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Automatic quantitative analysis of pulmonary
vascular morphology in CT images
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Abstract

Purpose Vascular remodeling is a significant pathological feature of various pulmonary
diseases, which may be assessed by quantitative CT imaging. The purpose of this
study was therefore to develop and validate an automatic method for quantifying
pulmonary vascular morphology in CT images.

Methods The proposed method consists of pulmonary vessel extraction and
quantification. For extracting pulmonary vessels, a graph-cuts based method is
proposed which considers appearance (CT intensity) and shape (vesselness from a
Hessian-based filter) features, and incorporates distance to the airways into the cost
function to prevent false detection of airway walls. For quantifying the extracted
pulmonary vessels, a radius histogram is generated by counting the occurrence of
vessel radii, calculated from a distance transform based method. Subsequently, two
biomarkers, slope a and intercept g, are calculated by linear regression on the radius
histogram. A public data set from the VESSEL12 challenge was used to independently
evaluate the vessel extraction. The quantitative analysis method was validated
using images of a 3D printed vessel phantom, scanned by a clinical CT scanner
and a micro-CT scanner (to obtain a gold standard). To confirm the association
between imaging biomarkers and pulmonary function, 77 scleroderma patients were
investigated with the proposed method.

Results In the independent evaluation with the public date set, our vessel
segmentation method obtained an area under the ROC curve of 0.976. The median
radius difference between clinical and micro-CT scans of a 3D printed vessel phantom
was (0.062+0.020 mm), with interquartile range of (0.199+0.050 mm). In the
studied patient group, a significant correlation between diffusion capacity for carbon
monoxide and the biomarkers, @ (R=-0.27, p-value=0.018) and g (R=0.321,
p-value=0.004), was obtained.

Conclusion In conclusion, the proposed method was highly accurate, validated with a
public data set and a 3D printed vessel phantom data set. The correlation between
imaging biomarkers and diffusion capacity in a clinical data set confirmed an associa-
tion between lung structure and function. This quantification of pulmonary vascular
morphology may be helpful in understanding the pathophysiology of pulmonary
vascular diseases.



3.1 Introduction

Pulmonary vascular remodeling is a significant characteristic of pulmonary diseases,
such as chronic obstructive pulmonary disease, interstitial lung disease (ILD), and
pulmonary hypertension (PH) [54, 55, 14, 56, 57, 12, 29, 58]. Systemic sclerosis
(SSc, also called scleroderma), is an autoimmune connective tissue disease affecting
several organs, and its pulmonary involvement can cause ILD or PH, which may
involve pulmonary vascular alterations [25, 59]. Pulmonary vascular alterations have
been described as narrowing and pruning of distal vessels, which increases vascular
resistance and cause hypertension [60, 61, 62]. The dilation of proximal vessels is also
an essential morphological feature, as increasing pulmonary vascular resistance affects
proximal vessels [63]. Investigation of changes in pulmonary vascular morphology,
such as pruning of small vessels or dilation of large vessels, may provide assessments
of pulmonary vascular remodeling.

Some studies based on the analysis of computed tomography (CT) images have
shown promising results for quantifying pulmonary vascular remodeling in pulmonary
diseases, using different approaches. Matsuoka et al. [12, 60] introduced a CT
measurement by quantifying the 2D cross-sectional area of small pulmonary vessels
for assessing vessel pruning of COPD. Estepar et al. [64, 62] extended the pruning
measurement into 3D by quantifying the volume ratio between small vessels and the
total vessels, and applied these measurements within each lobe. Rahaghi et al. [65,
63] introduced the concepts of imaging biomarkers, the volume ratio of small vessels
to total vessels and ratio of proximal vessels to total vessels, for quantifying pruning
of distal vessels and dilation of proximal vessels, respectively. Rather than assessing
vascular morphology based on vessel size, Helmberger et al. [66] calculated tortuosity
as well as 3D fractal dimension of segmented pulmonary vessels for characterizing
vascular remodeling of patients with pulmonary hypertension.

In the pulmonary vessel quantification methods mentioned above, accurate pul-
monary vessel segmentation is an important step. A few approaches have been
proposed for extracting pulmonary vessels, and a challenge called VESSEL12 with
a public data set and independent evaluation has been organized for comparing
vessels extraction methods, among which Hessian-based methods have shown a good
performance [67, 68, 69]. Tube-like structures can be enhanced by Hessian-based
methods, such as the Frangi filter [70] and the Sato filter [71], where the eigenvalues
of the Hessian matrix describe cylindrical properties. However, the response of Hessian-
based filters is low at vessels’ edges and bifurcations [72]. The ‘strain energy’ filter [68]
can partly overcome this problem of low responses at vessels’ bifurcations by analyzing
the shape-tuned strain energy density. According to the VESSEL12 challenge [69],
simply using a threshold or local thresholds [73] on the vesselness map (which is the
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vessel likelihood map enhanced with Hessian-based methods) can not extract binary
vessels accurately. In our previous work [74], a graph-cuts based method was proposed
for accurately extracting lung vessels by combining the appearance (CT intensity) and
shape (vesselness) features into a single cost function, and achieved a competitive
performance among the submitted methods of VESSEL12 that produce binary results.
Nevertheless, the separation between airway wall and vessels was still inaccurate,
which could also affect the quantification of pulmonary vascular morphology, due to
the similar CT intensities of airway walls and vessels.

