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Chapter5
Plectoneme formation of double-stranded
DNA under torsion

5.1 Motivation

We will now extend the WLC model to include the response to torsional stresses in the chain.
The helical structure of dsDNA makes the understanding of supercoiling, under torsional
stress, important for the mechanics of transcription and replication in both prokaryotes and
eukaryotes. Torsion induced supercoiling is also thought to be an important ingredient for
the compactification of DNA into the bacterial nucleoid. Also here was it the introduction
of single molecule techniques, that made it possible to examine the torsional response of
DNA in a precise and controlled way. Making use of the preferred direction for its magnetic
moment of super paramagnetic beads [95], allows to measure the relation between torsion and
extension while using a force clamp. Also with optical tweezers torsion can be applied while
stretching DNA [145], using specially fabricated beads. For larger tensions micropipettes have
been used [146]. Since the first magnetic tweezer experiments the precision in measurement
has increased to a level that makes it possible to resolve many open questions concerning the
elastic properties of DNA. Next to these measurements of the extension as a function of the
linking number several methods have been used to measure at the same time the torque [145,
147].

A large amount of models have been devised to describe these experiments, from purely
mechanical models [148], mechanical models with electrostatic interactions [149, 150] models
that include some entropic effects [151] to phenomenological models [152], each targeted to
explain some feature in a specific experiment. Our goal is to make a model built from first
principles, valid over a large range of monovalent salt concentrations and loading forces. Our
approach differs in several aspects from previous work. First of all we take explicitly the
full chain as a continuous elastic rod into consideration. We will show that the writhe of the
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58 Plectoneme formation of double-stranded DNA under torsion

chain can be calculated exactly. The electrostatic interaction we take with some precision into
account following [153] and argue why this approach is correct.

It is clear that some approximations and simplifications are unavoidable to keep the model
simple enough to handle; we will nonetheless capture the essential features that the measure-
ments reveal. In this chapter we introduce the ingredients of the model as an extension of the
WLC model from Chapter 3. We will explain the way the plectoneme is formed while being
connected to the tails in Section 5.2. In Section 5.4 we will review the various interactions
that play a role in the formation of a plectoneme in some detail.

5.2 The mechanistic Plectoneme

Again we describe dsDNA as a persistent chain, for length scales above the helical repeat
of 3:5 nm. Since the chain is not torsion free in these experiments, its ends rotationally
constrained, we follow the ribbon approach of the previous chapter.

It has to be stressed that we hide the local twist of the double helix in the definition of
the ribbon. This twist does show up in a twist stretch coupling, that surprisingly turns out
to be negative [154, 151]: twist increases with increasing tension. Its measured value is
�21 kBT [155]. The stretch modulus of dsDNA is rather high, with values in the literature
of around 1200 pN [96, 151]. Its direct influence on the extension is small for the forces we
are interested in (up to 4 pN ). The negative twist stretch coupling has due to this also only
a minor influence on the experiments. In this chapter we will not take them into account to
avoid clogging the expressions too much. Both we will include when we discuss the influence
of thermal fluctuations in Chapter 7.

The energy density of the chain consists of four parts: the bending energy, the twist energy,
the potential energies of the externally applied force respectively the torque, and the non-
local volume interactions. The Kirchhoff analogy states that this system, without volume
interactions, can be mapped to that of a spinning top, whose Hamilton density is the Lagrange
density of the elastic ribbon. Since we assume that the chain has an isotropic circular cross-
section, the system is mapped to the Lagrange case, which is classically integrable, i.e. a
complete set of integrals of motion exists. A comprehensive overview and classification of its
solutions can be found in [156].

