation X y z Voxels T

Conjunction of Positive > Neutral & Negative > Neutral

L Lateral Occipital Cortex -48 -76 -2 965 6.23
L Lateral Occipital Cortex -48 -79 7 5.99
L Lateral Occipital Cortex -51 -67 7 5.85
L Insular Cortex -36 23 -2 320 5.06
L Insular Cortex -30 14 -14 4.46
L Insular Cortex -30 17 1 3.81
R Lateral Occipital Cortex 51 -61 -2 518 4.99
R Lateral Occipital Cortex 51 -79 7 4.62
R Lateral Occipital Cortex 42 -79 7 4.41
Cingulate Gyrus 0 44 10 367 4.79
Anterior Cingulate Gyrus 0 38 16 4.35
R Frontal Pole 3 56 13 3.95
R Insular Cortex 33 20 -11 94 4.58
R Orbito Frontal Cortex 36 26 1 3.81
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Table S4. MNI coordinates for local maxima activated for the whole brain
regression analyses. The contrast Negative > Neutral feedback with Negative -
Neutral noise blast duration difference as negative regressor. Results were FDR
cluster corrected (pFDR<.05), with a primary voxel-wise threshold of p<.005
(uncorrected). dIPFC = dorsolateral prefrontal cortex.

Area of Activation X y z Voxels T

Negative > Neutral feedback, Noise blast duration difference score as negative
regressor

L Amygdala 21 -7 -17 173 5.57
L Amygdala -15 -10 -11 4.21
L Hippocampus -36 -13 -17 4.01
R Middle Frontal Gyrus

(dIPFC) 48 17 37 1144 5.17
R Middle Frontal Gyrus

(dIPFC) 36 20 40 5.01
R Middle Frontal Gyrus

(dIPFC) 39 14 34 4.57
L Superior Parietal Lobule -24  -46 37 315 4.95
L Superior Parietal Lobule -33 43 52 4.87
L Supramarginal Gyrus -39 -46 43 4.53
Thalamus 0 -7 16 105 4.62
L Thalamus -15 -7 10 4.04
L Caudate -12 4 19 3.97
R Superior Parietal Lobule 30 -52 40 697 4.61
R Postcentral Gyrus 30 -31 37 4.29
R Lateral Occipital Cortex 15 -70 67 4.26
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Chapter 4

Abstract

Middle childhood marks an important phase for developing and maintaining
social relations. At the same time this phase is marked by a gap in our knowledge
of the genetic and environmental influences on brain responses to social
feedback and their relation to behavioral aggression. In a large developmental
twin sample (509 7-9-year-olds) the heritability and neural underpinnings of
behavioral aggression following social evaluation were investigated, using the
Social Network Aggression Task (SNAT). Participants viewed pictures of peers that
gave positive, neutral or negative feedback to the participant’s profile. Next,
participants could blast a loud noise towards the peer as an index of aggression.
Genetic modeling revealed that aggression following negative feedback was
influenced by both genetics and environmental (shared as well as unique
environment). On a neural level (n=385), the anterior insula and anterior cingulate
cortex gyrus responded to both positive and negative feedback, suggesting they
signal for social salience cues. The medial prefrontal cortex and inferior frontal
gyrus were specifically activated during negative feedback, whereas positive
feedback resulted in increased activation in caudate, supplementary motor cortex
(SMA) and dorsolateral prefrontal cortex (DLPFC). Decreased SMA and DLPFC
activation during negative feedback was associated with more aggressive
behavior after negative feedback. Moreover, genetic modeling showed that 13-
14% of the variance in dorsolateral PFC activity was explained by genetics. Our
results suggest that the processing of social feedback is partly explained by
genetic factors, whereas shared environmental influences play a role in
behavioral aggression following feedback.

Keywords: Behavioral genetics; Dorsolateral prefrontal cortex; Peer feedback; Twin
study
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Introduction

Dealing with social evaluations and regulating emotions in the case of negative
social feedback are important prerequisites for developing social relations.
Several prior studies have shown that negative social feedback can lead to
aggressive behavior (Chester et al., 2014; Achterberg et al., 2016b; Achterberg et
al., 2017). This type of retaliation may be associated with emotional responses to
negative feedback and a lack of impulse control. The capacity to regulate
impulsive behavior increases from childhood to adulthood, which has been
linked to the increased regulatory control of the prefrontal cortex (PFC)
(Somerville et al., 2010; Casey, 2015). Indeed, prior studies in adults showed that
stronger brain connectivity between nucleus accumbens and the lateral PFC was
related to lower retaliatory aggression (Chester and DeWall, 2016). Moreover,
increased dorsolateral PFC (DLPFC) activity after negative social feedback has
been associated to less subsequent aggression (Riva et al., 2015; Achterberg et
al., 2016b). Therefore, the prefrontal cortex may be important for regulation of
neural responses to social emotions and may signal which children are better able
to regulate emotions than others. Middle childhood, ranging from approximately
7/8 years until the start of puberty, marks an important phase for regulating
(social) emotions and developing social relations. Previous studies have mainly
focused on the developmental trajectories of social rejection and acceptance
(Guyer et al., 2008; Gunther Moor et al., 2010b; Silk et al., 2014; Guyer et al.,
2016). At the same time there is a gap in our understanding of the genetic and
environmental influences of brain responses to social feedback and regulatory
responses. In this study, we therefore investigated the neural underpinnings and
heritability of social feedback processing and subsequent aggression in middle
childhood.

The way children respond to social feedback and show aggression in
response to negative feedback has only recently been examined using
experimental designs. Studies including children, adolescents and adults have
used social feedback tasks in chat room settings to unravel neural responses to
social feedback, namely social acceptance and rejection (Guyer et al, 2016).
These studies point to the anterior cingulate cortex gyrus (ACCg), the medial
prefrontal cortex (mPFC), and the anterior insula as important brain regions
related to social evaluation and social motivation (Cacioppo et al., 2013; Rotge et
al., 2015; Apps et al., 2016). The dorsal ACC / ACCg was found to be activated in
response to unexpected social feedback, irrespective of whether it was positive
or negative (Somerville et al., 2006). Recently, we developed a social network
aggression task (SNAT) to study neural responses to social feedback, both in
adults and 7-10-year-old children (Achterberg et al., 2016b; Achterberg et al.,
2017). Consistent with prior studies, the ACCg and the anterior insula were active
during both positive and negative feedback in adults, indicating that these
regions signal social salient cues (Achterberg et al., 2016b). These effects were
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also present in middle childhood, but less pronounced (Achterberg et al., 2017).
However, prior studies in children used relatively small samples, which might
have been underpowered, specifically since neuroimaging data in developmental
samples are more prone to data loss and artifacts due to movement
(O'Shaughnessy et al., 2008). The current study therefore set out to include over
500 participants, thereby asserting sufficient sample size and statistical power,
even after data loss due to excessive motion (Euser et al., 2016).

Prior studies in adults showed that the DLPFC was negatively related to
aggression following social evaluation, suggesting that this region is important
for regulating aggression (Achterberg et al. (2016b), see also Riva et al. (2015)).
Since the PFC gradually develops until early adulthood (Lenroot and Giedd, 2006; van
Duijvenvoorde et al., 2016a), there is ample opportunity for environmental influences. An
important question therefore concerns to what extent behavioral and neural
responses to social feedback, and subsequent aggression, are influenced by
genetic and/or shared environmental factors. Twin models have been particularly
important in unraveling to what extent genetic and environmental factors
account for the variance in aggression. These studies have shown that trait
aggression has both genetic and environmental components (Porsch et al., 2016).
Heritability estimates for behavioral aggression are high for both children and
adults, explaining up to 48% of the variance (for meta-analyses, see Rhee and
Waldman (2002); Ferguson (2010); Tuvblad and Baker (2011)). We aimed to
explore whether neural reactions to social feedback that could elicit aggression
show similar heritability estimates. Studies of the genetics of functional
neuroimaging are currently limited to studies using resting state fMRI (Richmond
et al., 2016) or cognitive working memory tasks (Jansen et al., 2015). These
studies mostly point to (moderate) genetic influences, with few studies showing
significant shared environmental components. It should be noted that these
findings are largely based on adult twin studies, whereas previous research
showed that heritability estimates of brain measures are stronger in adulthood
than in childhood (Lenroot et al., 2009; Lenroot and Giedd, 2011; van den Heuvel
et al., 2013). In this study we therefore used a large developmental twin sample
(N=509 7-9-year-olds), to investigate i) the heritability of behavioral aggression
following social evaluation; ii) the neural underpinnings of social evaluation and
their relation to behavioral aggression; and iii) the heritability of these neural
underpinnings.

We hypothesized that negative social feedback would result in behavioral
aggression (Chester et al., 2014; Achterberg et al., 2016b; Achterberg et al., 2017).
Prior studies have shown that trait aggression has a relatively strong genetic
component (Porsch et al, 2016), however the influences of genetics and
environment on state aggression such as measured with the SNAT are not yet
known. On a neural level, we predicted to find a network of regions that process
social feedback irrespective of valence, as prior research showed in adults
(Achterberg et al.,, 2016b), including the ACCg and the (anterior) insula. In
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addition, we will investigate possible brain-behavior relations between activation
of these regions and the aggression measure. Based on prior studies (Riva et al.,
2015; Achterberg et al., 2016b), we predicted that the lateral prefrontal cortex
would be most strongly correlated to aggression regulation. Since the literature
on the heritability of task-based fMRI is limited, and the current study is the first
to study such heritability in middle childhood, no a priori hypotheses were
formed for the exploratory analyses on heritability of neural activation.

Methods

Participants

Participants in this study took part in the longitudinal twin study of the Leiden
Consortium on Individual Development (L-CID). The Dutch Central Committee
Human Research (CCMO) approved the study and its procedures. Families with a
twin born between 2006 - 2009, living within two hours travel time from Leiden,
were recruited through municipal registries and received an invitation to
participate by post. Parents could show their interest in participation using a
reply card. 512 children (256 families) between the ages 7 and 9 were included in
the L-CID study. Written informed consent was obtained from both parents. All
twin-pairs had a shared home environment, were fluent in Dutch, and had normal
or corrected-to-normal vision. The majority of the sample was Caucasian (91%)
and right-handed (87%). Since the sample represents a population sample, we did
not exclude children with a psychiatric disorder. Ten participants (2%) were
diagnosed with an Axis-I disorder: eight with attention deficit hyperactivity
disorder (ADHD); one with generalized anxiety disorder (GAD), and one with
pervasive developmental disorder- not otherwise specific (PDD-NOS). Three
participants did not have data from the SNAT due to technical problems.
Therefore, our final behavioral sample consisted of 509 participants with a mean
age of 7.95 = 0.67 (age range: 7.02-9.68, 49% boys, see Table 1), with 253
complete twin pairs (55% MZ; based on DNA, see section 2.5). Data from 30 twin
pairs were previously reported (Achterberg et al., 2017).

Twenty-seven participants did not perform the SNAT in the MRI scanner:
13 due to anxiety, 6 due to MRI contra-indications, 4 participants did not have
parental consent for MRI participation, and 4 participants could not be scanned
due to technical system failure. For all participants who underwent the MRI scan,
anatomical MRI scans were reviewed and cleared by a radiologist from the
radiology department of the Leiden University Medical Center (LUMC). Four
anomalous findings were reported. To prevent registration errors due to
anomalous brain anatomy, these participants were excluded. An additional 89
participants were excluded due to excessive head motion, which was defined as
>3 mm motion (1 voxel) in any direction (X, y, z) in more than 2 blocks of the
SNAT task (3 blocks in total). Finally, four participants were excluded due to
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preprocessing errors. Our final MRI sample consisted of 385 participants with a
mean age of 7.99 + 0.68 (age range: 7.02-9.68, 47% boys, see Table 1), with 158
complete twin pairs (55% MZ; based on DNA, see section 2.5). Participants’
intelligence (IQ) was estimated with the subsets ‘similarities’ and ‘block design’
of the Wechsler Intelligence Scale for Children, third edition (WISC-III; Wechsler,
1997). Estimated IQs were in the normal range (72.50 - 137.50), with an average
IQ of 104 (see Table 1). There were no significant differences in IQ between
children in the final sample (n=385) and those who could not be included in the
MRI analyses (n=124) (t(507)=1.36, p=.175), nor were there significant gender
differences (y(1, N=512)=2.80, p=.092). Children that could not be included in the
MRI analyses were, however, significantly younger (M=7.80, SD=0.64) than
children in the final sample (M=7.99, SD=0.67, t(507)=2.72, p=.007), but this
effect was small (d=0.29).

Table 1. Demographic characteristics.

Behavioral sample MRI sample
N 509 385
Boys 49% 47%
Left handed 13.0% 12.0%
Caucasian 91.0% 93.0%
AXIS-I disorder 10 (2%)" 8 (2%)?
Age (SD) 7.94 (.67) 7.99 (.68)
Range 7.02-9.68 7.02-9.68
Mean IQ (SD) 103.62 (11.77) 104.03 (11.84)
IQ range 72.50 - 137.50 72.50 - 137.50
Complete twin pairs 253 158
Monozygotic 138 (55%) 87 (55%)
Caucasian 230 (91%) 150 (95)%

18 ADHD; 1 PDD-NOS; 1 Generalized Anxiety Disorder
2 6 ADHD; 1 PDD-NOS; 1 Generalized Anxiety Disorder

Social Network Aggression Task

Experimental design

The Social Network Aggression Task (SNAT) as described in Achterberg et al.
(2016b; 2017) was used to measure (imagined) aggression after social evaluation.
Prior to the fMRI session, the children filled in a personal profile at home, which
was handed in at least one week before the actual fMRI session. The profile page
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consisted of questions such as: ‘What is your favorite movie?’, ‘What is your
favorite sport?’, and ‘What is your biggest wish?’. Children were informed that
their profiles were reviewed by other, unfamiliar, children. During the SNAT the
children were presented with pictures and feedback from same-aged peers in
response to their personal profile. Every trial consisted of feedback from a new
unfamiliar child. This feedback could either be positive (‘I like your profile’,
visualized by a green thumb up); negative (‘I do not like your profile’, red thumb
down) or neutral (‘I don’t know what to think of your profile’, grey circle).
Following each peer feedback, the children were instructed to imagine that they
could send a loud noise blast to this peer. We specifically instructed the children
to imagine this to reduce deception, because it has been shown that imagined
play also leads to aggression (Konijn et al., 2007). The longer they pressed the
button the more intense the noise would be, which was visually represented by a
volume bar (Figure 1). To keep task demands as similar as possible between the
conditions, participants were instructed to always press the button, but they could
choose whether they wanted a short noise at low intensity or a long noise at high
intensity. Unbeknownst to the participants, others did not judge the profile, and
the photos were created by morphing two children of an existing data base
(matching the age range) into a new, non-existing child. Peer pictures were
randomly coupled to feedback, ensuring equal gender proportions for each type
of feedback.

Participants were familiarized with the MRI scanner during a practice
session in a mock scanner. Then participants received instructions on how to
perform the SNAT and the children were exposed to the noise blast twice during
a practice session: once with stepwise build-up of intensity and once at maximum
intensity. Participants did not hear the noise during the fMRI session, to prevent
that they would punish themselves by pressing the button. To familiarize
participants with the task, participants performed six practice trials. After the
mock scanner session, one of the twins continued with the actual scan, while the
other twin performed the WISC-III and other behavioral tasks. First-born and
second-born children were randomly assigned to the scan session or behavioral
tasks as their first task. When the first child completed the scan, he/she
continued with the WISC-III and behavioral tasks while the other child
participated in the scanning session.

The SNAT consisted of 60 trials, three blocks of 20 trials for each social
feedback condition (positive, neutral, negative), that were presented semi-
randomized to ensure that no condition was presented more than three times in
a row. The optimal jitter timing and order of events were calculated with Optseq
2 (Dale, 1999). Each trial started with a fixation screen (500 ms), followed by
social feedback (2500 ms). After another jittered fixation screen (3000-5000 ms),
the noise screen with the volume bar appeared, which was presented for a total
of 5000 ms. Children were instructed to deliver the noise blast by pressing one
of the buttons on the button box attached to their legs, with their right index
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finger. As soon as the participant started the button press, the volume bar started
to fill up with a new colored block appearing every 350 ms. After releasing the
button, or at maximum intensity (after 3500 ms), the volume bar stopped
increasing and stayed on the screen for the remainder of the 5000 ms. Before the
start of the next trial, another jittered fixation cross was presented (0 -11550 ms)
(Figure 1). The length of the noise blast duration (i.e., length of button press) in
milliseconds was used as a measure of imagined aggression.

Start trial

Peer feedback

Fixation

Noise blast

Fixation

2500 ms

3000 - 5000 ms
5000 ms

0- 11550 ms

Figure 1. Example of one trial of the social network aggression task.

Social feedback manipulation check

The social feedback manipulation was checked using an exit interview with
questions on how much they liked the feedback (‘How much did you like reactions
with a thumb up?’, ‘How much did you like reactions with a circle?’, and ‘How
much did you like reactions with a thumb down?’). Participants rated the reactions
on a 6-point scale, with 1 representing very little and 6 representing very much.
In addition, we asked two open questions: ‘what did you think of the game?’, and
‘what did you think of the noises that you could deliver’. None of the participants
expressed doubts about the cover story.

To verify whether children differentially evaluated the social feedback
conditions (positive, negative, neutral), we analyzed answers to the exit questions
with a repeated measures ANOVA. Data from the exit questions were missing for
5 participants. Results (Greenhouse-Geisser corrected) showed a significant main
effect of type of feedback on the subjective evaluation of social feedback with a
large effect size (F(2, 1002)= 19.16, p<.001, »2=0.62). Pairwise comparisons
showed that participants liked negative feedback (M=2.27, SD=1.18) significantly
less than neutral feedback (M=4.14, SD=0.87, p<.001, d= 1.80) and positive
feedback (M=5.33, SD=0.88, p<.001, d= 2.94). Participants also liked neutral
feedback significantly less than positive feedback (p<.001, d= 1.37).
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MRI data acquisition

MRI scans were acquired with a standard whole-head coil on a Philips Ingenia 3.0
Tesla MR system. To prevent head motion, foam inserts surrounded the
children’s heads. The total scan protocol lasted 56 minutes, including two fMRI
tasks, high resolution T2 and T1 scans, diffusion tensor imaging scans and a
resting state fMRI scan. The order of the scans was the same for all participants
and always started with the SNAT. The SNAT was projected on a screen that was
viewed through a mirror on the head coil. Functional scans were collected during
three runs T2*-weighted echo planar images (EPI). The first two volumes were
discarded to allow for equilibration of T1 saturation effect. Volumes covered the
whole brain with a field of view (FOV) = 220 (ap) x 220 (r]) x 111.65 (fh) mm,;
repetition time (TR) of 2.2 seconds; echo time (TE) = 30 ms; flip angle (FA) = 80°;
sequential acquisition, 37 slices; and voxel size = 2.75 x 2.75 x 2.75 mm.
Subsequently, a high-resolution 3D T1scan was obtained as anatomical reference
(FOV= 224 (ap)x 177 (r]) x 168 (fh); TR =9.72 ms; TE = 4.95 ms; FA = 8°; 140 slices;
voxel size 0.875 x 0.875 x 0.875 mm).

MRI data analyses

Preprocessing

MRI data were analyzed with SPM 8 (Wellcome Trust Centre for Neuroimaging,
London). Images were corrected for slice timing acquisition and rigid body
motion. Functional scans were spatially normalized to T1 templates. Due to T1
misregistrations, five participants were normalized to an EPI template. Volumes
of all participants were resampled to 3x3x3 mm voxels. Data were spatially
smoothed with a 6 mm full width at half maximum (FWHM) isotropic Gaussian
kernel. Translational movement parameters were calculated for all participants.
Participants that had at least two blocks of fMRI data with <3 mm (1 voxel) motion
in any direction were included (N=385).

First-level analyses

Statistical analyses were performed on individual subjects’ data using a general
linear model. The fMRI time series were modeled as a series of two events
convolved with the hemodynamic response function (HRF). The onset of social
feedback was modeled as the first event, with a zero duration and with separate
regressors for the positive, negative, and neutral peer feedback. The start of the
noise blast (second event) was modeled for the length of the noise blast duration
(i.e., length of button press) and with separate regressors for noise blast after
positive, negative, and neutral judgments. Trials on which the participants failed
to respond in time were modeled separately as covariate of no interest and were
excluded from further analyses. All participants had at least 10 trials for each
feedback type. To account for possible motion induced error that had not been
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solved by realignment, we included six additional motion regressors
(corresponding to the three translational and rotational directions) as covariates
of no interest. The least squares parameter estimates of height of the best-fitting
canonical HRF for each condition were used in pairwise contrasts. The pairwise
comparisons resulted in subject-specific contrast images.

Higher-level group analyses

Subject-specific contrast images were used for the group analyses. A full factorial
ANOVA with three levels (positive, negative and neutral judgment) was used to
investigate the neural response to the social feedback event. To investigate
regions that were activated during both negative and positive feedback, we
conducted a conjunction analysis to explore the general valence effects of social
evaluation (conjunction negative > neutral and positive > neutral). Based on
Nichols et al. (2005), we used the ‘logical AND’ strategy. The ‘logical AND’ strategy
requires that all the comparisons in the conjunction are individually significant
(Nichols et al., 2005). Next, we calculated the contrasts negative > positive and
positive > negative to investigate brain regions that were specifically activated
for social rejection or social acceptance. All results were family wise error (FWE)
voxel level corrected, with pr:<.05. Coordinates for local maxima are reported in
MNI space.

Region of Interest analyses

SPM8’s MarsBaR toolbox (Brett et al, 2002) was used to extract patterns of
activation from the whole brain group analyses in order to investigate possible
brain-behavior associations and as input for the genetic modeling. Parameter
estimates (PE, average Beta values) were extracted from regions that were
significantly activated in the whole brain analyses. Specifically, the following ten
regions were extracted: the left and right insula and ACCg (from the conjunction
contrast); the mPFC and left and right IFG (contrast negative>positive); and the
left and right DLPFC, SMA, and caudate (contrast positive>negative). For the brain-
behavior relations we focused on associations with noise-blast difference scores
following negative social feedback (negative-positive and negative-neutral,
corrected for age and 1Q).

Genetic modeling

Zygosity was determined using DNA analyses. DNA was tested with buccal cell
samples collected via a mouth swab (Whatman Sterile Omni Swab). Buccal
samples were collected directly after the MRI session, thereby ensuring that the
children did not have anything to eat or drink for at least one hour prior to DNA
collection. The results of the DNA analyses indicated that 55% of the twin pairs
was MZ.

92



Heritability of aggression following social evaluation

Phenotypic similarities among twin pairs can be divided into similarities
due to shared genetic factors (A) and shared environmental factors (C), while
dissimilarities are ascribed to unique environmental influences and measurement
error (E). We used behavioral genetic modeling with the OpenMX package (Neale
et al., 2016) in R (R Core Team, 2015) to get an estimate of these A, C, and E
components. Comparisons of the ACE model with more parsimonious models (AE
model; CE model; or E model) are described in the Supplementary Materials. When
ACE models show the best fit, both heritability, shared and unique environment
are important contributors to explain the variance in the outcome variable. AE
models indicate that genetic and unique environmental factors play a role; whilst
CE models indicate influences of the shared environment and unique
environment. If the E model has no worse fit than AE or CE models, variance in
the outcome variable is accounted for by unique environmental factors and
measurement error.

Statistical Analysis

In order to detect outliers in the data, we transformed the raw data to z-values.
Based on the Z-distribution, 99.9% of z-scores lie between -3.29 and +3.29. Z-
values outside this range (<-3.29 or >3.29) were defined as outliers. Outlying
scores were winsorized (Tabachnick and Fidell, 2013). To assess effects of
condition (positive, neutral, negative) on noise blast duration (in ms) we used a
linear mixed-effect model approach using the lme4 package in R (Bates et al.,
2015) in R (R Core Team, 2015). Data was fitted on the average response times
after positive, neutral and negative trials. Random intercepts per participants and
per family allows to account for the nesting of condition within participant
(ChildID) and the nesting of twin-pairs within families (FamilyID). Additionally, a
random slope of condition was included per participant. Fixed effects included
condition (factor with 3 levels), as well as participant’s age and IQ as covariates,
which were grand mean centered. All main effects and two-way interactions
between age *condition and age * IQ were included. P-values were determined
using Kenward-Rogers approximation as implemented in the mixed function in
the afex package (Singmann, 2013). The fitted mixed-effect model is specified in
R as:

noiseblast ~ condition x age_meancentered + condition * IQ_meancentered
+ (condition|childID) + (1|familyID).

To derive a measure of individual differences in aggression we calculated the
differences in noise blast duration between conditions (negative-positive;
negative-neutral; neutral-positive). Brain-behavior associations were investigated
by least square regressions with ROI activation predicting noise blast difference
scores. Due to the nested nature of twin data, the data violates the assumption
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of homoscedasticity. Although the estimator of the regression parameters is not
influenced when this assumption is violated, the estimator of the covariance
matrix can be biased, resulting in too liberal or too conservative significance tests
(Hayes & Chai, 2007). Therefore, we used heteroscedasticity-consistent standard
error (HCSE) estimators, by using the HCSE macro of Hayes and Cai (2007). As
recommended by Long and Ervin (2000), we used the HC3 method. Moreover, we
performed genetic modeling of behavioral responses (noise blast difference
scores) and neural responses (ROI activation) to social feedback using the
OpenMX package (Neale et al., 2016) in R (R Core Team, 2015).

Results

Behavioral analyses

Social feedback retaliation

The linear mixed-effect model showed a significant main effect of type of social
feedback on noise blast duration, F(2, 505) = 300.8754, p<.001. Pairwise
comparisons revealed that noise blast duration after negative feedback (M=2688,
SD=736) was significantly longer than noise blast duration after neutral feedback
(M=1906, SD=648, p<.001), and after positive feedback (M=1459, SD=852,
p<.001). Noise blast duration was significantly longer after neutral feedback than
after positive feedback (p<.001). There were also significant noise blast * age F(2,
505) = 10.57, p<.001) and noise blast * IQ interaction effects F(2, 505) = 12.27, p<.001),
showing larger condition effects for older children and for children with higher
IQ. To control for possible confounding effects of age and 1Q, we included these
variables as regressors in further models. There were no significant gender
differences in noise blast duration after positive, neutral or negative feedback
(independent sample T-tests, all p’s>.05). Results did not change after exclusion
of children with an Axis-I disorder.

Twin analyses

To investigate twin-effects in (imagined) aggression after social feedback we
calculated the differences in noise blast duration between negative versus
positive feedback, negative versus neutral feedback; and neutral versus positive
feedback. Next, we performed Pearson’s correlations between these differences
scores within MZ (n=138) and DZ (n=115) twin pairs (Table 2). Behavioral genetic
analyses revealed that aggression following negative relative to positive social
feedback was moderately influenced by genetics (A= 20%, 95% CI: 0-37%), and to
a lesser extent influenced by shared environment (C=6%, 95% CI: 0-34%). Unique
environment and measurement error explained the largest part of the variance in
aggression after negative feedback (E=74%, 95% CI:0.63-0.90), see Table 2. The
best fitting model was an ACE-model, see Table S1. Aggression following negative
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relative to neutral feedback showed similar influences of shared environment
(C=8%) and relatively less influence of genetics (A=10%, Table 2), and was best
described by a CE-model (Table S1). Aggression following neutral relative to
positive social feedback showed no influence of shared environment (C=0%) and
was most influenced by unique environment (90%, see Table 2 and Table S1).

Table 2. Noise blast twin analyses. Pearson’s correlations and ACE models for
noise blast difference scores.

Noise blast

2 2 2

difference Mz bz A ¢ E
Negative - 21 24 ACE 0.20 0.06 0.74
Positive

p 016 .010 95%CI 0.00-0.37 0.00-0.34 0.63-0.90
Negative- 149 o5 ACE 0.10 0.08 0.82
Neutral

p 025 .007 95%CI 0.00-0.40 0.00-0.32 0.60-0.98
Neutral - r 10 .04 ACE 0.10 0.00 0.90
Positive

p .260 .67 95%CI 0.00-0.26 0.00-0.13 0.74-1.00
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A Conjunction (Negative>Neutral + Positive > Neutral)

=

X,y,z =-2,19,-11

B Negative > Positive

X,y,Z = -8,58,-2

X,y,z = 7,18,36

4.5

115

Figure 2. Whole brain results for A) the conjunction negative>neutral and

positive>neutral; B) the contrast negative>positive; and C)
positive>negative. Results were family wise error corrected (prwe<.05).
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Neural analyses

Whole brain analyses

To investigate the general valence effects of social feedback, we examined neural
activity for positive versus neutral and negative versus neutral feedback using a
conjunction analysis. We found common activation across positive and negative
feedback in a wide network of regions including left and right insula, the ACCg,
and the lateral occipital cortex (Figure 2a and Table 3).

To investigate effects of negative versus positive social feedback, we
investigated the contrasts negative>positive and positive>negative. The contrast
negative>positive feedback resulted in activation with local maxima in the medial
PFC, the left and right inferior frontal gyrus (IFG), and the occipital pole (Figure
2b and Table 3). The reversed contrast positive>negative resulted in increased
activation in the left and right orbitofrontal cortex (OFC), the precuneus, the
supplementary motor cortex (SMA), the right caudate, the left and right DLPFC,
and the lingual gyrus (Figure 2c and Table 3). Results did not change after
exclusion of children with an Axis-I disorder (Table S3).

Brain-behavior analyses

To investigate possible brain-behavior associations in the clusters from the whole
brain contrasts 10 ROIs were selected based on a priori hypotheses to predict
behavioral aggression using least square regressions with HCSE. We chose 3 ROIs
from the conjunction (the ACCg, the left insula, and the right insula), 3 ROIs from
the contrast negative>positive (the mPFC, the left IFG, and the right IFG) and 4
ROIs from the contrast positive>negative (the SMA, the right caudate, the left
DLPFC, and the right DLPFC) (Table 3). We focused on associations with noise-
blast difference scores following negative social feedback (negative-positive and
negative-neutral, corrected for age and IQ). We observed a significant association
between noise blast differences and activity in left DLPFC, right DLPFC activation,
and SMA activation (Table 4, Figure 3). These associations showed that greater
activation during positive (versus negative) social evaluation was associated with
more aggression after negative social feedback, see Figure 3a-d. To visualize this
effect in more detail, we plotted the PE’s of the right DLPFC for participants with
low aggression after negative feedback and participants with high aggression
after negative feedback (Figure 3e). Groups were based on a median split of the
noise-blast difference scores following negative social feedback (negative-
positive, corrected for age and IQ). Participants who differentiated more in
aggression (larger noise blast difference positive versus negative feedback) also
differentiated more on a neural level (brain activation after positive versus
negative feedback), see Figure 3e. In other words, participants who showed less
DLPFC activity during negative feedback relative to positive feedback, were more
aggressive after negative feedback. These associations did, however, not survive
Bonferroni correction (p’s > 0.025).
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All other ROIs showed no behavioral-brain associations (all p’s>.05, see
Table 4). Results did not change after exclusion of children with an Axis-I disorder
(Table S4). Note that we did not observe any significant clusters of activation
scaling with behavior when we performed exploratory whole brain regression
analyses with the consecutive noise blast difference scores as covariates of
interest (on the contrasts positive>negative, negative>positive, positive>neutral
and negative>neutral).

Twin analyses

To investigate twin-effects we calculated Pearson’s correlations for neural
activation during social feedback in the 10 ROIs for MZ (n=87) and DZ (n=71)
twins, see Table 5. Behavioral genetic analyses revealed that only variance in
activation in regions following positive feedback was influenced by genetic
factors. Specifically, genetics accounted for 13% (95% CI: 0-32%) of the variance
in left DLPFC activation and for 14% (95% CI: 0 - 34%) of the variance in right
DLPFC (Table 5). Ten percent of the variance in SMA (95% CI: 0-31%) and right
caudate (95% CI: 0-29%) activation was explained by genetics (see Table 5).
Estimates for the shared environment were zero, and all of the residuary variance
was explained by E (unique environment and measurement error). Genetic
modeling for neural activation in the other ROIs revealed minimal or no influence
of either genetics or shared environment (estimates 0-4%), and were best
explained by unique environment and/or measurement error (Table 5). Variance
in neural activation in all ROIs was best explained by an E-model (Table S2).
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Parameter Estimates SMA
(contrast Positive>Negative)

Parameter Estimates right DLPFC
(contrast Positive>Negative)

-15

(@]
o

Parameter Estimates right DLPFC
(contrast Positive>Negative)
Parameter Estimates left DLPFC
(contrast Positive>Negative)

Noise blast difference Negative-Neutral Noise blast difference Negative-Neutral

m

0.5 4

m Positive
Social
Feedback

= Negative
Social
Feedback

Parameter Estimates right DLPFC
(contrast Positive>Negative)

Low Aggression High Aggression

Figure 3. Visual representation of the brain-behavior associations. (A) right
dorsolateral prefrontal cortex (DLPFC) and noise blast difference negative-positive; (B)
supplementary motor cortex (SMA) and noise blast difference negative-positive; (C) right
DLPFC and noise blast difference negative-neutral; (D) left DLPFC and noise blast
difference negative-neutral; and (E) right DLPFC activity after positive and negative
social feedback for children with low and high aggression.
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Table 3. MNI coordinates for local maxima activated for the whole brain
contrasts.

Anatomical Region Voxels pFWE T X y z
Conjunction Negative>Neutral and Positive>Neutral
Lateral Occipital Cortex 3550 <.001 14.03 -42 -85 4
<.001 13.79 -48 -76 -5
<.001 12.72 48 -70 -5
Lateral Occipital Cortex 124 <.001 6.74 -24 -64 61
* Right insula 101 <.001 6.35 39 23 -11
* Left insula 30 .001 5.26 -33 26 -5
.005 4.98 -30 20 -11
.026 4.61 -30 11 -17
* Rostral ACC 108 .002 5.19 0 47 10
.002 5.18 -6 53 1
.004 5.02 12 47 13
Left insula (posterior) 4 .007 4.93 -45 14 -5
Right IFG 7 .010 4.84 51 23 13
Supplementary Motor
Cortex 4 .035 4.54 6 11 64
Negative > Positive
Occipital pole 118 <.001 13.45 -9 -97 13
* Medial PFC 153 <.001 7.16 -9 59 25
<.001 5.54 9 59 25
Occipital pole 51 <.001 6.25 27 -91 16
0.003 5.10 18 -94 13
* Left IFG 66 <.001 6.11 -54 29 4
.001 5.28 -45 26 -8
* Right IFG 19 .002 5.23 51 32 -2
.018 4.70 57 32 7
Left Central Opercular
Cortex 3 .017 4.72 -36 -16 25
Left vIPFC 1 .042 4.49 -21 50 7
Right vIPFC 1 .048 4.45 30 50 -2
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Table 3. (continued)

Anatomical Region Voxels pFWE T X y z

Positive > Negative
Lingual gyrus 762 <.001 13.76 3 -76 -2
<.001 11.43 -18 -85 -8
<.001 9.63 -24 -79 -11

Right OFC 52 <.001 7.58 4?2 59 -8
<.001 5.68 36 56 -1¢4
* Supplementary Motor Cortex 463 <.001 7.43 -6 14
<.001 7.40 24 5
<.001 6.80 6 14
Precuneous 174 <.001 6.19 6 -70
.001 5.27 9 -73
Left OFC 26 <.001 6.16 -45 56
.002 5.19 -48 50
.023 4.65 -36 62
Left superior frontal gyrus 125 <.001 6.04 -24 5 64
Lateral Occipital Cortex 193 <.001 6.01 42 -76 46
<.001 5.72 27 -82 31
<.001 5.54 39 -85 34
< Right dorsolateral PFC 90 <.001 5.87 39 32 37
Lateral Occipital Cortex 91 <.001 5.83 -42 -82 40

<.001 5.50 -33 -67 64
<.001 5.49 -51 -70 46

* Left dorsolateral PFC 88 <.001 5.58 -45 41 34
.001 5.32 -48 32 37
.006 4.95 -39 38 43
Left middle OFC 5 .003 5.10 -18 56 -13

* Right Caudate 12 .004 5.07 12 20 4
Left Supermarginal gyrus 9 .004 5.07 -57 -46 55
Dorsal ACC 5 .008 4.89 6 35 31
Right Middle temporal gyrus 3 .015 4.74 63 -22 -17
Left OFC 1 .022 4.66 -42 53 -11

* Cluster used as region of interest in subsequent analyses
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Table 4.

Brain-behavior

associations.

Least square regressions with

heteroskedasticity corrected standard error estimations with brain activation in
the regions of interest predicting behavioral aggression.

Negative>Positi
Conjunction ve Positive>Neutral
Noise blast /éC FEft Le medi left rig SM right - left e
difference gyr mnsu insu al IFG ht A caud  DLP DLP
la PFC IFG ate FC
us la FC
Negative - 0.0
Positive r .07 .08 .07 .02 1 .05 .11 -.04 .10 .13
.15 .84 .40 .02
p 2 .105 .169 674 5 1 7 .460 .074 .017
Negative -
Neutral r .06 .09 .04 .02 .02 .05 .09 -.00 .13 .13
.25 .67 .34 .08
p 6 .081 .441 711 5 9 7 .936 .009 .013

ACC: Anterior Cingulate Cortex; DLPFC: dorsolateral prefrontal cortex IFG:
inferior frontal gyrus; PFC: prefrontal cortex; SMA: supplementary motor area
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Table 5. Region Of Interest twin analyses. Pearson’s correlations and ACE models
for brain activation in the regions of interest (ACC: Anterior Cingulate Cortex; Al:
Anterior Insula; IFG: inferior frontal gyrus; SMA: supplementary motor area;
DLPFC: dorsolateral prefrontal cortex).

ROI MZ DZ A? Cz E?
Conjunction Negative>Neutral and Positive>Neutral
ACC gyrus r -0.04 0.14 ACE 0 0.06 0.94

p 0.739 0.249 95%CI 0.00-0.20 0.00-0.21 0.80-1.00
Left AI r -0.07 -0.14 ACE 0 0 1

p 0.493 0.252 95%CI 0.00-0.11 0.00-0.09 0.89-1.00
Right Al r 0.06 -0.11 ACE 0 0 1

p 0.611 0.377 95%CI 0.00-0.19 0.00-0.12 0.81-1.00
Negative > Positive
Medial PFC 0.12 -0.2 ACE 0.01 0 0.99

p 0.274 0.091 95%CI 0.00-0.21 0.00-0.12 0.79-1.00
Left IFG r 0 -0.06 ACE 0 0 1

p 0.987 0.607 95%CI 0.00-0.19 0.00-0.13 0.81-1.00
Right IFG r 0.02 0.06 ACE 0 0.04 0.96

p 0.853 0.628 95%CI 0.00-0.22 0.00-0.19 0.81-1.00
Positive > Negative
SMA 0.23 -0.21 ACE 0.1 0 0.9

p 0.031 0.087 95%CI 0.00-0.31 0.00-0.14 0.69-1.00
Right r 0.12 0.02 ACE 0.1 0 0.9
caudate p 0.289 0.855 95%CI 0.00-0.29 0.00-0.22 0.71-1.00
Left DLPEC r 0.18 -0.05 ACE 0.13 0 0.87

p 0.09 0.652 95%CI 0.00-0.32 0.00-0.20 0.68-1.00

r 0.27 -0.22 ACE 0.14 0 0.86
Right DLPFC

p 0.01 0.06 95%CI 0.00-0.34 0.00-0.14 0.66-1.00
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Discussion

This study aimed to investigate genetic and shared environmental influences on
neural activity and aggression following social feedback in children. Consistent
with prior studies, negative social feedback resulted in behavioral aggression
(Achterberg et al., 2016b; Achterberg et al., 2017). Behavioral genetic modeling
revealed that aggression following negative feedback (negative-positive and
negative-neutral) was influenced by genetic as well as shared and unique
environmental influences. Genetic influences ranged from 10-20%, whereas
approximately 7% of the variance was explained by shared environmental
influences. Although previous studies have also found influences of shared
environment, with similar (Ferguson, 2010) or higher estimates (Rhee and
Waldman, 2002; Porsch et al.,, 2016), most studies have suggested stronger
genetic influences (around 50%) on behavioral aggression (Rhee and Waldman,
2002; Ferguson, 2010). These differences can be partly attributed to the way the
aggression was assessed. Indeed, a review of Tuvblad and Baker (2011) showed
that twin correlations of aggression based on parent/ teacher reports were twice
as high as twin correlations of observed aggressive behavior. Using single raters
for multiple children might result in inflated genetic influences (Tuvblad and
Baker, 2011), and an experimental design can overcome such rater bias. This
study is the first to use an experimental task to test genetic influences on reactive
social aggression in a developmental twin-sample. It shows that environmental
factors are important predictors of reactive aggressive behaviors. In line with our
results, longitudinal stability in reactive aggression has been shown to be
influenced by environmental effects (Tuvblad et al., 2009).