Validating pulmonary vessel quantification methods is a challenging task, as manu-
ally annotating the ground-truth in patient images is extremely time consuming and it
is hard to determine the quality and robustness of the annotated data quantitatively.
As a possible alternative to validate the quantification methods, anthropomorphic
phantoms containing known distributions of vessels can be considered. These phan-
toms can be created using 3D printing, a technique with applications in different
imaging modalities, including CT, for imaging and dosimetry purposes [75, 76, 77, 78,
79, 80]. In this work, a 3D printed phantom with vessel-like structures designed in
a similar way to the lung, was used to validate the proposed method for quantifying
vessel morphology. A sufficiently high-resolution micro-CT scan of the lung phantom
was acquired and used as the ground truth for the vessel distribution.

In this study, we present an automatic and quantitative approach to assess pul-
monary vascular morphology alternations, based on an adjusted graph-cuts vessel
segmentation and a novel histogram-based quantitative analysis. The automatic
method consists of two steps: pulmonary vessel extraction and pulmonary vessel
quantification. For pulmonary vessel extraction, we extended our previous graph-
cuts based method [74] by incorporating the distance map to airways into the cost
function, for separating airway walls from vessels. For pulmonary vessel quantification,
a method is proposed by quantifying the radius histogram of pulmonary vessels, where
all pulmonary vessels are included in the analysis, instead of only a specific part. The
accuracy and robustness of the automatic method were validated with three data
sets: (1) a public data set of the VESSEL12 challenge to test the accuracy of the
vessel segmentation; (2) a data set of a 3D printed vessel phantom to evaluate the
accuracy of vessel sizing and robustness to protocol settings of the CT scanner; (3)
and finally a data set of SSc patients to confirm the correlation between pulmonary
vessel morphology and pulmonary function.

3.2 Materials and Methods

3.2.1 Pulmonary vessel extraction

The segmentation task can be treated as a labeling problem L={L,|pe€2,L, €{0,1}},
where 22 is the set of voxels from an image and p € 2 [81]. A voxel is labeled as object
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or background according to its own properties and the connections with its neighbors.
In the labeling problem of graph-cuts, the general energy function formulates the
connection weights of voxel nodes, object (source) node and background (sink) node,
as described in Equation (3.1). The energy function can be optimized by finding the
max-flow/min-cut [82, 83]. To extract pulmonary vessels, we developed a graph-cuts
based method by combining appearance features, shape features and the distance map
to airway (as shown in Fig. 1(a)). The energy function of the proposed method is
specified by formulating the data term D, (L,) and neighbor term V), 4(L,, L), with a
weight y:

E(D) =) DpLp)+y Y, Vpg(Lp Ly (3.1)
peP? (P, eN

The data term D, (L) consists of three parts:
Dp(Ly) = wDy" (L) + (1 - w)D™ (L) + wa D)™ (L), (3.2

The appearance term DgT(L,,) is calculated based on the CT intensity; the shape term
DZSL(L,,) is calculated based on the vesselness of the strain energy filter [68]; and
the distance-to-airway (DTA) term D))" (L) is determined by the distance map to the
airways. These three terms are then balanced with weights w and w,, where w is a
global balance between appearance and shape terms, and w, is the weight for airway
wall elimination.

Since voxels with a high CT intensity or vesselness obtain a high vessel likelihood,
sigmoid functions are employed for both the appearance term and the shape term.
The appearance term DgT(Lp) and the shape term D‘;SL(L,,) are formulated as follows:

1 .
TS
1

— VSL[VSL_gVsLy
;> Up>=p>)

DSt SN IL, =D =
l+e

VSL  yVSL
DML, = 1) =

(3.3)
l1+e

where IST and I;,’SL represent the CT intensity and vesselness of voxel p, respectively;
o1, BT, )\ and BYS" are the parameters of the corresponding sigmoid function.
The determination of the parameters in these sigmoid functions is described in Section
2.D.1.

The distance-to-airway map is employed in order to eliminate false detection of

a

airway walls. Therefore, the lumen of the airway of each chest CT scan is detected
by a region-growing method where a seed point was searched in the trachea and an
optimal threshold was selected by iteratively growing before the leakage of airway
volume [84]. Then, a Euclidean distance transform is applied for generating the
distance map. The thickness of airway walls is approximately 2 mm [73, 85], thus, the
response range of the distance-to-airway term is limited to (0, 3) mm. For determining
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Figure 3.1: An overview of our proposed method which contains two main steps: 1) pulmonary vessel extraction and pulmonary
vessel quantification. To extract pulmonary vessels, the vesselness, CT intensity and distance map to airways were incorporated
into the graph-cuts cost function, as shown in (a). The vessel skeletons and radii are calculated based on the segmented vessels,
and the radius histogram is counted and quantified with the proposed method, as illustrated in (b).
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the response to airway walls, a Gaussian function is adopted as the kernel that centers
on u and scales with o, as follows:
(dp-w?

(-Dle 27, if0<d,<3mm

Dy™dplL, = 1) = (3.4

0, otherwise.