In the realms of classical elasticity, neglecting thermal fluctuations, applying a torque on
a ribbon under tension does at first not change the shape of the centerline up to a critical
torque where a buckling bifurcation is reached schematically depicted in Figure 5.1, similar
to the buckling transition under compression of an elastic rod as introduced in Chapter 3.
At this critical torque loops will form that, constrained by non-local volume interactions,
finally will release twist into a plectoneme until the energy gain in releasing twist equals the
energy cost of the resulting plectoneme(s) (see Figure 5.2). It is generally assumed that the
torque won’t change after the nucleation and one speaks of the plectoneme torque as the final
torque. The reasoning is that once a plectoneme has formed the increase in linking number all
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Figure 5.1: Sketch of a typical curve observed when twisting DNA under tension. n is the number of
turns, �z the extension of the molecule.

goes into a regular plectoneme. Since the twist does not change anymore, the torque, being
proportional to the twist, should also be constant. This plectoneme torque can be calculated
from the turn extension measurements by assuming the torque-linking number relation to be
linear before the transition [145]. If indeed the torques does not change once a plectoneme is
formed, the torque can be calculated using Maxwell relations between torque/linking number
and force/extension [147]. In that last case the linear dependence below the transition is used
only once under high tension. Oddly enough there is a discrepancy between the resulting
plectoneme torques. This we will resolve in Chapter 7.

The mechanical cost of plectoneme formation caused by the bending of the strands into a
helix favors a flat thin plectoneme, with a plectoneme angle ˛ ' �=2. However in this limit
the writhe per plectoneme length, as we will soon discuss, is zero and there is no twist release
possible. The most efficient twist release happens for ˛ ' �=4. The realized angle will be in
between these two limits. The effect of electrostatic interactions is to slightly increase the
angle as we will discuss in Section 5.4.3

In general the diameter of the plectoneme tends to be smaller than that of the loop, whose
size is largely set by the tension. The optimal diameter of the plectoneme is the result of a
competition between

1. efficiency in using contour-length for twist reduction, the cost growing linear with the
tension.
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Figure 5.2: The shape of the WLC after buckling. The radius R of the plectoneme is measured from
the centerlines of the opposing strands. The dsDNA radius sets a lower limit to this radius.

2. the resistance against bending, favoring a flat plectoneme.

3. electrostatic repulsion favoring a larger radius and plectoneme angle.

4. thermal fluctuations that drive the strands apart, mostly affecting the radius.

Increasing the number of turns after the buckling transition increases only the length of
the plectoneme, since it is energetically favorable over twist increase. Thermal fluctuations
cause the chain to tunnel to a plectoneme before the linking number has reached the bifur-
cation point. This is not the only thermal effect though. A thorough analysis of thermal
fluctuations in the plectoneme turns out to be necessary. In Chapter 7 we will show how to
take thermal fluctuations into account after plectoneme nucleation in a proper way under
the relevant experimental conditions. This results in a prediction of a new phase in between
the classic plectoneme phase and the chaotic chain, where plectoneme formation does not
become favorable before the bifurcation point. The theory will be checked against extensive
experiments from the Seidel group.

5.3 Linear elasticity

In the experiments using magnetic beads the force is fixed, the gradient of the magnetic field
working as a force clamp. The linking number, the “number of turns” is controlled by a
rotating magnetic field and the end to end distance of the chain is recorded as a function of
these two control parameters. Adding twist and torsion, the reduced energy of the WLC can
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be written as follows:

E D
Z Lc =2

�Lc =2

ds
�

Pb

2
Pt2.s/C

Pc

2
� 2.s/ � f � t.s/

�
� 2� Lk.Œt; � �/�f C Eel.Œt�/: (5.1)

The torque along the force axis, �f , is a Lagrange multiplier in case the number of turns is
used as a constraint. The linking number is a functional of the local coordinates of the model.
The last term, the electrostatic contribution, is responsible for the volume interactions. We
split the linking number into a twist and a tangential part using White’s equation (4.7) from
the last chapter. We write:

Lk.Œt; � �/ D Tw.Œ� �/CWr.Œt�/

D
1

2�

Z Lc =2

�Lc =2

ds� .s/CWr.Œt�/: (5.2)