Our analyses of neural responses to negative, positive, and neutral social
feedback showed that brain activation in the ACCg and anterior insula was related
to general valiance/ social saliency. The ACCg has been suggested to be sensitive
to determining others’ motivation (Apps et al., 2016), which is important in the
processing of social feedback, irrespective of whether it is positive or negative.
Moreover, the ACCg has been shown to have strong structural and functional
connectivity with the anterior insula (Apps et al., 2016), and together these
regions have been indicated as the salience network (Damoiseaux et al., 2006; van
Duijvenvoorde et al., 2016a). Our results show that activation of regions coding
social saliency is present already in childhood, indicating this might be a core
social motivational mechanism in humans. Previous social evaluation studies did
not report heightened activation that was specific for negative social feedback
(Gunther Moor et al, 2010b; Guyer et al, 2012; Achterberg et al, 2016b;
Achterberg et al., 2017), which might be due to the smaller samples in previous
studies (n=30-60) as compared to the current study (N=385). In the current study,
medial PFC and IFG were activated during negative feedback. Interestingly, the
ACCg is connected to the portions of the mPFC that signal other-oriented
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information (Apps et al., 2016; Lee and Seo, 2016), and both play important roles
in social cognition and behavior (Blakemore, 2008). Our results suggest that
whereas the ACCg signals for social salient cues, the mPFC might signal for social
threatening cues. Positive feedback, on the other hand, resulted in heightened
activation in the caudate, SMA and bilateral DLPFC, which is consistent with
previous social evaluation paradigms that reported increased activation in
striatum (Davey et al., 2010; Gunther Moor et al., 2010b; Guyer et al., 2012),
superior frontal gyrus/SMA (Gunther Moor et al., 2010b; Guyer et al., 2012), and
middle frontal gyrus /DLPFC (Gunther Moor et al., 2010b).

Interestingly, SMA and DLPFC activity were also associated with
aggressive behavior on the task. SMA and DLPFC activations were related to
aggression after negative (relative to neutral and/or positive) feedback. Post hoc
visualization of PE values showed that children who were more aggressive after
negative feedback showed relatively less activation of the DLPFC during negative
feedback compared to positive social feedback. This is in line with prior studies
in adults which showed that more DLPFC activity after negative social feedback
was related to less subsequent aggression (Riva et al., 2015; Achterberg et al.,
2016b). It should be noted, however, that we did not observe brain-behavior
associations when we performed whole brain regression analyses, in contrast to
earlier studies in adults (Achterberg et al., 2016b). Moreover, our brain-behavior
associations on ROIs did not survive Bonferroni correction. The DLPFC is one of
the brain regions that take longest to mature (Sowell et al., 2001; Gogtay et al.,
2004), leaving ample room for individual, developmental differences. Although
our sample size was fairly large compared to previous fMRI studies, individual
developmental differences are best captured with longitudinal designs, due to
individual variation in the timing of brain maturation.

We did not find significant brain-behavior associations in other ROIs
(caudate, IFG, insula, mPFC, ACCg) that responded to social peer feedback. The
lack of brain-behavior associations might indicate that these regions signal for
social cues, but are not sensitive to retaliation behaviors. Indeed previous studies
have indicated the IFG, insula, mPFC and ACCg as important regions of the “social
brain” (for reviews, see Blakemore (2008) and Adolphs (2009)). The social brain
is defined as a network of brain regions that is activated when we evaluate others
and think about others’ intentions and feelings (Brothers, 1990; Blakemore,
2008). Activation in these regions during peer feedback evaluation could indicate
that children evaluate the intentions of the peers, but might not be specifically
related to the actions they intent towards that peer. Regions that did show a
relation with aggression, namely the SMA and DLPFC, have indeed been shown to
be associated with behavioral motor planning (SMA) and behavioral control
(DLPFC) in previous research (Riva et al., 2015; Achterberg et al., 2016b).

Genetic modeling showed that genetics played a role in activation in the
DLPFC, the SMA and the right caudate, with 10-14% of the variance explained by
genetics. Previous heritability studies on structural brain measures have focused
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on rather large anatomical regions (i.e., the whole frontal cortex) and also report
genetic influences (Jansen et al., 2015). One developmental study that specifically
investigated heritability of the DLPFC showed heritability estimates of around
40% for cortical thickness (age range 5-19, Lenroot et al. (2009)). Only a handful
of studies have addressed heritability in task-based fMRI (for an overview, see
Jansen et al. (2015)). Blokland and colleagues (2011) investigated brain activation
during a working memory task in young adults (aged 20-30) and showed
heritability of brain function in (amongst others) DLPFC, ranging from 20-65%. To
our best knowledge, our study is the first to investigate the heritability of task-
based fMRI in middle childhood, so direct comparisons to previous studies
cannot be made. However, test-retest reliability studies on task-based fMRI in
developmental samples have shown higher interclass correlation coefficients
(ICCs) for lateral PFC regions than for subcortical regions (van den Bulk et al.,
2013; Peters et al., 2016), indicating that the DLPFC might indeed reflect trait-like
genetic influences. An important next step would be to reveal which
environmental and genetic factors play a role in explaining the variance in brain
activation and aggression following social evaluation, and test whether specific
environmental influences (e.g. supportive parenting) might moderate the
influence of specific genetic factors (for example, see the study protocol of Euser
et al. (2016).

Several limitations of the current study may be addressed in future research.
First, the cover story of the SNAT task explicitly stated that the peers would not
hear the noise blast. This decision was based on previous studies using a similar
design (Konijn et al., 2007). Therefore the aggression measure reflects imagined
aggression. Future studies may separate real aggression from imagined
aggression to test any neural differences between these two types of aggression.
Second, although our sample size can be considered large with regards to fMRI,
it is rather small for behavioral genetic modeling. The statistical power of genetic
studies is influenced by, amongst others, the sample size and the ratio MZ:DZ
(Visscher, 2004; Verhulst, 2017). Our genetic analyses of neural responses
resulted in high estimates for the E component (and specifically E- models, see
supplementary materials), reflecting influences from the unique environment
and measurement error. However, our sample size may have been insufficient to
detect significant contributions of A (genetics) and C (shared environment).
Fortunately, our sample did have an approximately equal numbers of MZ and DZ
twins, which is considered optimal (Visscher, 2004). Moreover, prior studies have
showed that the E component was also the primary determinant of variance in
structural brain measures (Lenroot et al., 2009), highlighting the urgent need to
disentangle unique environmental influences from measurement error. Last, we
used several ROIs to investigate brain-behavior associations and twin
correlations. Significant results did not survive Bonferroni correction for multiple
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testing, and therefore need to be interpreted with caution. Nevertheless, our
results provide important hypotheses which can be further examined in future
(meta-) analyses.
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Conclusion

Taken together, our results suggest that the processing of social feedback is
partly explained by genetic factors, and the level of behavioral aggression
following these evaluations are related to genetics and shared environmental
influences. The regulatory role of DLPFC in aggression regulation fits with prior
research in adults (Riva et al.,, 2015; Chester and DeWall, 2016) and may be
sensitive to developmental changes (Somerville et al., 2010; Casey, 2015). Our
findings underscore that the way children react to positive and negative social
feedback is influenced by environmental factors. This stresses the important role
of environmental inputs on observed behavior, such as parents and teachers, and
point to an important role for parenting programs and interventions.
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Supplementary Materials

Genetic modeling - comparison of parsimonious models

Similarities among twin pairs are divided into similarities due to shared genetic
factors (A) and shared environmental factors (C), while dissimilarities are
ascribed to unique environmental influences and measurement error (E).
Behavioral genetic modeling with the OpenMX package (Neale et al., 2016) in R (R
Core Team, 2015) provides estimates of these A, C, and E components. To
investigate whether the more parsimonious AE model (with C fixed to zero), CE
model (with A fixed to zero) or E model (with both A and C fixed to zero) showed
a better fit to the data, we subtracted the log-likelihood of the AE and CE models
from the log-likelihood of the ACE model and the fit of the E model from the fit
of the AE or CE models to get an estimate of the Log-likelihood Ratio Test (LRT).
In most circumstances LRT follows the X*distribution, with 3.84 as a critical value
at p=.05, thus a LRT>3.84 indicates a significantly worse fit of the data. In
addition, we used the Akaike Information Criterion (AIC; Akaike (1974)) a
standardized model-fit metric, to compare the different models. Lower AIC values
indicate a better model fit. When ACE models show the best fit, both heritability,
shared and unique environment are important contributors to explain the
variance in the outcome variable. AE models indicate that genetic and unique
environmental factors play a role; whilst CE models indicate influences of the
shared environment and unique environment. If the E model has no worse fit than
AE or CE models, variance in the outcome variable is accounted for by unique
environmental factors and measurement error.
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Table S1. Twin analyses on noise blast difference scores. ACE models compared

to parsimonious AE, CE and E models.

Noise blast

2 2 2 AI
difference model A C E LTR C
Negative - Positive * ACE 0.20 0.06 0.74 7542.16
AE 0.24 - 0.76 4.17 7544.33
CE - 0.14 0.86 38.67 7578.84
E - - 1.00 >22.18 7599.02
Negative - Neutral ~ ACE 0.10 0.08 0.82 7173.47
AE 0.09 - 0.91 -0.33 7171.13
* CE - 0.20 0.80 -.5.58 7165.88
E - - 1.00 >23.81 7192.95
Neutral - Positive ACE 0.10 0.00 0.90 6888.43
AE 0.10 - 0.90 <.001 6886.43
CE - 0.07 0.93 0.19 6886.63
*E - - 1.00 <1.39 6885.83

! LTR < 3.85 equals a significant better fit of the model (p<.05)

2 Lower AIC values indicate a better model fit

* asterics indicate the best model fit
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Table S2. Twin analyses on brain activation in the regions of interest (ACC:
Anterior Cingulate Cortex; PFC: prefrontal cortex; IFG: inferior frontal gyrus; SMA:
supplementary motor area; DLPFC: dorsolateral prefrontal cortex). ACE models
compared to parsimonious AE, CE and E models

ROI model A? Cz E2 LTR? AIC?

Conjunction Negative>Neutral and Positive>Neutral

ACC gyrus ACE 0.00 0.04 0.96 944.02
AE 0.02 - 0.98 0.38 942.41
CE - 0.04 0.96  <0.001 942.02
*E ; - 1.00 <0.50 940.53

Left Insula ACE 0.00 0.00 1.00 1130.48
AE 0.00 - 1.00  <0.001 1128.48
CE - 0.00 1.00  <0.001 1128.48
*E - - 1.00  <0.001 1126.48

Right Insula ACE 0.01 0.00 0.99 1072.13
AE 0.01 - 0.99 <0.001 1070.13
CE - 0.00 1.00  <0.001 1070.13
*E - - 1.00 <0.001 1068.13

Negative > Positive

Medial PFC ACE 0.01 0.00 0.99 950.65
AE 0.01 - 0.99 <0.001 948.65
CE - 0.00 1.00 0.01 948.66
*E - - 1.00  <0.01 946.66

Left IFG ACE 0.00 0.00 1.00 1141.15
AE 0.00 - 1.00  <0.001 1139.15
CE - 0.00 1.00 <0.001 1139.15
*E - - 1.00 <0.001 1137.15

Right IFG ACE 0.00 0.04 0.96 1160.12
AE 0.04 - 0.96 0.07 1158.19
CE - 0.04 0.96 <0.001 1158.12
*E - - 1.00 <0.021 1156.32

t LTR < 3.85 equals a significant better fit of the model (p<.05)
2 Lower AIC values indicate a better model fit
* asterics indicate the best model fit
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Table S2. (continued)

ROI model Az C2 E2 LTR! AIC?

Positive > Negative

SMA ACE 0.10 0.00 0.90 1003.64
AE 0.10 - 0.90 <0.001 1001.64
CE - 0.00 1.00 0.87 1002.52
*E - - 1.00 <0,87 1000.52

Right caudate = ACE 0.10 0.00 0.90 1308.21
AE 0.10 - 0.90 <0.001 1306.21
CE - 0.08 0.92 0.24 1306.45
*E - - 1.00 <1.48 1305.36

Left DLPFC ACE 0.13 0.00 0.87 1064.97
AE 0.13 - 0.87 <0.001 1062.97
CE - 0.07 0.93 0.96 1063.93
*E - - 1.00 <1,64 1062.61

Right DLPFC ACE 0.14 0.00 0.86 1108.45
AE 0.14 - 0.86 <0.001 1106.45
CE - 0.03 0.97 1.83 1108.29
*E - - 1.00 <1.97 1106.42

! LTR < 3.85 equals a significant better fit of the model (p<.05)

2 Lower AIC values indicate a better model fit

* asterics indicate the best model fit
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Table S3. MNI coordinates for local maxima activated for the whole brain
contrasts without participants with pathology (N=377). ACC: Anterior Cingulate
Cortex; IFG: Inferior Frontal Gyrus; SMA: Supplementary motor cortex; OFC:
Orbitofrontal Cortex; PFC: Prefrontal Cortex

Anatomical Region Voxels pFWE T X y z
Conjunction Negative>Neutral and Positive>Neutral
Lateral Occipital 3379 <.001 13.74 -45 -82 1
Cortex 13.57 -48 -76 -5
12.52 48 -70 -5
Occipital Cortex 113 <.001 6.81 -24 -64 61
Right insula 80 <.001 6.31 39 23 -11
6.07 33 17 -14
Left insula 28 .001 5.15 -33 26 -5
4.95 -30 20 -11
Medial PFC 5 .013 5.03 -6 53 -2
Right IFG 7 .009 4.93 51 23 13
Rostral ACC 31 <.001 491 12 47 13
4.85 3 56 19
4.81 0 47 10
Left insula 2 .024 4.67 -45 14 -5
SMA 1 .032 4.61 6 5 67
SMA 1 .032 4.57 6 11 64
ACC 1 .032 4.52 0 47 1
Negative > Positive
Occipital pole 132 <.001 16.55 -9 -97 13
Occipital pole 118 <.001 8.39 27 91 13
8.19 18 -94 13
Medial PFC 138 <.001 6.95 -9 56 25
5.46 9 62 25
Left IFG 57 <.001 6.35 -54 29 4
5.24 -45 26 -8
Right IFG 16 .003 5.15 51 32 -2
4.86 57 32 7
Right Occipital
Fusiform Gyrus 3 .021 4.83 18 -85 -5
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Table S3. (continued)

Anatomical Region  Voxels pFWE T X y z

Negative > Positive

Left Lateral Occipital

Cortex 9 .008 4.72 -48 -82 1

Left Central

Opercular Cortex 1 .033 4.63 -36 -16 25

Positive > Negative

Lingual gyrus 844 <.001 14.75 6 -76 -2
13.96 -18 -85 -8
10.93 18 -73 -11

Right superior

frontal gyrus 353 <.001 7.27 24 5 55
7.07 -6 14 49
6.41 9 11 52

Right Lateral

Occipital Cortex 133 <.001 6.90 30 -82 31
5.74 42 -76 46
5.62 39 -73 55

Precuneous 151 <.001 6.14 0 -70 49
5.20 9 -73 64

Left Superior Frontal

Gyrus 98 <.001 6.05 -24 2 58

Right OFC 32 .001 6.03 42 59 -8
5.62 48 53 -2
4.89 36 56 -14

Left Lateral Occipital

Cortex 58 <.001 5.69 -36 -85 40
5.36 -39 -70 58
5.23 -51 -67 49

Left OFC 15 .004 5.68 -45 56 4

Right dorsolateral

PFC 47 <.001 5.51 39 32 37
4.89 39 32 46
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Anatomical Region  Voxels pFWE T X y y4

Positive > Negative

Left dorsolateral PFC 41 <.001 5.43 -45 41 34
5.06 -48 32 37
4.82 -36 47 40

Right Caudate 6 .012 4.95 9 20 4

Left middle OFC 2 .026 4.88 -18 56 -17

Right Supermarginal

gyrus 13 .005 4.82 60 -43 49
4.62 57 -40 58

Left Supermarginal

gyrus .026 4.73 -48 -58 58

Dorsal ACC .021 4.73 6 35 31

Left OFC .026 4.69 -48 50 -5

Left Supermarginal

gyrus 1 .033 4.54 -57 -46 55
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CHAPTER FIVE

Longitudinal changes in DLPFC

activation within childhood are
related to decreased aggression
following social rejection

This chapter is based on: Achterberg M., Van Duijvenvoorde A.C.K., IJzendoorn,
M.H., Bakermans M.]J. & Crone E.A.M. Longitudinal changes in DLPFC activation
within childhood are related to decreased aggression following social rejection
(in revision, 2019)
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Abstract

Regulating aggression in the case of negative social feedback is an important
prerequisite for developing and maintaining social relations. Prior studies in
adults highlighted the role of the dorsolateral prefrontal cortex (DLPFC) as a
regulating mechanism for behavioral control. Despite the fact that middle-to-late
childhood is an important period for both brain maturation and social relations,
no prior study examined development of aggression regulation following social
feedback within childhood. The current study investigated this using a
longitudinal fMRI study, with 456 same-sex twins undergoing two fMRI sessions,
across the transition from middle childhood (7-9 years) to late childhood (9-11
years). Aggression regulation was studied using the Social Network Aggression
Task: Participants viewed pictures of peers that gave positive, neutral or negative
feedback to the participant’s profile. Next, participants could blast a loud noise
towards the peer as an index of aggression. Confirmatory analyses revealed that
behavioral aggression after social evaluation decreased over time, whereas neural
activation in anterior insula, medial PFC and DLPFC increased over time.
Exploratory whole brain-behavior analyses in late childhood showed a negative
association between aggression and bilateral DLPFC, with increased DLPFC
activity resulting in decreased aggression. Change analyses further revealed that
children who showed larger increases in DLPFC activity from middle to late
childhood showed stronger decreases in aggression over time. These findings
highlight the importance of the development of social emotion regulation
mechanisms within childhood.

Keywords: Social evaluation processing; Social emotion regulation; Dorsolateral
prefrontal cortex; development; childhood;
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Introduction

Regulating emotions in social interactions is one of the most important
requirements for developing social relations in childhood. With increasing age,
children become better at regulating their emotions (Silvers et al., 2012), which
has been suggested to be related to the development of cognitive and behavioral
control functions between early childhood and adolescence (Diamond, 2013;
Casey, 2015). Few studies have investigated the development of social emotion
regulation within childhood, despite empirical findings showing that middle-to-
late childhood marks the most rapid changes in cognitive control (Luna et al.,
2004; Zelazo and Carlson, 2012; Peters et al., 2016). Although neuroimaging
studies have shed light on the underlying neurobiological changes that sub serve
childhood development in cognitive control, most studies have relied on cross-
sectional comparisons which hinders the possibility to examine within-person
change. The current study builds upon new insights in the neural processing of
social emotion regulation by examining within childhood change in neural and
behavioral social control in a longitudinal fMRI study.

Emotion regulation is of upmost importance when social interactions
result in rejection. It is well documented that social rejection can lead to
aggression and retaliation (Dodge et al., 2003; Nesdale and Lambert, 2007;
Chester et al.,, 2014; Novin et al.,, 2018). Social evaluation, including social
acceptance and rejection, has previously been studied using ecologically valid
social judgment paradigms, in which participants’ profiles are evaluated by same-
aged peers (Somerville et al., 2006; Gunther Moor et al., 2010b; Hughes and Beer,
2013; Silk et al, 2014). Developmental neuroimaging studies including
adolescent participants showed that receiving positive (acceptance) relative to
negative (rejection) social feedback was associated with increased neural activity
in the ventral medial prefrontal cortex (MPFC), the anterior insula (AlI), and the
anterior cingulate cortex (ACC) (Gunther Moor et al., 2010a; Guyer et al., 2016).
The Social Network Aggression Task is an extended social evaluation paradigm
that includes also a neutral feedback condition, and that provides participants
with the opportunity to blast a loud noise towards the peer that evaluated them
(Achterberg et al., 2016b; Achterberg et al.,, 2017; Achterberg et al., 2018b).
Consistent with prior studies (Dalgleish et al., 2017), it was found that both adults
and children showed stronger ACC and Al activity in this task after receiving both
positive and negative feedback (relative to neutral feedback), indicating that
these regions signal social salient cues (Achterberg et al., 2018b). How neural
responses to social evaluation feedback influence behavioral aggression in
childhood, and how these neural regions change over time, remains currently
unknown.

Controlling emotions elicited by social evaluation feedback relies on
cognitive control, that is: individuals with better cognitive control functions show
less subsequent aggression following rejection (Chester et al., 2014). Moreover,
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increased activation in the dACC and AI was related to less aggression in adults
with high executive functioning, whereas adults with low executive functioning
showed increased aggression with increasing neural activation (Chester et al.,
2014). Prior studies in adults further showed that the dorsolateral prefrontal
cortex (DLPFC) might serve as a regulating mechanism for aggression after social
evaluation, such that increased DLPFC activity after social rejection was related
to less behavioral aggression (Riva et al, 2015; Achterberg et al., 2016b).
Moreover, stronger functional connectivity between the lateral PFC and limbic
regions was related to less retaliatory aggression (Chester and DeWall, 2016).
Interestingly, prior theoretical perspectives have suggested that DLPFC
maturation is an important underlying mechanism for developing a variety of
control functions in childhood (Bunge and Zelazo, 2006; Diamond, 2013). Prior
research revealed that in 7-8 year old children there were indications for
associations between DLPFC and behavioral aggression(Achterberg et al., 2018b),
although these were less pronounced than in adults. Taken together, studies in
adults showed a link between cognitive control and regulation of emotions after
rejection in the ACC/insula (Chester et al.,, 2014) and DLPFC (Achterberg et al.,
2016b), but no study to date examined longitudinal developmental changes in
these brain regions in childhood in the context of social evaluation. These prior
studies led us to hypothesize that within-person maturation of the ACC/AI and
DLPFC may be associated with better aggression regulation in childhood.

The current study makes use of a unique developmental twin sample of
the Leiden Consortium for Individual Development (L-CID; Euser et al. (2016)).
The design is based on recent insights showing that home environment is an
important factor that impacts children’s behavioral control (Sektnan et al., 2010;
Vrijhof et al, 2018). The L-CID study makes use of the video feedback
intervention to promote positive parenting and sensitive discipline (VIPP-SD), an
attachment based intervention that aims to enhance parental sensitivity and
sensitive discipline (Juffer et al., 2017a). The VIPP-SD has proven to diminish
externalizing behavior problems such as aggression in younger age groups (0-6
years (Van Zeijl et al., 2006; Juffer et al., 2017b)). The L-CID study tests whether
the VIPP-SD is also effective in parents with older children and possibly likewise
beneficial for behavioral outcomes of older children. Therefore, this study design
allows us to not only examine the development of aggression regulation within
individuals over time, but also the effect of genetics and variations in the social
environment.

Using this unique study design, we address the following research
questions: i) How does aggression regulation following social evaluation changes
longitudinally within childhood? And ii) to what extent are these changes
dependent on heritability and changes in the social environment? In doing so,
492 same-sex twins (246 families) underwent two fMRI sessions across the
transition from middle childhood (7-9 years) to late childhood (9-11 years). In
between fMRI sessions, families received either the VIPP-Twins or a dummy
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intervention (Euser et al., 2016). Using linear mixed effects modeling, we first
investigated how behavioral aggression after positive, negative and neutral social
feedback changed over time, and whether variation in the environment
influenced these changes. Next, we investigated changes in brain responses
related to positive, negative and neutral social feedback longitudinally within
childhood and examined brain-behavior associations. Based on previous studies,
we selected the Al, the IFG, the MPFC, and DLPFC as regions of interest (Gunther
Moor et al., 2010b; Vijayakumar et al., 2017; Achterberg et al., 2018b). To test
individual differences in aggression regulation we additionally performed
exploratory whole brain-behavior MRI analyses to test for relations between
prefrontal cortex activation and aggression regulation.

Methods

Participants

Participants in this study took part in the longitudinal twin study of the Leiden
Consortium on Individual Development (L-CID (Euser et al., 2016)). The
procedures were approved by the Dutch Central Committee Human Research
(CCMO) and written informed consent was obtained from both parents. 512
children (256 families) between the ages 7 and 9 were included at the first wave
(previously described in Achterberg et al. (2018b), van der Meulen et al. (2018)),
with a mean age of 7.94 + 0.67 (49% boys, 55% monozygotic). The majority of the
sample was Caucasian (91%) and right-handed (87%). Ten participants (2%) were
diagnosed with an Axis-I disorder: eight with attention deficit hyperactivity
disorder (ADHD); one with generalized anxiety disorder (GAD), and one with
pervasive developmental disorder- not otherwise specific (PDD-NOS). Intelligence
(IQ) was estimated at W1 with the subtests ‘similarities’ and ‘block design’ of the
Wechsler Intelligence Scale for Children, third edition (WISC-III; Wechsler, 1997).
Estimated IQs were in the normal range (72.50 - 137.50). 456 children participated
in a second lab two years later (for details regarding participant dropout see
Figure S1 and supplementary materials). Table 1 provides an overview of
demographic characteristics of the sample at wave 1 (W1) and wave 2 (W2).
Participants underwent an MRI scan as part of the lab visits. At W1, 385
participants were included in the MRI analyses (mean age 7.99 + 0.68, 47% boys,
see also Achterberg et al. (2018b)). At W2 360 participants were included in the
MRI analyses (mean age 10.01 + 0.67, 48% boys). A total of 293 participants were
included on the MRI analyses at both waves (mean age W1: 7.99 + 0.66, 47% boys).
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Parenting intervention

Families were contacted 1.5 year after W1 to inform them on a parenting support
program for parents of twins (VIPP-Twins (Euser et al., 2016)). We then explained
that we were unable to personally visit all families within the L-CID to offer the
training. Therefore, families would be randomly assigned to either receiving the
training in person, through six home visits (see Juffer and Bakermans-Kranenburg
(2018)), or to alternatively discuss the development of your twin through six
phone meetings (dummy intervention - control group). Detailed sample selection
is described in the supplementary materials. The VIPP-Twins group consisted of
n=164 children, of which 133 had sufficient quality MRI data (Figure S1). The
control group consisted of n=244 children, of which n=186 had sufficient quality
MRI data (Figure S1). Twenty-seven families (n=54 children) did not comply with
random assignment to one of the conditions. These families received the (non-
randomly assigned) dummy intervention in order to keep this group comparable
to the control group for future analyses within the longitudinal L-CID study.
Given that the participants in the non-randomly assigned control group could not
be included in the analyses, these participants’ MRI data were used as a reference
group, and used to create task-relevant independent regions of interest (ROI) (see
section 2.4.4).

Social Network Aggression Task

The Social Network Aggression Task (SNAT) as described in Achterberg et al.
(2016b; 2017; 2018b) was used to measure aggression after social feedback.
Participants viewed pictures of peers that gave positive, neutral or negative
feedback to the participant’s profile. Next, participants could blast a loud noise
towards the peer as an index of aggression. To keep task demands as similar as
possible between the conditions, participants were instructed to always press the
button. The longer they pressed the button the more intense the noise would be,
which was visually represented by a volume bar. Participants received
instructions on how to perform the SNAT and the children were exposed to the
noise blast during a practice session. Thereafter, participants practiced six trials
of the task. The time line of a SNAT trial was as follows: start screen (500 ms),
social feedback (2500 ms), fixation screen (3000-5000 ms), noise screen (5000
ms), intra-trial interval fixation screen (0-11550 ms), see Figure la. The optimal
jitter timing and order of events were calculated with Optseq 2 (Dale, 1999). The
SNAT consisted of 60 trials, three runs of 20 trials for each feedback condition
(positive, neutral, negative). Intra class coefficient (ICC) analyses (modeled with
a two-way mixed model using the consistency definition) showed poor (ICC<0.40,
(Cicchetti, 1994)) consistency in noise blast duration after positive (ICC=0.32
[95%CI= 0.24-0.41]), neutral (ICC=0.26 [ 95%CI=0.17-0.35]) and negative feedback
(ICC=0.17 [95%CI=0.08 - 0.26)] between W1 and W2.
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Figure 1. Social Network Aggression Task (SNAT). a) Visualization of one trial with
negative social feedback. b) Noise blast duration is influenced by condition, wave, and
condition * wave. c) Individual differences in change for noise blast after positive,
neutral and negative social feedback did not differ between the VIPP-Twin and control
group.

MRI data

Acquisition

MRI scans were acquired with a standard whole-head coil on a Philips Ingenia 3.0
Tesla MR system. To prevent head motion, foam inserts surrounded the
children’s’ heads (see also Achterberg and van der Meulen (2019)). The SNAT was
projected on a screen that was viewed through a mirror on the head coil.
Functional scans were collected during three runs T2*-weighted echo planar
images (EPI). The first two volumes were discarded to allow for equilibration of
T1 saturation effect. Volumes covered the whole brain with a field of view (FOV)
=220 (ap) x 220 (r]) x 111.65 (fh) mm; repetition time (TR) of 2.2 seconds; echo
time (TE) = 30 ms; flip angle (FA) = 80°; sequential acquisition, 37 slices; and voxel
size = 2.75 x 2.75 x 2.75 mm. Subsequently, a high-resolution 3D T1lscan was
obtained as anatomical reference (FOV= 224 (ap) x 177 (rl) x 168 (fh); TR = 9.72
ms; TE = 4.95 ms; FA = 8°; 140 slices; voxel size 0.875 x 0.875 x 0.875 mm).
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Preprocessing

MRI data were analyzed with SPM8 (Wellcome Trust Centre for Neuroimaging,
London). The exact same preprocessing steps were used in preprocessing MRI
data from W1 and W2. Images were corrected for slice timing acquisition and rigid
body motion. Functional scans were spatially normalized to T1 templates. Some
participants did not finish the T1 scan and were normalized to an EPI template
(W1:n=5at W1; n=10 at W2). Volumes of all participants were resampled to 3x3x3
mm voxels. Data were spatially smoothed with a 6 mm full width at half maximum
(FWHM) isotropic Gaussian kernel. Translational movement parameters were
calculated for all participants. Participants that had at least two out of three runs
of fMRI data with <3 mm (1 voxel) motion in all directions were included in
subject-specific analyses (W1: n=385; W2: n=358).

Subject-specific analyses

Statistical analyses were performed on individual subjects’ data using a general
linear model, previously described in Achterberg et al. (2018b). The fMRI time
series were modeled as a series of two events convolved with the hemodynamic
response function (HRF). The onset of social feedback was modeled as the first
event, with a zero duration and with separate regressors for the positive,
negative, and neutral peer feedback. The start of the noise blast was modeled as
the second event, with the HRF modeled for the length of the noise blast and with
separate regressors for noise blast after positive, negative, and neutral
judgments. Trials on which the participants failed to respond in time were
modeled separately as covariate of no interest and were excluded from further
analyses. Additionally, six motion regressors (corresponding to the three
translational and rotational directions) were included as covariates of no interest.
The least squares parameter estimates of height of the best-fitting canonical HRF
for each condition were used in pairwise contrasts. The pairwise comparisons
resulted in subject-specific contrast images.

Confirmatory ROI analyses

ROI selection

Regions of interest were based on higher-level group analyses of W2 in an
independent reference group (the non-randomized dummy control group, n=41,
Table S1). The advantage of this approach is that the participants were in exactly
the same study protocol, but were not included in the subsequent analyses,
leading to an independent selection of ROIs (Poldrack, 2007). Using comparable
sample sizes, we previously reported replicable results of main effects of the
social network aggression task (Achterberg et al., 2017). We first investigated
social feedback (positive, neutral, negative) versus fixation (see supplementary
materials, Figure S2a and Table S1). SPM8’s MarsBaR toolbox (Brett et al., 2002)
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was used to construct ROIs based on the whole brain contrast by masking
significant activation with regions from the Automated Anatomical Labeling (AAL)
atlas (Tzourio-Mazoyer et al., 2002). Based on a-priori hypotheses, we selected
the bilateral anterior insula, inferior frontal gyrus (IFG), and medial prefrontal
cortex (MPFC) from the social feedback vs fixation contrast, see Figure 2. In
addition to the social feedback vs fixation contrast, we also investigated the
specific conditions. From the contrast positive vs negative social feedback (see
Figure S2b and Table S1), we selected the left dorsolateral prefrontal cortex
(DLPFC) as additional ROI (Figure 2). The contrasts negative vs positive social
feedback did not result in clusters of significant activation. The contrasts positive
vs neutral social feedback; and negative vs neutral social feedback resulted in
increased activation in occipital (visual) cortex (Table S1), but given that this was
not an a priori hypothesized area, this region was not included in ROI selection.

Thus, in total, four ROIs were used in further analyses: the bilateral Al,
bilateral IFG, MPFC, and the left DLPFC (see Figure 2). Parameter estimates (PE,
average Beta values) were extracted from the subject-specific contrasts (positive
vs fixation, neutral vs fixation, and negative vs fixation) for the entire sample
minus the reference group with available MRI data on W1 (n=343) and W2 (n=317).
ICC analyses (two-way mixed model using consistency) showed low consistency
(ICC’s<0.40, (Cicchetti, 1994)) in brain activation for the contrasts
negative>neutral, negative>positive, and positive>neutral feedback between W1
and W2 (see Table S2).

Linear mixed effects models

To test time-related changes in participant’s behavior (noise blast length) and ROI
brain activation (parameter estimates) we used linear mixed effects models using
the Ime4 package (Bates et al., 2015) in R (R Core Team, 2015). For these analyses
we included the whole sample minus the reference group (n=458). Data was fitted
on the average response times (for behavior) and average parameter estimates
(for ROIs) after positive, neutral and negative social feedback. Two random
effects were included to account for the nesting of condition and waves within
participant (ChildID) and the nesting of twin-pairs within families (FamilyID).
Fixed effects included feedback condition (3 levels: positive, neutral, and
negative), wave (2 levels: wave 1 and wave 2), and intervention group (2 levels:
VIPP-SD and control) and all 2-way and 3-way interactions. Participant’s gender
and estimated IQ (grand mean centered) were included as covariates and all main
effects and two-way interactions between covariates and condition were included
(gender * condition and condition * IQ). The fitted mixed-effect model was
specified in R as:

Noise/ROI ~ condition * wave ™ intervention + condition™ gender + condition™I1Q +
(1|childID) + (1|familyID).
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In addition, we examined associations between brain and behavioral responses,
in which we were specifically interest to what extent behavior was associated with
neural activation. To this end, we added noise blast to the model including all 2
and 3-way interactions with condition and wave. Results were inspected with type
III ANOVA’s using Satterthwaite’s method. Significant main effects of condition
were further inspected using least-square means, with Kenward-Roger corrected
degrees of freedom and Bonferroni adjusted p-values.

Figure 2. Regions of interest in the left hemisphere. mPFC= medial prefrontal cortex,
dIPFC = dorsolateral prefrontal cortex, IFG = inferior frontal gyrus, Al= anterior insula.
IFG and Al ROIs are bilateral.

Exploratory analyses

Whole brain analyses at wave 2
In order to prevent that specific effects were overlooked due to a smaller sample
size in the reference group, we performed exploratory whole brain analyses at
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wave 2 including the VIPP-SD group, the control group and the reference group
(n=360). Results were False Discovery Rate (FDR) cluster corrected (pFDRcc<0.05),
with a primary voxel-wise threshold of p<.005 (uncorrected) (Woo et al., 2014).
We computed a full factorial ANOVA with three levels (positive, negative and
neutral feedback) to investigate the neural response to the social feedback.
Similarly to the whole brain analyses at wave 1 (reported in Achterberg et al.
(2018b)), we first explored the general valence effects of social evaluation, by
calculating a conjunction (using the “logical AND” strategy, see Nichols et al.
(2005)) of positive vs neutral and negative vs neutral social feedback. Next, we
calculated the contrasts negative vs positive and positive vs negative to investigate
brain regions that were specifically activated for social rejection or social
acceptance.

Brain-behavior analyses

In addition to neural responses to social feedback, we also examined whole brain-
behavior relations in late childhood (wave 2). Similar to previous brain-behavior
analyses in adults (Achterberg et al., 2016b) we conducted a whole brain
regression analysis at the moment of receiving negative social feedback (negative
vs neutral), with the difference in noise blast duration after negative and neutral
feedback as a regressor. In this way, we tested how initial neural responses to
feedback were related to subsequent aggression. The difference in noise blast
was computed by:

ANegNeut W2 = Negative noise blast W2 — Neutral noise blast W2.

To investigate brain-behavior associations across time, we computed the
difference over time in noise blasts duration for the contrast negative-neutral and
for brain activation in this contrast. A total of 293 participants had behavioral
and brain data available at two waves and were included in the analyses regarding
brain-behavior associations over time. Difference scores over time for behavior
and brain were computed as follows:

ANegNeut behavior
= (Noise blast negative W2 — Noise blast neutral W2)
— (Noise blast negative W1 — Noise blast neutral W1)

ANegNeut brain = (Neural activity negative W2 — Neural activity neutral W2)
— (Neural activity negative W1 — Neural activity neutral W1)

Behavioral genetic analyses

To examine genetic and environmental influences on brain and behavior, we
calculated Pearson within-twin correlations for mono- and dizygotic twin pairs.
Similarities among twin pairs can be due to additive genetic variance (A) and
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common (shared) environmental factors (C), while dissimilarities are ascribed to
unique environmental influences and measurement error (E) (see Figure S3). We
used behavioral genetic modeling with the OpenMX package (Neale et al., 2016)
in R (R Core Team, 2015) to calculate these A, C, and E estimates (see
supplementary materials).

Results

Behavioral aggression following social evaluation

To test whether behavioral aggression decreased with increasing age, we
performed a linear mixed-effect model on noise blast duration after feedback
across two waves. The linear mixed effect model for noise blast duration showed
the expected main effect of type of social feedback (Table S3). Noise blast
duration was longer after negative feedback compared to neutral feedback, and
shortest after positive feedback (all pairwise comparisons p<.001). We also found
the expected main effect of wave (Table S3), with shorter noise blast durations
at wave 2 compared to wave 1, indicating a decrease of behavioral aggression
over time. Moreover, there was a significant condition * wave interaction effect
(Table S3). As can be seen in Figure 1b, noise blast duration decreased more
strongly between wave 1 and 2 after positive feedback than after negative
feedback (F=23.75, p<.001) and more after positive feedback than after neutral
feedback (F=16.27, p<.001). The same result was observed for neutral feedback:
noise blast duration decreased more strongly between wave 1 and 2 after neutral
feedback than after negative feedback (F=5.00, p=.025). That is, over time
children showed a decrease in behavioral aggression, and this effect was most
pronounced for aggression following positive feedback, see Figure 1b. We did
not find any main or interaction effects of the parental intervention on behavioral
aggression (Table S3) and visualization of the data showed large individual
differences in aggression regulation in both groups (Figure 1c).

Confirmatory ROI analyses

Confirmatory ROI analyses were performed in two steps: First, we examined
neural responses patterns after social feedback across two time points. Second,
we examined relations between changes in neural activity and noise blast
durations.
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Figure 3. Neural activation after positive, neutral and negative social feedback at wave
1 (solid lines) and wave 2 (dotted lines) for the anterior insula (a), the inferior frontal
gyrus (b), the medial prefrontal cortex (c) and the dorsolateral prefrontal cortex
(DLPFC). PE = parameter estimates.

Neural responses following social evaluation

To test for developmental changes in neural responses to social feedback, we
performed linear mixed effect models on four ROIs (Al, IFG, MPFC and dIPFC). As
expected, we observed significant main effects of type of social feedback on
neural activation in all ROIs (Table S4). Patterns of activity differed between the
ROIs. For the Al, IFG and MPFC there was significantly more neural activation after
negative and positive feedback, relative to neutral feedback (Figure 3a, 3b and
3c), but the differences between positive and negative social feedback were not
significant. For the DLPFC, in contrast, there was more activation after positive
social feedback compared to both neutral and negative feedback, but no
significant difference between neutral and negative social feedback, see Figure
3d. Next, we addressed whether these activity patterns changed over time, by
testing for main effects and interactions with wave. We observed a significant
effect of wave in the Al, the MPFC and the DLPFC, with generally stronger neural
activation at wave 2 compared to wave 1 (Figure 3a, 3c, 3d and Table S4). There
were no main or interaction effects of the parental intervention (Table S4).
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Brain-Behavior associations

To investigate brain-behavior associations we added noise blast duration as a
factor to the previously tested models. We found a significant main effect of noise
blast duration on Al and DLPFC activation (Table S5). These findings indicated
that increased Al activation was associated with longer noise blast (B=1.11e-04),
whereas increased DLPFC activation was associated with shorter noise blast (B= -
3.57e-05). The IFG and MPFC did not show significant brain-behavior
associations. The condition * noise blast interaction effects on brain activation in
the ROIs were not significant (see Table S5).

Exploratory analyses

Whole brain analyses on social evaluation processing

To prevent that specific effects were overlooked by due to a relatively small
sample size in the reference group, we performed exploratory whole brain
analyses at wave 2 including the VIPP-SD group, the control group and the
reference group (n=360). Results from the whole brain contrasts for wave 2
(children ages 9-11-years see Figure S3, Table S6) resulted in similar patterns of
neural activation as was previously observed at wave 1 (children aged 7-9 years,
Achterberg et al., 2018,) and in a different sample of adults (Achterberg et al.,
2016). These results are described in more detail in the supplement materials.

Brain-behavior analyses on aggression following negative feedback

We conducted a whole brain regression analysis at wave 2 for receiving negative
feedback (contrast Negative vs Neutral), with the difference in noise blast
duration after negative and neutral feedback as a regressor (ANegNeut W2, see
section 2.6.2.). Consistent with our hypothesis, we observed a negative
association between behavioral aggression and activation in the bilateral DLPFC
(Figure 4a, Table 2). Visualization of the effect (Figure 4b) showed that an
increase in DLPFC activation after negative feedback (relative to neutral feedback)
resulted in less subsequent behavioral aggression.

