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4

Towards a Quantitative Description of

Solid Electrolyte Conductance Switches

We present a quantitative analysis of the steady state electronic transport

in a resistive switching device. The device is a thin film of Ag2S contacted

by a Pt nano-contact acting as ion-blocking electrode, and a large area Ag

reference electrode. When applying a bias voltage both ionic and electronic

transport occurs, and depending on the polarity it causes an accumulation

of ions around the nano-contact. At small applied voltages (pre-switching)

we observed this as a strongly nonlinear current-voltage curve, which has

been modeled using the Hebb-Wagner treatment for polarization of a mixed

conductor. This model correctly describes the transport of the electrons

within the polarized solid electrolyte in the steady state up until the re-

sistance switching, covering the entire range of non-stoichiometries, and

including the supersaturation range just before the deposition of elemental

silver. In this way, this forms a step towards a quantitative understanding

of the processes that lead to resistance switching.

This chapter has been published as M. Morales-Masis, H. D. Wiemhöfer and J. M. van

Ruitenbeek, Nanoscale 2 2275 (2010)
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4. TOWARDS A QUANTITATIVE DESCRIPTION OF SOLID ELECTROLYTE SWITCHES

4.1 Introduction

Understanding the physical mechanisms driving the resistance switching in metal/

chalcogenide/ metal systems is of great importance, as the interest on their imple-

mentation in memory devices is increasing. Various models have been proposed

to explain the switching mechanism; many of these models are based upon the

concept of the formation of a conductive filament and its annihilation at opposite

bias, inside the insulator material [14, 65, 66]. Nevertheless, a deep understanding

of the microscopic mechanisms responsible for filament formation is still lacking.

In this paper we demonstrate the use of the Hebb-Wagner formalism [30, 67]

for the analysis of the steady state I-V characteristics of memory resistors based

upon mixed ion and electron conductors. We apply this formalism to fit our

experimental I-V characteristics, and describe the ionic and electronic transport

within the electrolyte before the full resistance switching is observed.

The mixed conductor used for the present study is Ag2S. However, this de-

scription should also be valid for other mixed electronic and ionic conductors, e.g.

Cu2S and AgGeSe. In general, one needs to take into account that the formation

of a space charge layer occurs for many solid electrolytes. In the case of Ag2S,

effects due to depletion or space charge at the Pt contact are negligible. The

device we consider consists of a Ag2S thin film contacted by a Ag thin film at the

bottom (which helps to achieve a reference state with constant silver concentra-

tion at that contact), and a nano-scale Pt contact on the top realized by means

of a conductive AFM tip.

Our measurements and simulations at low bias voltages (steady state) confirm

the predictions of the theory: the increase in the electronic current at forward

bias (negative polarity at the Pt contact) is due to the initial accumulation of

Ag+-ions towards the nano-scale contact. This causes a Ag concentration gradi-

ent, i.e. local deviations from the ideal stoichiometry in the region close to the

nano-contact. We note that this occurs before any switching is observed.

The Hebb-Wagner concepts have originally been formulated for bulk mate-

rials, and until today, to our knowledge, have not been applied to nano-scale

contacts or thin film devices. We demonstrate that the theory still holds for

nano-scale devices.
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4.2 Measurement setup

The electrical measurements were performed with the use of a conductive atomic

force microscope (C-AFM) (Veeco Multimode AFM/SPM system). In the setup,

the Ag layer is the bottom contact to the Ag2S layer and the top contact is a

Pt-coated AFM tip. See the diagram in Figure 4.1. The measurement circuit is

as described in Chapter 3 Section 3.2, and is independent of the AFM controller.

V

A

0

Pt-coated

AFM �p Figure 4.1: Schematic diagram

of the electrode configuration for

the measurements with the Con-

ductive Atomic Force Microscope

(CAFM)

The current-voltage characteristics of the samples were obtained by continu-

ously ramping the voltage linearly from 0 to Vmax down to −Vmax and back to

0, at a frequency of 0.25 Hz. Voltages are given throughout with respect to the

potential of the Pt tip (taken as 0V). For the steady state analysis, the value

of Vmax was kept below the potential at which we observed hysteresis in the I-V

characteristics [47], meaning that no significant changes are induced in the solid

electrolyte by decomposition of the Ag2S [63]. All the experiments were per-

formed at ambient conditions.