The use of Fuller’s local expression is especially handy in the low torque regime, where one
could hope that large fluctuations around the ground state, not allowing for writhe homotopy,
are energetically suppressed enough to give a negligible contribution to the partition sum,
but care has to be taken since the existence of a writhe homotopy can only be checked on a
global scale. For a stability analysis, where we only look at infinitesimal fluctuations, it is fine
though. We use polar coordinates for the tangent vector with the same choice as in Chapter 3:

t.s/ D .cos� cos �; sin� cos �; sin �/ � 2 Œ��=2; �=2�; � 2 Œ��; �� (5.3)

The map is again regular around the straight chain state, � D � D 0. The x-axis is chosen in
the direction of the force. We now check when the energy functional has negative eigenvalues
in its fluctuation determinant. The reference curve is the straight chain aligned along the
x-axis. Its writhe we set to zero and it is a solution of the Euler-Lagrange equations. Fuller’s
equation (4.14) leads to:

Wr.f�; �g/ D
1

2�

Z Lc=2

�Lc=2

ds
.ex ^ t.s// � Pt.s/

1C tx.s/

D
1
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Z Lc=2

�Lc=2

ds
sin.�.s// P�.s/ � cos.�.s// sin.�.s// cos.�.s// P�.s/

1C cos.�.s// cos.�.s//
(5.4)
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The energy in these coordinates is:
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We use OSF [157, 158] theory to account for the electrostatic interactions through a
renormalized persistence length and drop the electrostatic term. Fluctuations d�.s/; d�.s/ on
top of the straight chain contribute to a change in energy of:

ı E D
Z Lc =2

�Lc =2

dsXT .s/ OT X.s/ (5.6)

where we introduced
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When �f �
p
2 f Pb the determinant of OT is minimized to a value of det OT for Fourier modes

with a wavenumber of k D
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4
/ (5.8)

When the torque (or the corresponding linking number) reaches a value of

�cr D 2
p

f Pb ” ncr D

p
f PbLc

� Pc
(5.9)

the straight rod solution becomes unstable, as indicated by the sign change of the determinant,
marking a transition to a configuration where twist has been traded in for writhe.

For an infinite chain the stable ground state above this bifurcation point is a helical
shape [159], becoming localized when the boundary effects come into play. In the extreme
case of an infinite long chain with tangents at infinity aligned along the direction of force,
the solutions correspond to the homoclinic solutions of the equivalent (under the Kirchhoff
analogy) symmetric top [156]. We will discuss them and then show that finite size corrections
are negligible in the parameter regime we are interested in.



Plectoneme formation of double-stranded DNA under torsion 63

The general solutions of the elastic rod, with twist under a torque low enough that volume
interactions do not play a role are characterized by 3 constants of motion in the Kirchhoff
analogy. A common choice are the torque along the force direction, �f , the torque along
the centerline, �3, or equivalently the rate of twist � , and the local Lagrange density. The
homoclinic solutions are characterized by their asymptotic behavior:

lim
s!˙1

t.s/ D ez; (5.10)

the main deviation from the straight chain is chosen around s D 0. Following [156] we
choose the force along the z-axis and standard polar coordinates for the tangent. The Lagrange
density reads:

L D
Pb

2
.sin2.�/ P�2.s/C P�2.s//C

Pc� 
2

2
C f cos �.s/ (5.11)

and the homoclinic solutions are given by:

cos.�.s; t// D 1 � 2t2 sech2.t
s

�
/ (5.12)

�.s; t/ D arctan
�

t
p
1 � t2

tanh.t
s

�
/

�
C
p
1 � t2

s

�
; (5.13)

where � D
p

Pb = f is again the deflection length. For each t 2 Œ0; 1� the above equations
define a homoclinic solution. This class of solutions defines at the same time the required
homotopy of non crossing curves between the straight line at t D 0 and localized solutions up
to any value of t 2 Œ0; 1/. The electrostatic potential keeps t < 1 and so we can use Fuller’s
equation with the z-axis as reference curve, resulting in a writhe of:

Wrloop.t/ D
1

2�

Z 1
�1

ds
.ez ^ t.s// � Pt.s/

1C tz.s/

D
2

�
arcsin.t/: (5.14)

