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Introduction 

 

1.1 General introduction 
Polycyclic aromatic hydrocarbons (PAHs) constitute a large class of organic molecules, which 
consist of two or more unsaturated rings. The five-, six- or seven-membered rings can be linked 
together in three manners giving the following categories: polyaryls, ortho-fused PAHs and ortho- 
and peri-fused PAHs. In polyaryls (Figure 1) two rings are connected by a single bond (e.g. 
biphenyl), in ortho-fused PAHs two rings share a common C-C bond (e.g. anthracene, chrysene) 
and in ortho- and peri-fused PAHs three rings share a common C-C bond and a common central C-
atom (e.g. pyrene, acenaphthylene).1  

 
Figure 1: Examples of PAHs: biphenyl (1), anthracene (2), chrysene (3), pyrene (4) and 
acenaphthylene (5). 
 

A second classification among PAHs is the division into alternant and non-alternant PAHs. In 
alternant PAHs, the carbon atoms can be assigned as starred (s) and unstarred (u) with each s-carbon 
having only u neighbours and vice versa (Figure 2).2 In non-alternant PAHs either two adjacent s-
carbons or u-carbons are present. Alternant PAHs are constituted of even-membered rings only, 
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whereas in non-alternant PAHs at least one odd-membered ring is present. The difference between 
alternant and non-alternant PAH is exhibited properly in the positions of the π-molecular orbital 
energy levels in HMO calculations: in alternant PAHs these levels are symmetrically positioned 
about the α level (α = 0 by definition), in non-alternant PAHs they are not.  

 
Figure 2: Alternant and non-alternant PAHs.2 
 

IUPAC has formulated rules for naming, numbering and orientation of PAHs.3-6 PAHs which 
have no accepted trivial name are named by prefixing to the name of a component ring (system) 
designations of the other components. For example, the prefixes cyclopenta and ace in 
cyclopenta[cd]pyrene (6) and acephenanthrylene (7) point to the presence of a five-membered ring 
(Figure 3). The PAH is oriented so that the greatest number of rings is in a horizontal row and a 
maximum number of rings are above and to the right of the horizontal row.7 Letters and/or numbers 
indicate at which position a ring or substituent is located. The system is numbered in a clockwise 
direction commencing with the carbon not engaged in a ring-fusion in the most counter-clockwise 
position of the uppermost ring. Atoms common to two or more rings are designated by adding 
roman letters “a”, “b”, “c”, etc., to the number of the position immediately preceding. The 
peripheral sides of the base component are lettered a, b, c, etc., beginning with “a” for the side 
“1,2”, “b” for “2,3” or “2,2a” and so on.  

 

 
Figure 3: Pyrene (4), cyclopenta[cd]pyrene (6) and acephenanthrylene (7). 
 

Polycyclic aromatic hydrocarbons are widely spread in the environment and are predominantly 
formed by incomplete combustion of organic material.8-13 Natural sources (volcanic activity, forest 
fires, and biosynthesis)14-17 account partly for the distribution. However, the majority of PAHs 
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results from human activities such as the burning of fossil fuels for power and heat generation, in 
power plants, industrial processes and engines of aeroplanes and automobiles.18-23 Significant levels 
of PAHs have been detected in food, air and drinking water24-26 but also in the interstellar 
medium,27-34 thanks to the development of sensitive detection techniques.35  

PAHs can enter the human body by inhalation of contaminated air (e.g. tobacco smoke or 
exhaust-gases from cars)36-38 or by eating food containing PAHs (grilled meat).39 This exposure to 
PAHs has a variety of consequences for health: some PAHs are known to have toxicological effects 
or they may even act as mutagens or carcinogens, leading to tumours of lungs, stomach, kidneys and 
liver.40-43  

Although PAHs are widely spread in the environment it is not possible to separate the 
complicated mixtures into their single components. Therefore, pure, well characterised PAHs are 
necessary as reference materials for the analysis of PAHs as environmental pollutants and, of 
course, for the study of their biological properties.44-47  