Platinum is a chemically inert metal, and as an electrode in the system it

blocks the ionic current. By using a nano-scale Pt electrode and a reference (Ag)

electrode at the bottom with a large surface area, the changes in electrical con-

ductivity will be concentrated in the vicinity of the nano-contact. The Ag2S thin

film has been fabricated by reactive sputtering, described in Chapter 2 Section

2.7.

4.3 Results

The current-voltage characteristics show an exponential behavior that is fully

reversible on the time scale of the experiment. The curve is asymmetric, with an

51



4. TOWARDS A QUANTITATIVE DESCRIPTION OF SOLID ELECTROLYTE SWITCHES

increase in the current at the positive bias. We refer to this as the ‘pre-switching’

steady state behavior and, in the Ag/Ag2+δS/Pt junctions, it is observed for

voltages below about 75mV (Figure 4.2a). When increasing the bias voltage be-

yond 75 mV, the I-V curves present hysteresis, which evolves into full bipolar

switching for still larger voltages (Figure 4.2b). In the full bipolar switching case,

the ‘on’ and ‘off’ states of the device are clearly observed, with a resistance ratio

(Roff/Ron) of approximately 105. The switching from ‘on’ to ‘off’ state is explained

by the formation of conducting paths that are formed and dissolved within the

solid electrolyte, connecting and disconnecting the electrodes (diagrams in Figure

4.2b) [14].

Figure 4.2: a) Steady State and b) full bipolar switching current-voltage character-

istics of the Ag/Ag2+δS/Pt(nano-contact) system. In the full bipolar switching case

the transition from ‘off’ to ‘on’ states and back is explained by the formation and

dissolution of a conductive path.

We focus on the exponential, or steady-state, I-V curves (Figure 4.2a). The

shape of the curve is reminiscent of curves measured for metal-semiconductor

junctions, and it is known that Ag2+δS is a n-type semiconductor [29]. However,

the obtained curves have the inverse curvature as compared to that expected for

a Pt/n-type semiconductor junction (i.e. Schottky contact). In the case of solid

electrolyte semiconductors, this must be attributed to a combination of ionic and

electronic conduction in the electrolyte. The main observation is the fact that the

shape of the IV-curves depends strongly on the type of electrode used: material,

size and symmetry of the electrodes [68].
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In our experiment, with the use of a nano-scale contact and a much larger

bottom contact, we have introduced an asymmetry in the potential distribution

across the mixed conductor. When a potential difference is applied to the system

Ag/Ag2+δS/Pt, where Pt is the nano-contact, the strength of the electric field is

concentrated in the vicinity of the nano-contact. If the potential is small, such as

to avoid decomposition of Ag2+δS, a steady state composition gradient is induced

in the Ag2+δS film, as a result of the mobility of Ag+-ions [30].

For a mixed electronic and ionic conductor such as Ag2+δS, the electronic

conductivity is a function of the deviations from the stoichiometric composition

(δ). When the negative polarity is at the Pt tip (nano-contact), the Ag+-ions

move towards the tip, acting as n-type donors. The local enhancement of the Ag

ion concentration results in an increase of the electronic conductivity in the small

region close to the tip. We will elaborate on this below.

4.4 Theory

A model for the current-voltage behavior of mixed ionic conductors under steady

state conditions goes back to Hebb and Wagner [30, 67].

Silver sulfide is a mixed conductor as both silver ions and electrons are mobile.

Applying a voltage V to a silver sulfide sample between two electrodes, sets up

a difference of the Fermi levels, ε
′′

F and ε
′

F, between both contacts.