These solutions indeed solve the Euler Lagrange equations, at an appropriately chosen
torque, and their Lagrange density is constant along the contour. The energy of the homoclinic
solutions has a potential contribution and equal elastic contribution that add to

Eloop.t/ D 2 f Lloop Lloop D

Z 1
�1

ds Œ1 � cos.�.s; t//� D 4�t: (5.15)

with Lloop the change in extension compared to the straight chain, which we will use as the
length of the loop part of the solution. This results in an energy of the homoclinic solution
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with given linking number Lk:

E.t/ D Eloop.t/C
.2�/2 Pc

2Lc

�
Lk�

2

�
arcsin.t/

�2
: (5.16)

From this expression follows that for tensions f < f0 WD 4Pc
2 =.Pb Lc

2/ the energy minimum
shifts from the straight rod continuously to the homoclinic loop when increasing the linking
number from Lkcr (5.9) till 1. For tensions above f0 only a limited range of stable solutions
in between the two extremes exists. Also in that case the straight rod ceases to be stable at
Lkcr , while the barrier to the loop solution disappears a little later, when:

Lk D Lkcr

s
1 �

4

Lk2cr �2
C
2

�
arcsin

�
2

Lkcr �

�
(5.17)

In Figure 5.3 a typical situation is sketched for a chain of 600 nm and a tensile force of 2 pN
� f0. Note how already in an early stage a local minimum starts to form separated by a
barrier from the straight rod that shifts to smaller t values with increasing Lk.
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Figure 5.3: Relative energies of homoclinic solutions as a function of the homoclinic parameter t
for several linking numbers, n. The energy is relative to the straight rod where all of the
linking number is in the twist of the chain.
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The excluded volume interactions, caused by short distance electrostatics, stabilize the final
loop. At the moment this electrostatics dictated loop configuration has been reached, more
twist will be released through plectonemic extension of the loop, discussed in the next section.

The two legs of the homoclinic solutions have a non trivial point of closest approach
whenever t > tc ' 0:80424. Its value is found from the nontrivial minimum of

d.s; t/ D 2�

q
4t2 sech2.st=�/ sin2.s

p
1 � t2=�/C .s=� � 2t tanh.st=�//2: (5.18)

For a given force this distance has a maximum of dm ' 1:4�, for the critical homoclinic
parameter tc . This maximum has an important influence on the possibility of plectoneme
formation, limiting the strength of electrostatics or the weakness of screening allowed, since
as a condition for plectoneme nucleation one expects a point of closest approach, functioning
as a pivot.

To separate the local OSF type effect of chain stiffening from the nonlocal loop destabilizing
electrostatics the loop size should be larger than the Debije screening length [160]. It is
possible to extend this approach over a larger range [161]. We have reasons not to do this:

1. The experimental conditions are such that the loopsize is considerably larger than the
screening length. This is not accidental, since at the moment that they are almost equal
a simple scaling argument would reveal that the energy cost per gained writhe in the
plectoneme is in that case of the same magnitude as that of the loop. Combining this
with the entropic gain in forming more loops, plectoneme nucleation is unlikely.

2. The details of the groundstate energetics of the endloop are not relevant for plectoneme
formation even close to the transition point, when thermal fluctuations are taken into
account.

3. It would complicate the calculations considerably without a benefit relevant to the
measurements.

We will finally discuss finite size effects on the ground state solution space. By com-
paring the exact one loop solution for a finite chain with the homoclinic loop solution it is
straightforward to shows that the energy increase, to lowest order, is given by:

� Efinite.y/ D 64 f Lc exp.�2Lc =�/ (5.19)

Since in the experiments considered Lc >> �, this exponential decaying factor is negligible,
until most of the chain sits in a plectoneme.
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5.4 The Plectoneme

5.4.1 Geometry

After the formation of the homoclinic loop generically, depending on the salt concentration,
a plectoneme will form, since as we will see the growing of a plectoneme is energetically
cheaper than the formation of another homoclinic loop, to change twist into writhe.