To test whether children who showed larger increases in DLPFC activity
over time also showed less behavioral aggression over time, we included the data
points at wave 1 to the analysis. Note that for this analysis we only included
participants who had behavioral and brain data available at two waves (n=293).
For these participants, we calculated the relation between the change in DLPFC activation
(ANegNeut brain, see section 2.6.3.) in whole-brain DLPFC ROI (Figure 4a) and the change
in noise blast duration (ANegNeut behavior, see section 2.6.3). We found a significant
negative association (¥=-.16, p=.005), indicating that children who showed the
largest increase in DLPFC activation across childhood also showed the largest
decrease in behavioral aggression across childhood (Figure 4c).
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Figure 4. Whole brain-behavior analyses with all available MRI data at wave 2 (N=360).
a) Significant cluster of activation in bilateral DLPFC for negative> neutral social
feedback with noise blast (4 negative-neutral) as regressor. b) Visualization of brain-
behavior association at wave 2: increased DLPFC activity after negative feedback is
related to decreased aggression. c) Brain-behavior association over time: the change in
DLPFC activation is negatively correlated to the change in aggression, with larger
increases in DLPFC activity over time being related to larger decreases in aggression.

Genetic and environmental influences

Given that our sample consists of both mono- and dizygotic twins, we were able
to test for effects of genetics, shared environment and unique environments. As
can been seen in Table 3, behavioral aggression was driven by a combination of
genetic, shared and unique environmental factors. Variation in neural activity in
the salience ROIs (Al, IFG, MPFC) showed little to no genetic influence, but did
show moderate effects of shared environmental effects. Most variation was
explained by the unique, non-shared environment (including measurement error).
For DLPFC activation, results were inconclusive. There were some indications of
heritability (i.e., on individual differences in positive-neutral), whereas individual
differences were partly explained by shared environment (negative-neutral).
Again, most individual differences were explained by unique non-shared
environment (including measurement error).
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Discussion

There is a great need to have a better understanding of the mechanisms that drive
changes in emotion regulation during social interactions across childhood. The
current study tested the neural signature of aggression regulation in childhood
in the context of social evaluations, specifically social acceptance and social
rejection. For this purpose, we made use of the unique longitudinal L-CID cohort,
which allowed us to examine the development of aggression regulation within
individuals over time and take into account possible effects of genetics and
environmental variations. By using longitudinal behavioral-neural comparisons,
we were able to address the question how change in neural activity relates to
change in behavioral development. The current study revealed three main
findings: 1) behavioral aggression after social evaluation decreased over time,
and this decrease was most pronounced for aggression after positive and neutral
social feedback; 2) confirmatory ROI analyses showed that increased activity in
Al was related to more aggression, whereas increased activity in DLPFC was
correlated with less aggression; and 3) bilateral DLPFC was correlated to less
subsequent aggression following negative social feedback. Longitudinal
comparisons confirmed that a larger increase in DLPFC activity across childhood
was related to a larger decrease in behavioral aggression after negative social
feedback.

The behavioral results confirmed our initial hypothesis that behavioral
aggression decreases over time, consistent with prior reports on age related
increases in behavioral control (Diamond, 2013; Casey, 2015). Interestingly,
however, these reductions in aggression were most pronounced following
positive and neural feedback, suggesting that participants were more motivated
to refrain from aggression towards liked others. These findings fit well with
research showing that the importance of being liked and accepted by others
increases over the course of childhood and into adolescence (Rodman et al., 2017;
Sherman et al., 2018a). Thus, with increasing age, children become more focused
on refraining punishment towards people with whom they socially connect and
they differentiate more between liked (individuals signaling social acceptance)
and disliked (individuals signaling social rejection) others (see also Guroglu et al.
(2014)).

By using functional neuroimaging we were able to address the neural
correlates following social evaluation feedback across two time points.
Consistent with prior reports (Achterberg et al., 2018b), children activate the
same network across two waves, with stronger activity in ACC, Al and IFG after
both positive and negative social feedback (relative to neutral feedback). These
findings fit well with results from the adult literature, showing that neural
activation in ACC, Al, and IFG, is associated with social rejection (Eisenberger et
al., 2003; Cacioppo et al., 2013)) and signaling social salient events (Dalgleish et
al., 2017). The DLPFC, in contrast, was more active for positive than
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negative/neutral feedback, comparable to the behavioral results showing a
stronger reduction over time in aggression following positive feedback.
Interestingly, Al and DLPFC also showed opposite relations to aggression. Even
though both regions increased in activation over time, stronger Al activity was
associated with more behavioral aggression and stronger DLFPC activity was
associated with less behavioral aggression. The Al results are comparable to a
previous finding in adults with low executive control functions, showing that for
individuals with low executive control Al activity and aggression were positively
correlated (Chester et al., 2014). Even though we did not observe changes in Al
activity over time, an interesting direction for future research will be to examine
whether this relation is stronger in childhood than adolescence and adulthood,
when executive control functions increase.

The positive relation between DLPFC activity and aggression regulation
was confirmed in several analyses. First, bilateral DLPFC activity was the only
neural predictor in a whole brain regression analysis for aggression control
following negative relative to neural feedback. These findings fit well with two
decades of research pinpointing the DLPFC as an important regions for cognitive
control development (Luna et al., 2004; Luna et al., 2010; Crone and Steinbeis,
2017). The current study extends this finding to the novel domain of social
interactions, and demonstrates that the same ‘cold’ regulatory control functions
are also important for regulation ‘hot’ emotions in social evaluation contexts
(Zelazo and Carlson, 2012; Welsh and Peterson, 2014). Moreover, DLPFC activity
also explains individual differences in emotion regulation following rejection. A
change-change analysis confirmed that those children who showed the largest
increase in DLPFC activity after negative social feedback, also showed the largest
reductions in behavioral aggression following negative feedback. This study was
performed in a relatively small age range, from 7-9-year old to 9-11-year old, to
provide a detailed analysis of changes in childhood. The results provide a window
for understanding individual differences in these developmental trajectories,
showing that some children develop stronger regulation skills already in
childhood. Future research should examine these questions in a longer
developmental time window (including more time points) using large samples,
which allows disentangling general developmental patterns from individual
differences in trajectories.

An intriguing question for future research is whether and how social
influences impact individual differences in developmental trajectories. In this
study, we addressed this question by examining the effects of a randomized
control parenting intervention. Behavioral genetic analyses revealed mostly
environmental influences on both behavior and brain (moderate effects of shared
environment). Therefore, it was unexpected that we did not find effects of the
parental intervention on brain and behavioral outcomes. Although previous
studies using VIPP-SD in younger children reported transfer effects (i.e., less
externalizing problems in children (Juffer et al., 2017a)) the current study did not
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reveal effects for the VIPP-Twins on behavioral emotion regulation or neural
activity. One possible explanation is that participants were tested in a relatively
short period after the parenting interventions was completed (approximately one
month), and effects on the child may only be visible after a longer time period
(Bakermans-Kranenburg et al., 2008). Alternatively, during the transition from
middle childhood to early adolescence, peers become more important (Berndt,
2004). An interesting future direction for interventions is therefore to target the
peer-environment. One particularly ecological valid way to study the peer
environment is to focus on social media use (Giglietto et al., 2012). Despite the
fact that social media are everywhere around us and used by almost everyone on
a daily basis, little scientific research has been conducted on the effects of social
media on the developing brain (Crone and Konijn, 2018). Social judgment
paradigms as the SNAT mimic social rejection and acceptation by peers in a way
that is comparable to social media environments where individuals connect
based on first impression. Future research could take into account variations of
the social environment by additionally monitoring real life social media use (for
example using a smartphone app, see Montag et al. (2017)).
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Conclusion

This study set out to test longitudinal changes in neural systems underlying
social evaluation and aggression regulation, and its relation to behavioral
outcomes. We found an increase in behavioral control across childhood, as
behavioral aggression decreased over time and DLPFC activation was related to
decreased behavioral aggression. Notably, children that showed larger increases
in DLPFC activity within childhood also displayed the largest longitudinal
decrease in behavioral aggression. These results gain in our understanding on
how the developing brain processes social feedback and suggest that the DLPFC
might serve as emotion regulation mechanisms in terms of negative social
feedback. However, it remains unknown how these results relate to actual, real-
life social interactions such as social media use. Novel approaches are needed to
bring together both real-life social media monitoring, as well as innovative
experimental neuroimaging as this will provide cutting edge research and can
provide insights through a neuro-mechanistic approach.
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Supplementary Materials

Participants and sample selection

Of the initial 256 families, 10 families (3.8%) dropped out of the study directly
after W1, whereas one family (n=2) was included in the L-CID study after W1. An
additional 19 families (7.4%) dropped out before W2, after randomization of the
parental intervention (see Figure S1). The remaining 456 children participated in
a second lab visit at W2 (time between waves 2.06+0.10, time range: 1.86-2.53).
Participants underwent an MRI scan as part of the lab visits. All anatomical MRI
scans were reviewed and cleared by a radiologist from the radiology department
of the Leiden University Medical Center (LUMC). Four anomalous findings were
reported. To prevent registration errors due to anomalous brain anatomy, these
participants were excluded. At W1, 27 participants did not start the scan due to
anxiety (n=13), contraindications (n=6), or lack of parental consent for MRI
participation (n=4), or technical issues with the MR system (n=4) (Achterberg and
van der Meulen, 2019). Eighty-nine participants were excluded at W1 due to
excessive head motion, which was defined as >3 mm motion (1 voxel) in any
direction (x, y, z) in more than 2 runs of the SNAT task (3 runs in total). An
additional seven participants were excluded due to data export failures. At W1,
385 participants were included in the MRI analyses (mean age 7.99 * 0.68, 47%
boys, see also Achterberg et al. (2018b)). At W2 48 participants did not start the
scan due to anxiety (n=26), contraindications (n=10), or due to lack of parental
consent for MRI participation (n=10). 46 participants were excluded at W2 due to
excessive head motion and two participants were excluded due to data export
failures. At W2 360 participants were included in the MRI analyses (mean age
10.01 + 0.67, 48% boys).

Of the initial sample that participated at W1, 246 families were contacted
1.5 year after W1 to inform them on a parenting support program for parents of
twins (VIPP-Twins (Euser et al.,, 2016)). 91 families (37%) were assigned to the
parental intervention group and received the VIPP-Twins, of which 9 families
(9.9%) dropped out before the second MRI visit (final VIPP-Twins group: n=164, of
which n=133 with sufficient quality MRI (Figure S1)). 129 families (52%) were
assigned to the control group and received the dummy intervention, of which 7
families (5.5%) dropped out before the second MRI visit (final control group:
n=244, of which n=186 with sufficient quality MRI (Figure S1)). Twenty-seven
(11%) families did not want to be randomly assigned to one of the conditions.
These families received the (non-randomly assigned) dummy intervention in
order to keep this group comparable to the control group for future analyses
within the longitudinal L-CID study. Given that the participants in the non-
randomly assigned control group could not be included in the analyses, these
participants were used as a reference group for regions of interest (ROI) selection
(see section 2.4.4). Of the 27 families in the reference group, 3 dropped out before
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W2. Of the remaining 48 children (Figure S1), 43 participated in the MRI session.
Two participants were excluded due to excessive head motion. The final reference
group therefore consisted of 41 participants, with a mean age of 10.13 + 0.71
(age range: 9.09-11.28, 63% boys).

Wave 1

dropout

reference

n=164 (MRI=133) n=244 (MRI=186) n=48 (MRI=41)

Figure S1. Participant flowchart. minus reference group: ' n=458, > n=343

Whole brain analyses reference group

Regions of interest were based on higher level group analyses of W2 in an
independent reference group (the non-randomized dummy control group, n=41,
Table S1). A full-factorial ANOVA with three levels (positive, negative and neutral
feedback) was used to investigate the neural response to the social feedback
event in the reference group. Results were False Discovery Rate (FDR) cluster
corrected (pFDRcc<0.05), with a primary voxel-wise threshold of p<.005
(uncorrected) (Woo et al., 2014). We first investigated social feedback (positive,
neutral, negative) versus fixation. This contrast resulted in activation in amongst
others the fusiform gyrus, the inferior frontal gyrus, and the superior frontal
gyrus (see Figure S2a and Table S1). In addition to the social feedback vs fixation
contrast, we also investigated the specific conditions. The contrast Positive vs
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Negative feedback resulted in activation in the right lingual gyrus, the left middle
frontal gyrus, and the right inferior parietal lobule (see Table S1, Figure S2). The
contrasts positive vs neutral social feedback; and negative vs neutral social
feedback resulted in increased activation in occipital (visual) cortex (Table S1).

WHOLE BRAIN REFERENCE GROUP

a. Social feedback > fixation

x,y.z =-9, 18,19 U 20 p<.005. FDRcc

b. Positive > negative social feedback

‘ w :
-

X,y,z =-42,42,16

\A

p<.005. FDRcc

Figure S2. Whole brain analyses for reference group (n=41).

Behavioral genetic analyses

Similarities among twin pairs are divided into similarities due to additive genetic
factors (A) and common (shared) environmental factors (C), while dissimilarities
are ascribed to unique non-shared environmental influences and measurement
error (E). Behavioral genetic modeling with the OpenMX package (Neale et al.,
2016) in R (R Core Team, 2015) was used to provide estimates of these A, C, and
E components. The correlation of the shared environment (factor C) was set to 1
for both MZ and DZ twins, while the correlation of the genetic factor (A) was set
to 1 for monozygotic twins and to 0.5 for dizygotic twins. The last factor, unique
environmental influences and measurement error, was freely estimated (Figure
S4). We calculated the ACE models for noise blast duration and brain activation
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in the contrasts negative-neutral, negative-positive and positive-neutral. High
estimates of A indicate that genetic factors play an important role, whilst C
estimates indicate influences of the shared environment. If the E estimate is the
highest, variance in motion is mostly accounted for by unique environmental
factors and measurement error.

—10

PoNON
Twin 1 |« @ o @ | Twin2

Figure S3. ACE model. The correlation between the additive genetic factor (A) of twin 1
and 2 is set to 1.0 for monozygotic (MZ) twins and to 0.5 for dizygotic (DZ) twins. The
correlation between common, shared environmental factors (C) is set to 1.0 for both MZ
and DZ twins. The correlation between the unique, non-shared environmental factors
(including measurement error, (E)) is freely estimated within the model.

Exploratory whole brain analyses

To prevent that specific developmental effects were overlooked, we performed
exploratory whole brain analyses at wave 2 including the VIPP-SD group, the
control group and the reference group (n=360). We first investigated the general
valence effects of social evaluation, that is to say, regions in the brain that were
active after positive and negative feedback, relative to neutral social feedback. In
doing so, we calculated a conjunction of positive vs neutral and negative vs
neutral social feedback. We found common activation across positive and
negative feedback in three clusters of activation: in the left Al; in the right Al
extending into the right IFG; and in the occipital lobe, extending into the fusiform
gyrus (Figure S4a, Table S6). To test for specific effects of positive versus
negative social feedback, we examined pair-wise contrasts on social rejection and
social acceptance. The contrast of social rejection (negative vs positive social
feedback) resulted in significant activation in -amongst others- the right
putamen/thalamus, the bilateral IFG, and the MPFC (Figure S4b,Table S6). The
contrast of social acceptance (positive vs negative social feedback) resulted in two
large clusters of significant activation, one cluster in the prefrontal cortex
(including the superior frontal gyrus and the left and right DLPFC) and one cluster
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with local maxima in the occipital lobe (including the right and left lingual gyrus
extending to more parietal regions and the precuneus) see Figure S4c and Table
S6.

a. Conjunction (negative > neutral + positive > neutral)

xy,z=-2,19,-11 O T 12

b. Negative > positive social feedback

xy.z=-9,26,1 O 12 p<.005. FDRcc

c. Positive > negative social feedback

X,y,Z = - b e 12 p<.005.FDRcc
Figure S4. Whole brain analyses for all available MRI data at wave 2 (N=360). A) Neural
activation for the general valence effects of social evaluation (Conjunction of
negative>neutral and positive > neutral). B) Neural activation after social rejection. C)
neural activation after social acceptance.
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Table S1. MNI coordinates for local maxima activated for the whole-brain
contrasts in the reference group (N=41).

Anatomical Region Voxels pFDRcc T X y z

Social feedback > fixation

Right Fusiform Gyrus 7710 <.001 19.07 39 -52 -17
18.87 39 -79 -11
18.61 30 -94 4

Right Posterior

Cingulate Cortex 790 <.001 6.53 3 -55 31
5.03 39 -67 61
4.87 36 -61 43

Right Inferior Frontal

Gyrus 542 <.001 6.11 54 26 22
6.08 60 29 28
5.94 45 29 19

left Rectal Gyrus 158 0.009 5.95 0 65 -17

Right Superior Frontal

Gyrus 453 <.001 4.87 15 50 49
4.69 -9 53 46
4.28 -12 38 55

Left Angular Gyrus 170 0.008 4.06 -48 -61 37
3.57 -57 -55 52
3.04 -39 -67 55

Positive > negative social feedback

Right Lingual Gyrus 908 <.001 5.43 6 -76 -2
5.25 -18 -85 -8
4.70 15 -73 -5

Left Inferior/Middle

Frontal Gyrus 185 0.037 4.08 -42 41 13
4.06 -36 47 13
3.26 -39 44 25

Right Inferior Parietal

Lobule 170 0.037 3.89 57 -34 55
3.39 69 -31 43
3.30 63 -16 28
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Table S1. (continued)

Anatomical Region Voxels pFDRcc T X y y4

Positive > neutral social feedback

Left Fusiform Gyrus 3186 <.001 6.43 -27 -79 -11
6.41 24 -70 -11
5.98 12 -76 -8

Negative > neutral social feedback

Left Middle Occipital

Gyrus 1958 <.001 7.05 -48 -79 4
6.10 -12 -97 16
5.29 45 -82 7
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Table S2. Intra class coefficients between wave 1 and wave 2 brain activation in
region of interest.

95% CI 95% CI
ROI contrast ICC lower bound upper bound
Insula negative > positive -0.05 -0.16 0.07
negative > neutral 0.05 -0.07 0.16
positive > neutral -0.03 -0.14 0.09
IFG negative > positive -0.05 -0.16 0.07
negative > neutral 0.10 -0.02 0.21
positive > neutral 0.05 -0.06 0.17
mPFC negative > positive -0.08 -0.20 0.03
negative > neutral 0.06 -0.05 0.17
positive > neutral 0.03 -0.09 0.14
left negative > positive 0.04 -0.08 0.15
DLPFC negative > neutral 0.04 -0.07 0.16
positive > neutral 0.05 -0.06 0.16
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Table S3. Linear mixed effect model with noise blast duration as dependent
variable. Output is based on type lll ANOVA's using Satterthwaite’s method. Significant
effects are depicted in black fonts, insignificant effects in grey.

Linear Mixed Effect Models DF F p
Condition 2 2181.60 1033.61 <0.001
Wave 1 2185.79 157.17 <0.001
Intervention Group 1 217.81 0.07 0.795
Conditon * Wave 2 2181.60 16.06 <0.001
Conditon * Intervention 2 2181.60 0.65 0.523
Wave * Intervention 1 2185.79 3.18 0.075
Conditon * Wave * Intervention 2 2181.60 0.14 0.874
Estimated IQ 1 406.16 0.01 0.928
Gender 1 217.86 1.21 0.273
Conditon * Estimated IQ 2 2181.60 13.55 <0.001
Conditon * Gender 2 2181.60 2.26 0.104
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Table S4. Linear mixed effect model with brain activation in regions of interest
as dependent variable. OQutput is based on type Il ANOVA’s using Satterthwaite’s
method. Significant effects are depicted in black fonts, insignificant effects in

grey.

Linear Mixed Effect Models DF F p
Anterior Insula

Condition 2 1526.24 27.79 <0.001
Wave 1 1783.92 10.09 <0.001
Intervention Group 1 181.80 0.00 0.953
Conditon * Wave 2 1526.24 2.06 0.127
Conditon * Intervention 2 1526.24 0.83 0.437
Wave * Intervention 1 1783.75 0.11 0.737
Conditon * Wave * Intervention 2 1526.24 0.93 0.394
Estimated I1Q 1 313.02 1.88 0.171
Gender 1 182.36 0.19 0.663
Conditon * Estimated IQ 2 1526.24 0.61 0.544
Conditon * Gender 2 1526.24 0.83 0.435
Inferior Frontal Gyrus

Condition 2 1531.45 8.22 <0.001
Wave 1 1804.24 0.54 0.461
Intervention Group 1 175.23 0.15 0.696
Conditon * Wave 2 1531.45 1.58 0.205
Conditon * Intervention 2 1531.45 0.60 0.549
Wave * Intervention 1 1804.11 3.17 0.075
Conditon * Wave * Intervention 2 1531.45 0.00 0.997
Estimated IQ 1 278.98 0.52 0.471
Gender 1 175.66 2.53 0.113
Conditon * Estimated IQ 2 1531.45 0.84 0.430
Conditon * Gender 2 1531.45 2.10 0.123
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Table S4. (continued)

Linear Mixed Effect Models

DF F p

Medial Prefrontal Cortex

Condition 2 1530.08 6.64 0.001
Wave 1 1790.59 5.61 0.018
Intervention Group 1 161.09 0.69 0.408
Conditon * Wave 2 1530.08 0.61 0.543
Conditon * Intervention 1 1790.41 2.43 0.119
Wave * Intervention 2 1530.08 0.26 0.769
Conditon * Wave * Intervention 1 314.32 0.03 0.853
Estimated IQ 1 161.60 0.93 0.337
Gender 2 1530.08 0.64 0.527
Conditon * Estimated I1Q 2 1530.08 1.32 0.267
Conditon * Gender 2 1530.08 0.44 0.646
Dorsolateral Prefrontal Cortex

Condition 2 1532.09 8.21 0.000
Wave 1 1788.11 34.44 0.000
Intervention Group 1 187.98 0.00 0.993
Conditon * Wave 2 1532.09 2.53 0.080
Conditon * Intervention 2 1532.09 0.95 0.386
Wave * Intervention 1 1787.97 0.10 0.747
Conditon * Wave * Intervention 2 1532.09 0.04 0.958
Estimated IQ 1 300.71 5.67 0.018
Gender 1 188.49 0.05 0.827
Conditon * Estimated IQ 2 1532.09 4.21 0.015
Conditon * Gender 2 1532.09 1.98 0.138
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Table S5. Linear mixed effect models with brain activation in regions of interest
as dependent variable and noise blast duration added as factor. Output is based
on type IIl ANOVA’s using Satterthwaite’s method. Significant effects are depicted
in black fonts, insignificant effects in grey.

Linear Mixed Effect Models DF F p
Anterior Insula

Condition 2 1693.46 14.59 <0.001
Noise blast 1 1908.4 5.47 0.019
Wave 1 1808.94 9.26 0.002
Intervention Group 1 181.67 0.01 0.907
Conditon * Wave 2 1659.61 1.18 0.306
Conditon * Intervention 2 1525.39 0.81 0.447
Conditon * Noise blast 2 1728.48 1.09 0.337
Wave * Intervention 1 1785.34 0.13 0.718
Wave * Noise blast 1 1913.4 1.74 0.188
Conditon * Wave * Intervention 2 1525.17 1.03 0.356
Conditon * Wave * Noise blast 2 1676.93 0.45 0.637
Estimated IQ 1 317.03 1.91 0.168
Gender 1 182.85 0.29 0.592
Conditon * Estimated IQ 2 1531.67 0.56 0.569
Conditon * Gender 2 1526.86 0.90 0.406
Inferior Frontal Gyrus

Condition 2 1709.10 5.45 0.004
Noise blast 1 1872.52 2.57 0.109
Wave 1 1830.86 0.83 0.363
Intervention Group 1 172.89 0.20 0.655
Conditon * Wave 2 1673.03 1.60 0.202
Conditon * Intervention 2 1527.06 0.52 0.592
Conditon * Noise blast 2 1752.47 0.34 0.711
Wave * Intervention 1 1804.98 3.14 0.077
Wave * Noise blast 1 1929.34 1.07 0.302
Conditon * Wave * Intervention 2 1526.81 0.01 0.994
Conditon * Wave * Noise blast 2 1695.95 0.06 0.940
Estimated IQ 1 280.10 0.80 0.373
Gender 1 174.04 2.89 0.091
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Table S5. (continued)
Linear Mixed Effect Models

DF F p
Conditon * Estimated IQ 2 1533.92 0.70 0.498
Conditon * Gender 2 1528.65 2.22 0.109
Medial Prefrontal Cortex
Condition 2 1699.33 5.73 0.003
Noise blast 1 1895.96 2.71 0.100
Wave 1 1816.12 8.20 0.004
Intervention Group 1 159.34 0.81 0.370
Conditon * Wave 2 1665.49 1.00 0.369
Conditon * Intervention 2 1529.67 0.52 0.594
Conditon * Noise blast 2 1736.36 0.48 0.621
Wave * Intervention 1 1791.29 2.22 0.136
Wave * Noise blast 1 1910.81 4.59 0.032
Conditon * Wave * Intervention 2 1529.44 0.20 0.815
Conditon * Wave * Noise blast 2 1684.20 1.31 0.271
Estimated IQ 1 316.05 0.00 0.959
Gender 1 160.39 1.17 0.282
Conditon * Estimated IQ 2 1536.06 0.39 0.675
Conditon * Gender 2 1531.15 1.39 0.248
Dorsolateral Prefrontal Cortex
Condition 2 1697.56 0.93 0.396
Noise blast 1 1911.70 4.32 0.038
Wave 1 1810.80 10.22 0.001
Intervention Group 1 187.45 0.00 0.958
Conditon * Wave 2 1664.25 3.34 0.036
Conditon * Intervention 2 1532.15 1.08 0.339
Conditon * Noise blast 2 1731.91 0.70 0.499
Wave * Intervention 1 1788.91 0.12 0.726
Wave * Noise blast 1 1918.14 0.07 0.797
Conditon * Wave * Intervention 2 1531.93 0.03 0.968
Conditon * Wave * Noise blast 2 1680.74 1.48 0.228
Estimated IQ 1 305.09 5.19 0.023
Gender 1 188.65 0.01 0.912
Conditon * Estimated IQ 2 1538.32 4.88 0.008
Conditon * Gender 2 1533.61 1.96 0.141
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Table S6. MNI coordinates for local maxima activated for the whole brain contrast
in the whole sample at wave 2 (N=358). Results were FDR cluster corrected
(pmr<0.05), with a primary voxel-wise threshold of p<0.005.

Anatomical Region Voxels pFDRcc T X y z

Conjunction of negative>neutral and positive> neutral social feedback

Left Middle Occipital Gyrus 3527 <.001 12.45 -48 -79 1

Right Fusiform Gyrus 11.48 27 -76 -8
Right Middle Occipital Gyrus 10.43 48 -73 -2

Left Insula 206 0.024 547 -30 26 -8
Left Insula 342 42 17 -2

Left Insula 3.06 -39 23 -17
Right Inferior Frontal Gyrus 266 0.013 4.96 48 20 -2

Right Inferior Frontal Gyrus 4.80 33 26 -14
Right Insula 3.75 39 32 4

Negative > positive social feedback

Left Calcarine Gyrus 554 <.001 12.21 -6 -97 10
Left Superior Occipital Gyrus 11.78 -12 -94 19
Right Superior Occipital Gyrus 7.56 24 91 16
Right Inferior Frontal Gyrus 200 0.015 6.62 57 32 1

Left Middle Occipital Gyrus 608 <.001 6.56 -48 26 1

Left Inferior Frontal Gyrus 6.08 -45 26 -8
Left Middle Temporal Gyrus 5.57 -54 8 -23
Left Middle Occipital Gyrus 236 0.009 549 -48 -82 1

Left Middle Occipital Gyrus 442 -54 -73 1

Left Middle Temporal Gyrus 389 54 -61 4

Left Superior Medial Gyrus 366 0.002 5.20 -6 53 31
Left Superior Frontal Gyrus 480 -18 47 31
Left Superior Frontal Gyrus 3.71  -15 62 25
Right Superior Temporal Gyrus 567 <.001 5.00 48 -34 7

Right Putamen 4.90 33  -13
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Table S6. (continued)

Anatomical Region Voxels pPFDRcc T X y z
Negative > positive social feedback

Right Thalamus 4.40 21 -10 -2
Left Postcentral Gyrus 337 0.003 469 -42 -16 40
Left Postcentral Gyrus 442 42 -19 28
Left SupraMarginal Gyrus 3.83 -42  -37 28
Left Middle Temporal Gyrus 178 0.020 4.51 -54 -25 -5
Left Middle Temporal Gyrus 434 -57 37 1
Left Middle Temporal Gyrus 3.84 -48 -40 4
Right Precentral Gyrus 133 0.044 4.14 4?2 -16 43
Right Precentral Gyrus 4.06 51 -10 43
Right Postcentral Gyrus 313 0.003 3.89 24 -34 61
Right Postcentral Gyrus 3.88 21 -34 76
Right Superior Parietal Cortex 3.19 24 46 70
Positive > negative social feedback

Right Lingual Gyrus 3999 <.001 13.80 6 -73 -2
Right Lingual Gyrus 9.61 21 -70 -5
Left Lingual Gyrus 894 -18 -85 -2
Right Middle Frontal Gyrus

(DLPFC) 4230 <.001 7.72 39 35 43
Right Superior Frontal Gyrus 7.10 27 5 61
Right Middle Frontal Gyrus (DLPFC) 6.69 48 23 40

152



153






CHAPTER SIX

Distinctive heritability patterns of
subcortical-prefrontal cortex resting
state connectivity in childhood: A
twin study

This chapter is published as: Achterberg M., Bakermans M.]., Van IJzendoorn M.H.,
Van der Meulen M., Tottenham N. & Crone E.A.M. (2018), Distinctive heritability
patterns of subcortical-prefrontal cortex resting state connectivity in childhood:
A twin study, Neurolmage, 175: 138-149.



Chapter 6

Abstract

Connectivity between limbic/subcortical and prefrontal-cortical brain regions
develops considerably across childhood, but less is known about the heritability
of these networks at this age. We tested the heritability of limbic/subcortical-
cortical and limbic/subcortical-subcortical functional brain connectivity in 7- to
9-year-old twins (N=220), focusing on two key limbic/subcortical structures: the
ventral striatum and the amygdala, given their combined influence on changing
incentivied behavior during childhood and adolescence. Whole brain analyses
with ventral striatum (VS) and amygdala as seeds in genetically independent
groups showed replicable functional connectivity patterns. The behavioral
genetic analyses revealed that in general VS and amygdala connectivity showed
distinct influences of genetics and environment. VS-prefrontal cortex
connections were best described by genetic and unique environmental factors
(the latter including measurement error), whereas amygdala-prefrontal cortex
connectivity was mainly explained by environmental influences. Similarities were
also found: connectivity between both the VS and amygdala and ventral anterior
cingulate cortex (vVACC) showed influences of shared environment, while
connectivity with the orbitofrontal cortex (OFC) showed heritability. These
findings may inform future interventions that target behavioral control and
emotion regulation, by taking into account genetic dispositions as well as shared
and unique environmental factors such as child rearing.

Keywords: Amygdala; Behavioral Genetics; Functional Brain Connectivity;
Subcortical-Cortical Connectivity; Ventral Striatum
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Introduction

The contributions of limbic brain regions and the prefrontal cortex (PFC) to
enhanced coordination in affective/motivational behaviors change considerably
from childhood to adulthood (van Duijvenvoorde et al., 2016b). Resting State
functional MRI (RS-fMRI) studies on limbic/subcortical-cortical functional brain
connectivity in adults have provided insights into the connectivity patterns
between different limbic/subcortical (sub) regions and the PFC, with positive
connectivity between limbic/subcortical regions and affective PFC regions, and
negative connectivity between limbic/subcortical regions and dorsal control
regions of the PFC (Di Martino et al., 2008; Roy et al., 2009; Choi et al., 2012).
Despite the consistent findings in general connectivity patterns in adults, not
much is known about the robustness of these effects in children, and the role of
genetic and environmental influences on limbic/subcortical- PFC brain
connectivity. To date, the size of environmental and genetic contributions to
limbic/subcortical-PFC connectivity has not been examined in children. In this
study, we therefore investigated the robustness of findings regarding
limbic/subcortical-PFC functional brain connectivity in childhood, and the
heritability of these connections in 7-to-9-year-old twins (N=220). The current
paper is the first to investigate childhood RS connectivity in two independent
samples and additionally explore genetic and environmental influences on that
connectivity, thereby providing important insights in the underlying mechanisms
of functional brain connectivity in childhood.

RS-fMRI studies in adults have shown that the striatum is functionally
connected to distributed regions throughout the entire brain, including motor,
cognitive, and affective systems (Di Martino et al., 2008; Barnes et al., 2010; Choi
et al., 2012). Different sub regions within the striatum show distinct functional
connectivity patterns (Di Martino et al., 2008; Choi et al., 2012). A pioneering
study of Choi et al. (2012) revealed distinct cortical-connectivity for five different
sub regions in the striatum. For example, a dorsal sub region of the striatum was
mainly connected to a network of the dorsolateral PFC (dIPFC), the dorsal medial
PFC (dmPFC), and parietal regions, whereas a more ventral sub region of the
striatum was primarily connected to medial/orbitofrontal regions of PFC (Di
Martino et al., 2008; Choi et al., 2012). In the current study we focused on the
ventral striatum, since this striatal sub region is consistently implicated in
affective/motivational behavior (Haber and Knutson, 2010). Adult studies
revealed that the ventral striatum is positively connected to limbic-affective
regions such as the ventral medial PFC (vmPFC), the ventral anterior cingulate
cortex (VACC), the orbitofrontal cortex (OFC), and the insula (Di Martino et al.,
2008; Choi et al., 2012). In contrast, negative connectivity has been reported
between the ventral striatum and cortical regions related to cognitive control,
such as the dIPFC, the dorsal anterior cingulate cortex (dACC), the parietal cortex,
and the precuneus (Di Martino et al., 2008). The amygdala also shows negative
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connectivity with dorsal cortical regions, including the dIPFC, dACC, dmPFC, the
parietal cortex, and to the cerebellum (Roy et al., 2009). The positive connectivity
patterns from the amygdala are ventrally oriented, including the vmPFC, the
rostral ACC, and the OFC, but also more temporally oriented, towards the insula
and inferior frontal gyrus (IFG) (Stein et al., 2007; Roy et al., 2009).

The development of limbic/subcortical-prefrontal cortex functional brain
connectivity from childhood to adulthood has also been studied with RS-fMRI
(e.g., Fareri et al. (2015), Gabard-Durnam et al. (2014), van Duijvenvoorde et al.
(2016a)). Developmental studies consistently report an overall shift from local
limbic/subcortical-subcortical connectivity in childhood towards more
distributed long-range limbic/subcortical-cortical connectivity in adulthood (Fair
et al., 2009; Vogel et al., 2010; Menon, 2013; Rubia, 2013). However, this age-
related shift from local to distributed connectivity was called into question after
several studies had shown that these developmental changes were largely
influenced by age-related changes in head-motion (Van Dijk et al., 2010; Power et
al., 2012). That is to say, head motion can result in substantial changes in RS-
fMRI connectivity (Van Dijk et al., 2010; Power et al., 2012). Specifically, volume-
to-volume micro movement (i.e., head motion between two frames) can
overestimate short-distance connectivity and underestimate long-distance
connectivity (Satterthwaite et al.,, 2013). Young children usually have more
difficulty lying still, resulting in more volume-to-volume micro movement, which
may have resulted in an underestimation of subcortical-cortical brain
connectivity in childhood. Therefore, there is a need to better understand
connectivity patterns in childhood, using large samples and replication designs.

The PFC gradually develops both structurally and functionally until
maturation in early adulthood (Lenroot and Giedd, 2006; van Duijvenvoorde et
al., 2016a). Both the striatum and the amygdala show plasticity to the
environment (for a review, see Tottenham and Galvan (2016)). For example,
caregiving adversity during childhood (neglect, institutional care or low parental
warmth) has been associated with amygdala hyper reactivity during adolescence
(Tottenham et al., 2011; Garrett et al., 2012; Casement et al., 2014). In addition,
adults and adolescents with a history of childhood stress show less striatum
activity when receiving a monetary reward (Goff et al., 2013; Boecker et al., 2014;
Hanson et al., 2016). Given these environmental influences on ventral striatum
and amygdala activity, the connectivity between these limbic regions and cortical
PFC regions may also be influenced by environmental factors. Alternatively, the
high commonality of psychiatric disorders that rely on limbic/subcortical-PFC
connections in families may suggest a heritability factor as well (Bouchard and
McGue, 2003; Flint and Kendler, 2014). It is important to note that heritability
estimates for brain anatomy and connectivity differ across development such
that heritability estimates are stronger in adulthood than in childhood (Lenroot
et al., 2009; van den Heuvel et al., 2013).
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The few studies that examined these contributions in monozygotic (MZ)
and dizygotic (DZ) twins in adults reported significant influences of genetics on
functional connectivity, with little shared environmental influences (for a review
see Richmond et al. (2016)), although some studies reported influences of both
genetics and shared environment (Yang et al., 2016). Prior findings are mostly
based on adult twin studies, whereas limbic/subcortical-PFC connectivity
changes considerably during child and adolescent development. That is to say,
functional connectivity from the ventral striatum and the amygdala with (medial)
prefrontal regions increases substantially during development (Gabard-Durnam
et al., 2014; Fareri et al., 2015; van Duijvenvoorde et al., 2016a). This increase in
long range interactions between the ventral striatum, the amygdala, and the PFC
may contribute to the improved ability of children to regulate behavior and
emotions in the transition to adolescence (Somerville et al.,, 2010; Ernst, 2014;
Casey, 2015). Together, these findings underscore the importance of studying
heritability of RS brain connectivity in childhood.

Taken together, the aims of the current study were to investigate (1) the
robustness of limbic/subcortical-cortical and limbic/subcortical-subcortical
brain connectivity in childhood, and (2) the heritability of these connections in
7-to-9-year-old twins (N=220). We included 7- to-9-year-old twins since they are
old enough to produce relatively good MRI data, while still representing (middle)
childhood as a developmental phase. The study pursued two goals: 1) to
investigate subcortical-cortical and subcortical-subcortical brain connectivity in
childhood using two key limbic structures: the ventral striatum and the
amygdala, and 2) to examine the heritability of these connections comparing MZ
and DZ twins. We specifically focused on connectivity between limbic/subcortical
regions and six PFC regions: the vmPFC, the vACC, the OFC, the dmPFC, the dACC
and the dIPFC. These regions have been shown to be functionally connected to
both the ventral striatum and the amygdala in adults (Di Martino et al., 2008; Roy
et al.,, 2009) and display developmental changes related to increased cognitive
control and emotion regulation (Somerville et al., 2010; Ernst, 2014; Casey, 2015),
making them key targets to study in our sample.

The first question, regarding replicability of childhood RS connectivity,
was addressed in two independent samples in order to examine connectivity
patterns without genetic components. This allowed us to test for replication,
thereby contributing to the debate about reproducibility of neuroscientific
patterns (Open Science, 2015). Next, we specifically focused on RS-fMRI
connectivity from the ventral striatum and amygdala to the six PFC regions and
two additional subcortical regions (thalamus and hippocampus); since prior
studies have shown that these regions show important developmental effects
(Gabard-Durnam et al., 2014; Fareri et al., 2015). Based on prior studies, we expect
to find replicable and robust resting state connectivity in childhood (Misic and
Sporns, 2016), with distinctive patterns for ventral striatum and amygdala (Roy
et al., 2009; Choi et al., 2012; Porter et al., 2015).
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To address the second question, concerning the heritability of limbic
connectivity, we compared MZ and DZ twin pairs using ACE modeling. This
decomposition model provides an estimate of the proportions of the variance in
the data that are attributed to heritable, shared environmental, and
unshared/unique environmental factors. Previous studies have shown both
influences of genetics (Richmond et al.,, 2016) and environmental contributions
(Tottenham and Galvan, 2016), indicating that there could be an interplay
between genetics and environment (Yang et al., 2016).

Methods

Participants

Participants were part of the Leiden Consortium on Individual Development (L-
CID) twin study. Families with a same-sex twin pair born between 2006 - 2009,
living within two hours travel time from Leiden, were recruited through the Dutch
municipal registry and received an invitation by mail to participate. 256 families
with a twin pair (512 children) were included in the L-CID study, of which 443
children underwent the RS scan (Table S1). The Dutch Central Committee on
Human Research (CCMO) approved the study and its procedures
(NL50277.058.14). Written informed consent was obtained from both parents.
Families received financial compensation (€80.00) for their participation in the L-
CID study. All participants were fluent in Dutch, had normal or corrected-to-
normal vision, and were screened for MRI contra indications. All anatomical MRI
scans were reviewed and cleared by a radiologist from the radiology department
of the Leiden University Medical Center (LUMC). Three anomalous findings were
reported and these participants were excluded. Participants’ intelligence (IQ) was
estimated with a verbal intelligence subtest (Similarities) and a performance
intelligence subtest (Block Design) of the Wechsler Intelligence Scale for Children,
third edition (WISC-III, Wechsler (1991)).