If we can neglect the interface resistances, the applied electrical potential

difference V imposes a difference of the local electrochemical potentials of elec-

trons in the ionic conductor between the two electrode interfaces on the mixed

conductor

−e V = ε
′′

F − ε
′

F = µ̃
′′

e − µ̃
′

e (4.1)

where −e is the electron charge. The values at the boundaries are denoted as

double prime for the Ag bottom contact and prime for the Pt nanocontact.

According to Eq.(4.1), applying a voltage generates a gradient of the electro-

chemical potential µ̃e within the mixed conducting silver compound and, thus,
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4. TOWARDS A QUANTITATIVE DESCRIPTION OF SOLID ELECTROLYTE SWITCHES

an electronic current density je given by

→

j e=
σe

e

→

∇ µ̃e (4.2)

with σe as the conductivity of electrons.

A gradient of the electrochemical potential of electrons is accompanied by

a gradient of the electrochemical potential of silver ions, and vice versa. The

corresponding silver ion current density is given by a complementary expression

to Eq.(4.2) according to

→

j Ag+= −
σAg+

e

→

∇ µ̃Ag+ (4.3)

with σAg+ as the conductivity of silver ions. The general equations for the partial

current densities of ions and electrons are given according to transport theory of

irreversible thermodynamics (Chapter 1. Section 1.4).

Furthermore, the currents of electrons and silver ions will be coupled by the

equilibrium of electrons and ions according to

Ag 
 Ag+ + e− (4.4)

The assumption of local thermodynamic equilibrium between silver ions and

electrons is valid, if the electrochemical potential gradient in Eq.(4.2) is not too

high [27]. This approach is well accepted for mixed conducting silver chalco-

genides [69]. Then, the condition of thermodynamic equilibrium holds for Eq.(4.4)

at all positions in the sample. With µAg denoting the chemical potential of neutral

silver, it follows

µAg = µ̃Ag+ + µ̃e (4.5)

According to the local equilibrium condition (4.5), the boundary condition

Eq.(4.1), imposed by the voltage applied between the ion blocking Pt nano-

contact and the silver back contact leads also to the following alternative expres-

sion for the applied voltage
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4.4. THEORY

−e V =
(
µ

′′

Ag − µ
′

Ag

)
−

(
µ̃

′′

Ag+ − µ̃
′

Ag+

)
(4.6)

Let us consider two simple limiting cases which lead to simplified equations

for the voltage. The first concerns a sample with a homogeneous composition

initially. At t = 0, just after a sudden jump of the voltage from V = 0 to V > 0,

the chemical potential of neutral silver has a constant value throughout the whole

sample. Under this condition, the difference of the chemical potentials of silver

in Eq.(4.6) vanishes and accordingly, the remaining difference of the electrochem-

ical potentials of silver ions in Eq.(4.6) will be identical to the difference of the

electrochemical potentials of electrons in magnitude but opposite in sign.

t = 0 : −e V = µ̃
′′

e − µ̃
′

e = −
(
µ̃

′′

Ag+ − µ̃
′

Ag+

)
(4.7)

For increasing times t > 0, the initial silver ion current builds up a concen-

tration gradient in the sample. This leads to an increasing value of the chemical

potential difference
(
µ

′′

Ag − µ
′

Ag

)
and a decreasing electrochemical potential dif-

ference of silver ions which finally reaches zero. Accordingly, the electrochemical

potential difference of silver ions, and hence the ionic current, will vanish for long

enough times t >> 0 giving

t� 0 : −e V = µ̃
′′

e − µ̃
′

e = µ
′′

Ag − µ
′

Ag (4.8)

The metallic silver bottom electrode fixes the chemical potential at the in-

terface Ag/Ag2S at µ◦Ag. Because of this, the chemical potential of silver (and

accordingly the non-stoichiometry δ) at the ion-blocking electrode, is the only

variable in the system which is linearly dependent on the applied voltage. There-

fore, under steady state conditions, Eq.(4.8) simplifies to

−e V = µ◦Ag − µ
′

Ag (4.9)

Note in this case that for V = 0, the chemical potential of silver at the ion-

blocking contact is equivalent to that of metallic silver. Therefore, if no supersat-

uration occurs, any positive voltage should lead to the formation of metallic silver

deposits. However, this is not observed for positive voltages up to 75 mV mean-

ing that around the ion-blocking contact, a supersaturated composition occurs
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4. TOWARDS A QUANTITATIVE DESCRIPTION OF SOLID ELECTROLYTE SWITCHES

with δ > δ◦ where δ◦ corresponds to the non-stoichiometry in thermodynamic

equilibrium with silver metal.