Establishing the structure-activity relationships is important for the elucidation of the mechanism 
of cancer induction and for the prediction of the properties of new PAHs.48,49 The presence and 
position of an extra benzene ring, methyl group50 or nitro group51-55 can make the difference 
between a harmless chemical and a highly mutagenic/carcinogenic one. Pyrene, for example, is not 
carcinogenic whereas benzo[a]pyrene56 and some nitropyrene derivatives have been shown to be 
carcinogenic.1,57-63 Similarly, the introduction of one or more fused five-membered rings to the 
carbon skeleton of a PAH can increase the mutagenic potency as in cyclopenta[cd]pyrene and 
aceanthrylene.64-66 
 

Not only the biological but also the physical properties of PAHs are interesting. Some PAHs are 
used as fluorescent probes either linked to a frame67-71 for the study of biological processes or by 
themselves in environmental monitoring72and in polymer research.73 The aromaticity of PAHs 
allows their application in conducting polymers,74,75 organic (photo)conductors76,77 and solar cell 
research.78,79 Frequent use of PAHs is observed in pigments for dyes.80,81 

Apart from these noble reasons, the structures of PAHs invite research groups all over the world 
to build such beautiful molecules. 
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1.2 Aromaticity 
The term aromaticity is indissolubly connected to benzene. Since in benzene the delocalisation of 
the π-electrons is complete, benzene is the prototype of an aromatic system. Before the idea of the 
special stability of aromatic systems, the term aromaticity was associated with chemical reactivity. 
Unlike other unsaturated systems, aromatic compounds undergo substitution rather than addition.  

In polycyclic aromatic compounds the delocalisation is not as ideal as in benzene. The fusion of 
two or more aromatic rings causes a perturbation in the delocalisation of the electrons. This leads to 
the question to which degree PAHs are aromatic. Criteria for aromaticity are based on theory and on 
experimental data. Regarding the following theories it is obvious that there still is much discussion 
about what aromaticity is and when a PAH can be designated as aromatic. 
 
Theoretical criteria 
According to Hückel a planar, monocyclic, completely conjugated system is aromatic when the ring 
contains (4n + 2) π-electrons.82,83 In benzene the six p-atomic orbitals are linearly combined to 
molecular orbitals with energies given in terms of α, the Coulomb integral of an electron in a carbon 
2p atomic orbital, and β, the resonance integral, expressing the interaction energy between two 
neighbouring 2p orbitals. Three orbitals are lower in energy than the atomic orbitals from which 
they are derived and they are the bonding orbitals (Figure 4). The three orbitals that are higher in 
energy are the antibonding orbitals. The six π-electrons of benzene can be placed pairwise into the 
bonding orbitals and this results in a stabilisation of 2 β with respect to the individual atomic orbital 
energies. This stabilisation energy, also called delocalisation energy, is the cause of the special 
stability of benzene.  
 

 
Figure 4: HMO-scheme for benzene. 
 
  The resonance energies according to Hückel (HRE) are equivalent to the delocalisation energies. 
Comparison of the HRE gives an estimation of the relative stability of aromatic molecules. 
However, because the HRE is used to evaluate the energy of the electron delocalisation rather than 
the cyclic electron (bond) delocalisation, this method is not very suitable for the determination of 
aromaticity.84 
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Extrapolation of the Hückel theory to polycyclic aromatic hydrocarbons is more difficult. 
Application of the rules would lead to the conclusion that fluoranthene (8) and pyrene (4) should be 
antiaromatic compounds, which disagrees with their known chemical properties. A possible solution 
for this problem is the examination of the PAH as conjugated cyclic polyenes which are internally 
cross-linked and/or linked to other cyclic polyenes (fluoranthene) or double bonds (pyrene) (Figure 
5).85 
 

 
Figure 5: Aromaticity of fluoranthene and pyrene regarded as cross-linked polyenes.85 
 

In Dewar’s definition aromatic molecules have a cyclic π-electron delocalisation which reduces 
the energy content of the systems relative to that of the corresponding model compounds without 
cyclic delocalisation.86 In antiaromatic systems the cyclic π-electron delocalisation leads to a strong 
destabilisation with respect to the acyclic analogues. The resonance energy according to Dewar, 
DRE, is found as the difference between the atomisation enthalpies of a given conjugated molecule 
and the classical Kekulé reference structure.87 Ab initio calculations have confirmed the additivity 
for linear polyenes and thus justified the basis of this calculation method. 

