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A protocol for the global sensitivity 
analysis of impact assessment models in 
LCA

Based on: 
S. Cucurachi, E. Borgonovo, R. Heijungs. 2014. Risk Analysis. Submitted.

Abstract
The Life Cycle Assessment (LCA) framework has established itself as the leading tool for the assessment 
of the environmental impact of products. It has been claimed that more attention should be paid to 
quantifying the uncertainties present in the various phases of LCA. Though the topic has been attracting 
increasing attention of practitioners and experts in LCA, there is still a lack of understanding and a limited 
use of the available statistical tools. In this work, we introduce a protocol to conduct global sensitivity 
analysis in LCA. The article focuses on the Life Cycle Impact Assessment (LCIA), and particularly on the 
relevance of global techniques for the development of trustable impact assessment models. We use a novel 
characterization model developed for the quantification of the impacts of noise on humans as a test case. 
We show that global SA is fundamental to guarantee that the modeler has a complete understanding of: 
(i) the structure of the model; (ii) the importance of uncertain model inputs and the interaction among 
them. 
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1
Introduction
In over thirty years of developments and refinements, Life Cycle Assessment (LCA) 
has become the reference framework in the sustainability assessment of products and 
services (EC-JRC 2011). At a policy level, LCA studies are now recommended in a growing 
number of countries around the world and performed on a vast array of complex product 
systems (Guinée et al. 2011). As the interest in the methodology has grown, so has done 
the attention to the trustworthiness of the results of LCA studies.

Results of LCA studies are increasingly used by policy makers. Typical problems are the 
selection of energy systems for optimal planning, or the discrimination between the 
environmental performances of products, so that the legislator can establish if any of 
these products has to be outlawed. A difficulty associated with LCA is cross-comparison 
and validation of the results obtained. Outcomes are in all cases the result of a modelling 
process that involves modelling assumptions and uncertain or variable data, which need 
to be analysed and interpreted in the specific context in which they were made. Since the 
early days of the methodology, concerns have been expressed about the accuracy and 
credibility of results, due to the great variability in impacts results also for comparable 
systems. Even studies compliant with the standard on (ISO. 2006) and dealing with identical 
systems showed large differences in the assessed impacts (Henriksson et al. 2013). The 
cross-validation of LCA results is not always straightforward, because assumptions are 
system- and context- specific. Therefore, there is an urgent need for the LCA community 
to deploy statistical tools to deal with variability of results and to increase the possibility 
of objectively evaluate systems.

Sources of variability (e.g. limited data quality, geographic representativeness) need to be 
reported and analysed to guarantee the reliability of the results of LCA studies. Important 
for the credibility of LCA is that results are accompanied by adequate uncertainty 
quantification(Björklund 2002), so to best inform the decision-process(Huijbregts 1998). 
Reap et al. (Reap et al. 2008a, 2008b) claim that sensitivity and uncertainty analysis tools 
would improve the representativeness of the whole framework.  The importance of 
sensitivity analysis (SA) has been agreed upon since the beginnings of the development 
of LCA [e.g. (Heijungs 1996)], and required by the ISO standard (ISO. 2006). The ISO 
14044 standard defines SA as “the systematic procedures for estimating the effects of 
the choices made regarding methods and data on the outcome of a study” (ISO. 2006). 
In practice, SA has been alternatively interpreted generically as the activity of studying 
how the output results are sensitive to the variation of the input data, or as a synonym 
of uncertainty analysis, or as the break-down of output uncertainty in terms of input 
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uncertainties (Heijungs and Huijbregts 2004; Lloyd and Ries 2007). While in the field of 
LCA there seems to be an overlapping of concepts falling under the definition of SA, 
in the risk analysis literature the concept has been formalised and a variety of rigorous 
statistical techniques have been introduced (Borgonovo 2006; Frey and Patil 2002; Helton 
and Davis 2002; Helton 1994; Iman and Helton 1988, 1991; Iman and Hora 1990; Patil and 
Frey 2004; Saltelli 2002). 

Internationally, several agencies prescribe sensitivity and uncertainty analysis as part of 
best practices in the utilization of scientific codes to support decision and policy making. 
The US EPA [(US - EPA 2009); Appendix D], the European Commission [(European 
Commission 2009)-section 5.4], the Florida Commission on Hurricane Loss Projection 
Methodology (FCHLPM)(Iman, Johnson, and Watson 2005), National Institute for Health 
and Care Excellence in the Great Britain [(Nice 2008); section 5.7], and the “Guidelines 
for Economic Evaluation of Pharmaceuticals" in Canada [(Canadian Health 2006); section 
2.2.6] are just a few examples. 

Rabitz [(Rabitz 1989); p.221] observes that the judicious use of SA techniques appears to be the 
key ingredient needed to draw out the maximum capabilities of mathematical modelling. Helton 
and Oberkampf (Helton and Oberkampf 2004) note that SA should be a fundamental 
part of any analysis that involves the assessment and propagation of uncertainty. 