The neighbor term V), 4(L,,L;) from Equation (3.1) is the cost for cutting a neigh-
borhood edge (p, q) on the basis of their similarity and y is a positive coefficient for
controlling the smoothness of detected objects. It is calculated based on the similarity
in CT intensity of two neighborhood voxels (p, g € 4, and corrected by the spatial
distance between them:

e a1, L,

Vp.qp Lg) = ; (3.5)
0, otherwise,

where d), ; represents the spatial distance between voxels p and ¢q. In other words, if
two neighboring voxels (p, q) have similar CT intensities and are close together but
are labeled differently, the cost of the n-edge (p, ) will be high.

3.2.2 Pulmonary vessel quantification

Based on the segmented pulmonary vessels, the centerlines of vessel trees are extracted
using a skeletonization method [86]. This method successively erodes the border
voxels for locating the vessel centerline where a refinement step was adapted for
eliminating the side branches; the distance between boundary voxels and central voxel
are calculated and the minimum distance is used to estimate the corresponding radius.
This estimated radius is subsequently assigned to that central voxel, producing a 3D
skeleton map with radius value embedded in the centerline voxels, as illustrated in
Fig. 3.1(b).

The number of voxels in the vessel skeleton with a specific radius on the vessel
skeleton are counted as N,. The vessel radius frequency is normalized for voxel size
(V;) to make the histogram comparable across CT scans, i.e. instead of simply using
the counted number, the accumulated length was estimated with the number of voxels
and their size. In order to obtain a linear relation between frequency and radius, a
logarithmic transformation is applied to the normalized frequency in the histogram.
Afterwards, a ‘radius histogram’ is generated for pulmonary vessels of each CT scan,
in which the i*" bin’ index represents the vessel radius, r;, and its height characterizes
the logarithm of the normalized frequency of occurrence, log(N,, -V;).

y=a-x+p
(3.6)
where y=1log(N,-V;) and x=r.
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For quantifying the pulmonary vessel morphology, the ‘robustfit’ method (in
MATLAB R2016a Mathworks, Natick, MA [87]) was applied to solve the linear
regression in Equation (3.6). For each patient, two biomarkers, @ and g, are calculated,
which correspond to the slope and intercept of the linear regression, respectively, see
Fig. 3.1 (b). The slope parameter a quantifies the occurrence of vessels with small
radius relative to those with large radius, which may indicate pruning of small vessels
and/or dilation of larger vessels. The intercept parameter § is an extrapolation of the
radius histogram to radius 0, which estimates the number of pulmonary capillaries
and may relate to the pulmonary vascular tree’s capacity.

3.2.3 Implementation and parameter settings

The graph-cuts based vessel segmentation method was implemented in Matlab and
its cost function was optimized with a mixed C++ code !. This proposed vessel
segmentation method was made publicly available by the authors 2. The strain energy
filter for vessel enhancement is also open source and can be found via ITKTools 3. The
quantitative method for analyzing the pulmonary vascular morphology benefited from
the DtfSkeletonization module of MeVisLab and the robust linear regression method in
MATLAB. The entire processing pipeline was completed in MeVisLab 2.7.1 (VC12-64),
on a personal computer configured with 24 GB of memory, a 2.67 GHz CPU (Intel
Xeon W3520) and a 64-bit Windows 7 operating system.

The parameters used in the segmentation method were optimized on the VESSEL12
training set. The appearance and shape features were normalized to ranges of [0,
1], before incorporation in the cost function. The strain energy filter’s parameters
were set according to the literature [68, 74]. Before construction of the graph, a
very low threshold of 0.0009 was used on the vesselness map to exclude voxels that
almost certainly belong to the background. This resulted in a relatively small sparse
graph structure, which was constructed with the remaining voxel nodes, object and
background nodes, and allowed processing of high resolution CT scans.

The balance parameter w between appearance and shape terms was set to 0.6 [74],
and the parameter w, of the distance to airway term was set to 0.4, optimized with
a grid search approach on the training data set. Because the response region of the
distance to airway term was limited to a local region around the airways, the parameter
w, was not set as a global balance, in comparison to the global balance parameter w.
The parameters of the sigmoid function in the appearance term DgT(Lp) and shape
term DXSL (Lp) were automatically estimated with the following algorithm. The mean
value of the appearance feature was picked as the initial threshold to initially separate
the background and object. The appearance feature inside the object region was fitted

Lhttp://www.wisdom.weizmann.ac.il/ bagon/matlab_code/GCmex1.9.tar.gz
2https://github.com/chushan89/Lung-Vessel-Segmentation-Using-Graph-cuts
Shttps://github.com/ITKTools/ITKTools
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with a Gaussian distribution, by calculating the mean u and standard deviation std.
Then, the parameters of the sigmoid function were estimated by fitting a Gaussian
distribution, such that Sigmoid(B) = Gaussian(pf) = 0.5 and Sigmoid(y) = 0.95. The
parameters used in the cost function for the shape term were calculated in a similar
way.

