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Chapter3
Euler Buckling

3.1 Motivation

As we have seen when reviewing the natural environment of DNA, there are many levels
of abstraction where the physics, although still poorly understood, can have a large impact.
The level of abstraction depends of course a lot on the questions one wants to answer.
And those questions change over time. New experimental methods are often a driving
force to improve models or calculations. During the last few years, the advent of single
molecule nanomanipulation [93] has allowed to study the elastic properties of DNA and other
biopolymers under different physical conditions. In these experiments, the extension of single
molecule versus an applied stretching force is measured by a variety of techniques including
magnetic beads [94, 95], optical traps [96, 97], micro-needles [98], hydrodynamic flow [99]
and AFM [100]. While the statistical mechanics of unconstrained DNA under tension is
theoretically well understood in the framework of the WLC model [101, 102, 103, 104, 105]
the presence of topological constraints like supercoiling that we will study in more detail in
Chapter 5 or geometrical constraints like protein induced kinks and bends [106, 107, 108,
109, 110] renders analytical results more difficult.

Instead of studying the elastic properties of biopolymers under stretching, mechanical
properties can also be studied by using compression, as long as the chains are smaller than
the persistence length. This has been used for example in experiments targeted to measure the
force-velocity relation of microtubule growth [111] and in determining the force produced by
actin filaments [112] and more recently in analyzing the force generation by polymerizing of
actin bundles [113].

With the exception of the work of Odijk [114] who studied a semi-classical evaluation of
the partition function in the linear regime ( Figure 3.1 (a)), i.e., below the buckling transition,
no calculations have been done that consider the non-linear regime of external forces above
the critical force ( Figure 3.1 (b)). Furthermore these calculations are only valid well below
the transition, although it is the behavior close to the transition on which the force calculations
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Figure 3.1: Force below (left) and above (right) the Euler transition.

are based. In this paper we study thermal fluctuations up to the transition in order to evaluate
the scaling of the point of buckling with increasing length. We note that the concept of a
phase transition-like sharp transition disappears for finite temperatures, as follows from the
one dimensionality of the system. The transition region effectively broadens with increasing
length at finite temperatures.

A computer simulation for 2 and 3 dimensional configurations shows that the thermal
fluctuations decrease the extension in the buckled state of the polymer in 3 dimensions, but
increase it in 2 dimensions (Figure 3.4). In this chapter we show analytically how this happens,
by doing a harmonic perturbation calculation around the buckled state.

As a final note we mention that recently the properties of DNA, like its stiffness and its
sequence-specific pairing have been exploited to build different kinds of nanostructures [115].
In particular a DNA tetrahedron which has been already synthesized could be the building
block of extended nanostructures [116]. Our calculations can be used to estimate the forces
these structures can withstand.

We will continue as follows: we start by describing the geometry and the model used in
Section 3.2, briefly treating its classical elastica solutions in Section 3.3. The main body
of this chapter is in Section 3.4. It consists of a semi-classical calculation of the force
extension behavior for a WLC with finite length and persistence length below and above
the Euler transition. We extend these calculations to quartic order below the transition in
Section 3.5, in order to analyze the change in the buckling transition caused by thermal
fluctuations. In Section 3.6 we compare our calculations with simulations. We end the chapter
in Section 3.7 with a discussion of our results in the light of several recent experiments with
stiff biopolymers.
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3.2 The Partition Sum of a WLC under Compression

We model a stiff polymer as a WLC, without a twist degree of freedom. In this case, the
polymer configuration is completely characterized by specifying the unit vector t.s/ along the
chain, where s is the contour parameter length with 0 < s < Lc. When the chain is submitted
to a compressive force f the total (as a reminder: reduced) energy is

E Œt� D
Z Lc

0

"
Pb

2

�
dt
ds

�2
C f :t

#
ds (3.1)

From an elasticity point of view the persistence length is related to the bending modulus as
A D Pb kBT. It is the coefficient of the linear constitutive equation for bending. Seen from this
perspective the persistence length is temperature dependent. Since the temperature range in
which biopolymers are functional is limited, temperature dependence is usually not important;
for example for DNA at room temperature Pb � 50 nm [117]. All the statistical properties of
interest can be deduced from the configurational partition sum which is a non-trivial quantity
to evaluate because of the local constraint t2.s/ D 1 that assures the inextensibility of the
chain:

Z D

Z
ı.3/

�
t2 � 1

�
D3 Œt� e�EŒt� (3.2)