Since head motion can result in substantial changes in RS-fMRI
connectivity (Van Dijk et al., 2010; Power et al., 2012), we investigated micro-
movement using the motion outlier tool in FSL version 5.0.9 (FMRIB’s Software
Library, Smith et al. (2004)). Volumes with more than 0.5 mm framewise
displacement (FD) were flagged as outliers. In line with recent studies (Couvy-
Duchesne et al., 2014; Engelhardt et al., 2017), our twin analyses indicated that
motion (amount of FD) was heritable. That is to say, there was a stronger
correlation within MZ than DZ twins (r,,=.44, p<.001; r.,=.25, p=.02). Behavioral
genetic modeling of the amount of motion in the initial sample pointed towards
genetic influences (A=38%, 95 confidence interval (CI): 26-56%, see Table S2).
Children with more than 20% of their volumes flagged were excluded from
further analyses (Power et al, 2012). In total, 209 participants (47.5%) were
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excluded based on excessive head motion. An additional 11 participants were
excluded due to registration problems. The final sample consisted of 220
children (41% boys, mean age 8.00+0.67, age range 7.02-9.08), of which 64
complete twin pairs (128 children, 58% MZ). There was no association between
age and motion in the final sample (¥=.06, p=.35). Moreover, there were no
significant influences of heritability for head motion in the final sample (A=0%,
95% CI: 0-35%, see Table S2), implying that only more extreme motion is heritable,
and this is not true of more subtle motion. For an overview of sample selection
and dropout, see Table S1.

For the first set of analyses (examining replicability of childhood RS

connectivity) we divided the sample into two subsamples of genetically
independent individuals. Of the 64 complete twin pairs, we randomly chose
either the youngest or oldest child within a twin pair. The other half of the twin
pair was left out of the replication analyses. The replication sample therefore
consisted of 156 (220-64) genetically independent children who were divided
over two samples of N=78. Table 1 provides an overview of demographic
characteristics, estimated IQ and motion in samples I and II. There were no
significant differences in demographic characteristics between the samples
(Table 1). Moreover, the distribution of gender did not significantly differ from
chance (Sample I - 45% boys, t(77)=0.91, p=.37; Sample II - 44% boys, t(77)=1.13,
p=.26).
For the second set of analyses (testing heritability of childhood RS connectivity),
we estimated the contributions of genetic and environmental factors to
subcortical-cortical and subcortical-subcortical functional brain connectivity
using behavioral genetic modelling on seed-ROI connections. The complete twin
pairs were therefore divided in monozygotic (N=37) and dizygotic (N=27) twin
pairs. Table 2 provides an overview of demographic characteristics, estimated I1Q
and motion in MZ and DZ twins. There were no significant differences in
demographic characteristics between the samples (Table 2). For the twin samples,
the distribution of gender significantly differed from chance, with the inclusion
of fewer boys than girls in both samples (MZ - 35% boys, t(73)=2.66, p=.01; DZ -
30% boys, t(53)=3.25, p=.002).

Data Acquisition

MRI scans were acquired with a standard 32 channel whole-head coil on a Philips
Ingenia 3.0 Tesla MR system. Resting state data was acquired at the end of a fixed
imaging protocol. Children were instructed to lie still with their eyes closed for 5
minutes. They were explicitly told not to fall asleep. To prevent head motion,
foam inserts surrounded the children’s heads. A total of 142 T2 -weighted whole-
brain echo planar images (EPIs) were acquired, including 2 dummy volumes
preceding the scan to allow for equilibration of T1 saturation effects (scan
duration 316.8 sec; repetition time (TR) = 2.2 sec; echo time (TE) = 30 ms; flip
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angle = 80°; field of view (FOV, in mm) = 220.000 (rl) x 220.00 (ap) x 111.65 (fh);
37 slices). In addition, a high-resolution EPI scan was obtained for registration
purposes (scan duration 46.2 sec; TR = 2.2 sec; TE = 30 ms, flip angle = 80°, FOV=
220.000 (rl) x 220.00 (ap) x 168.00 (fh), 84 slices), as well as a T1-weighted
anatomical scan (scan duration 296.6 s; TR = 9.72 sec; TE = 4.59 ms, flip angle =
8°, FOV = 177.333 (rl) x 224.000 (ap) x 168.000 (fh), 140 slices). Since motion
causes substantial artifacts within structural scans, we visually inspected the
quality of the T1-weighted anatomical scan directly after acquisition. If the scan
was affected by motion (blurry T1 image), we repeated the T1 scan. This was the
case for 3% of the included participants.

Table 1. Comparison of demographic characteristics of replication samples I and
II.

Sample I Sample II Statistics

n 78 78

Boys 45% 44% x(1, N=156)=0.26,
p=.872

Left handed 8% 14% x(1, N=156)=1.65,
p=.199

AXIS-I disorder 2 (ADHD, GAD) 1 (ADHD) x(1, N=156)=0.34,
p=.560

Age (SD) 8.01 (0.69) 8.02 (0.69) t(154)=-.14, p=.887

Range 7.02 -9.07 7.03-9.08

Mean IQ (SD) 103.75(11.96) 106.03 (12.26) t(154)=-1.17, p=.242

IQ range 80.00-137.50 77.50-137.50

Frames >0.5 7% 7% t(154)=.25, p=.800

mm FD

ADHD: Attention deficit hyperactivity disorder; GAD: Generalized Anxiety
Disorder; FD: Framewise Displacement

Data Preprocessing

The preprocessing of resting-state fMRI data was carried out using FMRIB’s Expert
Analysis Tool (FEAT; version 6.00) as implemented in FSL version 5.09 (Smith et
al., 2004). The following preprocessing steps were used: motion correction
(MCFLIRT; Jenkinson et al. (2002)), slice time correction, removal of non-brain
tissue using the Brain Extraction Tool (BET; Smith (2002)), spatial smoothing
using a Gaussian kernel of 6 mm full width at half maximum, and high-pass
temporal filtering (Gaussian weighted least-squares straight line fitting, with
sigma = 100 sec, 0.01 Hz cut-off). To register fMRI scans to standard space, each
subject’s functional scan was registered to the corresponding high resolution EPI
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scan, by using FMRIB's Linear Image Registration Tool (FLIRT, Jenkinson et al.
(2002)). Next, an integrated version of boundary based registration (BBR; Greve
and Fischl (2009)) was performed to improve the accuracy of the registration from
high resolution EPI to subjects’ structural space. Lastly, FMRIB’s Nonlinear
Imaging Registration Tool (FNIRT) with a 10 mm warp resolution was used to
further refine registration from subjects’ structural space to standard MNI-152
space (Jenkinson and Smith, 2001; Jenkinson et al., 2002). To ensure accurate
alignment, we visually inspected the summery of the registration for all
participants. Examples of correct and incorrect registration can be found in the
supplementary materials (Figure S1). In total, 11 participants were excluded due
to registration problems (Table S1).

Table 2. Demographic characteristics of the mono- and dizygotic twins.

Monozygotic Dizygotic Statistics
n 74 54
(37 pairs) (27 pairs)
% boys 35% 30% (1, N=128)=0.43,
p=.570
Left handed 11% 6.00% (1, N=128)=1.10,
p=.354
AXIS-I disorder none 1 (ADHD) (1, N=128)=1.38,
p=.422
Age (SD) 8.01 (0.72) 7.88 (0.56) t(126)=1.05, p=.294
Range 7.03-9.05 7.15-8.94
Mean IQ (SD) 106.21 (12.09) 103.52 (10.10) t(126)=1.34, p=.184
IQ range 77.50-137.50 77.50-130.00
Frames >0.5 mm 6% 7% t(126)=-0.97, p=.336

FD

First-Level Seed Based Analysis

To investigate limbic/subcortical-cortical and limbic/subcortical-subcortical
functional brain connectivity we used two subcortical seeds: the ventral striatum
(VS) and the amygdala (AMY). The VS seed was based on the “limbic striatum” of
the Oxford-GSK-Imanova structural connectivity striatal atlas (Tziortzi et al.,
2014). The AMY seed was based on the Harvard-Oxford subcortical structural
atlas. Seeds were anatomical, bilateral and thresholded at >75% probability,
resulting in a VS seed of 197 voxels and an AMY seed of 254 voxels (Fig 1). To
extract subject specific time series, seeds were first registered to subject space
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by using FLIRT (Jenkinson et al., 2002). The subject-specific seeds were then used
to extract time series from preprocessed RS data.

First-level general linear models (GLM) were performed separately on
time-series from each seed. The following nuisance signals were included: global
signal, white matter (WM), cerebral spine fluid (CSF), 6 motion parameters and FD
outliers. The global signal was included to reduce the influence of artifacts
caused by physiological processes (i.e., cardiac and respiratory fluctuations) and
scanner drifts (Birn et al., 2006; Fox and Raichle, 2007). In order to extract the
time series for WM and CSF, we used subject specific WM and CSF masked, which
were generated with FMRIB’s Automated Segmentation Tool (FAST, Zhang et al.
(2001)). Additionally, each frame with an FD outlier, (FD>0.5 mm) was
represented by a single regressor in the first-level GLM (see also Chai et al.
(2014)). With this approach the amount of regressors is different between
participants (ranging from 0-28). To account for this difference in first-level
GLMs, the number of FD outliers (and thus the number of extra regressors) was
added to the higher level statistical analyses as an additional covariate.

Figure 1. Subcortical seeds: ventral striatum (left), and amygdala (right).

Higher-Level Seed Based Analysis

For both seeds, two higher-level group analyses were carried out using FMRIB’s
Local Analysis of Mixed Effects (FLAME) stage 1; one for sample I and one for
sample II. Higher-level analyses were performed using FLAME stage 1 with
automatic outlier detection and included the number of extra regressors induced
by the FD outlier modeling as covariate of no interest. Corrections for multiple
comparisons were thresholded with Gaussian Random Field Theory cluster-wise
correction with a minimal Z>3.09 (corresponding to p<.001) and cluster
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significance of p< .05. Next, we inspected the overlap between whole brain
connectivity from sample I and sample II using conjunction analyses.
Conjunction analyses were performed using the easythresh_conj script in FSL
(Nichols et al., 2005), using the same threshold described for the previous
analyzes (Z > 3.09, p<0.05) in order to identify regions commonly connected in
both samples.

Region of Interest Analysis

To further investigate limbic/subcortical-cortical and limbic/subcortical-
subcortical brain connectivity we examined the zstats in predefined ROIs. Since
studies have shown that different regions of the PFC have distinct functions, we
investigated six specific subdivisions of the PFC (Fig 4a): the ventral and dorsal
medial prefrontal cortex (vimPFC, dmPFC), the orbitofrontal cortex (OFC), the
dorsal lateral prefrontal cortex (dIPFC), and the ventral and dorsal anterior
cingulate cortex (vVACC, dACC). All ROIs were bilateral. Regions were based on the
Harvard-Oxford cortical structural atlas and were thresholded on >25%
probability, resulting in the following sizes of anatomical ROIs: vmPFC 1189
voxels; dmPFC 5378 voxels; OFC 3502 voxels; dIPFC 5741 voxels; vACC 1313
voxels; and dACC1925 voxels. The following regions were used: Frontal Medial
Cortex for vmPFC, Superior Frontal Gyrus for dmPFC, Frontal Orbital Cortex for
OFC, Middle Frontal Gyrus for dIPFC, and the Cingulate Cortex anterior division
for the ACC. The ACC was divided in a dorsal and ventral division with a cutoff
at y=30.

Since both the VS and AMY also have shown to be connected the
hippocampus (HPC) and the thalamus (TH) (Roy et al., 2009; Gabard-Durnam et
al., 2014; Fareri et al, 2015), we included exploratory analyses of
limbic/subcortical-subcortical connectivity, with additional subcortical ROIs of
the TH and HPC (Fig 4b). Regions were based on the Harvard-Oxford subcortical
structural atlas and were thresholded on >75% probability, resulting in a bilateral,
anatomical TH ROI of 1646 voxels and a HPC ROI of 494 voxels. We used a stricter
probability for the subcortical regions in order to prevent subcortical regions
would overlap. In addition, we investigated functional connectivity between the
VS and AMY. Zstats were extracted from subjects’ specific first level for each seed
with the different ROIs as a mask using Featquery (as implemented in FSL v5.09).
This way we extracted subject-specific connectivity estimates for 12 different
subcortical-PFC connections and 5 different subcortical-subcortical connections.

To explore possible outliers, we calculated z-values of the subject specific
zstats at the group level. When outliers were detected (Z-value <-3.29 or >3.29),
scores were winsorized (Tabachnick and Fidell, 2013). One sample t-tests were
used to investigate whether connectivity between a seed and a ROI was
significantly different from zero (separately for both samples). Independent
sample t-tests were used to test whether there were differences in connectivity
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between sample I and II. Paired sample t-tests were used to test whether there
were differences in connectivity between ROIs and the VS and AMY seeds.

Genetic Modeling

Within the final sample (N=220), there were 64 complete twin pairs (37 MZ and
27 DZ, Table 2). Zygosity was determined by DNA analyses. DNA was tested with
buccal cell samples collected via a mouth swab (Whatman Sterile Omni Swab).
Buccal samples were collected directly after the MRI session, thereby ensuring
that the children had not eaten for at least one hour prior to DNA collection.

Similarities among twin pairs can be due to shared genetic factors (A) and
shared environmental factors (C), while dissimilarities are ascribed to unique
environmental influences and measurement error (E), see Fig S2. Behavioral
genetic modeling with the OpenMX package (Neale et al., 2016) in R (R Core Team,
2015) provides estimates of these A, C, and E components. Since several heritable
psychiatric disorders are associated with limbic/subcortical-PFC connections
(Bouchard and McGue, 2003; Flint and Kendler, 2014), VS and AMY connectivity
might also be heritable. However, these regions have also shown plasticity to the
environment (Tottenham and Galvan (2016), which could indicate influences of
(shared or unique) environment. Therefore, we calculated the ACE models for
each of the 17 seed-ROI connections and report the point estimates and 95%
confidence intervals of A, C and E. High estimates of A indicate that genetics play
an important role, whilst C estimates indicate influences of the shared
environment. If the E estimate is the highest, variance in connectivity is mostly
accounted for by unique environmental factors and measurement error.
Comparisons of the ACE models with more parsimonious models (AE model, CE
model, and E model) are described in the Supplementary Materials.

Results

Whole Brain Analyses

First, we performed whole brain analyses for the subcortical seeds (VS and AMY)
in sample I and II. Next we investigated the overlap between the two samples by
using conjunction analyses.

Ventral Striatum

Whole brain functional connectivity with the VS as seed for sample I is displayed
in Fig 2a (left top panel) and Table S3. Whole brain results for sample II are
displayed in Fig 2a (right top panel) and Table S4. To formally assess which
connectivity patterns replicated across samples, conjunction analyses were
performed. As visualized in Fig 2a, whole brain VS connectivity in the two
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samples showed pronounced consistent positive connectivity with vACC, vmPFC,
thalamus, insula, inferior temporal gyrus, parietal operculum cortex, putamen,
pallidum, caudate, nucleus accumbens, amygdala, and the OFC (Table 3).
Negative connectivity was consistent over two samples between VS and dACC,
dIPFC, paracingulate gyrus, para-hippocampus, and hippocampus (Table 3).

Amygdala

Whole brain functional connectivity with the AMY as seed for sample I is
displayed in Fig 2b (left top panel) and Table S3. Whole brain results for sample
IT are displayed in Fig 2b (right top panel) and Table S4. As visualized in Fig 2b,
whole brain AMY connectivity patterns showed overlap across the two samples,
showing pronounced positive connectivity with the thalamus, pallidum,
putamen, caudate, hippocampus, para-hippocampus, brainstem, frontal pole,
insula, inferior frontal gyrus (IFG), fusiform cortex, and superior temporal gyrus
(STG) (Table 3). Moreover, we found consistent negative connectivity between
AMY and dmPFC, dIPFC, paracingulate gyrus, precuneus cortex, parietal cortex,
posterior cingulate cortex, and lateral occipital cortex (Table 3).

Post-Hoc Examination of Subcortical-Cortical Connectivity

We investigated limbic/subcortical-cortical brain connectivity in more detail by
visualizing connectivity patterns between subcortical seeds (VS and AMY) and
prefrontal cortical ROIs of the vmPFC, dmPFC, vACC, dACC, OFC, and dIPFC.
Connectivity patterns replicated across sample I and II, with the exception of VS-
dmPFC and AMY-vACC connectivity (Fig 3a, Table S5). Overall, subcortical regions
exhibited positive connectivity with ventral cortical regions (vmPFC, vACC, OFC)
and negative connectivity with dorsal cortical regions (dmPFC, dACC, dIPFC), see
Fig 3a. Paired sample t-tests were used to investigate differences in VS-PFC and
AMY-PFC connectivity. For the vmPFC and vACC, positive connectivity with the
VS was significantly stronger than connectivity with AMY (Table 4). Note that
connectivity between AMY and the vmPFC and vACC was not significantly
different from zero in one of the samples (Table S6). There were no differences
between the VS and the AMY in connectivity with the OFC. The VS and AMY
showed pronounced negative connectivity with dorsal cortical regions (Fig 3a).
For the dIPFC and dmPFC, negative connectivity with the AMY was significantly
stronger than connectivity with the VS (Fig 3a, Table 4). Note that connectivity
between VS and the dmPFC was not significantly different from zero in one of the
samples (Table S6). Connectivity between dACC and AMY was stronger than
connectivity between dACC and VS in sample II, but not in sample I (Table 4).
There were no significant gender or age-related differences in subcortical-cortical
connectivity (sample I and II combined).
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Table 3. MNI coordinates and local maxima for whole brain connectivity clusters
from conjunction analyses (Sample I and Sample II) with Z > 3.09, p < .05 cluster
correction. Anatomical regions were derived from the Harvard-Oxford atlas in
FSL.

max maxX max max

voxels zstat x y X

anatomical regions

Medial prefrontal cortex, anterior
cingulate cortex, superior frontal
gyrus, frontal pole, subcallosal
7607 142 10 10 -8 cortex, thalamus, orbitofrontal
cortex, putamen, pallidum, caudate,
nucleus accumbens
Right inferior frontal gyrus, right
367 4.45 44 -10 16 central opercular cortex, right
frontal operculum cortex
Vs Right middle frontal gyrus, right
1546 4.42 30 -4 28 postcentral gyrus, right precentral
gyrus, right supplementary cortex
Lingual gyrus, parahippocampal
1188 4.57 -6 -48 -8 gyrus, posterior cingulate cortex,
brainstem, thalamus
Left middle frontal gyrus, left
569 4.51 -40 8 38 precentral gyrus, left inferior frontal
gyrus
Hippocampus, parahippocampal
AMY gyrus, putamen, pallidum, thalamus,
14334 15.2 -20 -4 -20 brainstem, Fusiform cortex, insula,
temporal pole, subcallosal cortex,
orbitofrontal cortex
supplementary motor cortex,
superior frontal gyrus, paracingulate
gyrus, anterior cingulate gyrus,
AMY middle frontal gyrus, frontal pole,
45194 6.66 O 14 50 precentral gyrus, precuneous,
postcentral gyrus, lateral occipital
cortex, left inferior frontal gyrus,
left precentral gyrus, left central
opercular cortex
right inferior frontal gyrus, right
468 4.62 0 -22 12 precentral gyrus, right central
opercular cortex

VS
positive

negative

positive

negative
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Post-Hoc Examination of Subcortical-Subcortical
Connectivity

To investigate limbic/subcortical-subcortical brain connectivity in more detail,
we used two additional ROIs of the HPC, TH. Moreover, we investigated
connectivity between the VS and the AMY. Connectivity patterns replicated across
sample I and II (Fig 3b, Table S6). The overall pattern showed pronounced positive
connectivity between subcortical regions, see Fig 3b. Interestingly, the HPC ROI
showed strong positive connectivity with AMY (Fig 3b, Table 4). More stringent
thresholded (smaller) HPC ROIs resulted in similarly strong positive connectivity
patterns (see supplementary materials, Fig S3), indicating that this strong
connectivity was not inflated by cross-boundary blurring. VS-Hippocampus
showed negative connectivity (Fig 3b, Table 4), however, note that VS-HPC
connectivity was not significantly different from zero in Sample II (Table S6). VS-
TH connectivity was significantly stronger than AMY-TH connectivity, which was
negative, and not significantly different from zero in sample II (Table S6). The
connectivity estimate between the VS and AMY was small and not significantly
different from zero in both samples (Fig 3 and Table S6). There were no
significant gender differences in limbic/subcortical-subcortical connectivity
(sample I and II combined). We found weak negative correlations between age and
VS-HPC connectivity in (r=-.20, p=.01), and VS-AMY connectivity (r=-.17, p=.04).

Heritability of Subcortical-Cortical Connectivity

An overview of ACE models for limbic/subcortical-cortical brain connectivity
between seed (VS and AMY) and cortical ROIs (vimPFC, vACC, OFC, dmPFC, dACC,
dIPFC) is provided in Table 5. Comparisons of the full ACE model with more
parsimonious AE, CE and E models are displayed in Table S7 (VS) and Table S8
(Amygdala). Note that the estimates of the different components add up to 1
(100%). The overall pattern showed that the variance in VS-PFC connectivity was
best accounted for by genetic and unique environmental factors (including
measurement error). That is to say, the A estimate was moderately high for
connectivity between VS and vimPFC (A=67%, E=33%), OFC (A=32%, C=9% E=59%),
dmPFC (A=37%, C=1%, E=63%), dACC (A=46%, E=54%), and dIPFC (A=19%, E=81%),
see Table 5. In addition to genetic influences, VS-vACC connectivity also showed
influences of shared environment (A= 12%, C=17%, E=71%). Variance in AMY-
dorsalPFC connectivity was less influenced by genetics, with small contributions
of the A component for connectivity between AMY and dmPFC (A=8%, C=0%,
E=92%), dACC (A=8%, C=0%, E=92%), and dIPFC (A=14%, C=0%, E=86%). AMY-vACC
connectivity showed moderately high estimates of the shared environment
(C=35%, E=65%), with no influence of genetics (A=0%). AMY-vmPFC connectivity
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showed moderate influences of genetics (A=23%, C=0%, E=77%), and AMY-OFC
connectivity showed high heritability (A=54%, E=46%), see Table 5.

Subcortical — Cortical Connectivity
2
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1 = Sample 1 - Amy mSample 2 - Amy
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Figure 3. Subcortical-cortical and subcortical-subcortical brain connectivity. A)
Connectivity between subcortical seeds (ventral striatum (VS) and amygdala (AMY)) and
prefrontal cortical regions ventral medial prefrontal cortex (vmPFC), ventral anterior
cingulate cortex (vACC), orbitofrontal cortex (OFC), dorsal medial PFC (dmPFC), dorsal
ACC (dACC) and dorsal lateral PFC (dIPFC). B) Connectivity between VS, AMY,
hippocampus and thalamus. Error bars represent standard error of mean. Asterisks
indicate significant differences between samples.
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Heritability of Subcortical-Subcortical Connectivity

An overview of ACE models for limbic/subcortical-cortical brain connectivity
between seed (VS and AMY) and the subcortical ROIs (HPC, TH, AMY) is provided
in in Table 6. Comparisons of the full ACE model with more parsimonious AE, CE
and E models are displayed in Table S9. Note that the estimates of the different
components add up to 1 (100%). Subcortical-subcortical connectivity was
moderately influenced by genetics, with A estimates ranging from 32-42% (VS-
HPC A=37%, E=63%; VS-AMY A=42%, E=58%; AMY-HPC A=32%, E=68%; AMY-TH
A=35%, E=65%), and no influence of the shared environment (C=0%), with the
exception of VS-TH connectivity, which was mostly influenced by environmental
factors (A=4%, C=15%, E=81%), see Table 6.

Table 4. Mean and standard deviations of Z-values for all subcortical-cortical and
subcortical-subcortical connectivity patterns. Differences in connectivity
patterns from ventral striatum and amygdala were tested with paired sample T-
tests.

\'A) AMY mean
ROI Sample mean (SD) (SD) Statistics 7
vmPFC  Sample I 1.66 (1.34) -0.04 (1.45) t(77)=8.19 <.001
Sample II 1.69 (1.60) 0.26 (1.03) t(77)=7,33 <.001
vACC Sample I 1.05 (1.04) -0.25 (0.93) t(77)=7,33 <.001
Sample II 0.86 (1.14) 0.06 (0.86)  t(77)=5,37 <.001
OFC Sample I 1.31(0.88) 1.13(1.11)  t(77)=1,21 .229
Sample II 1.09 (0.89) 1.28 (0.76)  t(77)=-1,70 .093
dmPFC Sample I -0.29 (0.61) -0.75 (0.62)  t(77)=4,93 <.001
Sample II -0.05 (0.54) -0.72 (0.59) t(77)=7,70 <.001
dACC Sample I -0.54 (1.03) -0.38 (1.11)  t(77)=-,89 .379
Sample II -0.73 (1.21) -0.29 (1.14) t(77)=-2,49 <.001
dIPFC Sample I -0.48 (0.59) -0.88 (0.67)  t(77)=4,05 <.001
Sample II -0.31 (0.55) -0.88 (0.54) t(77)=7,01 <.001
Thala- Sample I 0.51 (1.37) -0.43 (1.47) t(77)=3,53 .001
mus Sample II 0.50 (1.37) -0.15 (1.32) t1(77)=2,92 .005
Hippoc Sample I -0.52 (1.87) 6.67 (1.93) t1(77)=-21,87 <.001
ampus Sample II -0.41 (2.10) 6.43 (2.17) t1(77)=-18,49 <.001
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Table 5. Genetic modeling of Cortical- Subcortical connectivity.

:ZZ‘;; ROI  model A? c? E2  LTR  AIC
VS vmPFC  ACE 0.67 0.00 0.33 182.29
AE* 0.67 - 0.33 <0.001 182.29

CE : 044 056 568  187.97

E - - 1.00 >14.03 200.00

VvACC  ACE 012 017  0.71 138.13
AE 0.32 - 0.68 0.19  136.31

CE* - 027 073 0.07  136.20

E - - 1.00 >4.71 139.03

OFC  ACE 032  0.09 059 83.87
AE* 0.42 - 0.58 0.05  81.92

CE : 034 0.66 058  82.44

E - - 1.00 >8.09 88.54

dmPFC  ACE 036 001  0.63 41.82
AE* 0.37 - 0.63 0.001 -43.82

CE - 027 073 065  -43.17

E - - 1.00 >5.00 -40.17

dACC  ACE 046  0.00  0.54 165.63
AE* 0.46 : 0.54 <0.001 163.63

CE - 027 073 4.00 167.62

E - - 1.00 >4.97  170.60

dIPFC  ACE 0.19  0.00 0.81 150.46
AE 0.19 : 0.81 <0.001 -52.46

CE - 0.12 088 073 -51.73

E* - - 1.00 <1.74 -52.72

t LTR < 3.85 equals a significant better fit of the model (p<.05)
2 Lower AIC values indicate a better model fit
* Asterics indicate the best model fit
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Table 5. (continued)

Start

Seed ROI model A? Cz E? LRT AIC
AMY vmPFC  ACE 0.23 0.00 0.77 184.64
AE 0.23 - 0.77 <0.001 182.64

CE - 0.07 0.93 1.43 184.08

E* - - 1.00 <L.79 182.43

VvACC ACE 0.00 0.35 0.65 84.01
AE 0.34 - 0.66 1.12 83.14

CE* - 0.35 0.65 <0.001 82.01

E - - 1.00 >7.41 88.55

OFC ACE 0.54 0.00 0.46 84.33
AE* 0.54 - 0.46 <0.001 82.33

CE - 0.46 0.54 1.79 84.11

E - - 1.00 >15.30 97.41

dmPFC ACE 0.08 0.00 0.92 -14.87
AE 0.08 - 0.92 <0.001 -16.87

CE - 0.00 1.00 0.24 -16.62

E* - - 1.00 <0.24 -18.62

dACC ACE 0.08 0.00 0.92 130.54
AE 0.08 - 0.92 <0.001 128.54

CE - 0.03 0.97 0.22 128.77

E* - - 1.00 <0.27 126.82

dIPFC ACE 0.14 0.00 0.86 -4.94
AE 0.14 - 0.86 <0.001 -6.94

CE - 0.04 096 0.68 -6.26

E* - - 1.00 <0.76 -8.18

! LTR < 3.85 equals a significant better fit of the model (p<.05)
2 Lower AIC values indicate a better model fit
* Asterics indicate the best model fit
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Table 6. Genetic modeling of Subcortical- Subcortical connectivity.

Start

Seed ROI model A2 Ccz E? LRT AIC
VS Hippocampus ACE 0.37 0.00 0.63 266.12
AE* 0.37 - 0.63 <0.001 264.12
CE - 0.32 0.68 0.74 264.87
E - - 1.00 >6.95 269.81
Thalamus ACE 0.04 0.15 0.81 175.08
AE 0.21 - 0.79 0.13 173.21
CE* - 0.18 0.82 0.01 173.08
E - - 1.00 <2.10 173.18
Amygdala ACE 0.42 0.00 0.58 281.83
AE* 0.42 - 0.58 <0.001 279.83
CE - 0.36 0.64 0.92 280.75
E - - 1.00 >9.07 287.83
AMY Hippocampus ACE 0.32 0.00 0.68 277.93
AE* 0.32 - 0.68 <0.001 275.93
CE - 0.19 0.81 2.24 278.18
E - - 1.00 >2.27 278.44
Thalamus ACE 0.35 0.00 0.65 154.42
AE* 0.35 - 0.65 <0.001 152.42
CE - 0.23 0.77 1.98 154.40
E - - 1.00 >3.47 155.87

t LTR < 3.85 equals a significant better fit of the model (p<.05)
2 Lower AIC values indicate a better model fit
* Asterics indicate the best model fit
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Discussion

We investigated genetic and environmental influences on limbic/subcortical-
cortical and limbic/subcortical-subcortical RS-fMRI in a relatively large sample of
7-t0-9-year-old MZ and DZ twins. As a complement to prior studies of genetic and
environmental influences in adults (for example, Yang et al. (2016)), here we
assessed twin concordance in children during a time of rapid development of
these connections.

Replicability of childhood resting state connectivity

First we addressed childhood resting state brain connectivity, by studying
patterns of connectivity from the ventral striatum and the amygdala, in two
genetically independent samples. Reassuringly, and consistent with adult
research (Power et al., 2010; Thomason et al., 2011; Misic and Sporns, 2016), we
observed strongly replicable brain connectivity patterns over two samples of 7-
to-9-year-old children, both in the whole brain seed based analyses and in the
post-hoc ROI analyses. The general patterns showed positive connectivity
between amygdala and ventral striatum and orbitofrontal cortex; and negative
connectivity between these limbic/subcortical regions and dorsal medial and
lateral regions. Previous studies showed that orbitofrontal cortex is more
strongly involved in affective processes, whereas dorsal medial and lateral
prefrontal cortex is more strongly associated with behavioral control, and the
current findings fit with the hypothesized top-down control of dorsal lateral
prefrontal cortex over the limbic subcortical brain regions (Somerville et al.,
2010; Ernst, 2014; Casey, 2015).

In line with adult striatal-cortico connectivity patterns we found positive
connectivity between the ventral striatum and vACC, vmPFC, and OFC (Di Martino
et al., 2008), suggesting that these connections are already in place during middle
childhood. The post-hoc ROI analyses indicated negative connectivity between
the VS and the dACC, dIPFC and dmPFC, but these were less pronounced in the
whole brain analyses. The difference between the current results and the
connectivity patterns in adults could be due to developmental processes, since
dorsal medial and lateral PFC regions continue to develop throughout
adolescence (Ernst, 2014; Casey, 2015). Moreover, these differences in results
might derive from the differences in limbic/subcortical seed regions. To date
there is no consensus about the different sub regions of the striatum and
different studies have used different approaches. Prior studies have suggested a
more detailed subdivision of the striatum with, for example, additional
distinctions within the ventral striatum (Di Martino et al., 2008; Choi et al., 2012).
For the current paper we specifically chose only the ventral striatum, since this
striatal sub region is specifically associated with developmental differences in
affective/motivational behaviors. Future research could shed light on
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developmental differences in connectivity from different sub regions within the
striatum, by directly comparing children and adults, using the same methodology
in both samples (as was previously done for the VS by Fareri et al. (2015)).

Regarding amygdala-cortico connectivity, our developmental results were
generally in line with the findings in adults. That is, we found positive
connectivity with the OFC, the insula and the IFG, and negative connectivity with
the dIPFC, dACC, dmPFC and parietal cortex (Stein et al., 2007; Roy et al., 2009).
This is also in line with previous findings spanning ages from childhood to
adulthood, showing that amygdala connectivity over development was largely
stable (Gabard-Durnam et al., 2014). We did, however, find differences in
amygdala-cerebellum connectivity compared to results in adults (Roy et al.,
2009). Our whole brain analyses revealed a band of positive connectivity from
the amygdala through the brainstem to the dorsal cerebellum, whereas adult
results showed negative connectivity between the amygdala and the dorsal
cerebellum (Roy et al., 2009). Interestingly, a recent study on amygdala functional
connectivity in 4-to-7-year-old children also showed positive connectivity
between amygdala and the cerebellum (Park et al., in press). We submit that this
is a developmental effect, reflecting positive connectivity to the dorsal
cerebellum in childhood that becomes negative over development. Indeed age
dependent changes in amygdala connectivity have been documented, with
increasingly negative connectivity between the amygdala and cerebellum with
increasing age (Gabard-Durnam et al.,, 2014). Notably, a recent cross-sectional
longitudinal study of Jalbrzikowski et al. (2017) reported strong amygdala-mPFC
connectivity in childhood, which declined to zero by adulthood (age range 10-
19). However, we did not find strong amygdala-vmPFC connectivity in neither of
the samples. This could be due to differences in age ranges, differences in the
amygdala and vmPFC sub regions that were examined, as well as methodological
differences in RS-fMRI analyses. In the current paper, we chose to use the whole
amygdala as seed, to strike a balance between completeness and the number of
connections and additional genetic analyses. However, it should be noted that
the amygdala is not a single unit, but consists of several nuclei (Ball et al., 2007;
Roy et al., 2009). Some studies have shown distinct connectivity patterns from
different amygdala sub nuclei in adults (Roy et al., 2009), and over development
(Gabard-Durnam et al., 2014).

In sum, our results showed robust and replicable whole brain
connectivity in children, for the amygdala as well as the ventral striatum. In
addition to previous studies that have shown that limbic/subcortical-cortical
connectivity increases during adolescence (Fair et al., 2009; Vogel et al., 2010;
Menon, 2013; Rubia, 2013; Gabard-Durnam et al., 2014); the findings from this
study show that the vast architecture of this connectivity is already present
before adolescence.
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Heritability of childhood resting state connectivity

The second aim of this study was to examine the heritability of childhood resting
state connections, specifically focusing on connections between the ventral
striatum and amygdala with prefrontal cortex and other subcortical regions.
Variance in the majority of connections from the ventral striatum to the
prefrontal cortex was best described by genetics, with moderately strong
heritability factors (up to 67%). Weaker ventral striatum-prefrontal cortex
connections have been linked to psychiatric disorders such as depression (Russo
and Nestler, 2013) and substance abuse (Deadwyler et al., 2004), which are
thought to have a genetic component (Bouchard and McGue, 2003; Flint and
Kendler, 2014). The association between genotypic characteristics and
psychiatric disorders might be mediated by genetically based connectivity in the
brain (Hyman, 2000). Interestingly, connectivity from the ventral striatum to the
vACC and thalamus was mostly influenced by shared and unique environmental
factors, which is in line with previous findings that reported environmental
plasticity of the striatum (Tottenham and Galvan, 2016). These results suggest
that long-range cortical-striatal connectivity is more strongly influenced by
genetic profiles, while short range thalamic and vACC connectivity is more
influenced by environmental factors.

With the exception of ventral striatum-thalamic connectivity,
limbic/subcortical-subcortical connectivity was notably influenced by genetics,
with heritability estimates ranging from 32-42%. For instance, we found
heritability for amygdala-hippocampus connectivity (A=32%), indicating that this
emotional memory network (Phelps, 2004) is influenced by genetic factors.
Interestingly, a broad literature has shown that these two regions independently
are affected by environmental influences such as stress and early adversity
(Lupien et al., 2009; Tottenham and Sheridan, 2009; Barch et al., 2016). This raises
new questions with respect to how the amygdala-hippocampus circuitry is
shaped and develops during child development. Moreover, while ventral
striatum-prefrontal cortex connective showed large genetic influences,
amygdala-prefrontal cortex connectivity showed mostly effects of the
environment, with high estimates of the E component (up to 92%). There were two
exceptions to this general pattern. First, in line with the ventral striatum,
amygdala-vACC connectivity showed influences of the shared environment. The
vACC has been shown to signal for socially salient cues such as peer feedback,
both in adults as well as in children (Somerville et al., 2006; Achterberg et al.,
2016b; Achterberg et al, 2018b). Connectivity between the vACC and
limbic/subcortical regions might also be susceptible to social context and social
environmental factors, as these connections are significantly influenced by
environment (Gee et al., 2014). Secondly, 54% of the variance in amygdala-OFC
connectivity was explained by genetic influences. Interestingly, Whittle and
colleagues (2014) have reported longitudinal effects of positive parenting on
structural development of the amygdala and OFC. Our study is the first to show
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that variance in amygdala-OFC functional connectivity in childhood is explained
by genetic factors. This finding has important implications for intervention
research: Certain genetic profiles might be more susceptible to environmental
influences than others, as is proposed by the differential susceptibility theory
(Bakermans-Kranenburg and van Ijzendoorn, 2007; Ellis et al., 2011). A next step
could be to examine whether children with specific genetic profiles are more
susceptible to both the adverse effects of unsupportive environments and the
beneficial effects of supportive rearing (see the study protocol of Euser et al.
(2016)). Important aspects to take into account in those studies are the
developmental differences in heritability estimates for brain anatomy and
connectivity (Lenroot et al., 2009; van den Heuvel et al., 2013). That is, previous
studies have found lower heritability estimates in children than in adults (van
den Heuvel et al., 2013). However, the literature on heritability of functional brain
connectivity is still relatively sparse, and most studies have examined whole
brain RS and/or used different RS methods (Glahn et al., 2010; Richmond et al.,
2016; Yang et al, 2016; Colclough et al, 2017; Ge et al, 2017), making
comparisons between studies difficult. Studying differences in heritability
estimates between children and adults, nevertheless, is an important issue for
future studies, providing important insights in the developmental phase during
which connections might be most sensitive to environmental influences.

Overall, the patterns of genetic and environmental influences for ventral
striatum and amygdala were distinct: Long-range PFC connectivity with the
ventral striatum was genetically influenced, whereas long-range amygdala
connectivity was mostly environmentally influenced. These results may be the
starting point for a better understanding of how brain development is both
biologically based and environmentally driven.

Methodological considerations

Some methodological considerations should be noted. First, due to excessive
motion, we had to exclude almost half of our initial sample. Nevertheless, due to
our large sample size we could still perform analyses on a relatively large group
of children, thereby increasing the statistical power of our analyses. It should be
noted that the current standard of remaining motion in (adult) RS studies is even
stricter, often using a cutoff of 0.3 mm FD. However, in terms of motion, the
current results are based on a very clean dataset compared to earlier
developmental studies. After exclusion of participants with excessive motion the
gender distribution was significantly different from chance in the MZ and DZ twin
samples, with more girls than boys included. Although there were no significant
differences in gender between the MZ and DZ samples, and therefore this gender
distribution is unlikely to have influenced our results, future studies on
heritability of brain measures in childhood should opt to oversample young boys,
since our results show the highest attrition rate in boys. Secondly, even
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after controlling for motion and including additional regressors with CSF and WM
signals, our whole brain analyses show minimal but potentially artefactual
correlations with non grey matter tissue. Future studies could include additional
analytic steps to further minimize these effects, for example by controlling for
cortical signal bleeding, i.e., regressing out signal from surrounding voxels
(Buckner et al., 2011; Choi et al., 2012).

Third, we included the global signal as nuisance signals to reduce
artifacts of cardiac and respiratory fluctuations and scanner drifts (Birn et al.,
2006; Fox and Raichle, 2007), however, inclusion of global signal regression can
introduce negative correlations between regions (Murphy et al, 2009) and
therefore the intepretation of these negative connectivities should be done with
caution.

Fourth, some of our genetic analyses of neural responses resulted in high
estimates for the E component (up to 92%), reflecting influences from the unique
environment and measurement error. The statistical power of genetic studies is
influenced by, amongst others, the sample size (Visscher, 2004; Verhulst, 2017).
Although our sample size can be considered relatively large for a developmental
RS-fMRI study, it is modest for behavioral genetic modeling. Our sample size may
have been insufficient to detect significant contributions of A (genetics) and C
(shared environment), resulting in inflated estimates of the E component. Future
studies should try to discriminate between the influence of unique environment
and measurement error, for example by accounting for intra-subject fluctuations
using repeated measures, as has recently been described by Ge et al. (2017).