For the parameters of the DtfSkeletonization module, the ‘object min value’
parameter was set to 1, as the graph-cuts output was set to binary. The ‘cavity
value’, which controls the closing of cavities in binary objects before detecting the
skeleton, was set to 10 voxels (default value). The limitation of maximum erosion
distance (by ‘max distance’ parameter) was turned off. The ‘skeleton only’ option
was checked, therefore, only the voxels on the vessel skeleton were coded with the
estimated radius in the output image. A vessel radius can obtain a value from only
a limited number of possible distances, due to the limited and constant voxel size.
To capture all these unique radii in the histogram, the bin size was set to as small as
0.001. To calculate the imaging biomarkers @ and B, a linear regression was applied to
the radius histogram. In the regression analysis, the first non-empty bin was excluded
as this might be influenced by the noise of small branches in vessel skeleton extraction.

3.2.4 Data sets used for validation
3.2.4.1 Data set of VESSEL12

The proposed pulmonary vessel segmentation method was validated on the VESSEL12
challenge data set [69], which contains three CT scans in a training set and 20 CT
scans in a testing set. These anonymous scans were collected from three hospitals: the
University Medical Center Utrecht (Utrecht, The Netherlands), the University Clinic of
Navarra (Pamplona, Spain), and the Radboud University Nijmegen Medical Centre
(Nijmegen, The Netherlands). In the 20 testing CT scans, points of interest were
annotated individually by three trained medical students with four possible labels:
vessel, lung parenchyma, airway wall or lesion [69]. Only the points on which all
three annotators agreed were included in the ground truth. In the three training CT
scans, the annotations were labeled in a similar way, however, there were only two
label categories (vessel and non-vessel). Furthermore, the lung masks for each of
these scans were provided by the VESSEL12 challenge organizers.

For the three CT training scans, we performed lung vessel segmentation and the
corresponding evaluation results can be found in the Appendix. For the 20 CT scans
in the testing data set, the binary pulmonary vessels, which were extracted using the
graph-cuts based method, were uploaded to the VESSEL12 challenge website and
independent evaluation results were calculated by the organizers. The area under the
ROC curve (Az) was used as the main score for validation. Binary segmentations were
applied to a distance transform for generating probabilistic maps, subsequently, the
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Figure 3.2: 3D printed vessel phantom (a), together with one slice of the micro-CT
scans (b) and one slice of a clinical CT scan (c).

ROC curve was calculated based on the probabilistic maps.

3.2.4.2 Data set of vessel phantom

To validate the proposed method for quantifying vessel morphology, a 3D printed
phantom, representing vessel-like structures with similar sizes as in the lung, was
used. This phantom was designed based on the work by Weibel et al. who performed
a microscopic study of lungs from human cadavers [88, 89]. An algorithm was
developed in MATLAB (Mathworks, Natick, MA) to generate a model of a vessel
tree structure, with decreasing length and diameter for the vessels, modelled as
cylinders, in each vessel generation iteration [90, 91]. The model was constrained to
an elliptically shaped frame (150x103x26 mm), as it was intended for manufacturing a
small phantom for image quality in CT [90, 91]. The vessel tree started growing at the
center of one of the sides of the ellipse (Fig. 3.2 (a)). At each vessel segment ending,
there could be a bifurcation or an elongation. The bifurcation chance increased after
each elongation step. The direction of the two generated branches after a bifurcation
was randomly taken but limited within 45°, with regard to the parent vessel direction.
The lung model was printed using a ProJet HD 3000 3D printer with multi jet modeling
(MJM) technique in ultrahigh definition mode, selecting Visijet EX200 as material.
This mode enables to print very thin layers (32 um) of material. The total number
of generated vessel segments was in the order of 20000 being the biggest 10 mm
diameter and the smallest in the order of 0.2 mm [91].

The 3D printed vessel phantom was imaged with a clinical CT scanner (Aquilion
ONE, Toshiba Medical Systems, Otawara, Japan) with the following acquisition
parameters: 0.5 x 64 mm collimation, 120KV, pitch 0.828, 0.5 s rotation time, FOV of
195.1 mm, and various tube currents (10, 20, 50, 100 mA). Images were reconstructed
with 0.5 mm slice thickness and interval, selecting FC30 as convolution kernel with
two reconstruction methods, filtered back projection (FBP) and AIDR3D standard. The
voxel dimensions were 0.38 x 0.38 x 0.5 mm. In total, 8 CT scans were available to be
analyzed (4 dose levels, 2 reconstruction methods). To obtain the ground truth of
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the 3D printed vessel phantom, the phantom was scanned with a Zeiss Xradia 520
Versa micro-CT scannet, selecting 80 kV, 7 W and a 0.4 X objective and no additional
filtration. The total scanning time was 36 hours and vertical stitching was applied
to obtain the image volumes (1894 x 1903 px by 2922 images). The voxel size was
52x52x52 um and the micro-CT images, in TIFF format, were 8-bits depth. The images
were reformatted and rotated in MeVisLab, in order to obtain the same cross-sections
as in the CT scans.