Hence, in the steady state, the gradient of the electrochemical potential of

silver ions and the ionic current density vanish. Then, the gradient of the elec-

trochemical potential of electrons is equivalent to the gradient of the chemical

potential of silver, and the total electric current density jtotal is carried by the

electrons only. This is summarized in the following,

t� 0 : ∇µ̃Ag+ = 0, jAg+ = 0 (4.10)

∇µ̃e = ∇µAg, jtotal = je (4.11)

Therefore, in the steady state, the electronic current can be expressed by the

gradient of the chemical potential of neutral silver according to

t� 0 : je = jtotal =
σe

e
∇µAg (4.12)

The typical time to reach the steady state as assumed for Eqs.(4.9) to (4.12)

is estimated as τ = L2
diff/2 DAg, with τ denoting the relaxation time for building

up a steady-state silver concentration gradient in the sample, Ldiff the diffusion

length through the sample (for a linear geometry the distance between the two

electrodes), and DAg the chemical diffusion coefficient of silver that is given by

[70]

DAg =
σeσAg+

σe + σAg+
·
1

e2
·
dµAg

dcAg

(4.13)

with cAg denoting the local concentration of Ag atoms in Ag2+δS.

The chemical diffusion coefficient in the low temperature phase of Ag2+δS is

very high, at 80◦C the value is of the order of 10−2 cm2/s. At ambient condi-

tions, it is still around 10−5 cm2/s. Therefore, decay of concentration gradients

in Ag2+δS occurs much faster than in many other mixed conducting solids. The

reason is that the thermodynamic factor
dµAg

dcAg
in Eq.(4.13) has an extremely large

value due to the small range of non-stoichiometry [25].
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4.4. THEORY

It has to be remarked that the relations discussed above are only valid as long

as no deposition of metallic silver occurs. If silver metal is formed near and at the

ion-blocking contact, the ion-blocking boundary condition is no more valid and

a continuous silver ion current will flow. The total current then is a sum of elec-

tronic and ionic currents and will not reach a steady state. At a nano-contact, the

current will usually increase, because the formation of metallic silver will increase

the contact area of the nano-contact. Finally, one expects a short-circuiting of

the electrodes by the grown silver filaments.

When the steady-state conditions with no silver deposition are fulfilled, Eq.(4.12)

can be applied and a well defined, unambiguous relation exists between the elec-

tronic conductivity and the chemical potential of silver. Following a concept by

C. Wagner [67], one can calculate the electronic conductivity from the slope of

the steady state I-V curve. First, the chemical potential and the space variable

are separated according to

e
→

j total (
→

r ) · d
→

r= σe dµAg (4.14)

The relation is given for a general case where the current density may vary

along the coordinates
→

r . Integrating Eq.(4.14), with integration limits set by the

boundary conditions at the two electrode contacts, we have

e

∫ r
′

r
′′

→

j total (
→

r ) · d
→

r=

∫ µ
′

Ag

µ0
Ag

σe dµAg (4.15)

The left-hand side of Eq.(4.15) depends on the geometry of the contacts. We

will simplify the integrals by assuming the chemical potential drops only along

one coordinate, say r. The integral becomes simple for a sharp point contact

(radius a) and a hemispherical reference electrode at r
′′

→ ∞. In this case we

have,

e

∫ r
′

r′′
jtotal(r) dr = −

e

2πa
I (4.16)

More generally we obtain an expression with the total electrical current I and

a constant K that depends on the distribution of the current density through the

sample:
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4. TOWARDS A QUANTITATIVE DESCRIPTION OF SOLID ELECTROLYTE SWITCHES

e

∫ r
′

r′′

→

j total (
→

r ) · d
→

r= −
e

K
I (4.17)

with K = A/L for a specimen in the shape of a pellet with area A and thickness

L, K = 2πa for a hemispherical contact of radius a, and K = 4a for a disk shaped

contact to a semi-infinite sample.