Lastly, the current study made use of post hoc ROI analyses to further
investigate limbic/subcortical-cortical connectivity, based on structural brain
atlases. Although recent studies have provided functional atlases of the brain
(Yeo et al., 2011; Choi et al., 2012), these are based on adults. To our best
knowledge, there are no functional atlases based on developmental samples, and
the vast majority of developmental studies have used anatomical regions to mask
and/or extract functional connectivity (Gabard-Durnam et al., 2014; Fareri et al.,
2015; van Duijvenvoorde et al., 2016a). By using these structural ROIs our results
can be compared or combined with previously published studies. Nevertheless,
we acknowledge that the functional architecture of the brain does not follow
structural subdivisions, and this may be considered as a limitation of the current
design.
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Conclusion

Taken together, this study was the first to investigate twin effects in subcortical-
subcortical and subcortical-cortical RS-fMRI in children, providing important
insights in genetic and environmental influences on childhood brain
connectivity. The behavioral genetic analyses showed moderate to substantial
heritability of striatum-prefrontal cortex brain connectivity, and environmental
influences on amygdala-orbitofrontal cortex connectivity, with implications for
our understanding of the etiology of disorders that are associated with disrupted
connectivity, such as drug abuse and depression. Prior studies have mainly
estimated heritability for brain connectivity in adults (Yang et al., 2016), whereas
child development provides unique possibilities for understanding the role of
shared environment (Polderman et al., 2015). Examining how limbic/subcortical
brain regions are functionally connected to the prefrontal cortex and whether a
positive childrearing environment can foster these connections are important
issues to address in future research. The current findings provide the first step
in laying the groundwork for understanding genetic and environmental
influences in shaping brain connectivity and may be the starting point for a better
understanding of how brain development is both biologically based and
environmentally driven.
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Supplementary materials

Genetic modeling - comparison of parsimonious models

Similarities among twin pairs are divided into similarities due to shared geneti
factors (A) and shared environmental factors (C), while dissimilarities ar
ascribed to unique environmental influences and measurement error (E
Behavioral genetic modeling with the OpenMX package (Neale et al., 2016) in R (I
Core Team, 2015) provides estimates of these A, C, and E components. For eac]
of the 17 connections, four different models (ACE, AE (with C set to zero), C
(with A set to zero), and E (with A and C set to zero)) were estimated and a lo
likelihood was calculated. Each model was then compared to a mor
parsimonious model (e.g. ACE vs. AE; ACE vs. CE; AE vs. E and CE vs. E) b
subtracting the log likelihoods, resulting in an estimate of the Log- Likelihoo
Ratio Test (LRT). Given that the LRT follows the y2-distribution, an LRT<3.8
would indicate that the more parsimonious model has no worse fit to the date
The Akaike Information Criterion (AIC; Akaike (1974) was used to determine th
best model for equally parsimonious non-nested models (i.e. AE and CE), wit]
better model fit being indicated by a lower AIC. When ACE models show the bes
fit, both heritability, shared and unique environment are important contributor
to explain the variance in the outcome variable. AE models indicate that geneti
and unique environmental factors play a role; whilst CE models indicat
influences of the shared environment and unique environment. If the E mode
has no worse fit than AE or CE models, variance in the outcome variable i
accounted for by unique environmental factors and measurement error.
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M2=10-r2=05 . r=10 .
h; c e; h? c ei
Twin 1 Twin 2

Figure S2. ACE model. Similarities among twin pairs are divided into similarities due to
shared genetic factors (A) and shared environmental factors (C), while dissimilarities
are ascribed to unique environmental influences and measurement error (E). The
correlation of factor C within twins is 1 for both MZ and DZ twins, while the correlation
of factor A is 1 within MZ twins and on average 0.5 within DZ twins.

Amygdala- Hippocampus connectivity

m Sample 1
& Sample 2

Z-stat
O =2~ N W b OO O N X

Hippocampus treshold

Figure S3. Amygdala-Hippocampus connectivity for different thresholds of the
Harvard/Oxford hippocampus region: 75% (yellow), 90% (green), and 95% (red).
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Table S1. Sample selection

Subcortical-PFC resting state connectivity

N age (SD) age range % boys
512 Children included 7.94 (0.67) 7.02 - 9.68 48.80
- 69 No RS scan* 7.92 (0.69) 7.02 - 9.26 55.07
-3 Anomalous findings**  8.82 (0.03) 8.80 - 8.85 33.33
Excessieve head
-209 motion*** 7.90 (0.66) 7.02-9.68 55.02
-11 Registration errors 7.65 (0.64) 7.03 - 8.84 54.54
220 final sample 7.99 (0.67) 7.02 -9.08 40.91

* due to no parental consent (4); MRI contra-indications (7); anxiety (14) or lack

of time (44)

* as indicated by a radiologist

*** defined as 0.5 mm framewise displacement in >20% of the data

Table S2. Genetic modeling of framewise displacement (FD) for the initial sample

(prior to motion exclusion, N=398) and the final sample (N=220).

% frames >0.5 mm

D model A? Cz E2 LTR AIC
Initial sample ACE 0.38 0.06 0.56 3146.62
(prior to motion .26- .00- 44-
eI:))(clusion) 95% (())25(25 (())(4)1(; (()).72
AE* 0.44 0.56 0.08 3144.7
CE - 0.35 0.65 2.49 3147.11
E - - 1 >26.72 3171.83
Final sample ACE 0.00 0.15 0.85 670.68
(after motion .00- .00- .62-
exclusion) 9% Cl (())03(; (())(;(5)3 01(3)%)
AE 0.11 0.89 0.93 669.61
CE - 0.15 0.85 <.001 668.68
E* - 1 <1.53 668.21

* Asterics indicate the best model fit
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Table S3. MNI coordinates and local maxima for whole brain connectivity clusters
from Sample I, with Z>3.09, p<.05 cluster correction. Anatomical regions were
derived from the Harvard-Oxford atlas in FSL.

SampleI  voxels

max
zstat

X

y

max max max

X

anatomical regions

VS 10712
positive

2128

374
352

271
214

VS 3368
negative

3064

2230

16

6.39

4.7

5.31

4.02
4.75
5.38

5.59

5.13

12

38

50

66

-56
-44
-38

24

36

8

12

-34

-10
50
10

-34

-20

-12

10

-22

-20

20
40

14

42

Medial prefrontal cortex,
anterior cingulate cortex,
paracingulate gyrus, superior
frontal gyrus, frontal pole,
subcallosal cortex, thalamus,
orbitofrontal cortex, putamen,
pallidum, caudate, nucleus
accumbens

Right frontal operculum cortex,
right insula, right inferior
frontal gyrus, right precentral
gyrus, right postcentral gyrus
Right inferior temporal gyrus,
right teporal fusiform cortex
Right middle temporal gyrus,
right superior temporal gyrus
Left insula, left Heschl's gyrus

Left frontal pole

Left middle frontal gyrus, left
precentral gyrus, left inferior
frontal grus, left superior
frontal gyrus, left lateral
occipital cortex, left superior
parietal lobule
Hippocampus, Thalamus,
brainstem, parahippocampal
gyrus

Right postcentral gyrus, righ
precentral gyrus, right
supramarginal gyrus
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Table S3. (continued)

Sample I voxels

max max max max
zstat  x y X anatomical regions

VS
negative

671

477

461

353

6.71 -46 30 -8 Left frontal pole, left orbitofrontal
gyrus, left inferior frontal gyrus

5.22 42 50 -8 Right frontal pole, right
orbitofrontal gyrus, right inferior
frontal gyrus

491 50 8 40 Right middle frontal gyrus, right
precentral gyrus

492 36 -56 60 Rightlateral occipital cortex

AMY
positive

AMY
negative

15999

66829

15.2 -22 -4 -18 Hippocampus, parahippocampal
gyrus, putamen, pallidum,
thalamus, brainstem, Fusiform
cortex, insula, temporal pole,
subcallosal cortex, orbitofrontal
cortex

731 -2 -30 2 supplementary motor cortex,
superior frontal gyrus,
paracingulate gyrus, anterior
cingulate gyrus, middle frontal
gyrus, frontal pole, precentral
gyrus, precuneous, postcentral
gyrus, lateral occipital cortex,
inferior frontal gyrus,precentral
gyrus, central opercular cortex
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Table S4. MNI coordinates and local maxima for whole brain connectivity clusters
from Sample II, with Z>3.09, p<.05 cluster correction. Anatomical regions were

derived from the Harvard-Oxford atlas in FSL.

Sample II

voxels

max maxXx maxXx max

zstat

X

Y

X

anatomical regions

VS positive

VS negative

9397

1503

443

336

204

7743

3191

356

14.3

5.18

4.58

3.95

4.42

6.23

4.97

4.7

10

-38

46

50

46

-10

50

10

-20

-12

-54

18

-70

10

16

-12

-32

38

40

Medial prefrontal cortex, anteriol
cingulate cortex, paracingulate
gyrus, superior frontal gyrus, fronta
pole, subcallosal cortex, thalamus
orbitofrontal cortex, putamen
pallidum, caudate, nucleus
accumbens

Left insula, left middle tempora
gyrus, left inferior frontal gyrus

Right central opercular cortex, right
inferior frontal gyrus

Right inferior temporal gyrus, right
temporal gyrus, right tempora
fusiform cortex

Right temporal pole, right middle
temporal gyrus

Middle frontal gyrus, precentra
gyrus, left inferior fronta
grus,superior frontal gyrus, latera
occipital cortex, superior parieta
lobule, postcentral gyrus
Hippocampus, Thalamus, brainstem,
parahippocampal gyrus

Right middle frontal gyrus, right
precentral gyrus, right inferior
frontal gyrus

AMY
positive

AMY
negative

17843

61466

884

16.3

7.8

5.5

-24

58

16

14

-20

48

Hippocampus, parahippocampal
gyrus, putamen, pallidum, thalamus,
brainstem, Fusiform cortex, insula,
temporal pole, subcallosal cortex,
orbitofrontal cortex

Supplementary motor cortex,
superior frontal gyrus, paracingulate
gyrus, anterior cingulate gyrus,
middle frontal gyrus, frontal pole,
precentral gyrus, precuneous,
postcentral gyrus, lateral occipital
cortex, inferior frontal
gyrus,precentral gyrus, central
opercular cortex, left inferior frontal
gyrus

Right inferior frontal gyrus, right
precentral gyrus, right central
opercular cortex
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Table S5. Mean and standard deviations of Z-values for all subcortical-cortical
and subcortical-subcortical connectivity patterns. Differences in connectivity
between different samples were tested with independent sample T-tests.
Asterisks indicate significant differences between samples.

Sample I Sample II

Seed ROI mean (SD) mean(SD) T 7

VS vmPFC 1.66 (1.34) 1.69(1.60) -0.12 0.905
vACC 1.05 (1.04) 0.86(1.14) 1.07 0.287
OFC 1.31(0.88) 1.09(0.89) 1.54 0.125
dmPFC -0.29 (0.61) -0.05 (0.54) -2.68 0.008 *
dACC -0.54 (1.03) -0.73(1.21) 1.10 0.274
dIPFC -0.48 (0.59) -0.31(0.55) -1.95 0.053
Thalamus 0.51(1.37) 0.50(1.37) 0.03 0.980
Hippocampus -0.52 (1.87) -0.41 (2.10) -0.36 0.716
Amygdala 0.34 (2.17) 0.40(2.04) -0.17 0.862

AMY vmPFC -0.04 (1.45) 0.26(1.03) -1.51 0.134
vACC -0.25 (0.93) 0.06 (0.86) -2.16 0.032 *
OFC 1.13(1.11) 1.28(0.76) -1.02 0.308
dmPFC -0.75 (0.62) -0.72 (0.59) -0.28 0.777
dACC -0.38 (1.11) -0.29 (1.14) -0.50 0.616
dIPFC -0.88 (0.67) -0.88 (0.54) 0.04 0.969
Thalamus -0.43 (1.47) -0.15(1.32) -1.24 0.218
Hippocampus 6.67 (1.93) 6.43(2.17) 0.72 0.471

189




Chapter 6

Table S6. Simple T-tests for all subcortical-cortical and subcortical-subcortical
connectivity patterns. Bold statistics indicate connectivity that was not
significantly different from zero. For means and standard deviations, see Table

S5.

Seed ROI Sample I Sample II

VS vmPFC t(77)=10.94, p<.001 t(77)=9.31, p<.001
vACC t(77)=8.95, p<.001 t(77)=6.71, p<.001
OFC t(77)=13.09, p<.001 t(77)=10.86, p<.001
dmPFC t(77)=-4.30, p<.001 t(77)=-.80, p=.428
dACC t(77)=-4.59, p<.001 t(77)=-5.37, p<.001
dIPFC t(77)=-7.29, p<.001 t(77)=-4.93, p<.001
Thalamus t(77)=3.29, p=.002 t(77)= 3.25, p=.002
Hippocampus t(77)=-2.47, p=.016 t(77)=-1.71, p=.091
Amygdala t(77)=1.40, p=.167 t(77)=1.74, p=.085

AMY vmPFC t(77)=-.261, p=.795 t(77)=2.24, p=.028
vACC t(77)=-2.37, p=.021 t(77)=.63, p=.532
OFC t(77)=8.95, p<.001 t(77)=14.92, p<.001
dmPFC t(77)=-10.77, p<.001 t(77)=-10.90, p<.001
dACC t(77)=-3.04, p=.003 t(77)=-2.25, p=.027
dIPFC %(77)=-11.59, p<.001 (77)=-14.50, p<.001
Thalamus t(77)=-11.59, p<.001 t(77)=-1.00, p=.321
Hippocampus t(77)=30.45, p<.001 t(77)=26.12, p<.001
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Table S7. Genetic modeling of Ventral Striatum-Cortical connectivity: full ACE
model versus more parsimonious models.

Seed ROI model A? C2 E2 LRT AIC
VS vmPFC ACE 0.67 0.00 0.33 182.29
AE* 0.67 - 0.33 <0.001 182.29

CE - 0.44 0.56 5.68 187.97

E - - 1.00 >14.03 200.00

vACC  ACE 0.12 0.17 0.71 138.13
AE 0.32 - 0.68 0.19 136.31

CE~ - 0.27 0.73 0.07 136.20

E - - 1.00 >4.71 139.03

OFC ACE 0.32 0.09 0.59 83.87
AE* 0.42 - 0.58 0.05 81.92

CE - 0.34 0.66 0.58 82.44

E - - 1.00 >8.09 88.54
dmPFC ACE 0.36 0.01 0.63 -41.82
AE* 0.37 - 0.63 0.001  -43.82

CE - 0.27 0.73 0.65 -43.17

E - - 1.00 >5.00 -40.17

dACC  ACE 0.46 0.00 0.54 165.63
AE* 0.46 - 0.54 <0.001 163.63

CE - 0.27 0.73 4.00 167.62

E - - 1.00 >4.97 170.60

dIPFC  ACE 0.19 0.00 0.81 -50.46
AE 0.19 - 0.81 <0.001 -52.46

CE - 0.12 0.88 0.73 -51.73

E* - - 1.00 <1.74 -52.72

! LRT < 3.85 equals no worse fit of the model (p<.05)
2 Lower AIC values indicate a better model fit
* Asterisks indicate the best model fit
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Table S8. Genetic modeling of Amygdala-Cortical connectivity: full ACE model
versus more parsimonious models.

Seed ROI model A? Cz E2 LRT AIC

AMY vmPFC ACE 0.23 0.00 0.77 184.64
AE 0.23 - 0.77 <0.001 182.64

CE - 0.07 0.93 1.43 184.08

E* - - 1.00 <1.79 182.43

vACC ACE 0.00 0.35 0.65 84.01
AE 0.34 - 0.66 1.12 83.14

CE~ - 0.35 0.65 <0.001 82.01

E - - 1.00 >7.41 88.55

OFC ACE 0.54 0.00 0.46 84.33
AE* 0.54 - 0.46 <0.001 82.33

CE - 0.46 0.54 1.79 84.11

E - - 1.00 >15.30 97.41

dmPFC ACE 0.08 0.00 0.92 -14.87
AE 0.08 - 0.92 <0.001 -16.87

CE - 0.00 1.00 0.24 -16.62

E* - - 1.00 <0.24 -18.62

dACC ACE 0.08 0.00 0.92 130.54
AE 0.08 - 0.92 <0.001 128.54

CE - 0.03 0.97 0.22 128.77

*E - - 1.00 <0.27 126.82

dIPFC ACE 0.14 0.00 0.86 -4.94
AE 0.14 - 0.86 <0.001 -6.94

CE - 0.04 0.96 0.68 -6.26

*E - - 1.00 <0.76 -8.18

! LRT < 3.85 equals no worse fit of the model (p<.05)
2 Lower AIC values indicate a better model fit
* Asterisks indicate the best model fit
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Table S9. Genetic modeling of Subcortical-Subcortical connectivity: full ACE
model versus more parsimonious models.

Seed ROI model A? Cz E2 LRT AIC
VS Hippocampus ACE 0.37 0.00 0.63 266.12
AE* 0.37 - 0.63 <0.001 264.12
CE - 0.32 0.68 0.74 264.87
E - - 1.00 >6.95 269.81
Thalamus ACE 0.04 0.15 0.81 175.08
AE 0.21 - 0.79 0.13 173.21
CE* - 0.18 0.82 0.01 173.08
E - - 1.00 <2.10 173.18
Amygdala ACE 0.42 0.00 0.58 281.83
AE* 0.42 - 0.58 <0.001 279.83
CE - 0.36 0.64 0.92 280.75
E - - 1.00 >9.07 287.83
AMY Hippocampus ACE 0.32 0.00 0.68 277.93
AE* 0.32 - 0.68 <0.001 275.93
CE - 0.19 0.81 2.24 278.18
E - - 1.00 >2.27 278.44
Thalamus ACE 0.35 0.00 0.65 154.42
AE* 0.35 - 0.65 <0.001 152.42
CE - 0.23 0.77 1.98 154.40
E - - 1.00 >3.47 155.87

! LRT < 3.85 equals no worse fit of the model (p<.05)
2 Lower AIC values indicate a better model fit
* Asterisks indicate the best model fit
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Chapter 7

Abstract

The current study provides an overview of quantity and quality of MRI data in a
large developmental twin sample (N=512, aged 7-9), and investigated to what
extent scan quantity and quality were influenced by genetic and environmental
factors. This was examined in a fixed scan protocol consisting of two functional
MRI tasks, high resolution structural anatomy (3DT1) and connectivity (DTI)
scans, and a resting state scan. Overall, scan quantity was high (88% of
participants completed all runs), while scan quality decreased with increasing
session length. Scanner related distress was negatively associated with scan
quantity (i.e., completed runs), but not with scan quality (i.e., included runs). In
line with previous studies, behavioral genetic analyses showed that genetics
explained part of the variation in head motion, with heritability estimates of 29%
for framewise displacement and 65% for absolute displacement. Additionally, our
results revealed that subtle head motion (after exclusion of excessive head
motion) showed lower heritability estimates (0-14%), indicating that findings of
motion-corrected and quality-controlled MRI data may be less confounded by
genetic factors. These findings provide insights in factors contributing to scan
quality in children, an issue that is highly relevant for the field of developmental
neuroscience.

Keywords: Childhood; Functional MRI; Head motion; Heritability; Scanner related
distress; Structural MRI
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Introduction

In the first decade of life, extensive changes occur in the structure and function
of the brain (Gilmore et al., 2018). With the introduction of Magnetic Resonance
Imaging (MRI), these changes in brain characteristics can be studied in vivo, and
a growing body of literature has provided insight in the developing brain.
Although MRI research is non-invasive, the scanner itself - in particular its noise
level and narrow space- and the surrounding procedures are rather imposing and
can induce anxiety in children (Tyc et al., 1995; Durston et al., 2009). Such
scanner related distress makes it less likely for children to successfully finish an
MRI scan, resulting in reduced scan quantity compared to older samples.
Moreover, the quality of the scans heavily depends on the amount of (head)
motion, which is specifically troublesome in developmental samples, as head
movement during MRI is strongly correlated with age (Poldrack et al., 2002;
Satterthwaite et al., 2013). Several prior developmental neuroimaging findings
have been called into question after studies showed that these findings were
largely influenced by age-related differences in head motion (Power et al., 2012;
Van Dijk et al., 2012; Savalia et al., 2017), highlighting the need for an in-depth
investigation of factors that can influence scan quality in children. In the current
study we therefore provide an overview of MRI scan quantity and quality in a
large developmental twin sample (N=512, 256 twin pairs, aged 7-9), and
investigated the genetic and environmental influences on MRI data quantity and
quality.

Scan quality is not only influenced by head motion but can also be
influenced by additional sources of noise such as scanner drift and respiratory
signals (Kotsoni et al., 2006; Liu, 2017; Power, 2017). However, as excessive head
motion is especially pronounced in developmental samples (Satterthwaite et al.,
2013), the current study focused on head motion as measure of scan quality. In
the last couple of years, the topic of MRI motion artifacts has received increasing
attention, and several methods to correct for motion during MRI analyses have
been developed (Power et al., 2015; Fassbender et al., 2017b; Power, 2017). Much
less research has focused on specific factors that contribute to MR scan quality
in children. Recent studies have pointed towards genetics as a possible factor
influencing scan quality, with findings suggesting that head motion in adults is
a stable and heritable phenotype (Van Dijk et al., 2012; Couvy-Duchesne et al.,
2014), with heritability estimates ranging from 37-51% in adults. Exploratory
twin-analyses on pediatric MRI data also showed familial similarities in children
(Engelhardt et al., 2017), although the small sample size hindered direct
estimations of heritability. In the current study we provide direct estimates of
heritability by conducting behavioral genetic analyses on a large childhood twin
sample.

In addition to trait-like, genetic influences on scan quality, we also
investigated the influence of environmentally affected factors, such as emotional
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state towards the MR scan and MR protocol length. Previous research has
described several child-specific scanner environment adaptations that have been
used in (clinical) radiology departments (Galvan et al., 2012; Raschle et al., 2012;
Fassbender et al., 2017b). One adaptation that has been shown to be particularly
useful is the use of a mock scanner (Rosenberg et al., 1997; Hallowell et al., 2008,;
Durston et al., 2009), which replicates the MRI environment and can be used to familiarize
young subjects with the procedure of an MRI scan. Children who underwent such an
MRI simulation were less stressed (as indicated by lower heart rate) than children
who were not trained with a simulator (Rosenberg et al., 1997). Moreover, studies
showed a linear decrease in (self and parent reported) anxiety levels after MRI
simulation (Rosenberg et al., 1997; Durston et al., 2009), indicating that an MRI
simulation can make children feel more at ease with MRI research. This is
important for the well-being of the participant, and a positive experience with the
MRI scan can also increase retention of participants in longitudinal imaging
studies, which is important for the validity of developmental MRI studies (Telzer
et al., 2018). However, it is currently unknown whether a more positive emotional
state towards the MRI scan is related to better outcomes in terms of scan quantity
and quality. By using multi-informant estimations of emotional state, we directly
tested the relation between scanner related distress and scan quantity and scan
quality. We first examined how scanner related distress changed over time at
three moments: before the MRI simulation, before the MRI scan, and after the MRI
scan. We hypothesized that the emotional state would become more positive over
time (Durston et al., 2009). Moreover, we hypothesized that there would be little
influence of genetics on scanner related distress, as it is highly influenced by the
environment (i.e., the MRI simulation). Next, we evaluated MRI scan quantity by
investigating how scan quantity was related to emotional state, and to what
extend scan quantity was influenced by genetics. Scan quantity was defined as
the number of completed MRI runs within the protocol (ranging from 0-9). It
should be noted that completing a run does not necessarily indicate that the MRI
data is useable, and therefore scan quantity is essentially different from scan
quality.

Similar to scan quantity, we investigated whether scan quality was related
to emotional state, and to what extend scan quality was influenced by genetics.
As an additional factor of interest, we examined scan quality across the duration
of the MR session, as children tend to lose focus faster than adults, which may
result in increased motion over time (Van Horn and Pelphrey, 2015; Fassbender
et al.,, 2017b). Scan quality was examined in two ways: 1) the percentage of
included MRI runs within the session (defined as the number of scans with sufficient
quality relative to the number of runs completed), and 2) the amount of absolute and
framewise head displacement in mm in fMRI runs. The first estimate of scan
quality provides an overall, relatively simple measure of quality over the whole
MRI session. The second measure provides a more sophisticated, quantitative
measure of scan quality, but could only be calculated for functional MRI runs
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(Power, 2017). By investigating both trait-like genetic influences as well as state-
like environmental influences this study can provide insights in factors
contributing to scan quantity and quality in developmental samples.

Methods

Participants

Participants in this study took part in the preregistered longitudinal twin study
of the Leiden Consortium on Individual Development (L-CID; Euser et al. (2016)).
The Dutch Central Committee on Human Research (CCMO) approved the study
and its procedures (NL50277.058.14). Families with a same-sex twin born
between 2006 - 2009, living within two hours travel time from Leiden, were
recruited through municipal registries and received an invitation to participate
via mail. Parents could show their interest in participation using a reply card. 512
children (256 families) between the ages 7 and 9 were included in the L-CID study
(mean age: 7.94+.67; 49% boys). Written informed consent was obtained from
both parents. All children were fluent in Dutch or English and had normal or
corrected-to-normal vision. The majority of the sample was Caucasian (90%) and
right-handed (87%). Since the sample represents a population sample, we did not
exclude children with a psychiatric disorder. For information on psychiatric
disorders, we asked parents whether the children received a medical diagnosis
from a psychologist or medical expert. Eleven participants (2%) were diagnosed
with an Axis-I disorder: nine with attention deficit (hyperactivity) disorder
(ADD/ADHD); one with generalized anxiety disorder (GAD), and one with
pervasive developmental disorder-not otherwise specified (PDD-NOS).
Participants’ intelligence (IQ) was estimated with the subtests ‘Similarities’ and
‘Block Design’ of the Wechsler Intelligence Scale for Children, third edition (WISC-
III; Wechsler (1991)). Estimated IQs were in the normal range (72.50 - 137.50,
mean: 103.58 +11.76). Zygosity was determined by DNA analyses, which
classified 55% of the twins as monozygotic.

Procedure

Participating twins visited the lab with their primary parent (defined as the parent
that spends the most time with the children). Before the visit to the lab families
received a step-by-step explanation of the MRI procedure, including a description
of the magnetic field, the materials used during the MRI scan (earplugs,
headphones, button box, alarm), and the movies that were available to watch. The
step-by-step approach was specifically aimed at the young participants, and
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consisted of child appropriate texts and illustrative pictures. The lab visit took
place at the Leiden University Medical Centre (LUMC) and consisted of four
components: the MRI preparation session, the MRI scan session, parent-child
interaction tasks, and a child behavioral tasks session. In the current study, data
from the MRI preparation session and the MRI scan session were evaluated.
During the practice session the whole family was further introduced to the aims
of the study, and carefully instructed about safety around the MRI system and
the influence of motion on the scans. Next, the children participated in a MRI
simulation with the MRI researcher. In the MRI simulation, the exact same steps
that were also explained in the step-by-step explanation were followed. A
prototype of a Philips scanner (without a working magnet) was used to mimic the
MRI environment. Children listened to MRI sounds via a laptop. They were shown
the various materials (e.g. headphones, button box, coil with mirror attached) for
the MRI procedure. Next, they were asked to practice lying very still on the
scanner bed while wearing the headphones and button box. Finally, they
practiced looking in the mirror on the coil, while they were slowly slid into the
MRI bore. After the MRI simulation, the children were familiarized with the MRI
tasks on a laptop. First-born and second-born children of each twin pair were
randomly assigned to the MRI scan session or to the parent-child interaction tasks
as their first activity. There were no differences in outcome measures (scanner
related distress, scan quantity or scan quality) for children that were scanned
directly after the MRI simulation or an hour later.

The MRI session lasted 60 minutes, including two fMRI tasks, high
resolution T2 and T1 scans, diffusion tensor imaging (DTI) scans and a resting
state (RS) fMRI scan. The first fMRI task was the Social Network Aggression Task
(SNAT), as described in detail in Achterberg et al. (2018b). In short, participants
viewed pictures of peers that gave positive, neutral or negative feedback to the
participant’s personal profile. Next, participants could blast a loud noise towards
the peer as an index of aggression. The SNAT consisted of 3 runs of approximately
5 minutes each. The second task was the Prosocial Cyberball Game (PCG), as
described in detail in van der Meulen et al. (2018). In short, participants were
instructed to participate in a virtual ball tossing game with three other players.
During the game, two of the other players excluded the third player. The
participant could choose to compensate for this exclusion by tossing the ball
more often to the excluded participant (prosocial compensating behavior). The
PCG consisted of 2 runs of approximately 5 minutes each. After the fMRI tasks
participants watched a self-chosen child-friendly movie during the structural
anatomical scan (3DT1) and the structural connectivity scans (DTI). The scan
session ended with a RS fMRI scan, in which participants were instructed to lay
still with their eyes closed and not to fall asleep (for details, see Achterberg et al.
(2018a)). The order of the scans was the same for all participants and always
started with the SNAT fMRI task, followed by the PCG fMRI task, the 3DT1, DTI
and the RS fMRI.
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Scanner related distress

To get an estimate of the children’s scanner related distress we asked the children
to indicate how they felt about the scanner by using a visual analogue scale, based
on Durston et al. (2009). Children’s feelings of stress and excitement were
assessed at three different moments: before the MRI simulation, before the MRI
scan, and after the MRI scan. Participants were asked to indicate how tensed and
how excited they felt about the scan session, by pointing to the cartoon smiley
that best represented their feelings (Figure 1a). Since children tend to
underreport their tension or anxiety (Durston et al., 2009), the child’s emotional
state was consecutively also estimated by the researcher and the parent. It should
be noted that both the child’s and the researcher’s estimates were written on the
same form with the child reporting first, making them not independent. The
parents estimated scanner related distress separately from the child and
therefore these estimates were independent. Therefore, multi-informant ratings
were based on child and parent reports. Parents, however, did not estimate the
children’s emotional state after the MRI scan, as they were not present during the
MRI scan (being involved in parent-child interaction tasks with the other twin
sibling). Therefore, the scores after the MRI scan were based on child report only.

MRI data acquisition

MRI scans were acquired with a standard whole-head coil on a Philips Ingenia 3.0
Tesla MRI system. To prevent head motion, foam inserts surrounded the
children’s heads. The fMRI tasks and the movie were projected on a screen that
was visible through a mirror on the head coil. Functional runs of the fMRI tasks
(first task: SNAT (Achterberg et al., 2018b); second task: PCG (van der Meulen et
al., 2018)) were acquired using a T2*-weighted echo-planar imaging (EPI). The first
two (dummy) volumes were discarded to allow for equilibration of T1 saturation
effects. The SNAT consisted of 3 runs in total with 148 volumes (5.43 min), 142
volumes (5.21 min), and 141 volumes (5.17 min) respectively. The PCG consisted
of 2 runs in total. The number of volumes was dependent on the reaction time of
the participant, with a maximum of 175 volumes. On average, 136 volumes (4.99
min) were acquired for each PCG run. Volumes covered the whole brain with a
field of view (FOV) in mm = 220 (ap) x 220 (rl) x 111.65 (fh) mm; repetition time
(TR) of 2.2 seconds; echo time (TE) = 30 ms; flip angle (FA) = 80°; sequential
acquisition, 37 slices; and voxel size = 2.75 x 2.75 x 2.75 mm. Subsequently, a
high-resolution 3D T1scan was obtained as anatomical reference (FOV= 224 (ap)
x 177 (r]) x 168 (fh); TR = 9.72 ms; TE = 4.95 ms; FA = 8°; 140 slices; voxel size
0.875 x 0.875 x 0.875 mm). In addition, a high-resolution EPI scan was obtained
for RS-fMRI registration purposes (TR = 2.2 sec; TE = 30 ms, flip angle = 80°, FOV=
220.000 (rl) x 220.00 (ap) x 168.00 (fh), 84 slices). Next, two transverse Diffusion
Weighted Imaging (DWI) scans were obtained with the following parameter
settings (similar to Achterberg et al. (2016a)): 30 diffusion-weighted volumes with
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different noncollinear diffusion directions with b-factor 1,000 s/mm?2 and 5
diffusion-unweighted volumes (b-factor 0 s/mmz2); anterior -posterior phase
encoding direction; parallel imaging SENSE factor = 3; flip angle =90°; 75 slices of
2 mm; no slice gap; reconstruction matrix 128 x 128; FOV =240 x 240 mm; TE =69
ms; TR=7,315 ms. The second DWI set had identical parameter settings as used
for the first set except that it was acquired with a reversed k-space readout
direction (posterior-anterior phase encoding direction) enabling the removal of
susceptibility artifacts during post processing (Andersson et al., 2003). Resting
state data was acquired at the end of the imaging protocol (for details see
Achterberg et al. (2018a)). A total of 142 T2 -weighted whole-brain echo planar
images (EPIs) were acquired, including 2 dummy volumes preceding the scan to
allow for equilibration of T1 saturation effects (TR = 2.2 sec; TE = 30 ms; flip
angle = 80°; FOV = 220.000 (r]) x 220.00 (ap) x 111.65 (fh); 37 slices).
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Figure 1. Emotional state towards the MRI scan. A) Visual analogue scales. B) Estimation
of excitement and tension on three moments (before MRI simulation, before MRI scan,
and after MRI scan) and by three raters (child, researcher, and parent).
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MRI data quality control

Motion estimation of functional MRI (task-based and resting state) was carried
out using Motion Correction FMRIB’s Linear Image Registration Tool (MCFLIRT
Jenkinson et al. (2002), as implemented in the FMRIB Software Library (FSL)
version 5.09 (Smith et al,, 2004). Absolute displacement (AD) in x, y, and z
direction was calculated for all runs, for all participants (Table 1), with the middle
volume of the run as a reference. We additionally investigated micro-movement
(i.e., motion between two volumes) using the motion outlier tool
(fsl_motion_outliers). Mean framewise displacement (FD) was calculated for all
runs, for all participants (Table 1). Reliability analyses showed consistency in
head motion over fMRI runs: mean FD: o=.77; mean AD (mean x-y-z direction):
a=.84. For further analyses we computed a mean score over all fMRI runs for
framewise displacement (M=.77, SD=1.29, range=.09-17.5) and absolute
displacement (M=2.55, SD=3.77, range=.21-37.91). Framewise and absolute
displacement were significantly positively correlated: r=.88, p<.001. For task-
based fMRI runs, we defined runs with <3 mm (1 voxel) maximum motion in all
directions as sufficient quality (Achterberg et al., 2018b; van der Meulen et al.,
2018). For the RS fMRI data, volumes with framewise displacement of >0.3 mm
(stringent threshold) or >0.5 (lenient threshold) were flagged as outliers (Power
et al.,, 2012). RS fMRI data with < 20% of the volumes flagged as outlier was
classified as sufficient quality, see Table 1. Although inclusion criteria for task-
based and RS fMRI were different, they resulted in comparable motion estimates
for the different fMRI runs of included participants (Table 1).

Structural T1 scans were pre-processed in FreeSurfer (v5.3.0). Anatomical
labeling and tissue classification was performed on the basis of the T1- weighted
MRI  image using various tools of the FreeSurfer software
(http://surfer.nmr.mgh.harvard.edu/). The pre-processing pipeline included
non-brain tissue removal, cortical surface reconstruction, subcortical
segmentation, and cortical parcellation (Dale et al., 1999; Fischl et al., 1999). After
pre-processing, each scan was manually checked to assess quality by three
trained raters. Scans were rated based on a set of specific criteria (e.g., affection
by movement, missing brain areas in reconstruction, inclusion of dura or skull in
reconstruction, see Klapwijk et al. (2019). 31% of the structural T1 scans were
rated as ‘Excellent’, 43% of the scans were rated as ‘Good’, 16% of the scans were
rated as ‘Doubtful’, and 10% of the scans were rated as ‘Failed’ (see Figure 2a).
Structural anatomical data rated as ‘Failed’ and ‘Doubtful’ were classified as
insufficient quality, and data coded as ‘Excellent’ and ‘Good’ were classified as
sufficient quality. We investigated whether scans with different ratings would
show actual differences in estimated brain volume, by comparing the four
different ratings on the “Total Gray Volume” variable from the Freesurfer output.
We found a significant difference in gray matter volume between the different
ratings (F(3, 463) = 5.07, p =.002), with post hoc analyses revealing a significant
difference between scans rated as ‘Failed’ and scans rated as ‘Excellent’ to
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‘Doubtful’ (all p’s<.02). Therefore, for analyses using more lenient quality control,
we included data that were classified as ‘Excellent’, ‘Good’ and ‘Doubtful’.

Diffusion weighted images were preprocessed using several FSL analysis
tools. Firstly, Top-up was used to estimate and correct susceptibility induced
distortions (Andersson et al., 2003). Secondly, the Brain Extraction Tool (BET) was
used to delete non-brain tissue from images of the entire head (Smith, 2002).
Third, the Eddy tool was used to correct for eddy current-induced distortions and
subject movement. Thereafter, a diffusion tensor model was fitted at each voxel
by using the analysis-tool DTIFIT. Scans were rated by two independent
researchers. 86% of the DTI data were rated as ‘Excellent’, 8% of the data were
rated as ‘Good’, 4% of the data were rated as ‘Doubtful’, and 2% of the data were
rated as ‘Failed’ (see Figure 2b). DTI data rated as ‘Failed’ and ‘Doubtful’ were
classified as insufficient quality, and all other data (‘Excellent’ and ‘Good’) were
classified as sufficient quality. For analyses using more lenient quality control,
we included data that were classified as ‘Excellent’, ‘Good’ and ‘Doubtful’.

A Structural anatomy (3DT1)

Figure 2. Examples of quality control classifications with scans rated as (1) Excellent,
(2) Good, (3) Doubtful, and (4) Failed. A) Parcellated structural anatomy (T1 weighted)
scan with pial surface (red line) and white matter/grey matter division (yellow line). B)
Diffusion tensor fitted structural connectivity (DTI) scan with connections in right-left
(red), anterior-posterior (green), and dorsal-ventral (blue) direction (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version
of this article).
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Table 1. Framewise and absolute head displacement.

meanFD meanX,Y,

N (mm) Z (mm)

X (mm) Y (mm) Z (mm)

all participants
SNAT run 1 488 1.12) 1.82(4.37) 1.33) 2.27(6.44) 2.59(5.90
SNAT run 2 483 1.28) 2.11(4.38) 1.66) 2.65(6.82) 3.00(5.19

48 ( 59 ( )
65 ( 71 ( )
SNAT run 3 481 .68 (1.05) 2.20(3.64) .78(1.37) 2.52(4.44) 3.30(5.71)
69 ( 79 ( )
)
)

PCGrunl 480 1.63) 2.37(5.10) 1.83) 2.84(7.53) 3.46(6.43
PCG run 2 478 .98 (3.23) 3.01(5.50) 1.01(1.89) 3.53(8.78) 4.48(7.26
RS 442 1.07(2.4) 3.82(6.80) 1.16(2.38) 4.47 (8.73) 5.83(9.97

included participants

SNAT run 1* 385 .32 (.90) 76 (.42) .29 (.25) .87 (.56) 1.11(.66)
SNAT run 2* 345 .26 (.14) .74 (.43) .27 (.26) .83 (.57) 1.10(.68)
SNAT run 3* 320 .28 (.18) 79 (.49) .30 (.31) .91 (.65) 1.17(.76)
PCG run 1* 307 .24 (.14) 72 (.44) .25 (.25) .83(.58) 1.07(.71)
PCG run 2* 266 .27 (.15) .82 (.47) .29 (.30) .93 (.59) 1.24 (.79)
RS stringent* 151 .18 (.08) .75(1.26) .23 (.24) .79 (.63) 1.21(3.35)
RS lenient? 230 .25(.27) 1.04(1.47) .30(32) 1.15(1.51) 1.68 (3.14)

* Based on < 3 mm absolute displacement (X, Y and Z)

! Based on <20 % frames with >0.3 mm framewise displacement

2 Based on <20 % frames with >0.5 mm framewise
displacement
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Statistical Analyses

Statistical analyses were performed in the Statistical Package for Social Sciences
(SPSS version 24) and in R version 3.5.0 (R Core Team, 2015). Scanner related
distress over time was examined with repeated measures ANOVAs in SPSS.
Associations between emotional state, scan quantity, and scan quality were
investigated using Pearson’s correlations (in SPSS). To estimate familial
influences on our outcome measures we calculated Pearson within-twin
correlations for monozygotic (MZ) and dizygotic (DZ) twin pairs. Similarities
among twin pairs are divided into similarities due to shared genetic factors (A)
and shared environmental factors (C), while dissimilarities are ascribed to unique
environmental influences and measurement error (E). Behavioral genetic
modeling with the OpenMX package (Neale et al., 2016) in R (R Core Team, 2015)
was used to provide estimates of these A, C, and E components. The correlation
of the shared environment (factor C) was set to 1 for both MZ and DZ twins, while
the correlation of the genetic factor (A) was set to 1 for MZ twins and to 0.5 for
DZ twins (see Figure S1). The last factor, unique environmental influences and
measurement error, was freely estimated. We calculated the ACE models for
emotional state towards the MRI scan, scan quantity, and scan quality. High
estimates of A indicate that genetic factors play an important role, whilst C
estimates indicate influences of the shared environment. If the E estimate is the
highest, variance in motion is mostly accounted for by unique environmental
factors and measurement error. We first examined genetic influences on mean FD
and mean AD for all scanned participants. Next, we examined the influence of
genetics on moderate head motion, by excluding participants with excessive head
motion (>1 mm mean FD, >3 mm mean AD). To investigate the effects of minimal
head motion we only included participants with little head motion (<0.3 mean
FD, < 1 mm mean AD).

Results

Scanner Related Distress

Scanner related distress over time

To investigate scanner related distress preceding and following the MRI scan, we
measured the emotional state towards the scanner using the visual analogue
scales. Over time, children reported more excitement and less tension, see Figure
1b. That is to say, children reported being significantly more excited before the
MRI scan (M=5.10, SD=.93), and after the MRI scan (M=4.95, SD=1.23), compared
to before the MRI simulation (M= 4.72, SD= .94; F (491) = 23.25, p<.001, all
Bonferroni corrected pair-wise comparisons p<.05). Furthermore, children
reported significantly less tension before the MRI scan (M= 3.28, SD= 1.44), and
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after the MRI scan (M= 2.62, SD= 1.49), compared to before the MRI simulation
(M= 3.84, SD=1.28; F (491) =124.65, p<.001, all Bonferroni corrected pair-wise
comparisons p<.05). Ratings of tension by the researchers and parents showed a
similar pattern (Figure 1b) and were significantly correlated with ratings of
children (r-range= .23-.80, see Table S1). Scanner related distress (before
simulation and before the MRI scan, for excitement and tension) was more
strongly correlated between children and researchers (r-range: .70-.80, Table S1),
than between children and parents (r-range .23-.42, Table S1), but it should be
noted that the child and researcher filled in the rating at the same form and
therefore were not independent. The multi-informant scores (estimated
emotional state averaged across child and parent) of tension and excitement were
significantly negatively correlated: r=-.33, p<.001 before MRI simulation, and r=-
.35, p<.001 before the MRI scan.