Hess and Schaad applied the DRE calculation method within the HMO method, with the 
important expansion of making a distinction between different types of C-C bonds.88-91 Their 
calculation method confirmed the importance of the correct choice of the reference structure, 
because even if they used the less sophisticated HMO method, they obtained better results than 
Dewar. A further improvement was made by Moyano and Paniagua, who parameterised the π-bond 
energies, based on the localised molecular π-orbitals.92 

Due to progress in the computer techniques many methods for the calculation of resonance 
energies have been developed and this has led to a simplification of the calculations.93-96 

A simple and practical method to understand the aromatic stability and behaviour of PAHs was 
developed by Clar.97 In Clar’s model the π-electrons are localised favourably in sextets, as in 
benzene rings. The stability of the structure increases with the number of π-electron sextets. PAHs 
which can be regarded as cross-linked purely benzenoid partial systems, such as triphenylene, are 
the most stable PAHs known.98 In contrast with the HMO-model, aromaticity is not a molecular 
property but localised in distinct rings. Clar’s model predicts many of the chemical and physical 
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properties of PAH, e.g. reactive positions in electrophilic aromatic substitution and bond lengths, 
correctly. 

The conjugated circuits' model (CC model) as proposed by Randic uses the Kekulé valence 
structures.99,100 In the individual Kekulé structures the regular alternations of carbon carbon single 
and double bonds form the so-called conjugated circuits.101 PAHs are viewed as a superposition of 
conjugated circuits instead of as a collection of Kekulé valence forms. In all Kekulé structures 
conjugated circuits of six, ten or more (4n+2) bonds are determined and if the number of conjugated 
circuits is also (4n + 2) the PAH is aromatic.102  
 

 
 
Figure 6: Aromaticity of naphthalene according to the conjugated circuits’ model.102  
There are three Kekulé valence structures for naphthalene I, II and III. Structure I consists of two Kekulé 
formulae of benzene (fused across the double bond). In structures II and III, next to one Kekulé benzene 
formula, a second circuit can be observed of ten carbons, representing a regular alternation of five single 
and five double bonds. From the total of 6 circuits it can be concluded that naphthalene is an aromatic 
structure. 
 

The resonance energy can be calculated by summation of the energies of the individual 
circuits.103 For the comparison of the aromaticity of PAHs the resonance energy per π-electron 
should be calculated. In Figure 6 this theory is worked out for naphthalene. A classification of PAH 
according to their degree of benzene character, i.e. their benzoidicity, can be made using the 
conjugated circuits’ model.103 The results are in agreement with the predictions made by Clar. A 
statistical approach of the CC model can give a good estimation of the aromaticity for large PAH.104 

Platt suggested the peripheral criterion based on the free-electron theory, treating cross-links and 
inner sp2 carbons as small perturbations.105 A cyclic or polycyclic system has aromatic character if it 
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has (4n + 2) π-electrons in its periphery. 4n π-Electrons would lead to anti-aromaticity and systems 
with (4n + 1) or (4n + 3) π-electrons in its periphery would be estimated as nonaromatic. Now 
pyrene (4) and fluoranthene (8) are estimated to be aromatic and non-aromatic, respectively. 
 
Experimental criteria 
A criterion that refers to experimentally observable phenomena is based on magnetic anisotropy.106-

109 Aromatic compounds are defined as cyclic or polycyclic systems which sustain a diamagnetic 
ring current and consequently exhibit a total diatropic, low-field 1H NMR chemical shift relative to 
that of olefinic protons. Nonaromatic compounds give rise to characteristic olefinic 1H NMR 
patterns, while in antiaromatic species the paramagnetic ring current results in a high-field 1H NMR 
band displacement.106,110-112  

A second experimentally based criterion for aromaticity uses bond lengths. Aromatic compounds 
reveal a low degree of bond length alternation around the characteristic bond length (1.38-1.40 Å) in 
contrast with nonaromatic compounds.113 The bond lengths can be determined by electron 
diffraction and X-ray diffraction. 
Finally, reactions of aromatic compounds differ from those of alkenes. Alkenes undergo additions 
with for example bromine and dienes (Diels-Alder), whereas aromatic compounds preferably react 
in substitution reactions. The relative heats of reaction towards for example hydrogenation can be 
used to determine the degree of aromaticity of aromatic molecules. 84 