With this result for the left hand side of Eq.(4.15), following C. Wagner [27]

one can differentiate both sides with respect to the upper integration boundary

µ
′

Ag. This yields

−
e

K
·

dI

dµ
′

Ag

=
d

dµ
′

Ag

(∫ µ
′

Ag

µ0
Ag

σe dµAg

)
= σe

(
µ

′

Ag

)
(4.18)

From Eq.(4.9) we have µ
′

Ag = µ0
Ag + e V , accordingly dµ

′

Ag = e dV and

(
dI

dV

)

steady state

= −Kσe(µ
′

Ag) (4.19)

Now that we have eliminated the unknown chemical potential we can integrate

again over the electrical potential to obtain the final current-voltage relation in

the steady state

I(V ) = −

∫ 0

V

K · σe(V )dV (4.20)

In our case, we are working in the range of stoichiometry δ > 0, i.e. the

n-type range. Under this assumption the electronic conductivity is given by

σe = σ0e
(eV/kT ) [71]. The voltage dependence arises from the relation between

the local Ag+-ion concentration (doping) and the local electrical potential.

Thus, we obtain

I(V ) = Kσ0
kBT

e

(
e(eV/kBT ) − 1

)
(4.21)

where kB is Boltzmann’s constant and K is a constant representing the geomet-

rical factor mentioned in Eq.(4.17). In the limit near zero bias, i.e. eV << kT,
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Eq.(5.8) reduces to I = Kσ0V .

As indicated in Eq.(4.9), the relation above applies only in the cases when one

of the electrodes maintains a constant chemical potential for Ag, and all changes

occur at the small electrode. In other experiments [47], by using two Pt elec-

trodes with the same asymmetry in the geometry, we observed a slight deviation

from the theory due to additional chemical potential changes at the Pt bottom

contact. From a thermodynamic point of view, in principle I-V relations could

also be calculated, if one knows the initial non-stoichiometry δ of the sample. But

as they depend on the initial δ, it is not easy to achieve well defined experimental

conditions.

In order to approach the limit of the semi-infinite sample (no changes at the

bottom electrode) we need to make use of a very small contact. This allow us

also to test the theory for nanometer size limit.

4.5 Discussion

Figure 4.3 shows two sets of data for a 200nm thick Ag2S film on top of a Ag

bottom reference electrode (black curves). The curve in Fig.4.3a is taken with a

Pt coated AFM tip at very small load in order to minimize the contact size. The

curve in Fig.4.3b is taken with a Pt wire contact for a larger macroscopic contact.

Using σ0 = 7.8 x 10−2 Ω−1m−1 [25] and T = 298 K, we can compare the

experimental data of the steady state I-V curves with Eq.(5.8). The result of the

fitting is shown in figure 4.3 (red curves).

The geometry of the electrodes and sample enters through the constant K

in Eq.(5.8), which is the only adjustable parameter. Assuming that the end of

the AFM tip has approximately hemispherical shape, K = 2πa , we obtain an

estimate for the tip contact radius, a,

a = K/(2π) = 12nm

which agrees well with the AFM tip radius observed by electron microscopy of

approximately 20 nm. Using finite element simulations, we have modeled the
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Figure 4.3: Steady state current-voltage characteristics of the Ag/Ag2+δS/Pt system,

measured with (a) a Pt-coated AFM tip and (b) a Pt wire. Fit with Eq.(5.8) are shown

as the red curves.

sample and electrodes geometry (Figure 4.5). The resulting total current as a

function of the applied voltage (same as used for the measured IV’s) results in a

IV curve reproducing those obtained from the experiment and fitting.