This partition function is nothing but the Euclidean path integral of a quantum particle with
mass Pb, moving on a unit sphere under the influence of an external constant force. We are
interested in the thermal fluctuations around a “classical path”. These are easiest found in
polar coordinates. We will fix the force along the x-axis (see Figure 3.1 (a),(b)) to avoid
the chart singularity at the poles. For notational convenience we will choose the polar angle
# 2 Œ��=2; �=2� such that the uncompressed chain has the coordinates .#.s/; '.s// D .0; 0/.
In these coordinates the energy has the form:

E Œ#.s/; '.s/� D

Z Lc

0

�
Pb

2

�
cos2 #.s/ P'2.s/C T#2.s/

�
C f cos#.s/ cos'.s/

�
ds (3.3)

We can rewrite the energy in dimensionless variables as:

E Œ�.s/; �.s/� D
1

h

Z 1

0

�
1

2

�
cos2 �.t/ P�2.t/C P�2.t/

�
CG2 cos �.t/ cos�.t/

�
dt (3.4)

�.t/ WD '.t Lc/ , �.t/ WD #.t Lc/

where we have introduced the fluctuation parameter

h WD
Lc

Pb
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and the coupling strength

G WD Lc

s
f

Pb

The square root in the last expression is in fact the reciprocal of the deflection length [118]
of the chain. We are interested in the small fluctuation regime and use h as an expansion
parameter. The classical path will be the dominant path for h! 0, i.e., in the rod limit, and
thermal fluctuations are taken into account by expanding the partition function in fluctuations
around this classical path. The partition function will now be a path integral in curvilinear
coordinates [119]:

Z D

Z
D2 Œ�; ��

p
g .�/e�EŒ�.t/;�.t/� (3.5)

The determinant of the metric in these coordinates is given by g .�/ D cos2 � . The square
root of this determinant, as present in the path integral measure, formally takes care of the
coordinate independence (chart independence) of the measure. It can be understood in a time
sliced version, although not without subtleties [119]. This measure term can also be formally
exponentiated resulting in an extra energy term:

Z D

Z
D2 Œ�; �� e�EŒ�.t/;�.t/��EmŒ�.t/;�.t/� (3.6)

with the measure energy term:

Em Œ�.t/� D �ı.0/
Z 1

0

dt log cos �.t/ (3.7)

The delta function in front of the integral should be understood as being finite using some
regularization scheme. The classical solutions are obtained through the Euler-Lagrange
equations in the next section. We will then proceed by incorporating small fluctuations around
these classical solutions in Section 3.4.

As we will see there are values of the coupling strength where several classical solutions
exist with comparable Boltzmann weight. These give rise to a bifurcation point in the
groundstate. Also since the potential term in (3.4) is positive, there are values of G for which
the actual groundstate breaks the rotational symmetry around the direction of the applied
force. The associated goldstone modes can be excluded by explicitly fixing a direction.

3.3 Euler buckling
In this chapter we consider as in Ref. [114] a molecule that has its two ends clamped at fixed
orientations �.0/ D �.1/ D �.0/ D �.1/ D 0, while the ends can freely move in the plane
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perpendicular to the force. In the zero fluctuation parameter limit the partition function gets
only contributions from the classical paths, that minimize the energy. The Euler-Lagrange
equations are:

R�.t/ D � cos �.t/ sin �.t/ P�2.t/ �G2 sin �.t/ cos�.t/ (3.8)
d
dt

�
cos2 �.t/ P�.t/

�
D �G2 cos �.t/ sin�.t/ (3.9)

These equations can be integrated resulting in two classes of solutions: the straight rod
solution

�.t/ D 0 �.t/ D 0 (3.10)

and the buckling solutions that read by choosing �.t/ D 0

P�2.t/ D 2G2.cos�.t/ � 1C 2m/;m 2 Œ0:1/) (3.11)

�.t/ D 2 arcsin.
p
m sn.tGjm//) (3.12)

cos�.t/ D 1 � 2m sn2 .tGjm/ (3.13)

Here sn./ is an elliptic Jacobi function [120]. Solutions with m > 1 are solutions containing
loops. They have a higher energy in our case. Using the periodicity properties of sn we find
for buckling solutions with the boundary condition �.1/ D 0 the following relation between
m and f

G D Lc

s
f

Pb
D 2nK.m/ n 2 Z (3.14)

Here K.m/ is the complete elliptic integral of the first kind. We will label the solutions as �n,
�0 corresponding to the straight rod. Since K.m/ is a monotonously increasing function of m
we find a smallest force that permits a given buckling solution [121]:

fc D G2
Pb

Lc
2
D n2

4K.0/2

Lc
2

Pb D n
2 �

2

Lc
2

Pb (3.15)

It is straightforward to calculate the end-to-end distance along the z-axis by integrating the
solution along the chain. The result is:

X D Lc

Z 1

0

dt cos�.t/ D Lc

�
2E.m/
K.m/

� 1

�
(3.16)

The value of the extension becomes negative under large enough compression. In practice we
will be interested in the region where the force is small enough that the WLC model is still
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reasonable. It is easy to see from the buckling solution (3.13) that the compressed chain will
be a monotone curve as long asm < 1=2. For higher values ofm the chain forms an s-shaped
curve.