A related index for the structural stability is the value of the HOMO-LUMO energy gap. In 
reactions in which the HOMO and LUMO take part in driving the reaction, aromatic compounds 
with a high HOMO-LUMO energy gap are more stable and will show lower reactivity.84  

 
1.3 Reduction and reductive alkylation of PAHs 
For the syntheses of PAHs a broad scale of chemical reactions can be used, ranging from 
electrophilic aromatic substitution to photochemical reactions, from pyrolysis to Diels-Alder 
reactions. One reaction that converts PAHs very effectively into useful derivatives is the dissolving 
metal reduction.114-116 In this reaction anions of PAHs are generated by electron transfer from an 
alkali metal to the PAHs.117 These anions react readily with electrophiles, such as protons and alkyl 
halides, often with remarkable regioselectivity.118-120 Therefore, the reaction products often are 
valuable intermediates in the preparation of specifically substituted PAHs121-126 and other polycyclic 
compounds.127,128 In contrast to electrophilic aromatic substitution, in which a relatively unreactive 
PAH is treated with an activated electrophile, this mild method permits the use of less reactive 
electrophiles, e.g. alkyl halides instead of acyl chlorides in combination with a Lewis acid.  

In the classical dissolving metal reduction, the Birch reduction, the PAH and an alkali metal are 
dissolved in liquid ammonia.129,130, In the first step, one electron is transferred from the alkali metal 
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to the PAH, resulting in a radical anion A•- (Scheme 1).131 This radical anion can be observed by 
ESR spectroscopy. The second step depends on the size and the stability of the radical anion.132 
Small or less stable radical anions are often protonated by ammonia, thus forming a neutral radical 
AH•. A second electron transfer leads to the monohydroanion. Otherwise, the radical anion may 
accept a second electron, generating a dianion A2-. The dianion may persist, or it may be protonated 
by the solvent (ammonia), leading to the monohydroanion AH-. Phenanthrene is already protonated 
by ammonia at the stage of the radical anion and a hydroanion is formed after a second electron 
transfer. Anthracene and pyrene follow the second reaction path, resulting in the anthracene dianion 
and the 5-hydropyrene anion, respectively.  

Apart from the protonation of initially formed radical anions or dianions by ammonia, and the 
overreduction, due to repeated electron transfer to neutral reduction products,133 the use of ammonia 
as a solvent in laboratories should be reconsidered for safety reasons as well as because of the 
complicated procedures and equipment needed for this low temperature reaction. A more 
convenient method for the preparation of dianions is the reduction in strictly aprotic solvents.134,135 
In contrast to the reduction in ammonia, in which the metal dissolves and thus the solvated electrons 
are transferred easily to the PAH, the reaction without ammonia is a solid surface reaction and 
therefore slow. Sonication facilitates the reaction136 and reduces the reaction time to a few hours.  
 

 
Scheme 1: a) Dissolving metal reduction of PAHs; b) aprotic reduction of PAHs. 
 

The structure of the aromatic dianions and hydroanions can be elucidated by 1H and 13C NMR 
spectroscopy techniques such as 2D NMR and decoupling experiments.  
Apart from the structure elucidation, NMR chemical shifts afford further information on π-charge 
densities, charge delocalisation patterns and the anisotropy of the system.136 It is known that 
shielding of hydrogen and carbon atoms in charged conjugated systems varies linearly with the 
corresponding π-electron density137-143 and can be formulated as follows: 
  δH = δN - KH∆qπ       (1) 
  δC = δN - KC∆qπ       (2) 
With:  δH = chemical shift of the proton in the charged species 
   δC = chemical shift of the carbon in the charged species 
   δN = the corresponding shift for the neutral precursor 

A A A2-

AH AH-

NH3 NH3

A A A2-

a) b)

))) )))
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   qπ = the quantity of π-charge 
   K = proportionality factor 
 

Of course these equations should be used with caution. The proportionality factors K depend on 
several molecular parameters such as the molecular structure and the hybridisation of the carbon 
atoms. Generally, 10.7 ppm per electron is taken for KH and 160 ppm per electron is a good value 
for KC.136 These correlations enable estimation of the charge at the individual atoms and the total 
charge in the molecule. Because proton shifts are strongly influenced by induced magnetic fields, 
carbon shifts are preferred for the determination of the local π-charge density.  