3.2.4.3 Data set of SSc patients

Patients with systematic sclerosis (SSc) were selected from the biobank of the Leiden
Combined Care in SSc (77 patients; 67 women and 10 men; mean age + STD,
49.9+14.2 years). The images were obtained with a thorax protocol and the patients
took pulmonary function tests (PFT) [92]. All patients were scanned with the same
CT scanner (Aquilion 64, Toshiba Medical Systems, Otawara, Japan), during full
inspiration and without contrast medium. The CT protocol settings were: tube current
140 mA without modulation; tube voltage 120kV; rotation time = 0.4 s; collimation =
64x0.5 mm; images were reconstructed with 0.5 mm slices [25]. The local Medical
Ethical Committee approved the protocol. Written informed consent was obtained
from each patient prior to enrollment. The fibrosis scorings of these patients were
established by two experts (a radiologist, L.K. and a rheumatologist, A.S.) on the basis
of CT scans and blinded to the clinical information [11]. PFTs were tested including
total lung capacity (TLC), forced vital capacity (FVC), forced expiratory volume in
1 second (FEV;) and single-breath diffusion capacity for carbon monoxide corrected
for haemoglobin concentration (DLCOc), and the PFT results were expressed as a
percentage of the predicted value [93, 94]. Patients who had no fibrosis were selected,
however the gas transfer (DLCOc %predicted) of them were impaired. Thus, we
hypothesized that pulmonary vascular changes could partly explain the impaired gas
transfer, for patients without lung fibrosis.

3.3 Results

The proposed graph-cuts based method obtained an Az of 0.976, which is a compet-
itive performance among 31 submitted methods and the best result among binary
submissions of VESSEL12, where the average and range for Az were 0.83 and (0.671,
0.976), respectively. The evaluation results of three binary submissions with top
ranking performance are shown in Table 3.1: the binary submissions (LT) of van
Dongen et al. [73] who extracted vessels with local thresholds on Frangi filter’s
vesselness and excluded airway walls by dilating the airway segmentation; the binary
submissions (AS) of our previous method which segmented vessels with a graph-cuts
based method by combining only appearance and shape features into the cost function;
the binary submissions (ASD) of the newly proposed method which detected vessels
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Table 3.1: Area under the ROC curve (Az) score of three binary submissions to the
VESSEL12 challenge across all categories (Categories 1: Principal, 2: Small Vessels,
3: Medium Vessels, 4: Large Vessels, 5: Vessel/Airway Wall, 6: Vessel/Dense Lesion,
7: Vessel/Mucus-filled bronchi, 8: Vessel-in-lesion/Lesion, 9: Vessel/Nodules). The
binary submission using local threshold on Frangi’s vesselness (LT, [73]), the graph-
cuts based method combining the appearance and shape feature (AS, [74]), and the
method proposed in this work incorporating appearance, shape and distance to airway
(ASD).

Categories 1 2 3 4 5 6 7 8 9

LT 0.932 0.885 0.954 0.955 0.912 0.688 0.404 0.649 0.517
AS 0.973 0.952 0.973 0.992 0.861 0.485 0.297 0.658 0.255
ASD 0.976 0.958 0.977 0.993 0.930 0.484 0.305 0.661 0.254

with a graph-cuts based techniques by incorporating appearance and shape features
and distance to airway. The evaluation results of all submissions are also available
online on the VESSEL12 website #.

The vessels in the 8 CT scans of the phantom were segmented with the proposed
graph-cuts based method. The supporting oval frame surrounding the 3D printed
vessels in the phantom was removed using a cylinder mask. As there were no airways
designed in this phantom, the distance map to the airway was set to zero. The vessels
in the micro-CT scan were extracted using a threshold, which was determined by
density histogram analysis, see Fig. 3.3(a). The distribution of the voxel density in
the micro-CT scan had two peaks, the peak with lower density value corresponds
to the background (air) and the peak with higher density value corresponds to the
vessels. Thus, the density value with minimum frequency between these two peaks
was selected as threshold to extract vessels from the micro-CT scan. The threshold
T =156 was used to segment vessels in this study. The 3D and 2D view of the extracted
vessels are illustrated in Fig. 3.3 (b) and (c). For testing the robustness of this ground
truth vessel extraction, we selected a range of thresholds (156 +4) to extract vessels
(see Appendix).

Based on the extracted vessels in the micro-CT scan and the 8 CT scans, the corre-
sponding vessel size was calculated with the DtfSkeletonization module of MeVisLab,
where the estimated radius was recorded at the vessel centerlines. The micro-CT
scan was registered to the 8 CT scans of the phantom using Elastix registration
[95], separately, with the following settings: four-level pyramid, adaptive stochastic
optimizer, B-spline interpolator, Euler transformation, and maximum number of
iterations 250. The skeletons in the micro-CT scan were extended into a ‘radius tube’
by assigning the voxels on each cross section with the radius that was recorded on its

“https://vessel12.grand-challenge.org/results/
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Figure 3.3: Histogram and extracted vessels of the vessel phantom in the micro-CT
scan, (a) the histogram of the micro-CT scan of 3D printed vessel phantom, (b) 3D
view of the extracted vessels in the micro-CT scan, (c) 2D view of the extracted vessels.