The simplest model for electrostatic interactions would start from the repulsion of 2 parallel
rods. As can be seen from Figure 5.2 it wouldn’t do justice to the geometry of the plectoneme
as was thoroughly discussed by Ubbink and Odijk [153]. The reason is that seen from one
point along the chain, the electrostatic repulsion by the opposing strand has a radial component,
increasing the plectoneme radius, and a pitch component, increasing the plectoneme angle,
that are not equivalent.

We will for simplicity take the plectoneme radius and angle to be constant along the
plectoneme, but take the homoclinic limit solution to be set by the demand that the nontrivial
shortest distance between the two legs of the homoclinic solution, is equal to twice the
plectoneme radius. It is here that we will define the start of the plectoneme, ending in
the remaining part of the homoclinic solution, that remains connected rotating around the
plectoneme with the growing plectoneme. In this way our solution is continuous. One could
argue that the assumption of constant plectoneme parameters does not represent the true
minimum of the free energy and that in reality the space curve should be smooth. However
details of the energetics are not important for the experiments, where most contributions come
from the plectoneme alone.

We will use the following space curve parameterized by the contour length s to describe a
plectoneme starting at s D 0:

s 2 Œ0;Lp =2� W s 2 ŒLp =2C Lloop;LpCLloop� W

rp.s/ D

�
.s0 C s/ sin˛

�R cos
�
.s0 C s/

cos˛
R

�
R sin

�
.s0 C s/

cos˛
R

�
�

rp.s/ D

�
.s0 C LpCLloop�s/ sin˛

R cos
�
.s0 C LpCLloop�s/

cos˛
R

�
�R sin

�
.s0 C LpCLloop�s/

cos˛
R

�
�

;

(5.20)

with R and ˛ the plectoneme radius and angle, Lp the contour length of DNA in the plec-
toneme and Lloop the contour length of the end loop. The starting orientation depends on
the homoclinic solution and is set by s0. The local unit tangent is t.s/ D Pr.s/. To simplify
the calculations, we mention that the relation of the radius to the homoclinic parameter, as
follows from equation (5.18), can be approximated in the relevant range t 2 Œ0:80424; 1/ to
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ample accuracy by:

t D 1 � 0:3799

�
R

�
C 0:0112

�2
(5.21)

One often assumes the plectoneme to have a constant writhe per contourlength of

! D
sin.2˛/
4�R

(5.22)

although it is usually considered to be right within some approximation [153, 162] neglecting
endloop and tails. In appendix (B) we show this expression to be exact when we include the
change of writhe of the endloop while increasing the plectoneme length.

5.4.2 Elasticity
The free energy density (the free energy per length of strand) of the plectoneme has three
distinct contributions: an elastic contribution due to the curved path of the centerline of DNA,
an electrostatic repulsion of the two strands and a potential part due to the work done against
the stretching force, which is just f Lp. Since the curvature of a strand in the plectoneme is
constant, the reduced elastic energy density is given by

ebend.t; ˛/ D
Pb

2

cos4.˛/
R.t/2

(5.23)

5.4.3 Electrostatics
Since DNA is a strong electrolyte, in a neutral pH environment, the persistence length gets
an electrostatic correction. Using OSF theory [157, 158] and taking counterion condensa-
tion [163] into account by reducing the charge density along the chain to the charge density
left after condensation [160], the resulting renormalized persistence length becomes:

Pb D Pb.0/C
1

4�2QB
(5.24)

with ��1 the Debije screening length: and QB the Bjerrum length [164]:

� D

s
2q2ens

�r�0 kBT
QB D

q2

4��r�0 kBT
(5.25)

with �0 the electric constant, �r the dielectric constant of water, qe the elementary charge and
ns the number density of salt molecules. For water at room temperature, 298 K, the Bjerrum
length is 0:715 nm. Expressing the concentration of salt, cs in mM(milli molar) or mol/ m3
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the inverse screening length at room temperature is � D 0:1
p
cs. The reduced energy density

of the electrostatic interaction is described by the Ubbink-Odijk theory [153]:

e0
el.t; ˛/ D

qeff
2QB

2

r
�

�R.t/
e�2�R.t/Z .cot.˛// (5.26)