A second method for the determination of the charge distribution in conjugated anions is a study 
of the regioselectivity of protonation and alkylation of the anions. The atoms with a high electron 
density are most susceptible to kinetically controlled electrophilic attack.144,145,146 

Finally, these experimentally observed data can be supported by charge density calculations.147 
 

1.4 Acenaphthylene 
Berthelot148,149 discovered acenaphthylene in 1867 and gave the compound the name derived from 
its synthesis i.e. the reaction of naphthalene with acetylene (or ethylene) in a hot tube oven. In 1873 
Behr and Van Dorp synthesised acenaphthylene by the oxidation of acenaphthene with lead(II) 
oxide.150-152  

Since the discovery of acenaphthylene it has been isolated from charcoal,153 pyrolysis of natural 
gas,154 cigarette smoke and shale oil.155 Acenaphthylene itself is not carcinogenic or mutagenic, but 
it can give rise to irritations in contact with eyes, skin and respiratory system.156 

Acenaphthylene is one of the smallest PAHs and because it is commercially available, it can well 
be used as a building block for the synthesis of larger PAHs such as fluoranthene157 and 
acephenanthrylene.158 
 
Aromaticity in acenaphthylene and its dianion 
Application of the simple Hückel rules to acenaphthylene would lead to the conclusion that it is 
antiaromatic with its 12 π-electrons. Therefore, acenaphthylene can better be regarded as the 
aromatic naphthalene linked to a double bond (Figure 7A). This structure is confirmed by most of 
the theoretical and experimental criteria. Clar predicts the olefinic bond character of the bond 
between C-1 and C-2 (Figure 7B). Reactions with acenaphthylene show the aromatic and the 
olefinic character of the naphthalene skeleton and the double bond, respectively. The double bond 
character is confirmed by the addition reaction with bromine and by photodimerisation.159  
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When conjugated circuit counts are made, acenaphthylene has the same conjugation content as 
naphthalene, because the external C(1)-C(2) double bond can never be involved in a conjugated 
circuit.102  

According to Platt’s model acenaphthylene should be depicted as a perturbed [11]annulene, or as 
a (4n + 3) π conjugated system (n=2), with an inner carbon atom acting as a weak perturbation to 
the annulene skeleton.160 Consequently, acenaphthylene is expected to reveal a nonaromatic, 
polyvinylic character (Figure 7C). This is not in accordance with the other criteria and the 
experimental results.  

The protons at C-1 and C-2 appear in the 1H NMR spectrum near 7 ppm, separate from the 
signals of the naphthalene moiety. This points to the presence of only a small amount of aromatic 
character in the five-membered ring of acenaphthylene. 

Also on the basis of bond length considerations, acenaphthylene can best be described as a 
naphthalene weakly conjugated with an outer double bond. The C(1)-C(2) bond was calculated to 
have a value typical for a double bond, the connecting bonds (C(1)-C(8a) and C(2)-C(2a)) are 
substantially longer than the aromatic bonds (Figure 7D). From neutron diffraction experiments the 
double bond appears to be somewhat longer than a normal double bond, and in this way may reflect 
the strain imposed by the naphthalene framework on the double bond.161 

From theoretical calculations it is known that the RE of acenaphthylene is only slightly higher 
than the RE of naphthalene, indicating that the aromatic character mainly comes from the 
naphthalene skeleton.162,163  
 

 
Figure 7: Aromaticity in acenaphthylene according to: A. Hückel, B. Clar and C. Platt's model; 
Bond lengths: D. acenaphthylene, E. acenaphthylene dianion. 
 

The acenaphthylene dianion has 14 π-electrons and would, using Hückel rules, be considered as 
aromatic. Similarly to the neutral species it depends on the participation of the C(1)-C(2) bond in 
the delocalisation if the dianion is really aromatic.  

In the conjugated circuits' model negative charge is counted as a double bond, based on the 
structure of the cyclopentadienyl anion.102 Similarly to the neutral systems, Kekulé structures should 
be drawn and the resonance energies calculated. Comparison of the resonance energies of 
acenaphthylene and its dianion gives a reduction of the aromaticity for the latter with 26%.102 
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However, the decrease in resonance energy is less than in the hypothetical naphthalene dianion. 
Therefore, it can be concluded that the outer double bond contributes more to the conjugation of the 
dianion than in the case of the neutral compound. 