centerline, in order to overcome the mismatching between skeletons of micro-CT scan
and clinical CT scans. With the transformation parameters, the radius tube obtained in
micro-CT scan was transferred to each CT scan. For each CT scan, we got a mapping
vector with two columns: one contained the radius value of vessels in the clinical
CT scan and the other contained the radius value of the corresponding vessels in
the micro-CT scan. The median (M) and IQR of radius differences (radius of CT -
radius of micro-CT) were on average of 0.062 and 0.199, with STD of 0.02 and 0.05,
respectively, which shows high robustness. The correlations (R) between radius in
CT and micro-CT scans were calculated with Pearson’s correlation. The correlations
are presented in Table 3.2. The correlations were all statistically significant and the
average correlation was 0.909 (p-value< 0.001). Furthermore, linear regression was
applied to the radii from the clinical CT scans and those from the micro-CT scan. All
regression analysis results are shown in Table 3.2, with an average slope and intercept
of 1.018 and -0.058, respectively. The 2D histograms and linear regressions between
radius of CT scans and micro-CT scan are shown in Fig. 3.4.

The vascular morphology in the clinical CT scans of the phantom was studied with
the proposed radius histogram analysis method, based on the extracted vessels. For
each CT scan, two imaging biomarkers (a and ) were obtained for quantifying the
vascular morphology of the phantom, where the intercept § estimates the number
of small vessels and the slope a quantifies the relative contribution between small
and large vessels. The results of the biomarkers are presented in Table 3.2. The STD
(average) of biomarker « is 0.034 (-1.785), and the STD (average) of biomarker f§ is
0.049 (7.03), which implies that the proposed method is robust against CT scanner
settings, in particular variation in dose (mAs) and for two reconstruction methods
(FBP and AIDR 3D). The vascular morphology was investigated in the micro-CT scan
with the proposed method, based on the vessels extracted with a threshold of 156.
The imaging biomarkers « and § were -1.803 and 7.265, respectively. The average of
difference in a and B between micro-CT scan and clinical CT scans was -0.019 and
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Table 3.2: Results of comparing radius analysis between CT scans and micro-CT scan, and results of quantifying vessel morphology
of vessel phantom. The metrics median (M), interquartile range (IQR), correlation (R) are presented.

Comparison with micro-CT scan Biomarkers

CT setting M (IQR) [mm] R (p-value) slope intercept a B

10mA, FBP 0.028 (0.281) 0.869 (< 0.001) 0.980 0.040 -1.780 7.035
20mA, FBP 0.031 (0.275) 0.874 (< 0.001) 0.986 0.031 -1.780 7.034
50mA, FBP 0.073 (0.172) 0.922 (< 0.001) 1.029 -0.088 -1.817 7.062
100mA, FBP 0.072 (0.179) 0.921 (< 0.001) 1.031 -0.091 -1.795 7.058
10mA, AIDR3D 0.074 (0.168) 0.921 (< 0.001) 1.030 -0.090 -1.709 6.918
20mA, AIDR3D 0.073 (0.169) 0.920 (< 0.001) 1.027 -0.087 -1.783 7.011
50mA, AIDR3D 0.073 (0.170) 0.921 (< 0.001) 1.029 -0.088 -1.817 7.062
100mA, AIDR3D 0.072 (0.179) 0.920 (< 0.001) 1.032 -0.092 -1.795 7.058
Average 0.062 (0.199) 0.909 1.018 -0.058 -1.785 7.030
STD 0.020 (0.050) N.A. 0.022 0.058 0.034 0.049
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0.235, respectively.

With regard to the patient images from the Leiden Combined Care biobank, the
lung masks were detected with a multi-atlas based method and pulmonary vascular
morphology was investigated with the proposed method. The imaging biomarkers («,
B) were collected for all these patients. The average + STD of « and  are (-1.49+0.2)
and (9.58 +0.61), respectively. The correlations between imaging biomarkers and
DLCOc %predicted were studied with Spearman’s rho correlation. In the studied
patient group, the imaging biomarkers, @ (R=-0.27, p-value=0.018) and g (R=0.321,
p-value=0.004), were significantly correlated with DLCOc %predicted (with average
+ STD, 70.4+16.7 ). The processing results of two patients in this SSc patient group,
who were quantified with the proposed method, are illustrated in Fig. 3.5.

3.4 Discussion

In this work, we proposed an automatic method, which consisted of two processing
steps: a graph-cuts based pulmonary vessel extraction and a radius histogram based
pulmonary vessel quantification, for investigating pulmonary vascular morphology
in CT images. The accuracy of the graph-cuts based vessel segmentation method
was validated with a public data set, and a competitive result was obtained among
other submissions. The robustness of the pulmonary vessel quantification method was
validated with a 3D printed vessel phantom data set, demonstrating a robust measure-
ment by comparing CT and micro-CT scans. The pulmonary vascular morphology in
each CT scan was quantified into two biomarkers, @ and 8. The association between
pulmonary vascular morphology and gas transfer was investigated with a data set
of 77 patients in SSc. The biomarkers, a and g, were significantly correlated with
DLCOc % predicted, indicating that the impaired gas transfer is associated with the
remodeling of pulmonary vascular morphology.