Z.x/ D 1Cm1x
2
Cm2x

4 m1 D 0:828;m2 D 0:864 (5.27)

valid for cot.˛/ < 1, with qeff the effective charge density of the centerline of a cylinder that
is the source of a Debije-Hückel potential that coincides asymptotically in the small potential,
far field with the nonlinear Poisson-Boltzmann potential of that cylinder with a given surface
charge. For dsDNA we take a naked charge density of 2 charges per 0:34 nm, representing
the 2 phosphate charges per basepair, and a radius of 1 nm.

The expansion is a fit that behaves reasonably also for cot˛ close to one, where a standard
asymptotic expansion would fail.

To calculate the effective charge density we follow the method laid out by Philip and
Wooding [165]. It is fast and accurate for our conditions, plus it automatically gives the radius
R�, where the reduced potential equals 1 and thus the linearized theory breaks down. In
Figure 5.4 and Figure 5.5 the dependence of the effective charge density and the non-linear
radius R� on the salt concentration are plotted for DNA. Note that the effective charge
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Figure 5.4: The effective charge line density as function of salt concentration
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Figure 5.5: The radius where the electrostatic and thermal energy are equal as function of salt concen-
tration

increases almost linearly with increasing salt concentration. This increase is a compensation
for pushing back the charge to the centerline under stronger screening.

To understand the limitations it is good to recapitulate the limits of validity for the mean
force calculations [166, 167] that form the basis of the treatment by Ubbink et al. First
of all a mean field treatment with point like particles, that is Poisson-Boltzmann, needs to
be applicable. That requirement is fulfilled since we are only looking at monovalent salt
solutions1. The distance should be so large that within the nonlinear region around one
cylinder, the potential of the other cylinder is negligible and, which in our case is practically
equivalent, the potential halfway in between the two cylinders is small enough that linear
superposition holds. We will see that under experimental conditions this requirement is
fulfilled.

1See for a recent assessment [168])
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5.4.4 Summing up
We have now an expression for the energy of a configuration with plectoneme under fixed
linking number but still without thermal fluctuations:

E.t; ˛/ D � f.Lc�Lp/C Eloop.t/C Lp.ebend.t; ˛/C e0
el.t; ˛//

C
.2�/2 Pc

2Lc

�
Lk�Wrloop.t/ � Lp !.t; ˛/

�2 (5.28)

For a plectoneme to form, a balance is needed between maximizing ! and minimizing
the elastic, electrostatic, and potential free energy densities. The optimal plectoneme angle
will settle between �=4, maximizing the writhe density, and �=2 minimizing bending energy.
This is confirmed by explicit minimizations in Chapter 8. A condition for a local minimum to
exist is that equation (5.28) has a minimum with respect to variations in Lp for finite positive
Lp:

Lp.t; ˛/ D
Lk�Wrloop.t/

!.t; ˛/
�

Lc

.2�/2!2.t; ˛/Pc
.ebend.t; ˛/C e0

el.t; ˛/C f/ > 0: (5.29)

The plectoneme is a global minimum when the resulting energy is lower than the straight
chain solution. This second condition happens in general at larger Lk and so the transition is
from a straight solution to a plectoneme with finite length. This transition point, when the
global free energy minimum changes from the rod like solution to a plectoneme, is under usual
experimental conditions considerably below the bifurcation point. The energy barrier between
the two minima is of the order of f � � 10kBT , for lengths (� 700 � 4000nm) and forces
(� 1� 4pN) as used in the experiments. This results in a seemingly first order transition even
at finite temperatures, rendering the behavior essentially different from the Euler buckling of
semiflexible polymers, where thermal fluctuations destroy long range ordering as discussed in
Chapter 3 without the addition of frictional forces [169].