For the estimation of the aromatic character of the acenaphthylene dianion according to the 
peripheral criterion, it is important how the 14 π-electrons are distributed over the 12 carbon atoms. 
The two extra electrons can be inserted into the periphery resulting in an [11C-13π] system or one 
of the extra electrons is located on the inner carbon C-8b and the other in the periphery resulting in 
an [11C-12π] system.160 The latter would be expected to have antiaromatic character. By means of 
13C NMR spectroscopy it has been established that little charge is located at the central carbon and 
thus that the two electrons are distributed over the outer carbons resulting in a nonaromatic 
structure.160  

This conclusion was confirmed by bond length determination from the dilithium complex of the 
acenaphthylene dianion by X-ray crystallography (Figure 7E). The decrease of the C(1)-C(8a) bond 
distance and increase of the C(1)-C(2) bond length indicate that the C(1)-C(2) bond is now part of 
the delocalisation pattern. It should be noted that also the C(3)-C(4) bond shortens and that the 
structure is less symmetric.164 Calculations of the charge density and the HOMO-LUMO gap and 
comparison with the experimental 1H and 13C NMR data indicate also that the five-membered ring 
double bond is part of the electron delocalisation, in contrast to the neutral system.165 
 
Reduction of acenaphthylene 
Acenaphthylene can be reduced in a Birch-reduction like procedure. The product depends on 
whether the radical anion or the dianion is protonated: The radical anion gives acenaphthene while 
the dianion yields 1,5-dihydroacenaphthylene.166 The protonation of the acenaphthylene dianion in 
ammonia seemed to depend on the counter ion. To avoid undesired protonation, the acenaphthylene 
dianion could be prepared in aprotic solvents using sonication of the solution in the presence of an 
alkali metal167 or by deprotonation of acenaphthene. 168,169 

The acenaphthylene dianion and the 5-hydroacenaphthylene anion were prepared in NMR tubes 
and spectra were recorded.170,171 From these spectra some predictions about the reactivity of the 
reactive species were made.172 These were in accordance with the protonation experiments.  

From the reactions of the acenaphthylene dianion with dihaloalkanes it was concluded that the 
acenaphthylene dianion does not react selectively with electrophiles.173 In other cases the dianion 
was concluded to react very selectively based on 100 MHz 1H NMR spectra!168,169 In Chapter 2 a 
more detailed discussion of the literature on the acenaphthylene anions and their reaction products is 
given. It is obvious from these examples that the relationship between structure and reactivity of the 
anions of acenaphthylene towards electrophiles requires a more detailed study. 
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1.5 Purpose of this investigation 
In this thesis two important aspects in the reactivity of anions of PAH are investigated: 
1: The influence of electrophiles on the mechanism of the reductive alkylation of acenaphthylene 
(Part I: Chapters 2-6).  
2: The influence of substituents on the reactivity of anions of acenaphthylene (Part II: Chapters 7-9).  
For the first aspect acenaphthylene can be taken as a model compound for non-alternant PAH. In 
spite of its small size it is easily converted into its dianion. Both the dianion and the hydroanion are 
subjected to reactions with electrophiles. Analysis of the reaction products in combination with 
NMR spectroscopy and calculations of the intermediate anions will help us to understand the 
reaction pathway of electrophiles with anions of PAH. 

A second point of interest is the use of the reductive alkylation in the synthesis of larger PAH. 
Therefore, electrophiles with a second functionality were used in order to find a general route for the 
extension of the PAH skeleton.  

In the second part the influence of electron-withdrawing and electron-donating groups on the 
reaction of the acenaphthylene anions with simple electrophiles will be discussed. NMR 
spectroscopy, cyclic voltammetry, alkylation experiments and calculations will be used to study the 
substituted anions. The effect of the substituent will be dependent on its electronic properties as well 
as on its position at the acenaphthylene skeleton. Next to the understanding of the influence of 
substituents on the reactivity of PAH in reductive alkylation experiments, this part provides routes 
for the selective synthesis of disubstituted acenaphthenes. 

A general conclusion is given in Chapter 10. This thesis is concluded with summaries in English 
and Dutch. 
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