The energy of the buckling solution is found from equation (3.3) to be:

En.m/ D
G2

h

�
2
X

Lc
C 2m � 1

�
D
4n2 K2.m/

h

�
4

E.m/
K.m/

C 2m � 3

�
(3.17)

withm depending on the force, f, and n through equation (3.14). E.m/ is the complete elliptic
integral of the second kind.

When comparing the energy of the buckled state with the straight rod configuration we
notice that the buckled state is always energetically favorable once it is allowed by equa-
tion (3.15). This transition from straight rod to the buckled state is referred to as the Euler
transition. When no other constraints are imposed on the solutions the first buckling solution,
n D 1, will be the favorable solution under compression once the first critical value for the
force has been reached [121]. When the end of the chain is constrained to be fixed in the
origin of the YZ-plane, making both ends fixed on the z-axis, it is the one loop solution that,
when there are no constraints on the rotation of the chain around its axis, is the favorable
solution. We will for the rest of this article restrict ourself to the unconstrained case.

3.4 Semiclassical Buckling

For finite values of the fluctuation parameter thermal fluctuations must be taken into account
in the evaluation of the partition function. We will write the coordinates as:

�.t/ D�n.t/C ı�.t/ D ı�.t/ �.t/ D �n.t/C ı�.t/ (3.18)

Here the index n 2 Z differentiates between the classical solutions (3.12),(3.14), the straight
solution corresponding to n D 0. By plugging these relations into the expression for the total
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energy (including the measure term) we find order by order:

E Œ�.t/; �.t/�C EmŒ�.t/� D
1

h

Z 1

0

dt

�
1

2
P�2n CG

2 cos�n

�
C
1

h

Z 1

0

dt
˚
P�nı P� �G

2 sin�nı�
	

C
1

h

Z 1

0

dt

�
1

2
.ı P�/2 �

1

2
G2 cos�n.ı�/2 C

1

2
.ı P�/2 �

1

2
.G2 cos�n C P�2n/.ı�/

2

�
C � � � (3.19)

The first term is just the energy as given by equation (3.17) for the buckled solutions. The
second term is zero when we look at chains with fixed boundary conditions (Dirichlet boundary
conditions). The third term represents the lowest order that accounts for thermal fluctuations
and is in the focus of our attention. Note that the measure term will only show up in the
quartic order fluctuations (of order h), since for the Gaussian distribution the fluctuations are
of order

p
h.

3.4.1 Harmonic fluctuations below the Euler transition

We first consider the regime below the critical force fc , G < Gc D � , where the classical
solution is the straight rod. The partition function to lowest order around this ground state has
the simple form:

Z D exp.�G2=h/
Z

DŒı�; ı�� exp
�
�
1

h

Z 1

0

dt
�
1

2
.ı T�/2 �

1

2
G2.ı�/2

��
exp

�
�
1

h

Z 1

0

dt
�
1

2
.ı P�/2 �

1

2
G2.ı�/2

��
(3.20)

The resulting path integral is the product of the partition sums, in Euclidean time, of 2
independent harmonic oscillators with a frequency squared of �G2. When we consider first
the azimuth, �, contribution, it is in fact a harmonic oscillator on the circle where angles that
differ a full period are equivalent. The pathintegral in that case can be expressed as a sum
over the harmonic oscillator on the real line by summing over all equivalent end points (see
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e.g. [119] chapter 6):

Zcircle.�.0/ D 0; �.1/ D 0/ D

C1X
nD�1

Zline.�.0/ D 0; �.1/ D 2�n/ (3.21)

D
1

p
2�h

r
G

sinG
#3.0; e

�2�2G cotG=h/ (3.22)

The elliptic theta function, #3.0; q/ [122] diverges for G D �=2, only half the critical force,
which seems to be odd at first sight. The reason behind this is that for G D �=2 all equivalent
paths have the same weight, there is no cost in increasing the winding number. As a first
correction we note that higher order corrections considerably temper the potential abyss for
larger fluctuations in which case we can neglect the contributions from the winding by taking
the domain of � to be the real line. This results in an improved estimate for the partition sum:

Z� D
1

p
2�h

r
G

sinG
(3.23)

The same kind of reasoning holds for the polar angle. Here we do not have winding,
but formally an oscillator in a box. Since we again assume the fluctuations to be small
it is possible to extend the domain to the real axis. Although we have the equivalence
.�; �/ � .� ��; �C�/ again the results do not hold for larger fluctuations that have a weight
that does differ substantially from zero. So by taking the polar angle also covering the real
line we are only overcounting configurations that do not contribute to the path integral. The
final result is then:

Z D exp.�G2=h/
1

2�h

G

sinG
(3.24)

This partition sum diverges at the caustics, G D � . Note that this is exactly the critical point
for Euler buckling. Here it is caused by the harmonic potential being just strong enough to
cancel the kinetic term (i.e. the bending energy), making large fluctuations favorable and thus
invalidating the harmonic approximation. Unlike the #3-function divergence here we can not
just dismiss these larger fluctuations, since they do not come from a topological disconnected
region in configuration space and as such are indeed an indication that the groundstate is
suffering from an instability.

The force extension behavior is readily obtained, as an approximation, from the partition
function:

X.f/ D �
1

Z

@Z

@ f
D Lc

�
1 �

h

2G2
.1 �G cotG/

�
(3.25)
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This expression diverges again at the Euler transition. Since we have approximated the total
extension X D Lc

R
dt cos � cos� to quadratic order in the fluctuations around the classical

solution, the deviation of the above expression for the extension from the straight rod actually
gives, up to a factor L, the variance of the fluctuations averaged over the chain. When this
variance is large, not only the harmonic approximation to the partition sum breaks down
but the force extension approximation breaks down as well. From these considerations we
expect the above given force-extension relation to hold as long as � � G � h=2� . From
this observation one is tempted to conclude that the rod will start to buckle at a force shifted
downwards from the Euler transition force following a scaling law for small h of :

fc � f.0/c .1 � Ch/ (3.26)

with C a constant of order 1. This is a well known result from reference [114]. We will
have to adjust this picture when taking higher order terms into account, as we will see in
Section 3.5, because the linear scaling tells us only something about the validity of the
quadratic approximation.

For small forces, G � 1, we find from equation (3.25) for the extension of the chain:

X.f/ Š Lc

�
1 �

h

6
.1C

G2

15
/

�
(3.27)

For G D 0 this is the extension of the chain shortened by thermal fluctuations alone.

3.4.2 Harmonic fluctuations above the Euler transition
The harmonic correction to the classical solution has again the form of an harmonic oscillator,
but now with a “time” dependent oscillator frequency. The azimuth and polar part of the
fluctuation factor again decouple:

Z D e�E1.m/F�F� (3.28)

The classical solution is given by equation (3.17). In principle we should sum over all classical
buckling solutions that are allowed at a given force. The energy difference is nonetheless big
enough that we can neglect the contribution of higher buckled configurations.

The azimuth contribution has the form (after partial integration):

F� D

Z
DŒı�� exp

�
�
1

2h

Z 1

0

dtı� OT�ı�
�

(3.29)

with the harmonic fluctuation operator given by

OT� D �
d 2

dt2
�G2 cos�1.t/ (3.30)
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where �1.t/ is the classical n D 1 buckling solution. The fluctuation factor can be written
using Gaussian integration in terms of functional determinants as:

F� D
1

p
2�h

�
det.�

d2

dt2
/

det. OT�/

�1=2
(3.31)

The determinant of the fluctuation operator can be calculated using the Gelfand-Yaglom
method as outlined in [119]. To do so we have to find a solution D�.t/ of the differential
equation

OT�D�.t/ D 0 (3.32)

with boundary conditions D�.0/ D 0 and PD�.0/ D 1. The determinant det. OT�/ is then given
by D�.1/. Changing variables to x D Gt the differential equation has the form of a Lamé
equation [123] (the Laplacian in ellipsoidal coordinates):

d2y.x/
dx2

C f1 � 2m sn2.xjm/gy.x/ D 0 (3.33)

With the given coefficients there exists one double periodic solution (also called Lamé
polynomial) given by a Jacobi elliptic function

y.t/ D cn.Gt/ (3.34)

This solution has not the right boundary conditions, but using D’Alemberts construction [119],
that gives another independent solution, we can construct the solution with the right boundary
conditions:

D�.t/ D y.t/y.0/

Z t

0

dt 0

y2.t 0/

D
sn.Gt jm/ dn.Gt jm/ � E.Gt jm/ cn.Gt jm/

G.1 �m/
C t cn.Gt jm/ (3.35)

Here we adhere to the notation for the Elliptic Integral of the second kind as used in [120],
see also Appendix A.1. The function dn is the last Jacobi elliptic function we need.
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With this solution to the Lamé equation we find the fluctuation determinant as:

D� WD

det
�
OT�
�

det.�
d 2

dt2
/

D D�.1/

D
sn.Gjm/ dn.Gjm/ � E.Gjm/ cn.Gjm/

G.1 �m/
C cn.Gjm/ (3.36)

Now we can make use of the relation G D 2K.m/ (3.14) to simplify this result to

D� D
E.m/ � .1 �m/K.m/

.1 �m/K.m/
(3.37)

from which we obtain the fluctuation factor:

F� D

s
.1 �m/K.m/

2�h.E.m/ � .1 �m/K.m//
(3.38)

Since for small m, E.m/ � .1 � m/K.m/ � m�=4, the fluctuation factor diverges at the
Euler transition. This is not too surprising since in the 2 dimensional configuration, there are
with forces close to the buckling transition three classical solutions with comparable energies
with only small barriers in between, allowing larger thermal fluctuations than admissible
for a harmonic approximation. Would we forbid out-of-plane fluctuations the picture is that
fluctuations would grow with increasing force just below the Euler transition. Just above
the Euler transition the chain will fluctuate between the two possible buckled configurations,
analogous to quantum tunneling. Finally the buckling will stabilize with increasing force to
one of the two configurations.

We now come to the out-of-plane fluctuations. The fluctuation determinants can again be
calculated using the Gelfand-Yaglom method. We are now looking for a solution of (with
x D Gt ):

d2y.x/
dx2

C f1C 4m � 6m sn2.xjm/gy.x/ D 0 (3.39)

This happens to be again a Lamé equation with the right coefficients to have a double periodic
Lamé polynomial as solution:

y0.x/ D sn.x/ dn.x/ (3.40)
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Since y0.0/ D 0 we immediately find for the fluctuation determinant:

D� WD

det
�
OT�
�

det.�
d2

dt2
/

D
sn.G/ dn.G/

G
� 0 (3.41)

and the partition sum diverges. This is caused by the global rotations around the force
direction connecting a continuum of groundstates. The buckling solution (3.13) was chosen
to be lying in the xy-plane. Since the energy (as well as the pathintegral measure) is invariant
under rotations around the x-axis we have a continuum of buckling solutions. We can make
use of this symmetry by integrating only over paths where the angle � averages along the
chain to zero and then integrating separately over the rotation around the x-axis. This can
be done in a consistent way using the Faddeev-Popov (FP) method [124] developed to fix
internal symmetries in quantum field theory. A clockwise rotation of the chain by an angle 

around the x-axis changes the coordinates on the sphere to:

cos � sin� ! cos.�
/ sin.�
/ D cos � sin� cos 
 C sin � sin 

sin � ! sin.�
/ D � cos � sin� sin 
 C sin � cos 
 (3.42)

Now we want to fix the average of the � angle, N� WD
R 1
0
dt�.t/, to zero. We define the FP

“determinant” through:

�FP Œ�; ��

Z 2�

0

d
ı. N�
/ D 1 (3.43)

where the argument of the delta function is the average angle of the by 
 rotated chain.
Inserting “1” into the partition sum (3.5) results in:

Z D

Z 2�

0

d

Z

D2 Œ�; ��
p
g .�/�FP ı. N�
/e

�EŒ�.t/;�.t/�

D 2�

Z
D2 Œ�; ��

p
g .�/�FP ı. N�/e

�EŒ�.t/;�.t/� (3.44)

In the last step we have first performed a trivial change of variable of integration and then
made use of the invariance under rotation of the energy and of the pathintegral measure. In
fact just the invariance of the combination of the measure and the Boltzmann factor would
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have been enough. The FP determinant can be found from the defining equation (3.43) :

�FP Œ�; �� D

�Z 2�

0

d
ı. N�
/
��1

D

ˇ̌̌̌Z 1

0

dt sin�.t/
ˇ̌̌̌

(3.45)

Since we are interested in small thermal fluctuations around the classical solution we can
assume the fluctuations to be such that

R
dt sin�.t/ > 0 for all relevant paths. This apparently

does not hold anymore close to the bifurcation point. Defining Z0 to be the partition sum
without the FP term, but including the angle fixing delta function, the lowest order contribution
of the FP term to the partition sum is:

Z D

Z 1

0

dt hsin�.t/iZ0

Š

Z 1

0

dt sin�1.t/Z0

D 2
p
m

Z 1

0

y0.Gt/Z0 DW ZFPZ0 (3.46)

The last step follows from the definition of �1.t/, see equation (3.13). We now fix the global
polar angle in the polar fluctuation factor:

F� WD 2�ZFP

Z
DŒı��d.ı N�/ exp

�
�
1

2h

Z 1

0

dtı� OT�ı�
�

(3.47)

To see how this procedure formally gets rid of the divergence we note first that the fluctuation
operator, as defined on the square integrable functions on Œ0; 1� that are zero on the boundary,
is symmetric and so we can find a real orthonormal basis f Qyng that diagonalizes the operator.
Using this basis we write ı�.t/ D

P1
nD0 xn Qyn.Gt/. The normalized zero mode eigenfunction

is given by Qy0.Gt/ D .
R

dty20.Gt//
�1=2y0.Gt/ and the eigenvalues are written as �n,e.g.
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�0 D 0. We now integrate separately over the zero mode:

F� D
2�ZFP
p
2�h

 Y
n�0

Z
dxn
p
2�h

!Z
dx0
p
2�h

ı
�X

n

xn

Z 1

0

Qyn.t/
�

exp

 
�
1

2h

X
n�1

x2n�n

!
D

p
2�ZFP

p
h
ˇ̌̌R 1
0

dt Qy0.Gt/
ˇ̌̌ 1
p
2�h

 Y
n�0

Z
dxn
p
2�h

!
exp

 
�
1

2h

X
n�1

x2n�n

!

D

2

q
2m�

R 1
0

dty20.Gt/
p
h

lim
�!0

s
��0

2�hD�
�

(3.48)

In the last step we regularized the determinant by adding a small linear term:

OT�� WD OT� C � O1 (3.49)

in effect shifting all eigenvalues �n by � to the new values ��n D �n C �. The resulting
determinant is then, in first order in �, � times the determinant of the reduced operator defined
on the orthogonal complement of the zero mode eigenvector, since all other linear terms
contain the zero mode eigenvalue. The resulting homogeneous differential equation has been
solved for a similar case in [125]. The somewhat technical calculation is done in Appendix A.2.
The resulting determinant is:
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Finally the integral over the zero mode squared is given by:�Z 1
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Combining (3.38), (3.48), (3.50) and (3.51) we find for the partition sum:

Z D e�E1 2mK.m/
�

s
.1 �m/

h3ŒE.m/ � .1 �m/K.m/�
(3.52)

It is noteworthy that the partition sum does not diverge at the Euler transition, but goes to
zero. By approximating the Faddeev-Popov determinant by its classical value we are in fact
underestimating the amount of configurations the closer we come to the bifurcation point.
The force extension corrections to the classical force extension curve X0.f/, equation (3.16),
defined as X D X0 CX� CX� , with the subscript labeling the fluctuation part that causes
the extension change, are given by:
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Figure 3.2: Relative extension shift from equation (3.53) with h D Lc D 1
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These formula are not too illuminating. Plotting the two corrections (Fig. 3.2) reveals that
the corrections to the extension caused by thermal fluctuations have an opposite sign. The
out-of-plane fluctuations make the chain slightly shorter than the classical solution, as is to be
expected. The in-plane fluctuations have the opposite effect. This can be understood as the
extension change by fluctuations in the straight rod direction to be stronger than fluctuations
away from the rod solution.

The total extension again diverges when approaching the bifurcation point, both for the X�
andX� part separately. For the azimuth part the reason behind this is the same as in the straight
rod case: near the bifurcation point fluctuations increase because the two classical solutions,
of positive and negative angle, are close to each other and as such a quadratic approximation
to the force term is not enough. For the polar angle this is not the case since we integrated out
the fluctuations to equivalent states, but there the FP term (3.46) is underestimated: as long as
the deviation of the expectation value of the end point of the chain (proportional to the FP
term) from the straight rod is larger than its fluctuations we can expect that our results hold.
Close to the bifurcation point however, we are not allowed to drop the absolute value sign by
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going to equation (3.46) and find a lower bound of the FP term in the order of the standard
deviation of the end point.

For small m, approaching the bifurcation point, we find from (3.53):
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(3.54)

Like below buckling the extension diverges because we make an approximation by taking
the extension to be �@f logZ. This is not exact when approximating the potential. For
the same reasons as below buckling we can expect the results not to hold for large relative
extension shifts.