Extracting pulmonary vessels accurately is an essential processing step for quan-
tifying pulmonary vascular morphology. In this work, a graph-cuts based method
was proposed for vessel segmentation, by including voxel’s appearance and shape
features into a cost function. In comparison with methods using simply threshold or
local-threshold on vesselness, the proposed vessel segmentation method performed
well according to the independent validation of VESSEL12. This might be due to the
fact that the graph-cuts based method considers multiple features for each voxel and
assigns voxel’s label incorporating its neighbouring information. For separating the
airway walls and vessels, the distance map was integrated into the graph-cuts cost
function. In the method proposed by van Dongen et al. [73], the airway walls were
excluded by dilating the airway with a spherical element with a specific size, which
might remove partially vessels touching airway walls. Our method obtained slightly
better performance in separating the airway walls, as illustrated in Table 3.1, category
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5. Our method performed slightly worse, on the other hand, in distinguishing vessels
from dense lesions or nodules, categories 6 and 9, which may be due to the fact that
intensity of lesions and nodules are similar to vessels. These are however not expected
in patients with SSc.

The quantitative analysis of the extracted pulmonary vessels was performed on
the radius histogram, where the vessel radii were calculated by a distance transform
based method. The accuracy of vessels sizing and the robustness of vessel morphology
quantification were validated using a data set of a 3D printed vessel phantom, which
was scanned with a micro-CT scanner and a clinical CT scanner. The geometry model of
the phantom was not used as a gold standard or ground truth for comparisson, because
the accuracy of the 3D printing process (which depends on the printer, technique
and selected material) can introduce differences between the model and the actual
final printed object. Establishing robust methods to determine the accuracy and
reproducibility of 3D printing, in particular for phantoms is still under investigation
[91]. The characteristics and limitations of the material used in the lung phantom
compared to human vessels were discussed elsewhere [91]. The use of 3D printing
has grown in the past years in different areas in medicine, such as biocompatible
prosthesis development, surgery planification with models based on patient images
and educational purposes °. One of its applications is the development of affordable
customized test objects or phantoms that can be used in image quality assessment in
different medical imaging modalities [96, 76]. O'Dell et al. validated the accuracy of
sizing vessels using a 3D printed vascular phantom made of acrylonitrile butadiene
styrene plastic. The vessel sizes (with diameters ranging from 1.2 to 7 mm) were
evaluated by manual measurements at 64 branches [77]. Due to the complexity of our
3D printed vessel phantom, however, the vessel sizes were not manually measurable.

For out study, a micro-CT scan with sufficiently high resolution was used for
calculating the ground truth of vessel sizes. Thus, we validated the accuracy of sizing
vessels by comparing clinical CT scans with micro-CT scan, and evaluated the vessel
size in all vessel trees by matching the clinical and micro- CT scans. The differences
of vessel radii calculated from clinical CT scans and micro-CT scan were very small;
therefore, these radii were highly correlated; and the regression analysis between
radius from clinical CT scans and micro-CT scan obtained average slope approximated
to 1 and average intercept approximated to O, implying that the radii detected in CT
scans and in micro-CT scan are almost equal. As presented in Table 3.2, the IQR of
radius differences is smaller by increasing the dose (mA) for reconstruction kernel
FBP, while it is much more stable for the kernel AIDR3D, which implies the kernel
AIDR3D performed well for reconstructing images, with low mA settings.

5 AAPM Special Interest Group in 3D printing (https://www.rsna.org/3D-Printing-SIG/)
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The vascular morphology of the extracted vessels was characterized by two
biomarkers, « and 8. The biomarker a, which is the slope of the radius histogram,
reflects the related contributions between small vessels and large vessels, quan-
tifying small vessels pruning and large vessel dilation. The intercept 8, which
was calculated by extrapolation to radius O, estimates the vascular tree capacity,
without actually detecting pulmonary capillaries. The robustness of the automatic
quantification method was validated with CT scans acquired with various settings,
while the variation in biomarkers was quite small. The average difference in between
micro-CT scan and clinical CT scans is 0.025 by |a&micro-cT — @c7| and 1.4 % by
(@micro—cT — @cT)! @micro—ctl * 100, while that in g is 0.235 and 3.2 %, respectively,
i.e., comparing clinical CT scans to micro-CT scan, the biomarker about relative
contribution between small vessels and large vessels were similar, in comparison with
the biomarker of vessel tree capacity, which might be due to the fact that the micro-CT
performed better in detecting small vessels. The relation between gas transfer and
biomarkers was validated with a data set of 77 SSc patients. The a and § showed
significant correlations with DLCOc % predicted, which implied that the vascular
remodeling (pruning/dilation and vascular tree capacity) is associated with impaired
gas transfer. Vascular remodeling as assessed in HRCT may precede changes in gas
transfer and may therefore be important in the clinical evaluation and treatment
decisions of SSc patients. Although, the correlations between imaging biomarkers and
gas transfer were moderate, these were comparable results in the relevant study [62].