Genetic influences on scanner related distress

To investigate genetic and environmental influences on scanner related distress,
we calculated Pearson’s within-twin correlations for MZ and DZ twins and
performed behavioral genetic analyses. Within-twin correlations for the multi-
informant ratings of scanner related distress (tension and excitement; before MRI
simulation and before MRI scan) were similar for MZ and DZ twins (7,.,range=.24-
.58; r, range=.22-.48; all p’s<.05, see Table 2). Behavioral genetic analyses
revealed that scanner related distress was mostly explained by environmental
factors, both the shared environment (C-range=23-47%) as well as the unique
environment/measurement error (E-range=45-77%), with little to no influence of
genetics (A-range= 2-27%) (Table 2).

MRI Quantity

Scan quantity

Of the 512 included participants, 24 children (4.7%) never started with the MRI
scan due to MRI contra indications (n=6); lack of parental consent (n=4); technical
error (n=1), or substantial anxiety (n=13), see Table S2. As can be seen in Table
S2 and Figure 3a, there was a drop in scan quantity (i.e. the number of scans
completed) after the structural anatomy scan (from 94% to 88%). Scan quantity
decreased because some children reported tiredness (n=18) or due to time
constraints (i.e. the reserved time was over; n=12). For some children the DTI
scans were skipped and only the RS-fMRI scan was acquired (n=12), as the RS-
fMRI run was shorter in duration (5 minutes compared to 2*5 minutes DTI). To
investigate age and gender effects on scan quantity we compared participants
who completed all scans (age M=7.96, SD=0.67; 48% boys; n=433), and
participants who missed one or more scans (excluding participants who missed
scans due to time constraints; age M=7.84, SD=0.66; 59% boys, n=39). However,
we found no effects of age (t(470)=-1.08, p=.28) or gender (x(1, N=472)=1.86,
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p=.12). We also found no association between age and the number of completed
scans (r=.02, p=.63).
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Figure 3. Scan quantity and quality. A) Scan quantity: the percentage of children that
completed the MR run (100%=512 participants). B) The number (and percentage) of
scans with sufficient scan quality relatie to the quantity of the scans. C) Scan quality
over time: the percentage of participants that were included on all scans in 30, 45 or
60 min, separately for boys and girls.

Scan quantity in relation to scanner related distress

Pearson’s correlations on the number of completed scans (ranging from 0-9,
M=8.29, SD=2.08) showed a positive association between excitement towards the
scan and the number of scans completed (before MRI simulation: r=.21, p<.001;
before MRI scan: r=.30, p<.001; after MRI scan: r=.25, p<.001), and a negative
association between tension towards the scan and the number of scans completed
(before MRI simulation: r=-.18, p<.001; before MRI scan: r=-.16, p<.001; after MRI
scan: r=-.17, p<.001), see Figure 4. All Pearson correlations were significant at
Bonferroni corrected alpha level, adjusted for the number of distress estimates
(six in total: excitement and tension before MRI simulation, before MRI scan, after
MRI scan; a=0.5/6, Bonferroni corrected a=.008).
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Table 2. Genetic modeling of emotional state towards the MRI scan.

Mood estimates MZ DZ Az C2 E2
Excitement
Before MRI r .50%* 487 ACE 0.02 0.47 0.51
simulation 1 138 114 95% CI  0.00-0.38 0.15-0.57 0.40-0.62
ro 41+ .30%* ACE 0.09 0.27 0.63
Before MRI
scan n' 135 113 95% CI  0.00-0.47 0.00-0.45 0.51-0.76
Tension
Before MRI r .58** .39%* ACE 0.27 0.28 0.45
simulation ;1 138 114 95% CI  0.00-0.62 0.00-0.55 0.36-0.57
Before MRI I -24** .22% ACE 0 0.23 0.77
scan n 134 113 95% CI  0.00-0.36 0.00-0.34 0.66-0.90

* p<.05, ** p<.001, ! Number of complete twin pairs

very much

© Excitement
X Tension

B X X X ® ® B BoOk ® B
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0 T T T T T T T T 1
0 1 2 3 4 5 6 7 8 9

Number of scans completed

Figure 4. Number of scans completed plotted against excitement and tension towards
the scan. Data visualized is from emotional state before MRI scan, emotional states
before MRI simulation and after MRI scan showed similar patterns.
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Genetic influences on scan quantity

To investigate genetic and environmental influences on scan quantity (number of
scans completed), we calculated Pearson’s within-twin correlations for MZ and DZ
twins and performed behavioral genetic analyses. Fisher r-to-z transformations
showed that within-twin correlations for scan quantity were significantly
stronger for MZ twins (7,,,=.50, p<.001) than DZ twins (r,=.14, p=.14), Z=3.21,
p<.001. Behavioral genetic analyses revealed substantial influences of genetics
(A=45%, 95% CI [18-56%]) and unique environment/measurement error (E=55%,
95% CI [44-68%]), with no influence of the shared environment (C=0%, CI: 0-22%).

MRI Quality

Scan quality

An overview of the number (and percentage) of scans with sufficient quality
relative to the quantity of the scans is provided in Figure 3b. Of the 488
participants that started the MRI protocol, 385 participants (79%) had sufficient
data in the first run. Sufficient MRI scan quality for task-based fMRI was defined
as <3 mm (1 voxel) motion in all directions. The percentage sufficient data
decreased over the first five task-based fMRI runs: 71% in the second run; 66% in
the third run; 64% in the fourth run; and 55% in the fifth run. For the 3DT1
structural anatomy scans, 72% of the scans were classified as sufficient quality
using a stringent threshold, and 88% was included using a lenient threshold
(including scans coded as ‘Doubtful’). The percentage of DTI scans classified as
sufficient quality was 92% using a stringent threshold and 96% using a lenient
threshold (including ‘Doubtful’). The RS-fMRI data, which was the final run of the
MRI session, showed the lowest scan quality, with 34% of the acquired data being
of sufficient quality with a cut-off of <0.3 mm FD in > 20% of the volumes (Figure
3b). Using a more lenient cut-off of <0.5 mm FD in > 20% of the volumes, 52% of
the acquired data would have been included. Inclusion based on <3 mm absolute
displacement (similar to the threshold used for task-based fMRI data) resulted in
51% of sufficient RS fMRI data. Across all scans, we found a small positive
association between percentage of the acquired data being of sufficient quality
(using stringent thresholds) and age (r=.10, p=.03).

Scan quality over time

There was an increase in head motion over time, both framewise as well as
absolute (x, y, and z-direction) displacement (Table 1). After excluding
participants with insufficient data, head motion within the different task based
and resting state fMRI runs was comparable (Table 1). To provide an overview of
scan quality with respect to time, we calculated the percentage participants with
sufficient quality data after 30, 45 and 60 minutes (for participants that
completed the full scan protocol, n=433, 48% boys), see Figure 3c. The first 30
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minutes consisted of four task-based fMRI runs; the 45 minutes included all task-
based fMRI runs and the 3DT1. The 60-minute protocol was the full L-CID scan
protocol. 214 participants (49%) had sufficient quality on all scans in the first 30
minutes, with no significant gender differences (p=.149), see Figure 3c. 160
participants (33%) had sufficient quality on all scans in the first 45 minutes, with
a larger proportion of girls being included than boys being included (*(1, N=433)
=11.70, p=.001), see Figure 3c. 87 participants (20%) had sufficient quality on all
eight scans of the full 60-min protocol, with a larger proportion of girls being
included than boys being included (°(1, N=433) =8.85, p=.002), see Figure 3c.
There were no age differences in scan quality over time.

Scan quality in relation to scanner related distress

Pearson’s correlations on the number of included scans (range=0-8, M=5.58,
SD=2.47,) showed no association with excitement or tension (neither before the
MRI simulation nor before the MRI scan, all p’s>.05). Children’s own estimate of
excitement after the MRI scan was significantly correlated to scan quality (r=.13,
p=.003), whereas tension after the MRI scan was not related to scan quality (r=.03,
p=.52). Pearson’s correlations of the quantitative measures of scan quality (i.e.
head motion based on the fMRI runs) showed a positive correlation between
excitement before the MRI scan and mean FD (r=.12, p=.01), a positive association
between absolute displacement and excitement before the MRI simulation (r=.10,
p=.03) and before the MRI scan (r=.09, p=.04); and a negative association between
absolute displacement and tension before the MRI simulation (r=-.09, p=.04).
However, these correlations did not survive Bonferroni correction (Bonferroni
corrected o=.008).

Genetic influences on scan quality

Within-twin correlations for general scan quality (percentage of scans included)
were significantly stronger for MZ twins (r..,=.47, p<.001) than DZ twins (7,=.19,
p=.05), 7Z=2.40, p=.016. Behavioral genetic analyses revealed substantial
influence of genetic factors (A=46%, 95% CI [33-58%]) and unique
environment/measurement error (E=54%, 95% CI [42-67%]), with no influence of
shared environment (C=0%, 95% CI [0-26%]).

Next, we investigated genetic influences on head motion, quantified by
the mean framewise and mean absolute displacement over all fMRI runs. Within-
twin correlations for framewise displacement were significantly stronger for MZ
twins than DZ twins (7,.=.51, p<.001; r,,=.19, p=.05, Z=2.81, p=.002), see Table
3. Similar correlations were found for absolute displacement, with a significantly
stronger association between MZ twins (¥,,,=.70, p<.001) than between DZ twins
(ra,=.17, p=.09, Z=5.27, p<.001), indicating substantial genetic influences. More
detailed behavioral genetic analyses showed that framewise displacement was
significantly influenced by genetics, with a heritability estimate of 29% (95% CI:
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[23-46%], Table 3). Absolute displacement also showed influence of genetics, with
a heritability estimate of 65% (95% CI: [54-73%]), see Table 3.

As is often the case with childhood samples, some participants displayed
excessive head motion: up to 18 mm mean framewise displacement (Figure 5a)
and 38 mm mean absolute displacement (Figure 5b). To prevent the genetic
analyses from being biased by these extremes, we also investigated heritability
of “moderate” head motion (Figure 5). For these analyses, we only included
participants with mean framewise displacement <1 and <3 mm absolute
displacement. Within-twin correlations for moderate framewise displacement
were similar for MZ twins (r,,,=.29, p=.005) and DZ twins (r,,=.28, p=.02, see Table
3). Similarly, within-twin correlation for moderate absolute displacement were
similar for MZ twins (7,.=.29, p=.005) and DZ twins (r,,=.23, p=.06). Behavioral
genetic analyses revealed low heritability estimates for moderate head motion
(compared to overall head motion), and in addition showed influence of shared
environment. That is to say, influence of genetics on moderate framewise
displacement was estimated as 12% (95% CI: [0-51%]) and 22% of the variation was
explained by shared environment (95% CI: [0-45%]). Influence of genetics on
moderate absolute displacement was 14% (95% CI: [0-46]), and 15% of the
variation was explained by shared environment (95% CI: [0-39%], Table 3).

As previous studies showed the tremendous effect of motion on fMRI
signals in pediatric samples (Poldrack et al., 2002; Satterthwaite et al., 2013), and
recent studies advise more stringent quality control (Power et al., 2014; Power et
al., 2015) we performed additional analyses on “minimal” head motion (Figure 5).
For these analyses, we only included participants with mean framewise
displacement <0.3 mm and <1 mm absolute displacement. Within-twin
correlations for minimal framewise displacement did not differ for MZ twins
(Fm=.26, p=.183) and DZ twins (r,, =.49, p=.04; Z=-0.83, p=.406, see Table 4).
Similarly, within-twin correlation for minimal absolute displacement were similar
for MZ twins (r.,=.32, p=.123) and DZ twins (r,,=.28, p=.225; Z=0.14, p=.888).
Behavioral genetic analyses revealed even lower heritability estimates for
minimal head motion (compared to overall and moderate head motion, see Table
3). There was no influence of genetics on minimal framewise displacement
(A=0.00, 95% CI: [0-47%]) and 33% of the variation was explained by shared
environment (95% CI: [0-54%]). Influence of genetics on minimal absolute
displacement was 6% (95% CI: [0-61]), and 29% of the variation was explained by
shared environment (95% CI: [0-55%]). Note that the sample size for analyses on
minimal head motion was considerably smaller (n=44 twin pairs, 55% MZ) than
for analyses on moderate (n=159 twin pairs, 59% MZ) and excessive (n=237 twin
pairs, 54%MZ) head motion. Figure 5 provides a visual representation of the
within-twin correlation of extreme, moderate and minimal head displacement,
split out by zygosity.
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Table 3. Genetic modeling of framewise and absolute head displacement for all
participants scanned (prior to motion exclusion, including excessive head
motion); for participants with moderate head motion (excluding excessive head
motion); and for participants with minimal head motion (after stringent quality

control).
Max motion MZ DZ A? C2 E?
Excessive head
motion
Framewise r S1EF 0.19 ACE 0.29 0.05 0.66
Displacement

n' 129 108 95% CI 0.00-0.460.00-0.39 0.54-0.80
Absolute r 70%* 0.17 ACE 0.65 0 0.35
Displacement

n' 129 108 95% CI 0.54-0.730.00-0.12 0.27-0.46
Subtle head
motion®
Framewise r .29%* .28* ACE 0.12 0.22 0.66
Displacement

n 96 72 95% CI 0.00-0.520.00-0.45 0.48-0.84
Absolute r L29%% 0.23 ACE 0.14 0.15 0.71
Displacement

n 92 67 95% CI 0.00-0.460.00-0.39 0.54-0.90
Minimal head
motion*
Framewise r 0.26 .49* ACE 0 0.33 0.67
Displacement

n 28 18 95% CI 0.00-0.470.00-0.54 0.46-0.94
Absolute r 0.32 0.28 ACE 0.06 0.29 0.65
Displacement

n 24 20 95% CI 0.00-0.610.00-0.55 0.39-0.95

* p<.05, ** p<.001, ! Number of complete twin pairs

°*mean FD <1 mm; mean AD < 3mm; * mean FD <0.3 mm; mean AD <1 mm
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A. Framewise Displacement
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Figure 5. Visual representation of within-twin correlations of maximum head
movement (in mmy), split out by zygosity. A) Framewise head displacement in mm. The
dashed frameworks are zoomed in on moderate (< 1mm mean FD) and minimal (<
0.3mm mean FD) head motion. B) Absolute head displacement in mm. The dashed
frameworks are zoomed in on moderate (< 3mm mean AD) and minimal (< Imm mean
AD) head motion. Solid lines represent significant correlations (p <.001).
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Discussion

To address questions on quality of MRI scans in developmental samples we
provided an overview of scan quantity and scan quality in a large developmental
twin sample (N=512 7-9-year-olds). Overall, scan quantity was high and 88% of
the children completed all runs. We report a drop in the number of runs
completed after approximately 45 minutes of scan time, which is comparable
with prior findings in this age range (Engelhardt et al.,, 2017). Scan quality
decreased with increasing scan time, consistent with previous studies that
reported an increase in head motion over time (Centeno et al., 2016; Engelhardt
et al., 2017; Fassbender et al., 2017b).

Genetic influences on scan quantity and quality

As a complement to the growing literature on familial similarities in head motion
(Couvy-Duchesne et al., 2014; Engelhardt et al, 2017), we also investigated
genetic and environmental influences on scan quantity and scan quality. .
Behavioral genetic modeling showed substantial to strong heritability estimates
(45-46%) for both scan quantity (number of runs completed) and scan quality
(percentage of scans included). Whether or not a scan was included was based on
often used, but arbitrary cut-off of head motion (task fMRI: <3 mm absolute head
displacement; structural scans: manual ratings; RS-fMRI: <20% volumes with >0.3
mm framewise displacement). Therefore, we additionally estimated genetic
influences of MRI scan quality on a more sophisticated and continuous measure
of scan quality, i.e., the quantitative measures of head motion for all fMRI runs
(framewise and absolute displacement in mm) including all scanned participants.
Head motion over fMRI runs was stable (0=.77-84) and within-twin correlations
were higher in MZ than DZ twins. Similar findings were previously reported by
Engelhardt et al. (2017), showing familial similarity of pediatric framewise head
displacement in RS-fMRI. To provide direct estimates of the percentage of
variation explained by genetics and (shared and unique) environment, we used
behavioral genetic analyses. These analyses revealed that head motion in fMRI
runs was substantially influenced by genetics, with heritability estimates ranging
from 29-65%, consistent with heritability estimates in adults (Couvy-Duchesne et
al., 2014). Thus, both the overall measure of scan quality (percentage of scans
included), as well as the more sophisticated measure of scan quality in fMRI runs
(framewise- and absolute displacement) showed substantial influence of genetics.
Together, these findings show evidence for genetic contributions to head motion,
highlighting the need for careful control of motion related artifacts (Caballero-
Gaudes and Reynolds, 2017; Power, 2017), specifically for studies in domains
where genetic effects might play a strong role, such as in the case of psychiatric
disorders that have a genetic basis (Hyman, 2000).
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Reassuringly, heritability estimates for subtle head motion (after
exclusion based on excessive head motion) were considerably smaller, ranging
from 0-14%. This is contrary to previous findings of Engelhardt et al. (2017) who
reported similar within-twin correlations on framewise head displacement before
and after scrubbing (i.e., exclusion of frames with excessive motion). Differences
might be due to the smaller sample size (N..,=12 and N4,=22) and the differences
in exclusion based on head motion, since Engelhardt et al. (2017) excluded
volumes with excessive head motion, whereas we excluded complete runs of
participants with excessive head motion. Thus, in line with previous studies (Van
Dijk et al., 2012; Couvy-Duchesne et al., 2014; Engelhardt et al., 2017), we report
that excessive head motion is heritable and systematic, but additionally show
that, after careful motion correction and exclusion based on excessive head
motion, subtle head motion shows little influence of genetics. Possibly, subtle
head movement is more strongly dependent on participant instruction and
scanner adjustments. Indeed, behavioral genetic analyses on quality controlled
head motion not only revealed small heritability estimates (0-14%, compared to
29-65% in overall head motion), but also showed that a similar, or even larger,
proportion of the variance was explained by shared environmental influences
(15-33%).

Environmental influences on scan quantity and quality

An additional goal of this study was to examine how emotional state towards the
scanner was related to scan quality and quantity. Consistent with findings for
quality controlled head movement, reports of emotional states showed little to
no influence of genetics, but a moderate to strong relation with shared
environmental influences. These findings suggest that emotional states can be
significantly influenced by preparation of the scanner experiences. It was
interesting to note that children’s tension was on average rated higher by
researchers and parents than by children themselves, which is in line with
previous studies suggesting that children may underreport their anxiety (Tyc et
al., 1995; Durston et al., 2009). Multi-informant estimates of children’s emotional
state towards the MRI scan were significantly associated with MRI quantity, as we
found that children with higher estimated excitement and lower estimated
tension completed more runs during the MRI scan. However, the association
between children’s emotional state towards the MRI scan and scan quality was
less clear, as the correlations did not survive Bonferroni correction. These
findings suggest that by decreasing scanner related distress researchers can
increase scan quantity, but more detailed future studies are necessary to reveal
whether this would also lead to an increase in scan quality.

One aspect that did show influence on scan quality was the length of the
MRI scan session. Results showed that a protocol of >30 minutes resulted in less
than 50% sufficient quality on all scans in this age range of 7-9-year-olds. This is
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in line with other research that also recommends a scanning time of 30-40
minutes for young children (Raschle et al.,, 2012), whereas a longer scanning
protocol of 60 minutes is only recommended for an older population
((Fassbender et al., 2017b). If more scanning time is required to collect all data, a
way to ensure scan quality would be to conduct two separate MRI sessions
divided over different days (Fassbender et al., 2017b). Moreover, as the field of
(developmental) neuroimaging is rapidly evolving, the technology of MRI is
progressing. New methods such as simultaneous multi-slice imaging (SMS or
‘Multiband’, Feinberg and Yacoub (2012); Demetriou et al. (2018)) and real-time
monitoring of head motion (Framewise Real-time Integrated MRI Motion
Monitoring (FIRMM; Dosenbach et al. (2017)) have the potential to drastically
shorten acquisition time without compromising on the number of scans. The
effects on these methods on MRI scan quality should be examined in more detail
in future studies. For example, a pioneering study of Greene et al. (2018b)
reported that real time feedback about motion (using FIRMM) reduced head
displacement in 5-10 year old children, but not in children older than 10.

Limitations

The study had several limitations, which should be addressed in future research.
First, the current study examined one general aspect of scan quality (head
motion), nevertheless, several other factors can influence scan quality, amongst
others: thermal noise, respiratory signals, and scanner drifts (Kotsoni et al., 2006;
Liu, 2017; Power, 2017). Future studies should also investigate the effects of
these other factors, for example by investigating fMRI signal variability in regions
of interest. Second, due to ethical considerations all participating children in the
current study received the MRI simulation, therefore we were unable to directly
test the effects of the MRI simulation and can only conclude that scanner related
distress changed over time. Third, we report that children displayed the most
head motion in the RS fMRI run, but this might be influenced by different
definitions of sufficient quality, as the threshold for RS fMRI data was more
conservative than the criteria for task-based fMRI. Nevertheless, Engelhardt et al.
(2017) also report that their sample of 7-8-year-olds showed the most movement
during rest and the least movement during an inhibition task and they suggested
that the inhibition task was more engaging and therefore might have resulted in
less head motion than the RS fMRI run. The sequence of MRI runs in our MR
session was fixed, hindering direct comparison of task engagement, as the
differences in head motion between task-based and RS fMRI might reflect a time
effect. Studies in adults have indeed reported less head motion under engaging
task conditions than during rest, irrespective of acquisition order (Huijbers et al.,
2017) and future studies should investigate the effects of task demands versus
time on scan quality in children. Relatedly, we instructed participants to lie still
with eyes closed for the RS-fMRI. During the piloting phase of the scan protocol
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we experienced that the eyes closed condition was more comfortable for children
than eyes open. Although recent studies have shown similar RS networks across
different RS conditions (Yan et al., 2009; Zou et al., 2015), differences in
connectivity strength (Van Dijk et al., 2010; Yan et al., 2009) and test-retest
reliability have also been reported (Patriat et al., 2013; Zou et al., 2015). Moreover,
despite the specific instructions to participants to not to fall asleep, sleep was
not directly monitored, which is a limitation of our RS design. Last, the behavioral
genetic analyses had smaller sample sizes for moderate (N,,=92, N,=67) and
minimal head motion (N,.,=24, N.=20) than the analyses on the full sample
(N..=129, N,,=108). As the statistical power of genetic studies is influenced by the
sample size (Verhulst, 2017), differences in results could be influenced by
differences in sample sizes.
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Conclusion

We report that participants’ scanner related distress was associated to scan
quantity, but not to scan quality. Overall, scan quantity was high, as 88% of the
children that started the protocol also completed it. The percentage of sufficient
scans was considerably higher (49%) in the first 30 minutes of the protocol than
in the full 60-minute protocol (20%), indicating that shorter scan protocols have
less attrition. Consistent with previous studies (Couvy-Duchesne et al.,, 2014;
Engelhardt et al.,, 2017), the behavioral genetic analyses revealed heritability
effects on head motion, with heritability estimates ranging from 29-65%.
Importantly, however, our results also show that after exclusion based on
excessive head motion, heritability estimates declined to 0-14%, indicating that
MRI findings of motion corrected and quality-controlled data are not
substantially confounded by genetic factors. Moreover, shared environmental
influences played a larger role (15-33%) in the variation in quality controlled head
motion, suggesting that head motion can be influenced by participant instruction
and scanner adjustments. These results provide insight in the genetic and
environmental influences on scan quantity and quality and can inform future
studies on developmental neuroimaging.
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Supplementary materials

— - .

Figure S1. ACE model. Similarities among twin pairs are divided into similarities due to
shared genetic factors (A) and shared environmental factors (C), while dissimilarities
are ascribed to unique environmental influences and measurement error (E). The
correlation of the shared environment (factor C) was set to 1 for both MZ and DZ twins,
while the correlation of the genetic factor (A) was set to 1 for MZ twins and to 0.5 for
DZ twins (see Figure S1). The last factor, unique environmental influences and
measurement error, was freely estimated.

Table S1. Correlation matrix of emotional state towards the MR estimated by
children, researchers, and parents.

Children
Excitement Tension
h 757 7D
Before MRI simulation Researchers 5
Parents .38%* D3k
Researchers .80%* 70%*
Before MRI scan
Parents 42%* 3G
After MRI scan® Researchers 73 e

% Parents did not estimate the emotional state after the real scan
** p<.001
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Abstract

The ability to delay gratification increases considerably across development.
Here, we test the hypothesis that this impulse control capacity is driven by
increased maturation of frontostriatal circuitry using a fiber-tracking approach
combined with longitudinal imaging. In total, 192 healthy volunteers between 8
and 26 years underwent diffusion tensor imaging scanning and completed a
delay-discounting task twice, separated by a 2-year interval. We investigated
dynamic associations between frontostriatal white matter (WM)integrity and
delay of gratification skills. Moreover, we examined the predictive value of
frontostriatal WM integrity for future delay of gratification skills. Results showed
that delay discounting increases with age in a quadratic fashion, with greatest
patience during late adolescence. Data also indicated nonlinear development of
frontostriatal WM, with relative fast development during childhood and early
adulthood and—on average—little change during mid-adolescence. Furthermore,
the positive association between age and delay dis-counting was further
increased in individuals with higher WM integrity of the frontostriatal tracts.
Predictive analysis showed that frontostriatal WM development explained unique
variance in current and future delay of gratification skills. This study adds to a
descriptive relation between WM integrity and delay of gratification by showing
that maturation of frontostriatal connectivity predicts changes in delay of
gratification skills. These findings have implications for studies examining
deviances in impulse control by showing that the developmental path between
striatum and prefrontal cortex may be an important predictor for when
development goes astray.

Keywords: adolescence; development; impulsivity; longitudinal; white matter
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Introduction

Between childhood and adulthood, vigorous advancements in the ability to
sustain goal-directed cognition in the face of immediate rewards are observed
(Eigsti et al., 2006; Olson et al., 2007; de Water et al., 2014). This ability to delay
gratification can be captured in delay discounting tasks, estimating an
individual’s preference for a smaller immediate reward over larger, delayed
rewards. A crucial element of these tasks is that the subjective value of a reward
decreases when the delay to that reward increases (Critchfield and Kollins, 2001).
This capacity has been interpreted as an index of impulse regulation, which
changes considerably during adolescence (van den Bos et al., 2015).

A leading hypothesis suggests that maturation of this type of impulse
regulation capacity is driven by increased regulatory control of the prefrontal
cortex (PFC) over reward-related striatal areas (Figner et al., 2010; Christakou et
al., 2011). Several studies showed that the striatum is more activated by decisions
involving immediately available rewards, whereas prefrontal and parietal cortices
are activated when individuals control the temptation to choose immediate
rewards (McClure et al., 2004; Peters and Buchel, 2011). These results lead to the
question whether maturation of prefrontal-striatal white matter connections
concurs with, and predicts future-oriented choices across development.

The integrity of connections between the striatum and prefrontal cortex
can be assessed by using diffusion tensor imaging (DTI). DTI measures the
diffusion profile of water molecules in vivo allowing us to probe microstructural
properties of the connecting white matter (WM) fiber bundles (Jones, 2008). The
measurements most commonly derived from DTI are fractional anisotropy (FA),
measuring the directional variation of diffusion, and mean diffusivity (MD),
measuring the amount of diffusion (Basser and Pierpaoli, 1996). Several DTI
studies revealed higher WM integrity across adolescence (Olson et al., 2009; Bava
et al., 2010; Simmonds et al., 2014; Peper et al., 2015), although the shape of the
trajectory is not yet well understood, some reporting linear and others non-linear
changes (for an overview see Schmithorst and Yuan (2010)). Moreover, recent
studies in adults (Peper et al., 2013) and adolescents (Van den Bos et al., 2015)
reported an association between higher fronto-striatal WM integrity and
increased preference for delayed rewards. From these studies, two important
issues remain unresolved: 1) whether the relationship between age and
discounting is eliminated—or merely diminished—when brain connectivity is
taken into account (Steinberg and Chein, 2015) and 2) whether maturation of
fronto-striatal white matter connections across development is an important
predictor of individual development of delay of gratification skills

To address these questions, the current study followed participants with
ages ranging from childhood throughout early adulthood (age 8-26) over a two-
year period. This longitudinal design enabled us to (1) test whether the
association between age and discounting behavior is mediated by WM integrity
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between striatum and PFC, and (2) move beyond a descriptive relation between
age, WM integrity and behavior, by testing how brain maturation predicts change
in behavior over time.

In line with the existing literature, we hypothesized that (i) the ability to
delay gratification improves with increasing age (Green et al., 1994; Olson et al.,
2007; de Water et al., 2014) and (ii) the integrity of fronto-striatal WM matures
with increasing age (Olson et al., 2009; Bava et al., 2010; Schmithorst and Yuan,
2010; Simmonds et al., 2014; Peper et al., 2015). The longitudinal design allowed
us to test in more detail the shape of change (Braams et al., 2015). In addition,
we hypothesized that (iii) the increasing effect of age on the ability to delay
gratification is further increased in individuals with relatively high fronto-
striatal WM integrity (Liston et al., 2006) (positive mediation). Ultimately, we
hypothesized that (iv) fronto-striatal WM integrity predicts the improvement of
delay gratification over time. That is to say, we expect that fronto-striatal WM
integrity at timepoint 1 can predict delay of gratification at timepoint 2, and that
thereby brain maturation precedes and predicts behavioral change .

Methods

Participants

The current study was part of a large longitudinal study, referred to as Braintime,
conducted at Leiden University, the Netherlands. A total number of 299
participants (ages 8-25) were recruited through local schools and advertisements
at timepoint 1 (T1). All participants were fluent in Dutch, right-handed, had
normal or corrected-to-normal vision, and an absence of neurological or
psychiatric impairments. Two years later, at timepoint 2 (T2), 254 participants
were included. From the 254 participants that had measurements on both time
points, 14 participants had missing delay discounting data at one of the two time
points and 13 participants had missing DTI data at one of the two time points. 34
participants were excluded due to erratic discounting behavior at one of the two
time points. Consistent discounting behavior was defined as having at least two
decreases in subjective value (indifference points) and not more than one
increase in subjective value as time increased (Dixon et al. 2003). The excluded
participants had similar demographic characteristics as the included participants
(excluded participants: 50% male; age range 8.21-24.44; age at T2 M= 16.05, SD=
3.66). Results with the excluded participants remained unchanged.

There were no outliers in delay discounting data (Z-value < -3.29 or >
3.29). Outliers in DTI data were winsorized (Tabachnick and Fidell, 2013).The
final longitudinal sample (participants included at T1 and T2) consisted of 192
participants (48.4% males; age range = 8.01 - 26.62; age at T2 M= 16.31, SD=3.61),
see Table 1 for demographic characteristics.Written informed consent was
obtained from all participants, or participant’s parents in the case of minors. All
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anatomical MRI scans were reviewed and cleared by a radiologist from the
radiology department of the Leiden University Medical Center (LUMC). No
anomalous findings were reported. Participants received a financial
reimbursement for their participation in a larger scale study (e.g., Braams et al.
(2014a); Braams et al. (2014b); Peters et al. (2014a); Peters et al. (2014b); van
Duijvenvoorde et al. (2016a)). The institutional review board of the LUMC
approved the study and its procedures.

Intelligence quotient (IQ) was estimated with the subsets ‘similarities’ and
‘block design’ at T1 and the subsets ‘vocabulary’ and ‘picture completion’ at T2
of the Wechsler Intelligence Scale for Adults, third edition (WAIS-III) or the
Wechsler Intelligence Scale for Children, third edition (WISC-III). Different subsets
were used to prevent learning effects. The demographic characteristics of the
sample are listed in Table 1. There was no significant correlation between
estimated IQ and delay of gratification skills at T1 (r=.0195, p=.195) nor at T2
(r=.113, p=.119). Therefore, IQ was not included as covariate in the remaining
analyses.

Table 1. Demographic characteristics of the sample (N=192, 48.4% male) at time
point 1 and time point 2 [means (SD)]. IQ: intelligence quotient; AUC: area under
the discounting curve (normalized); FS-tract: fronto-striatal tract; FA: fractional
anisotropy; MD: mean diffusivity (in mmA2/s).

Timepoint 1 Timepoint 2
Age (years) 14.32 (3.59) 16.28 (3.61)
Age range 8.01 - 24.55 9.92 - 26.62
Estimated IQ 110.78 (9.81) 108.23 (10.20)
AUC (normalized) 0.42 (0.28) 0.47 (0.25)
FS-tract FA 0.329 (0.020) 0.333 (0.020)
FS-tract MD 0.00080 (0.00002) 0.00080 (0.00002)

Delay-Discounting Task

A computerized version of a hypothetical delay-discounting task described by
Peper et al. (2013) was used, based on the paradigm explained by Richards et al.
(1999). Subjects were asked to make a series of choices, between either a small,
immediately available amount of money or €10 available after a delay (i.e., “What
would you rather have: €2 right away or €10 in 30 days?”). Discounting was
assessed at four delays (2, 30, 180 and 365 days later). Trials with different delays
were presented in a mixed fashion. Furthermore, the task was adaptive: after the
choice for the immediately available money, this amount was decreased on a next
trial, whereas if the delayed money was preferred, the amount of immediately
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available money on the next trial was increased (decreasing adjustment
algorithm) (Du et al., 2002).

The amount of immediately available money the participant considered
to be equivalent to the €10 delayed reward was taken to indicate the subjective
value of the delayed rewards. Based on these so called ‘indifference points’, the
area under the discounting curve (AUC) was obtained, an often-used measure of
amount of discounting (Myerson et al., 2001). The normalized AUC ranges from
0 (complete discounting) to 1 (no discounting). The smaller the AUC, the faster
people discount the delayed reward and the more impulsive (or delay aversive)
they are. The task was presented as a hypothetical delay-discounting task.
However, several studies have shown that choices on a hypothetical delay-
discounting task substantially and significantly correlate (s up to 0.74) with
choices on a delay discounting task with real rewards in adults (Bickel et al., 2009;
Scheres et al., 2010).

Imaging acquisition and processing

The same imaging acquisition was used as described in Peper et al. (2013). Scans
were acquired on a 3-Tesla Philips Achieva MRI system. Two transverse Diffusion
Weighted Imaging (DWI) scans were obtained with the following parameter
settings: 30 diffusion-weighted volumes with different noncollinear diffusion
directions with b-factor 1,000 s/mm2 and 5 diffusion-unweighted volumes (b-
factor 0 s/mmz2); anterior -posterior phase encoding direction; parallel imaging
SENSE factor=3; flip angle=90 degrees; 75 slices of 2 mm; no slice gap;
reconstruction matrix 128 x 128; Field of view (FOV) =240 x 240 mm; TE =69 ms;
TR=7,315 ms; total scan duration=271 s per DWI set. The second DWI set had
identical parameter settings as used for the first set except that it was acquired
with a reversed k-space readout direction (posterior-anterior phase encoding
direction) enabling the removal of susceptibility artifacts during post processing
(Andersson et al., 2003). During scanning, the FOV was angulated according to
the anterior commissure-posterior commissure line, and diffusion gradients were
adjusted accordingly during data processing. Subsequently, diffusion scans were
realigned to the averaged b0 scan and corrected for motion, eddy current, and
susceptibility distortions (Andersson and Skare, 2002; Andersson et al., 2003). A
tensor was fitted to the diffusion profile in each voxel using a robust tensor
fitting method to correct for possible effects of cardiac pulsation and head
motion (Chang et al., 2005; Chang et al., 2012). The main diffusion direction was
determined as the principal eigenvector of the eigenvalue decomposition of this
fitted tensor.

Based on the eigenvalue decomposition, two measures derived from the
diffusion tensor were computed: 1) the fractional anisotropy (FA), which
measures the directional variation of diffusion and ranges from 0 (no preferred
diffusion direction) and 1 (highly preferred diffusion direction) and 2) mean
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diffusivity (MD), measuring the amount of diffusion (Basser and Pierpaoli, 1996).
White matter pathways were reconstructed using deterministic streamline
tractography, based on the Fiber Assignment by Continuous Tracking (FACT)
algorithm (Mori et al., 1999). Within each voxel of the cerebral white matter, 8
streamlines were started, following the computed diffusion directions from voxel
to voxel until one of the stopping criteria was reached (being FA<0.1, sharp turn
of 45 degrees or more, or exceeding brain tissue). This procedure resulted in a
collection of reconstructable white matter tracts, from which fiber tracts of
interest could be selected.

Figure 1. The frontostriatal WM tract within an individual subject is displayed in yellow,
with the striatum and PFC as inclusion ROIs. Red regions display the VOI. The VOI was
created across the whole sample; a voxel was included when it had a frontostriatal fiber
running through in at least 50% of the total sample.

Frontostriatal volume of interest

We used a ‘volume of interest’ (VOI) to measure fronto-striatal white matter tracts
as described by Peper et al. (2013). The VOI requires that the fiber tracts that are
reconstructed for each subject in native space, are put into model space in order
to create the VOI (for a detailed description, see Peper et al. (2013)). In short,
tracts were required to run through both the striatum and PFC to be included as
fronto-striatal white matter. Inclusion regions-of-interest (ROIs) were based on
the automatic anatomical labeling (AAL) template (Tzourio-Mazoyer et al., 2002),
including the caudate, putamen, and pallidum (AAL regions 71-76), as well as the
dorsolateral, ventrolateral, and ventromedial prefrontal cortices (AAL regions 5-
10; 13- 16; 25-28). The ROIs were dilated with 2 voxels in all directions to ensure
that they penetrate the white matter. Exclusion ROIs were the genu of the corpus
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callosum (manually delineated on the midsagittal slice), the uncinate fasciculus,
and the longitudinal fascicules (manually delineated by a plane through the
temporal lobes where the amygdala was located). For fiber selection, all ROIs had
to be defined only once, on the model brain. For an individual example of fronto-
striatal fiber tracts, see Figure 1. All voxels within the selected fronto-striatal
tracts were flagged, resulting in individual binary maps of fronto-striatal tracts
(in model space) for each participant of the sample on both time-points T1 and
T2. Subsequently, the VOI was created for fronto-striatal tracts of the sample:
Every voxel within the fronto-striatal tract should have a fiber running through
in at least 50% of the sample (i.e. thresholded at 50%; Figure 1). Then this
particular voxel was flagged and added to the VOI. The left and right hemisphere
were combined to ensure comparability with earlier reports (Liston et al., 2006;
de Zeeuw et al., 2012; Peper et al., 2013; van den Bos et al., 2015) that did not
report hemispheric differences in relation to impulsive behavior. Within the VOI
of the fronto-striatal tract, DTI metrics (FA and MD) were calculated for each
individual subject of the whole sample.

Global white matter

As a control measure of global white matter development and to test for
specificity of the contribution of fronto-striatal white matter tracts to delay
discounting behavior, white matter tracts of the whole brain -excluding fronto-
striatal tracts- were examined as well.

Statistical analyses

Statistical analyses were conducted with Statistical Package for Social Sciences
(SPSS), version 21 and in R, version 3.1.1. The contribution of gender and
intelligence to delay of gratification skills (AUC normalized) were explored using
independent sample T-tests and Pearson’s correlation in SPSS. Pearson’s
correlation in SPSS were also used to investigate the stability of delay of
gratification skills (AUC normalized) and white matter integrity (FA and MD) over
time. Furthermore, mediation analyses were performed to test whether the
relation between age and delay discounting was mediated by fronto-striatal white
matter integrity, measured by FA and MD. For correct comparison between FA
and MD we used z-values in the mediation analyses. The present study used a
bootstrapping approach to mediation as implemented in the SPSS macros of
Preacher and Hayes (Preacher and Hayes, 2008). Confidence intervals (95%) were
estimated using the bias-corrected bootstrap method (number of resamples =
10000) implemented in the macros.

Mixed models were used to investigate age-related change (linear,
quadratic or cubic) in delay of gratification skills (AUC normalized) and fronto-
striatal white matter integrity (FA and MD). Analyses were performed with the
nlme package in R (Pinheiro et al., 2013). Mixed models are particularly useful in
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longitudinal studies, since these datasets have time points within participants
and the mixed model approach can recognize this type of data dependency. In
order to test for developmental effects, we followed a formal model-fitting
procedure (for a similar approach, see Braams et al. (2015)). We started by using
a null model that only included a fixed and a random intercept, to allow for
individual differences in starting points and to account for the repeated nature
of the data. We fitted three polynomial age-models with increasing complexity
that tested the grand mean trajectory of age: i.e., a linear, quadratic and cubic
age-trend. Akaike Information Criterion (AIC; Akaike (1974)) and Bayesian
Information Criterion (BIC; Schwarz (1978)), both standardized model-fit metrics
were used to compare the different models. Lower AIC and BIC values indicates a
better model fit. Log likelihood ratio tests were used between nested models, to
test which age-trend best described the data. Reported p-values for the mixed
models are based on log likelihood ratio tests. All models were fit with full
information maximum likelihood estimates.