3.5 Quartic order
Below buckling it is fairly simple to get a good estimate of the force extension curve up to
the Euler transition by taking higher order fluctuations into account. Since it is the lowest
mode that is responsible for the blowing up of the partition sum, approaching the transition,
we can significantly improve the calculations by including the quartic term for this mode.
Quartic terms containing other modes hardly improve upon this. In 2 dimensions the corrected
partition sum is:
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with

� D
G

4
p
h


 D

p
�2 �G2

2
p
h

(3.56)

from which we find for the force extension relation:
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These solutions can be continued up to the transition. The more practical use of these
calculations is to make an estimate of the forces a rod can endure, before it collapses.
Assuming h� 1, so that we are close to a buckling type of behavior, we can recognize two
separate asymptotic regions of behavior, depending on the argument of the modified Bessel
functions in (3.57):
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h we find as asymptotic behavior:
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i.e. X exhibits a finite negative slope. The decrease of the extension with increasing
force is substantial. The polymer can be considered to buckle.

� �2 �G2 � G
p
h: In this region the decrease of the extension is of order h, the force

extension curve being almost flat. There is no buckling yet.

The crossover region and thus the region where one could speak of a buckling transition,
is where this argument is of order unity. It is of course not possible to pinpoint a precise
transition point, but the scaling of the transition shift follows from these observations: the
force where the instability appears is shifted by thermal fluctuations according to:

fc � f.0/c .1 � C
p
h/ (3.59)

with C of order unity. The results for 5 different values of h are drawn in Figure 3.3 together
with the corresponding reduced transition forces using C D 0:5. We next consider the 3d
case. The contribution from the � part alone is the same as for the � part, which would result
in a doubling of the difference from the straight rod. But now we also have a term mixing the
two lowest modes. The fluctuation part of the partition sum is (apart from a constant):
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Figure 3.3: Details from the force extension plot in 2-d for h D 0:01, 0:05, 0:1, 0:5 and 1 calculated
from equation (3.58). The inset shows the full plot. The purple line is the classical h D 0
curve, the thin dotted line the Euler bifurcation. The thick dashed line shows the trend of
the transition force calculated from equation (3.59), with C D :5.

As first approximation we can use the expectation value of the square of one of the modes,
resulting in a modified 
 for the other mode given by:
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The resulting extension is then given by:

X D X
 CX N
 � Lc (3.63)

This approximation slightly overestimates the contribution of the mixing term close to the
transition, where the behavior is far from Gaussian. A better result can be obtained by
treating the mixing term as a perturbation and expanding equation (3.60). The resulting series
expansion one obtains is:
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with ˆ.x; y; z/ Kummer’s function (confluent hypergeometric function). This series con-
verges relatively fast just below the Euler transition and one can get a good approximation
of the extension below the transition force. For practical purposes the first approximation is
good enough to characterize the transition shift. It scales with increasing length in the same
way as the 2d case. We will next compare the predictions of the force-extension relations,
eqs. (3.25), (3.53), (3.58), (3.63) and (3.64), with simulations.

3.6 Comparison with the simulation
Molecular dynamics simulations coupled to a Langevin thermostat were performed to simulate
the buckling of a semi-flexible polymer at finite temperature. The polymer was modeled
with a bead spring model of length 50 beads (49 bond lengths). The beads were connected
via harmonic bonds with stiffness constant 100 kBT. Additional simulations with a FENE
potential [126, 127] instead of a harmonic potential gave qualitatively similar results (not
shown). A cosine angular energy term was added to the model to obtain a semi-flexible chain
with persistence length comparable to the chain length. The backbone stretching parameters
were chosen such that fluctuations of the bond length are negligible compared to the bending
fluctuations. Therefore, the inextensible worm-like chain model is expected to be a good
approximation to the simulated chain.

The simulations and theoretical calculations are plotted in Figure 3.4. The value of h was
taken rather high in order to have a more pronounced fluctuation contribution. The length
scale is chosen such that the bond length in the simulation model is 1. The 3-d quartic curve
was calculated using the modified quartic term.

The semi-classical results are in good agreement with the simulation data in the region
where a semi-classical approximation is expected to be valid. It is noteworthy that the increase
in extension as predicted by the calculations is indeed the same as observed in the simulation.
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Figure 3.4: Comparison of the analytical force-extension with simulations for Lc D 49 and h D 0:8.
The unit of length is the bond length in the simulation.