For comparison to the measurements with the AFM tip, we have also used a

macroscopic Pt wire of 0.1 mm diameter as the top contact. The steady state

IV-curve as well as the corresponding fitting with Eq.(5.8) is shown in the right

side of Figure 4.3. The quality of the fit is much less good than in the case of the

nano-contact. This, is because the assumption of a semi-infinite sample is not

longer valid. In our case, fitting with Eq.(5.8) led to a calculated effective contact

radius of 17 µm. However, assuming a perfect contact, the total current must be

much higher than observed in Figure 4.3. In our experiment, the Pt wire will not

be a perfect contact, but rather the total area in contact with the Ag2S surface

is reduced to only few contact points distributed in an effective radial area of ≈

17 µm.

Systematic measurements of AFM tip load with contact size were also per-

formed to further verify the relation presented in Eq.(5.8). The measurements

start when the tip is just in contact with the Ag2S surface, followed by an increase

of the tip-sample interaction. For each point (tip load), an IV curve is measured

and fitted with Eq.(5.8). From the fitting the contact radius is calculated (using
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4.5. DISCUSSION

K = 2πa) and plotted as a function of the load tip force (Fig.4.4). In the plot we

observed, as expected, a systematic increase of the contact radius with the tip

load. Additionally, more than 80% of the measurement range presents a linear

relation, probably related to the AFM tip shape.

0

20

40

60

80

100

120

r 
(n

m
)

Force (a.u.) 

 top contact radius 

0 1 2 3 4 5 6

Figure 4.4: Contact radius cal-

culated from a set of experimen-

tal I-V curves using Eq.5.8, at dif-

ferent load AFM tip forces. The

measurements start when the tip is

just in contact with the surface of

the Ag2S (smallest contact radius)

followed by an increase of the tip-

sample interaction.

This measurement, confirms the consistency of Eq.5.8 to calculate the tip

contact radius from experimental steady state IV curves. Additionally, this type

of measurement serve as a calibration of the AFM tip load for minimizing the tip

contact size, as was performed for the measurement presented in Fig.4.3.

For visualization of the top electrode size effect, we have simulated the volt-

age drop and local conductivity across the thickness of the Ag2S sample. The

model geometry is the same as used for the measurements: a Ag large bottom

electrode, a 200nm thickness Ag2S layer and a 20nm radius Pt top electrode with

a nearly planar geometry. For the simulation we used axial symmetry around the

nano-contact.

Figure 4.5 (top panel) shows the solution of the finite element simulation at

a voltage of 52 mV (voltage polarity as defined for the experiment). The figure

clearly shows that the conductivity changes are concentrated in the region close

to the top electrode. Also, we observed that the conductivity increases when the

negative polarity is at the top electrode, indicating a local increase of Ag+-ion

concentration (n-type donors). In the opposite polarity, the conductivity will de-

crease, due to the local depletion of Ag+-ions, leading to a lower conductivity. The
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4. TOWARDS A QUANTITATIVE DESCRIPTION OF SOLID ELECTROLYTE SWITCHES

color bars at the right side of the simulation indicate the conductivity values (σe).

The bottom panel of Figure 4.5 is a plot of the variation in stoichiometry ob-

tained from the simulation results (in this case at a voltage of 75 mV). It is plotted

as a function of the vertical distance (d) from the center of the nanocontact to

the Ag substrate. The deviation from stoichiometry is given by, [25, 33]

δ = n− p = 2K
1/2
i sinh

(
e(V0 − V (d))

kT

)
(4.22)

where n and p are the electron and hole concentration and K
1/2
i = n = p at the

stoichiometric composition. In the calculation we have taken K
1/2
i = 2 x 1020

m−3 and V0 = 105 mV as reported by Bonnecaze et al. [25]. The equation above

accounts for both p an n-type Ag2+δS.

The range of homogeneity of the low temperature phase α-Ag2S is extremely

narrow, with |δ◦| in the order of 10−6 [24, 33]. For δ > 0, Ag2S has excess Ag

(n-type regime), and for δ < 0, there is a deficit of Ag (p-type regime). We define

δ◦ as the non-stoichiometry limit in thermodynamic equilibrium with Ag (at the

n-type regime). In our experiment this is the case where the Ag2S is in contact

with the Ag substrate.