Ultimately, linear regression models in SPSS were used to test longitudinal
prediction models. In specific, we tested whether fronto-striatal white matter
integrity (FA and MD) at T1 could predict delay of gratification skills at T2, while
taking into account delay of gratification performance at baseline.

Results

Age effects on delay discounting

Cross sectional data showed that advanced age was related to a larger AUC
(normalized), meaning less steep discounting of delayed rewards with age, at
both T1 (r=.207, p=.004) and at T2 (r=.204, p=.004). Delay of gratification skills
at T1 were positively correlated with delay of gratification skills at T2 (r=.543,
p<.001).

The longitudinal analyses, testing for linear, quadratic, and cubic changes
in delay discounting, showed that age-related change in delay of gratification
skills (AUC normalized) was best described by a quadratic age-model (age!:
p=.1.269, p<.001; age?: p=-0.568, p=.040) see Table 2. This model indicates a
‘peak’ in AUC, during late adolescence/early adulthood (see Figure 2a). We
also performed the analyses without the relative smaller group of young adults
(N=21). However, age-related change in delay of gratification skills (AUC
normalized) was -conform the analysis on the total sample- best described by a
quadratic age-model (age': p=.1.274, p<.001; age?: p=-0.509, p=.033). Finally, with
respect to behavioral performance, we tested potential gender differences. In the
current data set, there were no significant gender or gender x age interaction
effects in delay of gratification.
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Figure 2. Individual variability over time for AUC normalized (a), FA (b), and MD (c).
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value of the best-fitting age model. Dotted lines represent the 95% CI.
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Age effects on the frontostriatal tract

Cross-sectional data at T1 and T2 showed that white matter integrity of the
fronto-striatal tract increased with age. Age was significantly positively
correlated with FA at T1 (r=.440, p<.001) and at T2 (¥=.351, p<.001), and
significantly negatively correlated with MD at T1 (r=-.220, p=.002), but not at T2
(r=-.089, p=.089). Moreover, white

matter integrity measures were positively correlated between T1 and T2 (FA:
r=.611, p<.001; MD: r=.583, p<.001).

Longitudinal analyses revealed that age-related change in white matter
integrity (FA and MD) was best explained by a cubic age-model (FA: age!: p=0.152,
p<.001; age?: p=-0.050, p=.006; age3: p=0.047, p=.004; MD: age': p=-0.00010,
p<.001; age?: p=0.00005, p=.018; age3: p=-0.00007, p=.001) see Table 2. More
specifically, our data indicate that FA mostly increased during childhood and
early adulthood. The reversed pattern of FA-changes was observed for MD (see
Figure 2b and 2c). Analyses only including 8-18 year old participants revealed
that age-related change in white matter integrity was best explained by a
quadratic age-model (FA: age': p=0.137, p<.001; age?: p=-0.048, p=.005; age3:
$=0.022, p=.1220; MD: age': p=-0.00011, p<.001; age?: p=0.00005, p=.015; age3:
p=-0.00003, p=.131). Additional analyses showed that there were no significant
gender or gender x age interaction effects in white matter integrity (nor in FA or
in MD).

Mediation analyses

To investigate the relation between age and white matter integrity in explaining
variance in delay of gratification skills, we performed mediation analyses using
the Preacher and Hayes method (Preacher and Hayes, 2008). At T1, the effect of
age on delay of gratification (path c: B=.016, p=.004) was fully mediated by FA
(path a: B=.123, p<.001; path b: B= .067, p= .0019; path c’: B=.008, p=.195;
mediation effect a*b: 95% confidence interval (CI) .0034 - .0140; p=.004), see
Figure 3a. Furthermore, the effect of age on delay of gratification skills (path c:
B=.016, p=.004) was significantly mediated by MD (path a: B=-.0614, p=.002; path
b: B=-.059, p=.003; Path c’: B=.012, p=.026; mediation effect a*b: 95% CI .0012 -
.0076; p=.030).

Partly overlapping results were found at T2: FA was a significant
mediator of the association between age and delay of gratification skills (path c:
B=.014, p=.005; path a: B=.097, p<.001 ; path b: B=.038, p=.047; Path c’: B=.011,
p=.046; mediation effect a*b: 95% CI .0004 - .0081; p=.061), see Figure 3b.
However, MD within the fronto-striatal-tract did not mediate the association
between age and delay of gratification skills (path c: B=.014, p=.005; path a: B=-
.035, p=.083; path b: B=.012, p=0.488; path c’: B=.015, p=.004; mediation effect
a*b: 95% CI=-.0028 - .0006; p=.517). Thus, the relation between age and delay of
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gratification performance was mediated by white matter integrity within the
fronto-striatal tract at both time points.

Timepoint 1
FA FS-tract T1
Path a Path b
B= .123%** B= .067**
Pathc B=.016**
Age T1 > DD AUC T1
Path ¢ B=.008
Timepoint 2
FA FS-tract T2
Path a Path b
B= .097*** B=.038*

Pathc B=.014**
Age T2 > DD AUC T2

Path ¢’ B=.011*

Figure 3. Mediation models. The relation between age and delay of gratification skills
is partly mediated by FA at timepoint 1 and at timepoint 2. Values are standardized
regression coefficients and asterisks indicate significance coefficients (*p<0.05;
**p<0.01; ***p<0.001).

Longitudinal prediction

To test whether white matter integrity of the fronto-striatal tract could predict
future discounting behavior we performed a linear regression analysis with delay
of gratification skills (AUC normalized), age, FA and MD at T1 as predictors for
delay of gratification skills at T2. The results showed that in addition to delay of
gratification skills at T1 (8=.504, p<.001), FA was a significant predictor (=.158,
p=.034) for delay of gratification skills at T2 (R? total model=.321, R? FA =.017),
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see Table 3 and Figure 4. Age at T1 and MD did not significantly predict future
discounting behavior. The same analyses were performed with non-linear age
changes (age? and age®). On top of delay of gratification skills and FA at T1, age?
and age® did not significantly predict future discounting behavior. Thus, while
accounting for behavioral performance at baseline, FA within the fronto-striatal
tract explains unique variance in future delay of gratification skills.

We also investigated whether delay of gratification skills at T1 was
predictive of fronto-striatal white matter integrity at T2. We entered FA at T2 as
dependent variables and FA, Age and delay of gratification skills (AUC
normalized) at T1 as predictor. The same analyses were conducted with MD.
Linear regression analyses showed that both FA (=-.018, p=.763) and MD (8=-
.008, p=.895) at T2 were not significantly predicted by delay of gratification skills
at T1.
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Delay of Gratification skills at T2

Figure 4. Delay of gratification skills (AUC normalized) at T2 was predicted by delay of
gratification skills (AUC normalized) at T1 and FA of the frontostriatal tract at T1. The
y-axis displays the unstandardized predictive value of the regression model with AUC
(normalized), age, FA of the frontostriatal tract, and MD of the frontostriatal tract at
T1 as predictors.
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Global white matter effects

In order to test for the specificity of the fronto-striatal tract in predicting
discounting behavior, we performed a similar analysis with global FA and MD
(i.e., all white matter connections excluding the connections marked as fronto-
striatal tract). Longitudinal analyses revealed that age-related change in global
white matter integrity (FA and MD) was also best explained by a cubic age-model
(FA: age': p=0.225, p<.001; age?: p=-0.095, p<.001; age3: p=0.047, p=.004; MD:
age!': p=-0.00010, p<.001; age? p=0.00005, p=.018; age3: p=-0.00007, p=.001).
Age-related change between 8 and 18 years only was -similar to the fronto-striatal
tracts- best explained by a quadratic age-model (FA: age!: p=0.227, p<.001; age?:
p=-0.041, p<.001; age3: p=0.017, p=.073; MD: age’: p=0.00005, p=.063; age?:
$=0.00009, p<.001; age3: p=-0.00002, p=.123). Importantly, the linear regression
analysis showed that global FA (=.059, p=.539) and MD (5=.060, p=.802) did not
predict future discounting behavior.

Table 3. Linear regression predicting delay of gratification skills at T2 using
delay of gratification skills (AUC normalized), age, FA, and MD at T1.

B SE B p
Constant -.996 772 .199
T1 AUC (normalized) 463 .059 .504 .000
T1 Age .003 .005 .048 .473
T1 FA of the FS-tract 1.970 .922 .158 .034
T1 MD of the FS-tract 726.143 766.871 .064 .345
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Discussion

Development in risk-taking tendencies and impulsive control have been
attributed to an imbalance between subcortical and cortical brain regions
(Somerville et al, 2010), but very few studies examined the anatomical
connections between these areas in relation to impulsive choice. One important
dimension of impulsivity is the ability to delay gratification (Whelan et al., 2012).
Next to examining developmental patterns in impulsive choice and fronto-striatal
white matter integrity, the current study aimed to test if the integrity of fronto-
striatal white matter connections mediated and predicted the ability to delay
gratification across development. We were able to demonstrate that age-related
increases in the preference for delayed rewards (i.e. less impulsive choice) was
significantly dependent on a better quality of connections between the PFC and
striatum. Moreover, the longitudinal analysis revealed that stronger connectivity
between striatum and PFC predicted less impulsive choices two years later.

The first question addressed in this study was to test age related change

in the ability to delay gratification between childhood and young adulthood. From
our results it appears that delay of gratification is largest around late adolescence
followed by a slight decline in young adults. This finding fits well with a recent
study on age-related changes in discounting of real rewards (Scheres et al., 2006).
It appears that there is a gradual increase in delay of gratification skills between
childhood and late-adolescence, reaching a plateau in late adolescence/ early
adulthood. Prior studies also suggested most reward oriented behavior in mid-
adolescence and a steep increase in late-adolescence in self-control (Steinberg et
al., 2008; Olson et al., 2009; de Water et al., 2014). A possible explanation that
follows from these findings is that adolescents — more than children — flexibly
apply self-control for the purpose of reward maximization, which levels off in
early adulthood.
Next to developmental change, there was also evidence for consistency in
behavior across sessions within individuals. That is to say, we found correlations
between delay of gratification skills at T1 and T2, showing that participants who
were better able to delay gratification at T1 were also better able to delay
gratification at T2 which is consistent with prior studies (Audrain-McGovern et
al., 2009; Anokhin et al., 2011). These results indicate a substantial level of trait-
like, individual stability in delay of gratification skills in adolescence (Casey et
al., 2011). These findings set the stage for examining the hypothesis in this study:
how individual variation in behavior is mediated and predicted by striatum-
prefrontal cortex connectivity.

In a set of longitudinal analyses we investigated the age-related change
in fronto-striatal white matter connections. Results indicated that the integrity of
fronto-striatal white matter increases with age, and seems to do so in a cubic
fashion: the most pronounced increases in white matter integrity appear to take
place in pre-adolescence and young adulthood, with — on average — a relatively
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stable period in between. This finding corresponds to previous longitudinal
studies demonstrating protracted maturation of large association fiber bundles
(Bava et al.,, 2011; Lebel and Beaulieu, 2011). Studies testing for non-linear
relations in white matter tracts are scarce (Olson et al. (2009) and reported similar
cubic relations in white matter, with the strongest changes in FA and MD during
pre-adolescence and young adulthood. Importantly, in a longitudinal study,
Simmonds et al. (2014) recently reported -in white matter tracts connected to the
PFC-, a period of rapid growth in childhood, followed by a slowdown of growth
in mid-adolescence and acceleration of growth again in late adolescence/early
adulthood. Our longitudinal results also suggest a ‘plateau’ in white matter
development during mid-adolescence, but this seems to be the result of larger
variation in white matter development during this period; some children show
increases in white matter integrity, while others remain stable or even show
decreases. Our results add to increasing evidence obtained from several
neuroimaging modalities, showing large variability in brain activity, morphology
and connectivity during mid-adolescence (Scherf et al., 2012) pointing towards a
unique period of vulnerabilities and opportunities (Crone and Dahl, 2012). It
must be noted however, that due to a relative smaller number of participants
early adulthood (N=21), the increase in white matter integrity in this period must
be interpreted with caution (Mills and Tamnes, 2014). Indeed, the analyses
without these young adults hint towards highest values of white matter integrity
during late adolescence, leveling off thereafter. Thus, replication of these results
in a larger number of adults is warranted to typify the exact nature of fronto-
striatal white matter development after adolescence.

Next, we tested whether white matter integrity of fronto-striatal
connections was related to individual differences in the ability to delay
gratification in adolescents, similar as to what has previously been reported in
adults (Peper et al., 2013; van den Bos et al., 2014). Our results showed that white
matter integrity of the fronto-striatal tract (specifically FA) mediated the relation
between age and delay discounting, consistent with findings of a recent study on
the relation between fronto-striatal connectivity and adolescent delay
discounting (van den Bos et al.,, 2015). However, it is not clear whether the
relationship between age and delay discounting is eliminated, or merely
diminished, when connectivity is taken into account (Steinberg and Chein, 2015).
Our results on T1 show a full mediation (the direct effect is no longer significant),
while our results on T2 show a partly mediation.

Finally, we for the first time tested whether white matter frontostriatal
connectivity predicted change in delay discounting across development.
Predicting change is important for potential early identification of adolescents
who are prone to impulsive choice (see also Ullman et al. (2014). The results
showed that fronto-striatal white matter integrity was a significant predictor of
the ability to delay gratification two years later, while taking into account delay
of gratification performance at baseline. These findings indicate that brain
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structure is an important underlying mechanism for predicting change in
behavior, whereas a reversed claim (i.e., behavior being a predictor for brain
change) cannot be made based on the current study. Taken together, change in
delay of gratification is partly driven by a more mature white matter connectivity
path between striatum and PFC.

It has to be noted that our results are based on a hypothetical delay-
discounting task. According to the economic literature not actually paying the
participant for the choices on the delay discounting task could possibly
undermine the participants behavior in how seriously they take the choices.
Although our earlier reported results of hypothetical discounting in adults (Peper
et al., 2013) were consistent with results of real discounting in adults (van den
Bos et al., 2014) and several studies have shown that choices on hypothetical-
and real tasks significantly correlate in adults (Bickel et al., 2009; Scheres et al.,
2010), it might be possible that specifically adolescents are influenced by the
hypothetical aspect of our task. However, a recent study with a real-discounting
task in a larger age range (8-25; van den Bos et al. (2015)) revealed similar
modulating relations between structural connectivity and delay discounting,
suggesting that the use of a hypothetical task might not influence the findings
significantly.
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Conclusion

In conclusion, the current study provides crucial links for our understanding of
the neural mechanisms underlying delay of gratification skills. The ability to
delay gratification improves between childhood and early adulthood and this is
predicted by the integrity of fronto-striatal white matter connections. This study
adds to a descriptive relation between white matter integrity and delay of
gratification skills by showing that maturation of fronto-striatal connectivity
predicts improvements in delay of gratification skills over a two-year period.
These findings have implications for studies examining deviances in impulse
control in adolescence, such as in cases of substance abuse or crime, by showing
that the developmental path between striatum and PFC may be an important
predictor for when development goes astray.
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Chapter 9

Summary

The is thesis had the goal to provide a better understanding of why some children
are more sensitive to social evaluation than others, a question that is currently
more urgent than ever, given that young individuals connect not only through
personal interactions but also through online communication. This thesis
examined this question from a neurocognitive development perspective and
incorporated both behavioral genetic modeling as well as longitudinal analyses.
Neurodevelopmental models suggest that social emotional regulation can be
partly explained by protracted development of subcortical and prefrontal cortex
regions, as well as their connections (Nelson et al.,, 2005; Casey et al.,, 2008;
Casey, 2015; Nelson et al., 2016). These models focus mostly on adolescence, the
transition period between childhood and adulthood, whereas childhood is a
relatively unexplored phase in experimental neuroimaging research.
Nevertheless, during childhood rapid changes in executive functioning occur
(Luna et al., 2004; Zelazo and Carlson, 2012; Peters et al., 2016) and the first long
lasting friendships emerge during this time (Berndt, 2004).

Social emotion regulation is an important factor in developing and
maintaining these social relations. Social emotion regulation consists of
processing social information (such as peer feedback) and regulating subsequent
emotions and behaviors (such as aggression). A broad range of literature has
shown that social rejection can result in behavioral aggression (Twenge et al.,
2001; Dodge et al., 2003; Leary et al., 2006; Nesdale and Lambert, 2007; Nesdale
and Duffy, 2011; Chester et al., 2014), but little is known about the underlying
mechanisms of social rejection related aggression. This thesis aimed to fill this
gap by investigating the nature, nurture, and neural mechanisms underlying
social emotion regulation in childhood.

Testing the Social Network Aggression Task

In order to gain a better understanding of the underlying mechanisms of
responses to social acceptance and rejection, I co-designed a novel experimental
paradigm that is suitable to combine with neuroimaging. In the Social Network
Aggression Task (SNAT) participants view pictures of peers that provide positive,
neutral or negative feedback to the participant’s profile. In addition to neural
activation related to social acceptance and rejection, this paradigm enables
studying regions that signal for general social salience, by contrasting both
positive and negative feedback to a neutral social feedback condition. To study
individual differences in behavioral responses towards social evaluation, we
included a retaliation component to the SNAT. After viewing the social feedback,
participants could blast a loud noise towards the peer, which was used as an
index of aggression.
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A crucial first step in understanding social evaluation processing in
childhood is to detect robust behavioral patterns and neural signals that are
related to processing social feedback. Therefore, in chapter 2 I used a meta-
analytic approach to examine behavioral and neural correlates of social
evaluation processing in seven-to-eleven-year-old children. I used three different
samples: a pilot sample (n=19), a test sample (n=28), and a replication sample
(n=27). The results showed that the SNAT revealed robust and reliable behavioral
results with negative social feedback resulting in the highest levels of behavioral
aggression. Moreover, meta-analyses on predefined brain regions of interest
(ROIs) revealed that negative social feedback resulted in more neural activation
in the amygdala (compared to positive feedback), the anterior insula (Al) and the
anterior cingulate cortex gyrus (ACCg) (compared to neutral feedback).
Exploratory whole brain analyses demonstrated heightened activation in the
medial prefrontal cortex (MPFC) after negative relative to neutral social feedback.
These findings show that the SNAT is a reliable paradigm for the investigation of
social evaluation processing and aggression in children, and indicate that this
paradigm is feasible for use in larger and longitudinal developmental studies.

Next, in chapter 3, I investigated the neural processes of social evaluation
in adults. The aims of this study were three-fold: (1) to disentangle neural signals
of positive and negative social feedback, (2) to examine aggressive responses
toward the person signaling negative social feedback and (3) to test whether
dorsolateral prefrontal cortex (DLPFC) activity was related to aggression
regulation after experiencing negative social feedback, based on prior studies
with comparable paradigms (Riva et al., 2015). The DLPFC is a region often found
implicated in behavioral control (Casey, 2015; Crone and Steinbeis, 2017). In line
with the meta-analytical results of chapter 2, I found that negative social feedback
was related to applying a longer noise blast toward the peer. At the neural level,
conjunction analyses showed that both negative and positive social feedback
resulted in increased activity in the ACCg and the bilateral Al, suggesting that
these two regions generally respond to socially salient feedback, with no
significant differentiation between negative and positive feedback. Neural
activation that was specific for positive feedback was located in the striatum and
the ventral MPFC, whereas there was no specific significant activation after
negative (versus positive) social feedback. Brain-behavioral analyses, however,
showed that increased DLPFC activity after negative social feedback was related
to more aggression regulation. These results imply that individuals who show
stronger activation in the DLPFC after negative social feedback may be better able
to regulate social emotions and behavioral impulses.

Social emotion regulation in childhood

After verifying the experimental paradigm in children and adults, the next step
was to examine to what extent individual variation in social evaluation was
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explained by genetic and environmental factors. Some children might be more
sensitive to social evaluation due to genetic predisposition, but likewise, children
might be more prone to retaliation due to environmental influences such as
violent video games (Konijn et al., 2007). Unraveling these contributions is
important as little is known about the genetic and environmental influences on
brain responses to social feedback and regulatory responses. Behavioral genetic
modeling can estimate the proportion of variance that is explained by additive
genetics (A), common environment (C) and unique environment and
measurement error (E).

In chapter 4, I used behavioral genetic modeling to investigate the
heritability of social feedback processing and subsequent aggression in middle
childhood (ages 7-9-years). Behavioral genetic modeling revealed that aggression
following negative feedback was influenced by genetic as well as shared and
unique environmental influences. Experimental neuroimaging analyses of a large
childhood sample (N=512) showed again that the Al and ACCg responded to both
positive and negative feedback (see also chapter 2 and 3), showing this social
salience network is already present in childhood. Similar to what was observed
in the pilot-test-replication study (chapter 2); positive feedback resulted in
increased activation in caudate, supplementary motor cortex (SMA), as well as in
the DLPFC. In this study I further observed that the MPFC and inferior frontal
gyrus (IFG) were more strongly activated after negative feedback. To test relations
with behavior in more detail, post-hoc analyses were performed using the
significant whole brain clusters as ROIs. These analyses demonstrated that
decreased SMA and DLPFC activation after negative feedback (relative to positive)
was associated with more aggressive behavior after negative feedback. Thus,
similar to what was observed in adults in chapter 3, in children the DLPFC was an
important region for aggression regulation. Moreover, genetic modeling showed
that 13%-14% of the variance in DLPFC activity was explained by genetics. These
results suggest that the processing of social feedback is partly explained by
genetic factors. Moreover, whereas the social salience network seemed to be in
place already in middle childhood, the aggression regulation mechanism was less
pronounced in middle childhood than in adults, which might suggest that this
network is still developing during childhood. A final intriguing finding in chapter
4 was that the behavioral response to aggression (i.e., noise blast) was influenced
by shared environment factors. Together, these findings set the stage to examine
how brain responses (influenced by genetic factors) and behavior (influenced by
shared environment factors) change over time.

Chapter 5 set out to test exactly this question, that is, to test
developmental changes in aggression regulation and the underlying neural
mechanisms using a longitudinal design. In this chapter I examined how changes
in neural activity across childhood were related to change in behavioral
development. For this purpose 492 same-sex twins (246 families of the original
256 families) underwent two fMRI sessions across the transition from middle
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childhood (7-9 years) to late childhood (9-11 years). Results showed that
behavioral aggression after social evaluation decreased over time, and this
decrease was most pronounced for aggression after positive and neutral social
feedback. Confirmatory ROI analyses showed that neural activity in the AI, MPFC
and DLPFC increased across childhood, whereas activity in the IFG did not show
developmental change. Moreover, increased activity in Al was correlated with
more aggression, whereas increased activity in DLPFC was correlated with less
aggression. Whole brain-behavior analyses confirmed that bilateral DLPFC
activity was correlated with less subsequent aggression following negative social
feedback. Finally, longitudinal comparisons revealed that a larger increase in
DLPFC activity across childhood was related to a larger decrease in behavioral
aggression after negative social feedback over time. These results provide
insights on how the developing brain processes social feedback and suggest that
the DLPFC serves as an emotion regulation mechanism when dealing with
negative social feedback. The results provide a window for understanding
individual differences in these developmental trajectories, showing that some
children develop stronger regulation skills already in childhood.

Functional architecture of the childhood brain

Previous neurodevelopmental studies and theoretical frameworks have
suggested that social emotion regulation might rely on a network of integrated
connections between limbic/subcortical and cortical brain regions (Casey, 2015).
Most prior studies focused on adolescence or included small samples of children
and therefore little is known about functional brain connectivity in childhood. To
overcome this gap in knowledge, in chapter 6 I investigated the robustness of
findings regarding subcortical-PFC functional brain connectivity in childhood,
and the heritability of these connections in 7-to-9-year-old twins. I specifically
focused on two key subcortical structures: the ventral striatum (VS) and the
amygdala. Reassuringly, I observed strongly replicable brain connectivity
patterns over two genetically independent samples of 7- to-9-year-old children,
both in the whole brain seed-based analyses and in the post-hoc ROI analyses.
Behavioral genetic analyses revealed that VS and amygdala connectivity showed
distinct influences of genetics and the environment. VS-PFC connections were
best described by genetic and unique environmental factors, whereas amygdala-
PFC connectivity was mainly explained by environmental influences (both shared
and unique). Similarities were also found: connectivity between the ventral ACC
and both subcortical regions showed influences of shared environment, while
connectivity with the orbitofrontal cortex (OFC) showed stronger evidence for
heritability. Together, this study provides the first evidence for a comprehensive
analysis of genetic and environmental effects on subcortical-prefrontal cortex
interactions in childhood. The findings demonstrate the need to understand not
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only the development of these networks, but also how the environment shapes
the maturation of these connections.

Neuroimaging in childhood: Pitfalls and possibilities

With the emergence of functional neuroimaging only two decades ago, the field
of developmental cognitive neuroscience can still be considered relatively young
and acquisition methods and analysis techniques are rapidly improving. Several
prior developmental neuroimaging findings have been called into question after
studies showed that these findings were largely influenced by age-related
differences in head motion (Satterthwaite et al., 2013), highlighting the need for
an in-depth investigation of factors that can influence scan quality in children. In
chapter 7 I therefore provide an overview of MRI scan quantity and quality in a
large developmental twin sample and investigated the genetic and environmental
influences on head motion. Overall, scan quantity was high (88% of participants
completed all runs), while scan quality decreased with increasing session length.
Scanner related distress was negatively associated with scan quantity, but not
with scan quality. In line with previous studies, behavioral genetic analyses
showed that genetics explained part of the variation in head motion, with
heritability estimates of 29-65%. Additionally, the results revealed that subtle
head motion - after exclusion of excessive head motion- showed lower heritability
estimates (0-14%), indicating that findings of motion-corrected and quality-
controlled MRI data are less confounded by genetic factors. Moreover, shared
environmental influences played a larger role (15-33%) in the variation in quality-
controlled head motion, suggesting that head motion can be influenced by
participant instruction and age-appropriate scanner adjustments. This is
specifically important for neuroimaging studies across different age-ranges, as
this can minimize the confounding factor of age-related differences in head
motion on findings regarding brain development.

Brain connectivity as predictor of emotion regulation

As was explained in the section on neurocognitive development models, the
ability to regulate emotions and control impulses increases considerably during
adolescence, the transition phase between childhood and adulthood. In chapter
8 I tested the hypothesis that this form of emotion regulation is driven by
increased maturation of frontostriatal circuitry using a fiber-tracking approach
combined with longitudinal imaging. Given the novelty of this approach, here I
made use of a classic and often used paradigm to study impulse control; the delay
discounting paradigm (Peper et al., 2013). The delay discounting task estimates
the preference to choose for a direct small reward over a delayed larger reward.
In total, 192 healthy volunteers between 8 and 26 years underwent diffusion
tensor imaging scanning and completed the delay discounting task twice,
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separated by a 2-year interval. This sample was part of the 3-wave longitudinal
Braintime study (van Duijvenvoorde et al., 2016b). First, I examined linear and
non-linear development of both brain connectivity and behavior. The
development of delay of gratification showed a quadratic trajectory, with a steep
increase during late childhood and the peak in late adolescence. Structural brain
connectivity showed cubic relations across development, with the most
pronounced changes during late childhood and early adolescence. Moreover, age
related increases in the preference for delayed rewards (i.e., less impulsive
choice) were significantly dependent on a better quality of connections between
the PFC and striatum. The longitudinal analysis revealed that stronger
connectivity between striatum and PFC predicted less impulsive choices 2 years
later, indicating that brain maturation precedes emotion regulation and
behavioral outcomes. These findings fit well with neurocognitive models
suggesting that striatum-prefrontal cortex maturation is an important factor
contributing to the development of emotion regulation (Casey, 2015; Nelson et
al., 2016).

Discussion

Taken together, the studies described in this thesis revealed several important
findings. First, using the Social Network Aggression Task I was able to disentangle
between neural activation that was specific for social rejection and social
acceptance, and activity that was related to general social salience. Second, by
including a retaliation component to the paradigm, I showed how individual
differences in aggression regulation were related to differences in neural
activation of the DLPFC. Third, by combining findings of task-based functional
MRI with both functional and structural connectivity analyses, I gathered
knowledge on the development of social emotion regulation and shed light on
the important neural development that takes place during childhood. These three
main outcomes are discussed in detail below and suggestions for a novel
theoretical framework are provided.

Social pain, social gain and general social signaling

Prior studies on social evaluation processing have suggested that the ACC and Al
might signal for social pain, as these regions showed increased neural activation
after social rejection (Eisenberger and Lieberman, 2004; Kross et al., 2011; Rotge
et al., 2015). However, several researchers have questioned this hypothesis as
they reported increased activation of the ACC also in relation to expectancy
violation (Somerville et al.,, 2006; Cheng et al., 2019), indicating these regions
might signal for social salience in general (Dalgleish et al.,, 2017). The Social
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Network Aggression Task is the first social evaluation paradigm to experimentally
disentangle neural activation for social rejection and social salience, by
contrasting positive and negative social feedback to a neutral condition. In order
to provide a comprehensive overview of the findings from the SNAT paradigm, I
conducted a meta-analysis on the neural activation after general social salience
(positive and negative feedback vs. neutral feedback), social rejection (negative
vs. positive feedback) and social acceptance (positive vs. negative feedback). For
this analyses I used GingerALE (Eickhoff et al., 2009; Eickhoff et al.,, 2012;
Turkeltaub et al.,, 2012), a Brainmap application that is based on activation
likelihood estimation, with p<.005 and a minimal volume threshold of 300 mm?2.
Meta-analytical results are based on the findings of adults (chapter 3, table S1
and S3), middle childhood (chapter 4, table 3) and late childhood (chapter 5, table
S6) and show distinct neural activation for social rejection and social acceptance,
and additionally reveal a network of brain regions that are sensitive to general
social salience, see Table 1 and Figure 1.

Social rejection resulted in increased neural activation in the bilateral IFG,
the MPFC, and visual regions in the occipital lobe, including the cuneus (Table 1,
Figure 1). Previous studies often failed to find significant neural activation after
negative social feedback (Gunther Moor et al., 2010b; Guyer et al., 2012) which
could be related to low statistical power, as these studies often used small sample
sizes (Mumford and Nichols, 2008; Button et al., 2013). In chapter 3 of this thesis
I also did not report significant activation after social rejection using a smaller
sample size (n=30) in an adult sample. However, in the studies with large samples
and strong statistical power (chapter 4 and 5) I consistently report strong
activation in the IFG and MPFC in childhood. The MPFC has shown to play an
important role in social cognition and behavior (Blakemore, 2008; Adolphs, 2009)
and is specifically implicated when thinking about others (Apps et al., 2016; Lee
and Seo, 2016). Receiving negative social feedback may leave the children
wondering what the other might have thought about them (Gallagher and Frith,
2003). Indeed, the social information processing network (SIPN) suggests that the
MPEC is part of the “cognitive-regulatory node” were the mental states of others
are perceived before inhibition of pre-potent responses are regulated by the
lateral PFC (Nelson et al., 2005; Nelson et al., 2016). This corresponds to the MPFC
specifically being activated after social rejection, as this might result in a
stronger need for social emotion regulation than feedback leading to social
acceptance.

Meta-analytical results showed that social acceptance specifically
activated regions in the DLPFC, the SMA, and visual regions in the occipital lobe
(Table 1), consistent with prior studies on social evaluation processing (Gunther
Moor et al., 2010b; Guyer et al., 2012). The chosen GingerALE setting of clusters
> 300 mm?2 limits the possibility of finding meta-analytical activation in small
regions such as the striatum, however, I did report significant activation in the
caudate in both adults (chapter 3) and children (chapter 4). The SMA and DLPFC
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have been related to motor planning and behavioral control (Casey, 2015; Riva et
al., 2015) and neural activation in these regions might be related to the retaliation
component of the SNAT paradigm. That is, participants might like the peers that
provided positive feedback and therefore be intrinsically motivated to release the
button as soon as possible, resulting in increased activation in the SMA and
DLPFC. Indeed, the behavioral results showed that participants liked social
acceptance the most and the rewarding value of positive feedback was also
depicted in increased striatum activation (Sescousse et al., 2013). Increased
striatal activation after positive feedback has been reported by previous social
evaluation studies (Davey et al., 2010; Gunther Moor et al., 2010b; Guyer et al.,
2012) and fits well with the SIPN model that highlights the importance of the
“affective node” (including striatal regions) in the processing of social stimuli
(Nelson et al., 2005; Nelson et al., 2016).

Figure 1. Meta-analytic activation maps for Social Network Aggression Task studies of
chapters 3, 4 and 5. Neural activation for social rejection (negative > positive feedback)
depicted in red. Neural activation for general social salience (positive and negative >
neutral feedback) depicted in yellow. Meta-analyses were conducted using GingerALE
with p<.005 and volume > 300 mm2.

Using the SNAT, I experimentally showed that there is a neural network sensitive
for general social salience, irrespective of its valence. Both positive and negative
social feedback resulted in increased neural activation in the ACCg, bilateral Al,
medial frontal gyrus and visual regions in the occipital lobe (Figure 1, Table 1).
These findings fit with the literature suggesting that the ACC and AI signal for
social salience in general (Somerville et al., 2006; Dalgleish et al., 2017; Cheng et
al.,, 2019). These findings add to previous theoretical models of social
information processing which indicated the fusiform face area as an important
social detection mechanism (Nelson et al., 2005; Nelson et al., 2016), by showing
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that the ACC and AI are also important in the detection and signaling of social
relevant information. Moreover, the social salience networks reported in adults
(chapter 3), middle childhood (chapter 4) and late childhood (chapter 5) show
remarkable resemblances, indicating this might be a core social motivational
mechanism in humans. This highlights the importance of incorporating
childhood neurodevelopmental changes into theoretical frameworks, as social
processing networks are already active during childhood. Moreover, chapter 5
describes how activation in the AI was related to behavioral aggression, and
future studies should further explore whether individual differences in neural
activation of the social salience network are related to individual differences in
sensitivity to social evaluation. By taking real-life social interactions into account,
future studies might be able to examine whether individual differences in
sensitivity to social evaluations are a cause or an effect of individual differences
in social (offline or online) interactions.

Aggression regulation following social feedback

Previous theoretical models of social emotion regulation have suggested that the
lateral PFC is important for top down control over affective-motivational
subcortical regions (Nelson et al., 2005; Casey et al., 2008; Casey, 2015; Nelson
et al, 2016). By including a retaliation component to the Social Network
Aggression Task, I was able to directly test how individual differences in social
emotion regulation were related to neural activation in the DLPFC. Consistent
with prior experimental studies (Riva et al.,, 2015), chapter 3 revealed that
increased activation in the DLPFC after social rejection was related to less
subsequent aggression in adults, suggesting that these individuals were more
successful at regulating their behavioral aggression. Region of interest analyses
of the DLPFC in a middle childhood sample (chapter 4) provided some indications
of an aggression regulation network, but this was not strong enough to be
depicted using whole brain-behavior analyses. When examining these same
children two years later - now during late childhood - there was a significant
association between brain and behavior. Similarly to adults, increased neural
activation in the DLPFC was related to less behavioral aggression after negative
social feedback. Importantly, the children who displayed the largest
developmental increases in DLPFC activity across childhood also displayed the
largest changes in social emotion regulation. These findings add to previous
studies that suggested that the DLPFC is an important region for cool (non-
emotional) cognitive control (Luna et al., 2004; Luna et al.,, 2010; Crone and
Steinbeis, 2017) by showing that the DLPFC is also important in controlling hot
emotional control (Zelazo and Carlson, 2012; Welsh and Peterson, 2014).
Moreover, the results provide evidence for developmental models of social
emotion regulation (Nelson et al., 2005; Casey et al., 2008; Casey, 2015; Nelson
et al., 2016) in such a way that they confirm that the DLPFC serves as a regulatory
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mechanism and is related to behavioral outcomes. However, these models
specifically focused on adolescent brain development, whereas the findings of
this thesis show that important changes in this neural network occur during
childhood. Theoretical perspectives based on behavioral studies have
suggested that the development of emotion regulation is closely related to the
development of cognitive control (Diamond, 2013) and experimental studies have
shown that cognitive control development accelerates during childhood (Luna et
al., 2004; Zelazo and Carlson, 2012; Peters et al., 2016). The current thesis
provides direct links between maturation of cognitive control (DLPFC) regions
and individual differences in social emotion regulation. This was shown in a
specific age range (7-9-year old to 9-11-year old), to provide a detailed analysis
of changes in childhood. The results provide a window for understanding
individual differences in these developmental trajectories, showing that some
children develop better regulation skills already in childhood. Future research
should examine developmental changes in a longer time window by including
more measurement points, which allows disentangling general developmental
patterns from individual differences in growth trajectories.

Childhood: A window of opportunity

As children grow older and move towards adolescents, they generally receive
more autonomy and are less often under adult supervision (Steinberg et al.,
1989). In some individuals this results in increased risk taking and sensation
seeking, which can have negative consequences such as physical and
psychological injury (Steinberg, 2008). To understand individual differences in
these behaviors, several neurodevelopmental models have been proposed (see
Casey (2015) for an overview), all of which focus on adolescent brain
development. The longitudinal analyses across children, adolescents and adults
in this thesis (chapter 8), however, showed that structural connectivity between
the striatum and the PFC was predictive of behavioral control two years later,
providing evidence that brain maturation can forecast future behavioral control.
Knowing that brain development precedes behavior (Gabrieli et al., 2015); the
foundation for adolescent behavior is thus laid during childhood. The studies in
this thesis highlight the importance of incorporating childhood brain
development in neuroscientific models by showing that the steepest increases in
both behavioral control and subcortical-PFC structural connectivity take place
during childhood.

Both empirical studies as well as theoretical models have mostly focused
on developmental peaks in brain maturation (Casey et al., 2008; Galvan, 2010;
Braams et al., 2015; Peters and Crone, 2017). Although this can be illuminating, I
argue that the road towards this peak is more informative when it comes to
development. The developmental phase that marks the steep increase preceding
the peak is the time in which actual change is taking place. This could possibly
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reflect a moment where it is relatively easy to intervene in development.
Metaphorically, if a rock is quickly rolling down a hill, one can easily change its
course by gently tapping the rock. The faster the stone is rolling, the larger the
impact of this small interference will be. However, when the stone has reached
the end of the hill, the small tap will no longer have a big impact. As a broad
range of studies - including chapters of this thesis- have shown that childhood
marks pronounced changes in emotional reactivity (chapter 5; Silvers et al.
(2012)), cognitive control (Luna et al., 2004; Peters et al., 2016) and structural
brain connectivity (chapter 8; Wierenga et al. (2018b)). These accelerated changes
in brain development could provide a window of opportunity for interventions
that can change the course of development with smaller interference compared
to later interventions (Figure 2).

= Emotional reactivity
== Cognitive control

== Brain connectivity

/

Development

Window of
opportunity

Childhood Adolescence Adulthood

Figure 2. Childhood as window of opportunity. The steepest increase in emotional
reactivity, cognitive control and (structural) brain connectivity are in late childhood,
which may reflect a unique window of opportunity in terms of development. Note: data
of developmental trajectories are illustrative.
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Methodological Considerations

The studies discussed in this thesis make an important contribution to the
literature on the development of social emotion regulation and point to childhood
as a possible window of opportunity. Apart from these theoretical implications,
there are four methodological considerations that arise from these studies, which
are reviewed below.

Two of a kind: Generalizability of twins to singletons

The classical twin design is sometimes referred to as “the perfect natural
experiment”, as it provides the unique opportunity to tease apart genetic
components from environmental influences. Using a twin design can provide
important insights in the underlying mechanisms of a psychological construct.
An important assumption of these studies is that findings can be generalized to
the general (non-twin) population (Moilanen et al., 1999). Although several
studies have shown that this is true when it comes to general physical
characteristics (i.e., blood pressure or height, (Andrew et al, 2001)), twin-
singleton comparisons on psychological constructs are limited. A large
longitudinal study in middle and late childhood showed no significant
differences between the developmental trajectories of externalizing problems of
twins and singletons (Robbers et al., 2010), suggesting that twin findings on
behavioral control or emotion regulation might be generalizable. However, when
investigating social emotion regulation, it is important to keep in mind the unique
social buffer that twin-hood might provide (Branje et al., 2004). It has been
hypothesized that twins may have a favorable social environment due to
interactions with, and social support of the co-twin (Pulkkinen et al., 2003). In
order to test whether the findings of this thesis are generalizable to non-twin
children, it is important to compare the results on aggression regulation
following social evaluation with a sample of non-twins. Recently, several other
research facilities have started to use the Social Network Aggression Task, and
combining these samples will enable such direct comparisons.

Multiple samples vs. Massive samples

A twin study provides the additional possibility to test a specific psychological
construct in two similar samples (one co-twin in each), thereby replicating
findings within a study. Replication designs are very useful for testing the
robustness and reproducibility of results (Schmidt, 2009; Open Science, 2015).
Examples of multiple samples within one study are provided in this thesis in
chapter 2 (pilot- test- replication design), chapter 5 (ROI selection in independent
sample) and chapter 7 (functional connectivity in two independent samples). The
findings of thesis also showed that high statistical power is needed to detect
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subtle brain-behavior associations, specifically in children. That is, using
multiple smaller samples (n<30) in chapter 2 did not reveal the social rejection
specific neural activity that was found using a larger sample (n>300) in chapter
4. Moreover, the independent sample for ROI selection (n=41) in chapter 5 had
too little statistical power to reveal the whole brain-behavior associations that
were reported with the exploratory analyses (n>300). An important
methodological objective that follows from this thesis is that multiple samples
are not necessarily better than large samples (or vice versa), but that they serve
different purposes. Replicability is extremely important for confirming findings
(Ioannidis, 2005; Schmidt, 2009), but for explorative discoveries we need a lot of
statistical power and therefore large samples (Mumford and Nichols, 2008; Button
et al., 2013). This is especially true for developmental neuroscientific studies, as
the attrition rate in children often is high (O'Shaughnessy et al., 2008; Raschle et
al., 2012; Fassbender et al., 2017a).