In 2d the quartic corrections below buckling are seen to be, even for relatively large values of
h, in good agreement with simulations. In 3d , using the simplified approach of modifying the
quartic interaction to account for the mode mixing (3.63) the reliability of the calculations
close to the Euler transition decreases, although the qualitative behavior seems to be good
enough for practical purposes. Better results are seen if the perturbation expansion (3.64) is
used. The 3-d quartic series curve was calculated using this expansion with the first 20 terms.
Note though that this last calculation was stopped slightly below the transition force, since it
does not converge at the transition.

The effect of the bond length not being fixed is indeed small enough compared to the
thermal fluctuations. The errorbars are caused by the finite number of simulation rounds.

3.7 Discussion
The parameter that determines whether a buckling transition is present is the ratio h of length
and persistence length of the wormlike chain. One can roughly say that a buckling transition
appears for ratios clearly smaller than 1. But it is crucial that one takes into account the shift
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Table 3.1: Reduction of the force needed to buckle for some biopolymers with finite length. The
reduction is calculated from equation (3.59) with C D 1

Pb(nm) Lc(nm) h f.0/c (pN) fc(pN)

DNA 50 10 0:2 21 11

actin 9 � 103 1:2 � 103 0:13 0:26 0:16

actin with Ph. 18 � 103 0:75 � 103 0:04 1:3 1:0

Microtubule 3:3 � 106 9:4 � 103 0:028 1:5 1:4

of the apparent transition when a force is extracted from the onset of buckling. To illustrate the
importance of thermal fluctuations we will discuss the influence they have in interpreting data
from recent experiments with important biopolymers. Table 3.1 shows the persistence length
of the 3 polymers, ds-DNA, actin and Microtubule together with some of the typical lengths
and associated transition forces. The shifted transition force is calculated from equation (3.59)
with C D 1.

The DNA tetrahedra synthesized by Goodman et.al. [116] have sides made of double
stranded DNA of a length below 10 nm. As can be read of from the table, for a lengths of
10 nm the force the structure can endure is strongly reduced by thermal fluctuations. This has
to be taken into account when designing nanostructures based on DNA.

F-actin is one of the main building blocks of the cytoskeleton. It has a persistence length
in the order of 9 to 18 µm [128] (the higher value is in presence of the toxin Phalloidin).
Actin can produce forces through polymerization. The maximum force it can produce, the
stall force, was determined by Kovar et.al. [112] by measuring the shortest length of actin
that showed buckling, when growing in between 2 fixed points. The lengths where this was
observed are given in row 2 and 3 of the table. The force calculation based on classical
buckling considerably overestimates the force needed to buckle for the measured length since
it does not take the thermal fluctuations into account.

The other important structures in the cytoskeleton are microtubules, hollow highly regular
assemblies of filaments, having persistence lengths in the order of several mm’s [128], the
precise value depending on several factors, like the growth speed [111] and perhaps the
contour length [129]. In buckling experiments by Janson et.al. [111], where the growth rate
dependence on the applied force was studied, the lengths were such that in this case the
shift by thermal fluctuations is negligible. Nevertheless, the increase of thermal fluctuations

when approaching buckling can also be observed in this case. These thermal fluctuations
increase sharply just before buckling, followed by a strong damping of these fluctuations with
increasing length (and thus increase of buckling) of the microtubule. Both these effects follow
from our calculations.
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The damping of the fluctuations after the onset of buckling can be inferred from the
approach of the semiclassical solution towards the “zero temperature” classical solution.
Below buckling the end point fluctuations increase from

˝
y2
˛
Š Lc

2 h=3, the classic result
which follows from equation (3.27), for a chain with one free end to

˝
y2
˛
� 0:2Lc

2
p
h for an

applied force corresponding to the Euler transition, as follows from equation (3.58). It should
be noted that the geometry of the setup in those experiments is not immediately comparable
to our calculations: in the experiments the microtubule has one end of the chain more or
less hinged in a fixed position. The resulting buckling force can be up to a factor 4 larger
than in our case. Qualitatively though the results are comparable and for typical values of
a persistence length of 3:3 mm and a chain length of 20 µm we expect the mean fluctuation
of the end point to be amplified by a factor� 7. This indeed seems to be approximately the
case, although a precise analysis of their measurements is outside of the scope of this paper.

Finally, a remarkable result of our calculations is the increase of end-to-end distance by
thermal fluctuations of the buckled polymers, especially in 2 dimensions. In dense networks
of actin filaments confined to the cell cortex, the buckling is approximately 2-dimensional.
The lengthening of the buckled polymer causes then an apparent stiffening of the compressed
network by the fluctuations.