In Figure 4.5 we observe that δ = δ◦ at the boundary Ag/Ag2S (d = 200nm)

as expected, and δ > δ◦ over the whole range of the curve. This would mean

that Ag should precipitate from the Ag2S already over the full range. However,

a certain level of supersaturation is needed before Ag starts precipitating. When

a certain supersaturation level is reached, precipitation of metallic Ag will begin.

In our geometry we will therefore observe precipitation of metallic Ag to start in

the region near the nano-contact (Pt tip). This precipitation process is, in a later

stage, responsible for the nucleation and further formation of Ag filaments. The

formation of these filaments, which can grow to make a metallic contact between

the Ag and Pt electrode, is the proposed mechanism that leads to full bipolar

conductance switching.

The nucleation process is related to an overpotential threshold, at which nu-

cleation will increase exponentially [2, 72]. The precipitation of metallic silver

during our measurements from an oversaturated state can be understood from
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Figure 4.5: a) Finite element simulation of potential (contour plot) and conductivity

(surface plot) at V = 52mV, across the 200 nm thick Ag2+δS. Contact radius is 20nm,

with a nearly planar geometry. b) Plot of the non-stoichiometry δ as a function of

the vertical distance from the center of the nano-contact to the Ag substrate (d). The

values of δ indicate a strong increase in Ag+-ion concentration at the region neighboring

the nano-contact reaching the values of high supersaturation of Ag in Ag2+δS.
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4. TOWARDS A QUANTITATIVE DESCRIPTION OF SOLID ELECTROLYTE SWITCHES

the IV curves, i.e. the presence of hysteresis in the IV curves and further full con-

ductance switching as described in Chapter 3. We observed metal deposition and

switching to high conduction at a bias voltage beyond 75 mV, a value in agree-

ment with earlier results [73]. As indicated above, the experimental data verify

that there is a nucleation barrier for the formation of the metallic silver, that

can be related with e.g. lattice deformation and surface free energy. However,

further studies are needed to clarify the background for the observed threshold

voltage for deposition of Ag and the complete description for the system beyond

the critical supersaturation.

4.6 Conclusion

We present above a quantitative analysis of the steady state ionic and electronic

transport in a solid electrolyte device that leads to resistance switching. The

model presented here describes the electronic transport within the solid elec-

trolyte in the steady state, covering the range of non-stoichiometries due to ad-

ditional Ag in Ag2S, up to the supersaturation range just before the deposition

of elemental silver. The model is then a base for a complete description of solid

electrolyte conductance switches, and it can be extended to other semiconductor

materials with mobile donors or acceptors.
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4.7 Appendix

4.7.1 Non-stoichiometry in Silver Sulfide

The non-stoichiometry (δ) in Ag2+δS indicates an excess or deficit of Ag. Using

the Kröger-Vink notation (Chapter 1 Section 1.4), the non-stoichiometry per unit

volume is the difference:

δ = [Agi] + [Ag•i ]− [VAg]− [V
′

Ag] (4.23)

with [Agi] and [Ag•i ] the concentrations of neutral Ag and Ag+-ions in intersti-

tial positions respectively, and [VAg] and [V
′

Ag] the concentration of neutral and

negative Ag vacancies.

In Ag2S, additional silver is completely dissociated into Ag+-ions and elec-

trons, i.e. addition of a silver atom to Ag2S causes the production of a free

electron, or the annihilation of an electron defect. With this, [Agi] and [VAg] are

negligible [33, 40]. From this condition and the electro-neutrality equation,

p+ [Ag•i ] = n+ [V
′

Ag] (4.24)

with n = [e′] and p = [h•] the concentration of electrons and holes, the non-

stoichiometry δ (Eq.4.23) is reduced to,

δ = n− p (4.25)

with n = K
1/2
i eeV/kT , p = K

1/2
i e−eV/kT and Ki= np the concentration of electrons

and holes at the stoichiometric point (δ = 0) where n = p.
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