Control your head motion: Attrition biases

Children are more prone to head motion during the MRI scan than adolescents
and adults (O'Shaughnessy et al., 2008; Raschle et al., 2012; Fassbender et al.,
2017a). To limit the confounding effect of head motion on MRI findings, it is
important to exclude participants that exceed a specific threshold of head motion
(Power et al., 2015). This often results in an underrepresentation of children in
cohort-sequential longitudinal studies, an issue that can be overcome by
oversampling children during data acquisition. However, excluding participants
who display excessive head motion might induce an additional bias: it is likely
that participants who have difficulty regulating their head motion also experience
difficulty regulating their emotions and behaviors. Indeed, studies showed a
significant association between head motion and motor control (Zeng et al., 2014;
Ekhtiari et al.,, 2019). This indicates that participants with the most behavioral
control problems are the first to be excluded in MRI research (Kong et al., 2014).
This bias is almost insurmountable, but must be kept in mind when interpreting
neuroscientific studies on emotion regulation and behavioral control. More and
more methods to deal with head motion during MRI scan acquisition are being
developed, for example by using real-time monitoring of head motion (Dosenbach
et al., 2017) or customized head molds (Power et al., 2019), which might enable
future studies to exclude less participants and thereby minimize attrition bias.

fMRI: State of mind or state of mess?

The reliability of functional MRI, specifically experimental (task-based) fMRI has
been heavily debated in recent years (Nord et al., 2017; Elliott et al.,, 2019b;
Frohner et al, 2019). The variability observed in fMRI blood oxygen level
dependent (BOLD) signal and the poor test-retest reliability in developing
populations is a big concern for the field of developmental neuroscience (Herting
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et al., 2018). Test-retest reliability is the extent to which a measure produces
stable outcomes across different time points under comparable conditions
(Dubois and Adolphs, 2016). Prior longitudinal developmental studies, including
chapter 5 of this thesis, reported low intra-subject stability across different scan
session (for an overview see Herting et al. (2018)). These could either reflect
individual variability over time or might reflect unaccounted-for noise in the fMRI
measurement (Dubois and Adolphs, 2016). The behavioral genetic analyses on
fMRI in chapter 4, 5 and 6 showed that a large proportion of variance was
explained by the E-factor, which includes both unique environmental influences
and measurement error. An important objective for future research is to
disentangle between the influence of unique environment and measurement
error, for example by accounting for intra-subject fluctuations using repeated
measures (Ge et al., 2017). Using such a repeated measures approach, one can
tease apart the stable effects (which are due to unique environment) from the
transient effects (which might arise from measurement error) (Ge et al., 2017).

Heritability estimates for fMRI are often lower than for structural MRI
(SMRI) (Jansen et al., 2015). Similar to the difference between questionnaire data
and experimental data, sMRI can be seen as a trait-like measure of the brain,
whereas fMRI provides a state-like measure (Greene et al, 2018a). Indeed,
questionnaire data often shows higher heritability and test-retest stability than
experimental studies (Tuvblad and Baker, 2011), that are aimed to induce a
specific state. A state can be defined as “the particular condition that someone is
in at a specific time”, and by this definition it seems reasonable that there is more
intra-individual variability across time for experimental (fMRI) studies. An
important benefit of the state-inducing ability of fMRI is that it can isolate
specific aspects of complex behaviors. A broad range of literature - including
chapter 3, 4 and 5 of this thesis- have shown that experimental fMRI is meaningful
in relation to behavior and can provide valuable information about the underlying
mechanisms of specific behaviors. It should be noted that the field of
developmental neuroscience, and specifically the use of longitudinal
experimental fMRI studies, is still young (Crone and Elzinga, 2015; Herting et al.,
2018). Perhaps the strength of fMRI lies in the combination of different MRI
modalities (Dubois and Adolphs, 2016). That is, experimental fMRI might be used
to detect meaningful associations between behavior and brain regions, which can
be further examined by studying the stability or heritability within this region
using additional MRI metrics (Greene et al., 2018a; Elliott et al., 2019a). This
would provide an in-depth examination of both trait-like and state-dependent
features of brain-behavior relations.
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Future directions

Based on the main scientific outcomes of this thesis, and taking into account the
methodological considerations that arose from the different studies, I have
formulated three objectives that are important for future research.

Combined forces: Multimodal brain imaging

In order to use experimental neuroimaging to its full potential, while taking into
account the limitations that it entails, it is important to combine different MRI
metrics. Aggressive behavior and emotion regulation have been studied using
different MRI methodologies, such as structural anatomy (Bos et al., 2018),
experimental fMRI (Ochsner et al., 2012), functional connectivity (Fulwiler et al.,
2012) and structural connectivity (Olson et al., 2009; Peper et al., 2015), but the
number of studies that combined different metrics is limited. Nevertheless, most
theoretical frameworks suggest that behaviors and emotions are regulated
through communication between specific brain regions that are part of a large
and complex brain network (Casey, 2015). To empirically examine the complex
features of the developing brain and its association with behavioral outcomes, a
multimodal brain imaging approach is needed.

Individual differences in developmental trajectories

The single time-point studies in this thesis (chapters 2, 3, 4, 6, 7) provide starting
points for understanding social emotion regulation in the childhood brain. To
understand the developmental trajectories of social emotion regulation, however,
we need longitudinal studies (Crone and Elzinga, 2015; Telzer et al., 2018).
Although I made a start with this approach in chapter 5 and 8, it should be noted
that two measures are only slightly better than one. Three or more measures are
needed to capture complex developmental trajectories, as this allows
investigating both linear and non-linear individual growth trajectories
(Madhyastha et al., 2018). Both behavioral outcomes (such as reward sensitivity
or emotional reactivity) and brain development have shown non-linear
development across childhood, adolescence and adulthood (Galvan, 2010; Silvers
et al, 2012; Wierenga et al, 2018a). Most of these studies had an
underrepresentation of children, resulting in more uncertainty (larger confidence
intervals) in developmental trajectories across childhood. The L-CID sample
consists of a unique twin sample that will be followed for a total of six years
(Euser et al., 2016), including three MRI measures. This will allow for examination
of individual differences in developmental trajectories across childhood and
emerging adolescence. Additionally, due to the large sample size and therefore
excellent statistical power, we can examine how childhood brain development
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can predict adolescent behavior and further explore childhood as a window of
opportunity.

Social communication of digital natives

Today’s children are the first generation to grow up with unlimited internet
access, enabling to be constantly connected to a complex and intense (digital)
social network. Despite the fact that social media is everywhere around us and
used by almost everyone on a daily basis, very little scientific research has been
conducted on the effects of social media on the developing brain (Crone and
Konijn, 2018). The studies in this thesis provide a starting point by unraveling
the neural mechanisms of social evaluation in childhood. An important question
for future research is whether individual differences in sensitivity to social
evaluation are related to individual differences in real-life (digital) social
interactions. Numerous studies have used real-life social media monitoring (for
example see Montag et al. (2014)), mostly in combination with questionnaire data.
Although this can provide insight on behavioral correlates, the covert neural
mechanisms involved in social media remain unknown. The novel approach of
bringing together both real-life social media monitoring, as well as innovative
developmental neuroimaging will result in cutting edge research and can provide
insights through a neuro-mechanistic approach.

Conclusion

This thesis provides a comprehensive overview of the underlying mechanisms of
social emotion regulation in childhood. The studies show that our brain is prone
to signal for socially relevant information, irrespective of its valence. This
network of social saliency is already present in childhood, indicating this might
be a core social mechanism. The thesis additionally shows that social rejection is
often followed by behavioral aggression, and regulation of these retaliation
emotions is related to control mechanisms of the DLPFC. The results are in line
with previous neurodevelopmental models, which highlight the importance of
top-down control of prefrontal regions over bottom-up processing subcortical-
affective regions. As complement to these models, the results show that the vast
architecture of functional subcortical-PFC brain connectivity is already in place
in middle childhood and suggest fine tuning of (social evaluation) brain networks
across childhood, highlighting the need to incorporate childhood into
developmental models of social emotion regulation. Neuroimaging research,
specifically neuroimaging in children is prone to challenges and several
methodological considerations need to be taken into account when studying the
childhood brain. In spite of these difficulties, studying childhood brain
development has the potential to provide important insights into a unique
developmental window of opportunity.
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Table 1. Meta-analytical activation for social salience, social rejection and social
acceptance. Results are based on 3 studies using the Social Network Aggression
Task (chapter 3, 4, and 5). Note that there was no significant activation reported
for the social rejection contrast in chapter 3. Meta-analytical results were
obtained with GingerALE, using p<.001 and volume > 300 mm?.

Anatomical Region X y z ALE Z p
Social Salience (positive and negative > neutral social feedback)

Insula (left) -32 26 -6 0.02 5.54 <.001
Insula (left) -30 12 -16 0.02 4.83 <.001
Insula (left) -44 16 -4 0.02 4.74 <.001
Insula (left) -38 22 -16 0.01 3.51 <.001
Insula (left) -30 18 0 0.01 3.17 0.001
Insula (right) 36 24 -12 0.02 4.74 <.001
Insula (right) 38 30 4 0.01 4.18 <.001

Medial frontal gyrus (right) 12 48 13 0.01 3.62 <.001

ACC gyrus 0 46 10 0.02 5.11 <.001
ACC gyrus 0 38 16 0.01 3.36 <.001
ACC gyrus 2 56 12 0.01 3.17 0.001
Occipital lobe (left) -48 -76 -2 0.02 5.85 <.001
Occipital lobe (right) 48 -72 -4 0.02 5.03 <.001
Occipital lobe (right) 50 -62 -2 0.01 3.35 <.001
Occipital lobe (right) 50 -78 6 0.01 3.1 0.001
Social Rejection (negative > positive social feedback)

IFG (right) 57 32 4 4.48 <.001
IFG (left) -45 26 -8 5.69 <.001
IFG (left) -52 28 4 4.22 <.001
Insula (left) -38 -16 26 4.22 <.001
MPFC -12 60 25 4.32 <.001
MPFC -6 54 30 4.05 <.001
Cuneus (left) -8 -97 12 4.83 <.001
Cuneus (right) 26 -91 16 5.11 <.001
Social Acceptance (positive > negative social feedback)

DLPFC (right) 39 34 40 4.19 <.001
SMA (right) 26 6 56 4.4 <.001
Culum of cerebellum (right) 4 -74 -2 5.23 <.001
Occipital lobe (left) -18 -85 -6 434 <.001
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Addendum

We wurmen ons letterlijk in bochten om de perfecte vakantiefoto te maken,
bedenken er een inspirerende tekst bij, zetten het online en dan... wachten op de
likes! Waarom doen we zoveel moeite om geaccepteerd te worden door anderen?
En hoe komt het dat sociale afwijzing ons kan laten stampvoeten van woede? Wat
zijn de onderliggende brein mechanismes van dit soort emoties en gedrag? En hoe
ontwikkelen deze mechanismes zich tijdens de kindertijd? Deze vragen tracht ik
te beantwoorden in dit proefschrift, om zo meer inzicht te krijgen in de
onderliggende processen van sociale emotie regulatie in de kindertijd.

De huidige generatie van kinderen is de eerste die vanaf hun geboorte opgroeit
met smartphones en tablets. Deze kinderen zijn constant verbonden met elkaar
door middel van multiplayer video games en social media. Uit een onderzoek uit
2015 onder meer dan 1200 acht-tot-twaalf-jarige bleek dat kinderen in deze
leeftijd gemiddeld zes uur per dag besteden aan (social) media (Common Sense
Media Inc., 2015). Deze cijfers laten zien dat kinderen tegenwoordig al vanaf
jongs af aan te maken hebben met social media en sociale verbondenheid.
Sommige krantenartikelen beweren dat deze nieuwe vorm van media kinderen
verandert in sociale junkies die altijd maar op zoek zijn naar sociale bevestiging.
Maar hoe nieuw is deze sterke behoefte om geaccepteerd te worden, om “erbij te
horen”? Eigenlijk is het helemaal niet nieuw. Sociale bevestiging is altijd al een
belangrijk onderdeel van ons leven geweest. Als je heel vroeger bij een groep
hoorde dan vergrootte dat de kans om te overleven. Voor onze voorouders was
sociale bevestiging letterlijk van levensbelang.

Sociale acceptatie en afwijzing kan worden onderzocht door middel van
wetenschappelijke experimenten waarbij feedback van leeftijdsgenoten op
bijvoorbeeld het persoonlijk profiel van de deelnemers wordt gesimuleerd
(Somerville et al., 2006, Gunther Moor et al., 2010b, Dalgleish et al., 2017). Deze
experimenten kunnen ook worden gedaan in combinatie met een hersenscan,
doormiddel van functionele magnetic resonance imaging (fMRI). Experimentele
fMRI studies naar sociale acceptatie en afwijzing hebben laten zien dat het belang
van sociale signalen niet alleen heel oud is, maar dat het ook diepgeworteld in
ons brein zit. Sociale acceptatie is bijvoorbeeld gerelateerd aan verhoogde brein
activiteit in het ventrale striatum (VS, figuur 1) (Guyer et al., 2009; Davey et al.,
2009; Gunther Moor et al., 2010b; Sherman et al., 2018b). Dit gebied staat bekend
als het beloningsgebied en wordt ook actiever als je geld wint (Secousse et al.,
2013). Sociale afwijzing is gerelateerd aan verhoogde activatie in de dorsale en
subgenuale anterieure cingulate cortex (ACC) en mediale prefrontale cortex
(MPFC), zie figuur 1. Van de dorsale ACC en de anterieure insula (Al, figuur 1)
werd in eerdere onderzoeken gezegd dat ze signaleren voor sociale pijn,
aangezien deze gebieden ook actief worden bij het ervaren van fysieke pijn
(Eisenberger and Liberman, 2004; Kross et al., 2011; Roge et al., 2015). Echter,
andere onderzoekers vonden verhoogde activatie in de ACC en Al bij onverwachte
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gebeurtenissen (Somerville et al., 2006, Cheng et al., 2019) en deze studies
suggereren dat de gebieden wellicht belangrijk zijn bij het evalueren van sociale
feedback in het algemeen, los van of dat deze positief of negatief is (Dalgleish et
al., 2017).

Figuur 1. Brein gebieden die belangrijk zijn bij het verwerken van sociale
feedback en het reguleren van (sociale) emoties. ACC - Anterieure cingulate
cortex, MPFC - mediale prefrontale cortex, DLPFC - dorsolaterale prefrontale
cortex, Al - anterieure insula, VS - ventrale striatum.

Eerdere studies hebben dus laten zien dat er verschillende neurale processen te
onderscheiden zijn voor sociale acceptatie en afwijzing, maar er blijven nog veel
open vragen. Om daadwerkelijk de neurale mechanismes bloot te leggen is er een
nieuw experimenteel paradigma nodig, die onderscheid kan maken tussen
breingebieden die van belang zijn bij sociale feedback in het algemeen of
specifiek sociale acceptatie en afwijzing. Om dit goed te onderzoeken heb ik een
nieuw experimenteel paradigma ontwikkeld, de Social Network Aggression Task
(SNAT), zie figuur 2. Voorafgaand aan het bezoek vullen de deelnemers een
persoonlijk profiel in, waarin ze vragen beantwoorden zoals “Wat is je favoriete
film?” of “Wat is je grootste wens”. Tijdens de MRI-scan zien ze vervolgens
feedback van onbekende leeftijdsgenoten op dat persoonlijk profiel. Naast
positieve en negatieve feedback bevat de SNAT ook een neutrale feedback
conditie. Dit vernieuwende aspect zorgt ervoor dat ik specifiek kon onderzoeken
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welke gebieden er meer actief waren na positieve feedback (positief versus
negatief), welke gebieden meer actief waren na negatieve feedback (negatief
versus positief) en welke gebieden zowel bij positieve en negatieve feedback
actief waren (positief en negatief versus neutrale feedback). Het is erg belangrijk
om dit onderscheid te kunnen maken, zodat we meer inzicht kunnen krijgen in
de brein processen die specifiek zijn voor bijvoorbeeld negatieve sociale
feedback of buitensluiting. Buitensluiting wordt namelijk vaak gerelateerd aan
negatieve gevolgen zoals depressie of agressie.

Afwijzing en Agressie

Bij sommige mensen leidt negatieve feedback of buitensluiting tot boosheid en
frustratie, wat kan resulteren in reactieve agressie (ofwel “wraak nemen”)
(Twenge et al., 2001, Dodge et al., 2003; Leary et al., 2006; Nesdale and Lambert,
2007, Nesdale and Duffy, 2011; Chester et al., 2014). Reactieve agressie na sociale
afwijzing is experimenteel onderzocht door deelnemers de mogelijkheid te geven
om een hard geluid te blazen in de oren van de leeftijdgenoot die zojuist feedback
had gegeven (Bushman and Baumeister, 1998; Twenge et al., 2001; Reijntjes et
al., 2010). De deelnemers mogen daarbij zelf de intensiteit en duur van de
geluidsexplosie bepalen. Dit soort studies hebben aangetoond dat deelnemers die
werden buitengesloten of afgewezen aanzienlijk agressiever reageren dan
deelnemers die werden geaccepteerd (Twenge et al., 2001; Leary et al., 2006;
Reintjes et al., 2010; DeWall and Bushman, 2011; Chester et al., 2014; Riva et al.,
2015).

Dat sociale afwijzing kan leiden tot agressief gedrag is waarschijnlijk gerelateerd
aan een gebrek aan impulscontrole of inadequate emotie regulatie (Chester et al.,
2014; Riva et al., 2015). Wetenschappelijk onderzoek met volwassen deelnemers
heeft bijvoorbeeld aangetoond dat de mate van agressie na sociale afwijzing te
maken had met de executieve functies van deelnemers. Onder executieve functies
worden de hogere controlefuncties van de hersenen verstaan. Ze besturen het
handelen en gedrag, helpen bij het stellen van doelen en het verwerkelijken
daarvan. Deelnemers met betere executieve functies bleken hun agressie beter te
kunnen beheersen dan deelnemers met minder goede executieve functies
(Chester et al., 2014). Deze vorm van zelfcontrole is mogelijk afhankelijk van top-
down controle van de dorsolaterale prefrontale cortex (DLPFC, zie Figuur 1) over
subcorticale-limbische hersengebieden (zoals de VS) (Casey, 2015). Verschillende
studies in volwassenen lieten inderdaad een relatie zien tussen brein activatie in
de DLPFC en agressie regulatie (Riva et al., 2015, Chester and DeWall, 2016; Peper
et al., 2015).
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Figuur 2. Social network aggression task (SNAT), een nieuw ontwikkeld
experimenteel paradigma om sociale feedback verwerking te onderzoeken.
Deelnemers ontvangen positieve, neutrale, of negatieve feedback van onbekende
leeftijdgenoten. Vervolgens krijgt de deelnemer de mogelijkheid om een hard
geluid in het oor van de leeftijdgenoot te blazen, als een index van reactieve
agressie. De gezichten in dit figuur zijn getekende benaderingen van de foto
stimuli uit Achterberg et al., 2016.

Deze studies suggereren dat de DLPFC wellicht dient als regulatiemechanisme
voor agressie ten gevolge van sociale afwijzing. Er zijn echter maar weinig studies
die agressie na sociale afwijzing hebben onderzocht in kinderen, ondanks dat
kinderen al vanaf jongs af aan te maken hebben met sociale acceptatie en
afwijzing. Aangezien de prefrontale cortex en executief functioneren nog volop
in ontwikkeling zijn tijdens de kindertijd zijn kinderen wellicht nog vatbaarder
om agressief te reageren na sociale afwijzing, aangezien het voor deze
leeftijdsgroep extra moeilijk is om sociale emoties te reguleren. Om agressie
regulatie na sociale afwijzing goed te kunnen onderzoeken in kinderen is er een
gedragscomponent toegevoegd aan het SNAT-paradigma (figuur 2). Nadat de
deelnemers de sociale feedback van leeftijdgenoten zagen kregen zij de
mogelijkheid om de deelnemer een hard geluid in de oren te blazen. De mate van
deze geluidsexplosie heb ik vervolgens gebruikt als mate van reactieve agressie.
Door het bestuderen van individuele verschillen in agressieregulatie kunnen we
meer inzicht krijgen in waarom sommige kinderen gevoeliger zijn voor sociale
afwijzing dan andere kinderen. Doordat we het innovatieve paradigma
combineren met fMRI kunnen we daarnaast ook inzichten vergaren in de brein
mechanisme die ten grondslag liggen aan sociale emotie regulatie.
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Het sociale brein in ontwikkeling

Eerdere fMRI studies naar de verwerking van sociale feedback in volwassenen en
adolescenten hebben aangetoond dat een netwerk van ACC-AI, samen met
subcorticale hersengebieden zoals de VS betrokken zijn bij de directe effecten
van sociale acceptatie en sociale afwijzing. Wat betreft het beheersen van sociale
afwijzing gerelateerde agressie lijkt de DLPFC een belangrijke rol te spelen. Juist
deze netwerken staan centraal in neurologische modellen van sociale emotie
regulatie, zoals het “Sociaal Informatie Verwerkingsnetwerk” (SIPN - Social
information processing network, Nelson et al., 2016; Nelson et al., 2005) en het
“Disbalans model” (Imbalance model, Casey et al., 2008; Somerville et al., 2010).
Het SIPN-model stelt dat doelgericht gedrag afhankelijk is van interacties tussen
verschillende gebieden binnen de prefrontale cortex, die sociaal-emotionele
informatie uit de subcorticale hersengebieden verwerken (Nelson et al., 2005).
Aanvullend beschrijft het disbalans-model (Casey et al., 2008; Somerville et al.,
2010) de mis match in ontwikkelingstrajecten van subcorticale hersengebieden
en de prefrontale cortex. De relatief snelle ontwikkeling van affectieve
subcorticale hersengebieden en de langzamere geleidelijke ontwikkelende
controlegebieden in de prefrontale cortex zorgen voor een disbalans die het
grootst is gedurende adolescentie.

Eerdere studies en theoretische modellen hebben daarnaast aangetoond dat
sociale emotieregulatie niet alleen afhankelijk is van geisoleerde hersengebieden,
maar afhankelijk is van een netwerk van geintegreerde verbindingen tussen
subcorticale en corticale (prefrontale) hersengebieden (Chester et al., 2014; de
Water, Cillessen, & Scheres, 2014; Olson et al., 2009; Peper et al., 2015; Silvers et
al., 2016; van Duijvenvoorde, Achterberg, Braams, Peters, & Crone, 2016). De
meeste van deze onderzoeken waren echter gericht op de adolescentie. Sommige
van deze studies omvatten ook kinderen jonger dan tien jaar, maar de
steekproefgroottes waren vaak erg klein. Het blijft daarom de vraag of deze
geintegreerde subcorticale-corticale hersennetwerken al aanwezig zijn tijdens de
kindertijd. Weinig MRI studies hebben de ontwikkeling van sociale emotie
regulatie tijdens de kindertijd onderzocht, ondanks wetenschappelijk studies die
aantonen dat in de kindertijd de snelste veranderingen in executieve functies
plaatsvinden (Luna, Garver, Urban, Lazar, & Sweeney, 2004; Peters, Van
Duijvenvoorde , Koolschijn, & Crone, 2016; Zelazo & Carlson, 2012).

Een mogelijke oorzaak voor het kleine aantal experimentele MRI-studies in de
kindertijd is dat het scannen van kinderen een grote uitdaging kan zijn: de MRI-
scanner is behoorlijk imposant en kan spanning veroorzaken bij kinderen
(Durston et al., 2009; Tyc, Fairclough, Fletcher, Leigh, & Mulhern, 1995). Door
dergelijke spanning is het minder waarschijnlijk dat kinderen een MRI-scan
succesvol afronden, wat resulteert in een lagere scankwantiteit en kwaliteit bij
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kinderen in vergelijking met oudere deelnemers (Poldrack, Pare-Blagoev, & Grant,
2002; Satterthwaite et al., 2013). Om individuele verschillen te onderzoeken
(waarom zijn sommige kinderen gevoeliger voor sociale evaluatie dan anderen),
zijn grote aantallen proefpersonen nodig. We hebben niet alleen grote aantallen
proefpersonen nodig om interpersoonlijke (tussen personen) verschillen in
sociaal gedrag te onderzoeken, er zijn meerdere metingen van diezelfde grote
steekproef nodig om intra-individuele (binnen personen) verschillen in
ontwikkeling vast te leggen (Telzer et al.,, 2018). Dat wil zeggen, om echt
ontwikkeling vast te leggen, hebben we longitudinaal onderzoek nodig (Pfeifer et
al., 2018).

Samen Uniek Tweelingonderzoek

Met al deze factoren is rekening gehouden bij het opzetten van de longitudinale
tweelingstudie “Samen Uniek”, onderdeel van het Leids Consortium on Individual
Development (L-CID). De L-CID-studie bestaat uit twee cohorten (vroege kindertijd
en late kindertijd) die gedurende zes constructieve jaren worden gevolgd, met
jaarlijkse bezoeken aan huis of aan de universiteit (Euser et al., 2016). Dit
longitudinale onderzoek geeft dus de mogelijkheid om individuele verschillen
tussen personen en binnen personen te onderzoeken. Een ander bijzonder aspect
van het “Samen Uniek” onderzoek is dat alle deelnemers tweeling zijn. Dit geeft
ons de mogelijkheid om niet alleen de brein processen te onderzoeken, maar ook
de erfelijkheid van deze processen. Zowel eeneiige als twee-eiige tweelingen
groeien op in dezelfde omgeving (dezelfde ouders, hetzelfde huis, zelfs dezelfde
verjaardag). Eeneiige tweelingen hebben daarnaast ook hetzelfde erfelijke
materiaal, ze zijn als het ware genetische kopieén. Twee-eiige tweelingen
daarentegen lijken genetisch gezien net zoveel op elkaar als gewone broers en
zussen. Stel dat brein activatie tussen eeneiige tweelingen meer op elkaar lijkt
dan tussen twee-eiige tweelingen, dan duidt dat op een erfelijke component. Dit
soort gedrag-genetische analyses heb ik in verschillende hoofdstukken van mijn
proefschrift toegepast.

Het merendeel van de onderzoeken in het huidige proefschrift zijn gebaseerd op
data uit het late kindertijd cohort. Dit cohort omvatte 512 kinderen (256
gezinnen) tussen de leeftijd van 7 en 9 op tijdstip 1 (gemiddelde leeftijd: 7,94 +
0,67; 49% jongens, 55% eeneiige tweeling). Deze grote steekproefomvang biedt
voldoende statistische zekerheid om de ontwikkeling van de hersenen bij
kinderen te onderzoeken, rekening houdend met het feit dat het percentage
kwalitatieve MRI data lager ligt in kinderen dan in volwassenen (O'Shaughnessy,
Berl, Moore, & Gaillard, 2008).
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Studies binnen dit proefschrift

Binnen dit proefschrift bespreek ik de resultaten van zeven empirische MRI-
studies. In hoofdstuk 2 testte ik het SNAT-paradigma in drie afzonderlijke
steekproeven van 7-11-jarige kinderen en vervolgens combineerde ik de
resultaten door middel van een meta-analyse. In alle drie de groepen resulteerde
negatieve sociale feedback in de hardste geluidsexplosie, dus de meeste agressie.
De brein analyses in de losse groepen lieten geen duidelijke effecten zien,
mogelijk omdat de groepen te klein waren (<30 proefpersonen). Een meta-analyse
over verschillende breingebieden liet echter zien dat negatieve feedback
resulteerde in meer brein activatie in de amygdala, Al en MPFC/ACC. Deze
resultaten lieten zien dat sociale motivaties al van groot belang zijn bij 7-9 jaar
oude kinderen en dat het SNAT-paradigma een valide paradigma is om sociale
emotie regulatie te onderzoeken bij kinderen. Vervolgens heb ik in hoofdstuk 3
de brein processen van sociale feedback verwerking bij volwassenen onderzocht.
Ook hier vond ik dat negatieve feedback resulteerde in de hoogste mate van
agressie. Brein analyses lieten zien dat de Al en MPFC/ACC meer actief werden na
zowel positieve en negatieve sociale feedback, wat suggereert dat ze belangrijk
zijn voor sociale feedback in het algemeen en niet specifiek voor sociale
afwijzing. Daarnaast rapporteerde ik een link tussen brein activatie en gedrag:
meer activatie in de DLPFC was gerelateerd aan minder agressie na sociale
afwijzing. Dit wijst erop dat de DLPFC als een emotie regulatiemechanisme werkt
in het brein.

Na validering van het experimentele paradigma bij kinderen en volwassenen, was
de volgende stap om te onderzoeken in hoeverre individuele variatie in sociale
evaluatie werd verklaard door genetica en omgevingsinvloeden. Om dit te
onderzoeken heb ik in hoofdstuk 4 gedrags-genetische analyses uitgevoerd op
brein activatie tijdens sociale feedback verwerking. Hieruit bleek dat agressie na
sociale  afwijzing werd beinvloed door zowel genetische- als
omgevingsinvloeden. In het brein vonden we vergelijkbare resultaten als bij de
volwassenen, mogelijk omdat we in deze studie veel meer kinderen includeerde
(meer dan 350) dan in de studie in hoofdstuk 2. De gedrags-genetische analyses
op hersenactivatie lieten zien dat ongeveer 15% van de variatie in brein activatie
in de DLPFC verklaard werd door genetica (de activatie was tussen eeneiige
tweelingen meer vergelijkbaar dan tussen twee-eiige tweelingen). Deze resultaten
laten zien dat het verwerken van sociale feedback en het reguleren van emoties
in de kindertijd wordt beinvloed door zowel genetica als de omgeving.

Een belangrijke vervolgvraag is dan natuurlijk: hoe ontwikkelen deze
breinprocessen zich gedurende de kindertijd? In hoofdstuk 5 heb ik daarom
individuele verschillen in longitudinale veranderingen van agressie regulatie in
de kindertijd onderzocht. Daarbij vond ik dat agressie na sociale feedback
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afneemt tussen de midden-kindertijd (7-8 jaar) en late kindertijd (9-11 jaar). Brein
activatie in de AI, IFG, MPFC en DLPFC nam gedurende deze tijd juist toe.
Daarnaast rapporteerde ik een link tussen brein activatie en gedrag die
vergelijkbaar was met wat we eerder vonden in volwassenen. Meer brein activatie
in de DLPFC tijdens de late kindertijd was gerelateerd aan minder agressie na
sociale afwijzing. Dit verband was minder duidelijk in de midden kindertijd, wat
duidt op een belangrijke ontwikkeling tijdens deze tijdsspanne. Dat juist de groei
in DLPFC-activatie belangrijk was bleek ook uit de longitudinale analyse, waarin
de toename in DLPFC-activatie gerelateerd was aan de afname in agressie. Met
andere woorden, kinderen waarbij de DLPFC sneller ontwikkelde lieten ook een
snellere ontwikkeling in sociale emotie regulatie zien.

De eerste vier studies binnen dit proefschrift richten zich op brein activatie in
verschillende gebieden en hoe deze gerelateerd zijn aan sociale emotie regulatie.
Echter werkt het brein niet als losse eilandjes, maar als een groot aaneengesloten
netwerk. Aangezien eerdere onderzoeken vaak oudere deelnemers gebruikten of
slechts een klein aantal kinderen bevatten is het tot op heden de vraag of
functionele connecties tussen subcorticale en corticale hersengebieden al tijdens
de kindertijd ontwikkelen of pas gedurende de adolescentie. Aangezien L-CID
een groot en statistisch sterke steekproef omvat was ik in staat om functionele
hersenconnectiviteit te onderzoeken in de kindertijd. In hoofdstuk 6 heb ik de
erfelijkheid van functionele hersenconnecties tussen subcorticale gebieden de
prefrontale cortex onderzocht. Uit de analyses bleek dat er robuuste en
repliceerbare hersenconnectiviteit was tussen de prefrontale cortex en de VS en
amygdala. Over het algemeen lieten de connecties tussen de PFC-VS en PFC -
amygdala verschillende genetische invloeden zien: VS-connecties werden vooral
beinvloed door genetica, maar amygdala connecties vooral door omgeving. Er
waren ook wat overeenkomsten: zowel connecties van de VS als de amygdala en
de ventrale ACC werden voornamelijk beinvloed door gedeelde omgeving, terwijl
connecties tussen de VS, amygdala en OFC voornamelijk erfelijk waren. Deze
bevindingen kunnen inzicht bieden bij het opzetten van interventies naar sociale
emotie regulatie, door te laten zien dat zowel genetische invloeden als omgeving
(bijvoorbeeld opvoeding) van belang zijn bij de ontwikkeling van functionele
hersenconnectiviteit.

De resultaten uit hoofdstuk 2, 4, 5 en 6 gaven niet alleen inzicht in de
breinprocessen bij kinderen, ze brachten me ook veel kennis en ervaring bij het
doen van MRI-onderzoek bij kinderen. In hoofdstuk 7 geef ik een uitgebreid
overzicht van valkuilen en mogelijkheden van MRI-onderzoek bij jonge kinderen.
Hierbij heb ik gekeken naar de relatie tussen spanning of angst voor de MRI-scan
en de uiteindelijke kwantiteit en kwaliteit van de scan. We vroegen op 3
momenten gedurende het lab bezoek hoeveel spanning de kinderen ervaarden.
Gedurende het bezoek nam de spanning steeds meer af en gaven kinderen aan
het steeds leuker te vinden. Verder bleek dat de hoeveelheid spanning die door
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de kinderen wordt ervaren samenhangt met hoeveel scans ze voltooien, maar niet
met de kwaliteit van die scans. De gedrags-genetische analyses lieten verder zien
dat de hoofdbeweging tijdens de scans (de hoofdreden van verminderde kwaliteit
in scans) sterk genetisch bepaald was. Echter, als we controleerde voor extreme
hoofdbeweging en alleen naar subtiele beweging keken verdween dit effect.
Buitenproportionele hoofdbeweging is dus erfelijk, maar goed-gecontroleerde
hoofdbeweging binnen MRI-scans wordt niet beinvloed door genetische factoren.
Deze bevindingen zijn zeer relevant voor de ontwikkelingsneurowetenschap,
omdat we hiermee beter onderzoek kunnen doen naar hersenontwikkeling bij
(jonge) kinderen.

Het uiteindelijke doel van de ontwikkelingsneurowetenschappen is om de
ontwikkeling van de hersenen vanaf de kindertijd tot de volwassen leeftijd te
onderzoeken en neurale ontwikkeling te relateren aan gedragsuitkomsten. In
hoofdstuk 8 heb ik de ontwikkeling van structurele subcorticale PFC-
connectiviteit onderzocht in kinderen, adolescenten en volwassenen. Daarbij heb
ik specifiek gekeken of de groei van deze connecties gedurende de ontwikkeling
voorspellend was voor gedragscontrole. Allereerst vonden we dat kinderen
naarmate ze ouder werden steeds beter hun gedrag konden controleren en het
geduldigst waren in de late adolescentie. Structurele hersenconnectiviteit tussen
de striatum en de PFC liet de sterkste groei zien tijdens de late kindertijd en
vroege adolescentie. De sterkte van deze connecties was daarnaast voorspellend
voor gedragscontrole. Dit duidt erop dat hersenontwikkeling voorafgaat aan
gedragsuitkomsten en dat subcorticale- prefrontale connecties belangrijk zijn in
de ontwikkeling van gedragscontrole.

De kansrijke kindertijd

De studies die in dit proefschrift worden beschreven hebben verschillende
belangrijke bevindingen opgeleverd. Ten eerste kon ik met behulp van de Social
Network Agrgression Task onderscheid maken tussen brein activatie die specifiek
was voor sociale afwijzing en sociale acceptatie, en activiteit die gerelateerd was
aan algemene sociale signalen. Ten tweede heb ik laten zien hoe individuele
verschillen in agressie regulatie gerelateerd zijn aan verschillen in brein activatie
in de DLPFC. Ten derde heb ik, door bevindingen van het fMRI paradigma te
combineren met functionele en structurele hersenconnectiviteit, kennis weten te
verzamelen over de ontwikkeling van sociale emotie regulatie tijdens de
kindertijd en daarbij laten zien dat de kindertijd een kansrijke periode is (zie
figuur 3).
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Figuur 3. De kansrijke kindertijd. De grootste toename in emotionele reactiviteit,
cognitieve controle en (structurele) hersenconnectiviteit vinden plaats in de late
kindertijd, wat mogelijk een kansrijke periode reflecteert in termen van
ontwikkeling. NB: de data verbanden in dit figuur zijn illustratief.

Naarmate kinderen ouder worden en naar adolescenten gaan, krijgen ze over het
algemeen meer autonomie en staan ze minder vaak onder toezicht van
volwassenen (Steinberg, Elmen, & Mounts, 1989). Bij sommige personen leidt dit
tot verhoogde risico's en het zoeken naar sensaties, wat negatieve gevolgen kan
hebben, zoals lichamelijke en psychische schade (Steinberg, 2008). Om
individuele verschillen in dit gedrag te begrijpen, zijn verschillende
neurologische ontwikkelingsmodellen voorgesteld (voor een overzicht, zie Casey,
2015), die allemaal gericht zijn op de ontwikkeling van de hersenen van
adolescenten. De longitudinale analyses bij kinderen, adolescenten en
volwassenen in dit proefschrift toonden echter aan dat structurele connectiviteit
tussen het striatum en de PFC voorspellend was voor gedragscontrole, wat het
bewijs levert dat hersenontwikkeling toekomstige gedragscontrole kan
voorspellen. Wetende dat hersenontwikkeling voorafgaat aan gedrag (Gabrieli,
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Ghosh, & Whitfield-Gabrieli, 2015); wil dus eigenlijk zeggen dat de basis voor
gedrag in de adolescentie gelegd wordt tijdens de kindertijd. De studies in dit
proefschrift benadrukken het belang van het integreren van hersenontwikkeling
bij kinderen in neurowetenschappelijke modellen door aan te tonen dat de
sterkste toename in zowel gedragscontrole als subcorticale-PFC structurele
connectiviteit plaatsvindt tijdens de kindertijd.

Zowel empirische studies als theoretische modellen zijn vooral gericht op een
piek in hersenontwikkeling, dus waar het traject het hoogste punt behaald
(Braams, van Duijvenvoorde, Peper, & Crone, 2015; Casey et al., 2008; Galvan,
2010; Peters & Crone, 2017). Hoewel dit verhelderend kan zijn, pleit ik dat de weg
naar deze piek informatiever is als het gaat om ontwikkeling. De
ontwikkelingsfase die de sterke toename laat zien is immers de tijd waarin de
feitelijke verandering plaatsvindt. Deze fase weerspiegelt mogelijk een moment
waarop het relatief eenvoudig is om in te grijpen in ontwikkeling. Metaforisch
gezien, als een steentje snel van een heuvel afrolt kun je gemakkelijk de route
veranderen door zachtjes tegen de steen te tikken. Hoe sneller de steen rolt, hoe
groter de impact van deze kleine handeling. Wanneer de steen het einde van de
heuvel heeft bereikt, heeft het tikje op de steen echter geen grote impact meer.
Uit een breed scala aan onderzoeken - inclusief hoofdstukken van dit proefschrift
- is gebleken dat gedurende de (late) kindertijd de grootste veranderingen
plaatsvinden in emotionele reactiviteit (hoofdstuk 5; Silvers et al. (2012)),
cognitieve controle (Luna et al.,, 2004; Peters et al.,, 2016) en structurele
hersenconnectiviteit (hoofdstuk 8; Wierenga, van den Heuvel, et al. (2018)). Deze
versnelde veranderingen in de ontwikkeling van de hersenen kunnen een kans
bieden voor interventies die de loop van de ontwikkeling kunnen veranderen met
relatief kleine handelingen (figuur 3).
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Conclusie

Dit proefschrift geeft een uitgebreid overzicht van de onderliggende
mechanismen van sociale emotieregulatie in de kindertijd. De studies tonen aan
dat onze hersenen geneigd zijn om te signaleren voor sociaal-relevante
informatie, ongeacht de valentie. Dit netwerk van “sociaal signaleren” is al in de
kindertijd aanwezig, wat aangeeft dat dit een belangrijk sociaal kern mechanisme
kan zijn. De resultaten in dit proefschrift laten bovendien zien dat sociale
afwijzing vaak wordt gevolgd door reactieve agressie en dat het beheersen van
deze emoties verband houdt met controlemechanismen van de DLPFC. De
resultaten zijn in lijn met eerdere neurologische modellen, die het belang
benadrukken van top-down controle van prefrontale hersengebieden over
bottom-up verwerking van subcorticale hersengebieden. Als aanvulling op deze
modellen tonen mijn resultaten aan dat de basis voor de functionele en
structurele architectuur van subcorticale prefrontale hersenconnectiviteit al
zichtbaar is tijdens de kindertijd en dat ontwikkeling binnen deze netwerken
belangrijk is voor sociale emotieregulatie. Neurowetenschappelijk onderzoek bij
(jonge) kinderen brengt uitdagingen met zich mee en er moet dan ook rekening
worden gehouden met verschillende methodologische overwegingen bij het
bestuderen van de hersenen van kinderen. Ondanks deze moeilijkheden kan het
bestuderen van de hersenontwikkeling bij kinderen belangrijke inzichten bieden
in een unieke en kansrijke ontwikkelingsperiode.
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