There are some limitations in this work. The lung vessel segmentation method
did not work well for separating vessels and lung nodules, as the latter are mostly
attached to vessel trees and have a high intensity, eliminating the response of nodules
by considering the shape properties may be helpful for separating vessels and nodules,
however, detecting / extracting lung nodules is not the goal of this study. The 3D
printed vessel phantom used in this study contained a wide range of vessel radii and
lengths. A future development in using this type of phantoms to test algorithms could
be to control the number of vessels that are generated per diameter or length, during
the design process. In this way, a robust ground truth based on the model could
be compared. One of the limitations for the phantom is that the attenuation of the
material used to print the vessels is slightly higher compared to human vessels [90,
91]. Nonetheless, when comparing the the relative contrast between the lung phantom
vessels and the background (air) with values measured in vessels and parenchyma
in patients, the difference is relatively small (around 10%). This limitation could be
overcome in the future if other materials become available that could be printed with
the required resolution and a lower attenuation. Nonetheless, these differences in
attenuation don’t influence the results in the present study, as the presented method
for pulmonary vascular morphology analysis can be adapted to assess the target
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characteristics, in this case. In this work, the automatic quantification method was
applied on both lungs together. Applying the quantification method on separate lungs
or lung lobes may allow more localized assessments of vascular remodeling. In the
future, we will investigate deep-learning techniques in pulmonary analysis, as these
techniques generally perform well in medical images analysis. We did not separate
the arteries and veins for specific analysis. Developing a deep-learning based method
for separating arteries and veins is also a challenging but interesting topic for our
future work [97, 98, 99], as pulmonary vascular diseases may affect arteries and veins
differently. For validating the association between biomarkers and gas transfer, only
the SSc patient group was involved without a control group. Quantifying the vascular
morphology of healthy people may improve the detection of lung vasculopathy in SSc
patients. However, even without these specific analyses or a control group, we already
found a significant association between vascular morphology and gas transfer.

3.5 Conclusions

In conclusion, an automatic method has been proposed for quantifying pulmonary
vascular morphology in CT images. The accuracy of vessel segmentation has been
evaluated independently with the public data set of VESSEL12, and the robustness
of the quantification method has been validated with the image data set of a 3D
printed vessel phantom. The imaging biomarkers for quantifying pulmonary vessel
morphology in CT images are correlated with gas transfer in the studied SSc patients.
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Supplementary

Evaluation with three CT scans of VESSEL12 training set

In the VESSEL12 challenge, there are three CT scans in the training set, with the
corresponding lung masks and annotations files. In each CT scan, points were
annotated into 0 or 1 by three annotators, where O means non-vessel and 1 means

42



Eﬂvaluatiqn of AS vessel segmentation E\faluation of ASD vessel segmentation

T T
p21: auc=0.950 / p21: auc=0.952

Q ——— p22: auc=0.926 Q ——— p22: auc=0.926
i p23: auc=0.961 S p23: auc=0.961
(o] [}
2 | =
o f o
o // o
(0] 0]
=4 ‘ =
= H [

| |

0 0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
False Positive rate False Positive rate

(a) (b)

Figure 3.6: Al. ROC evaluation of method AS and ASD. The cure of p21, p22 and p23
are corresponding to three CT scans in training set.

vessel. Only points which 3 annotators agreed on the label were included in the
annotation file. Finally, there are around 300 points with positions <x, y, z> and labels
included in the annotation file, for each CT scan.

For each CT scan, the AS and ASD methods were used for segmenting lung vessels
within lung region, separately. For these binary segmentation results, a signed distance
transform was applied to for generating a probabilistic mask. Finally, the ROC cure

were calculated based on the probabilistic mask and annotated points, see Figure, 3.6.

The method ASD obtained an average AZ of 0.946 which is slightly better than method
As, 0.945. Furthermore, the AZ of vessel segmentation in training set is worse than
that in testing set, which might because that the in-house used distance transform
method is not exactly the same with the method used by VESSEL12 organizers, and
the annotation categories are not the same between training and testing sets.

Vessel extraction in micro-CT scan

As presented in the Fig 3 (a). of main text, there are two clear peaks in the density
histogram of the micro-CT scan, where the peak with lower density corresponds to the
background, and the one with higher density corresponds to the vessels. The density

value (T=156) is the minimum frequency and selected as threshold to segment vessels.

For testing the robustness of vessel extraction, we selected a range of thresholds 156+4
to extract vessels, and the segmentation results was compared with the reference
segmentation (T=156). The radius difference histogram between vessels of threshold
i and reference were presented in Figure 3.7. The results of comparing radius analysis
between threshold i and reference were presented in Table 3.3, where the median M
radius difference is 0, IQR is also 0, the average correlation (R) is 0.980, and slope
(intercept) is 1.018 (0.003).
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Figure 3.7: A2. Radius difference frequency histogram between threshold i and
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Table 3.3: Results of comparing radius analysis between threshold i and reference
threshold

T reference

Ti M (IQR) R (p-value) slope intercept
152 0 (0) 0.981 (0.000) 1.015 -0.006
153 0 (0) 0.978 (0.000) 1.019 -0.004
154 0 (0) 0.979 (0.000) 1.020 -0.004
155 0 (0) 0.987 (0.000) 1.013  -0.001
157 0 (0) 0.986 (0.000) 1.014 0.004
158 0 (0) 0.981 (0.000) 1.018 0.008
159 0 (0) 0.975 (0.000) 1.021 0.011
160 0 (0) 0.976 (0.000) 1.025 0.013
Average 0O 0.980 1.018 0.003
STD 0 0.004 0.004 0.007
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