Characterisation (or impact assessment) models that are used in LCIA can be considered 
as a specific class of complex integrated assessment models (IAMs). Characterization 
models are used to calculate science-based conversion factors (characterization factors) 
to obtain the potential human health and environmental impacts of the resources and 
releases across a life cycle for a certain stressor [i.e. a set of conditions that may lead 
to the impact] (EPA 2006; ISO. 2006). Indeed, such models deal with intricate complex 
phenomena, need to capture elements that vary in different time and space scales, and 
involve both physical laws and socio-economic aspects (Anderson et al. 2014). Global 
SA techniques enable us to study the structure of IAMs and their dependence upon the 
uncertain model inputs, and also to understand which model inputs require additional 
investigation improve our confidence in the results (Kioutsioukis et al. 2004; Saltelli et al. 
2008). 

Thus, the provisions concerning the use of global SA that apply in other fields, should also 
apply for decisions based upon characterization models. However, no shared protocol for 
the performance of uncertainty and global SA in LCA and, in particular, for the integration 
of global SA techniques in the process is available to date (Padey et al. 2013). A possible 
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reason is computational burden, with a high number of model runs required to accurately 
estimate these sensitivity measures. However, several recent advances have contributed 
in abating such computational cost, making the techniques, in principle, applicable to a 
vast class of models. In particular, developments in the post processing or given data 
directions (Lewandowski, Cooke, and Duintjer Tebbens 2007; Plischke, Borgonovo, and 
Smith 2013; Storlie et al. 2009) allow analysts to compute global sensitivity measures 
directly from a Monte Carlo (MC) sample of the model inputs, without the need of a 
specific design. Then, because several software tools available for LCA studies already 
include MC subroutines, no additional computational burden with respect to current 
practice is imposed by post processing schemes.

In this article, we construct a protocol on how to regularly conduct a global SA in 
impact assessment modelling. We proceed as follows. We cast global SA techniques in the 
context of LCA characterisation models. We clarify the conceptual differences between 
SA tools, relating them to the tools that are used in current LCA practice. We introduce 
sensitivity analysis settings (Andrea Saltelli 2002) in the LCA context. We then define 
a multi-step protocol for the application of global SA methods to LCIA models. The 
protocol starts from the identification of the relevant uncertainties and the assignment 
of distributions, continues with the definition of SA settings and ends with the assessment 
of the decision-maker’s confidence in the estimates.

We illustrate the application of the protocol to a recent LCA model developed to 
quantify the impact on humans of sound emissions (Cucurachi, Heijungs, and Ohlau 2012; 
Cucurachi and Heijungs 2014). Two alternative configurations of the same model, at a 
different level of complexity are analysed using an ensemble of global sensitivity analysis 
techniques. Numerical findings are discussed in detail. Before concluding, we offer a critical 
discussion about the proposed protocol, discussion which is also aimed at highlighting the 
lessons learned and the insights and limitations of the approach that apply within the LCA 
framework, but also outside it as well.

The remainder of the paper is organised as follows. Section 2 provides an overview of 
the available SA techniques and gives some insight on the way SA is defined and used 
in the field of LCA. In section 3, the settings are defined for a global SA design in the 
context of LCIA. The structure of the noise LCIA model is here analysed together with 
the importance of its inputs. Section 4 discusses the contribution of global SA for the 
LCA community. Concluding remarks regarding the empowerment of LCIA models close 
the article. 
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2
Literature review: sensitivity analysis and its use in LCA
2.1
The sensitivity analysis setup
The SA standard setup is as follows. One considers the relationship between a quantity 
of interest (y) [model output] and a set of independent variables (x)

	  ( ) ,   :Ωy g g= →Xx R 	 (1)

where   Ω k⊆X R  , with k denoting the number of model inputs (i.e., the size of x).   ΩX  
is the k-dimensional domain of g and it is the Cartesian product of the individual subsets 
of    over which each model input is allowed to vary. The model is usually implemented 
as a scientific code and helps the analyst to forecast the behaviour of y given the values 
of the model inputs x.  

In a local sensitivity analysis, the analyst is interested in obtaining the response of 
the output around one point of interest in the model input space ΩX . Typically, local 
sensitivity is performed varying one model input at a time (referred to also as OFAT), 
while the remaining model inputs are kept at a nominal (or base case) value (Saltelli, 
Tarantola, and Chan 1999). The perturbations of the model inputs can be finite in Tornado 
diagrams (Eschenbach 1992) and finite change sensitivity indices (Borgonovo and Smith 
2011; Borgonovo 2010) or infinitesimal, in differentiation-based methods (Griewank 
1995, 2000; Sobol’ and Kucherenko 2009). A sensitivity index Si is calculated through the 
use of a set of partial derivatives of the output y, with respect to each input Xi :

	
( )

0

.i

g
S

x
=

∂
=

∂
x x

x
 	 (2)

In Helton (Helton 1993), partial derivatives are normalized by the nominal value of the 
factor or by its standard deviation. For instance, if one writes 

	  
0

0 ,i
i

i i

xy yS
x x y
∂ ∂

= =
∂ ∂

	 (3)

one obtains the elasticity of the model output with respect to Xi. These two sensitivity 
measures are particular cases of the differential importance measure [see (Borgonovo 
2008) for details].

Differentiation-based approaches compute a value for the sensitivity index S around a 
fixed nominal point ( )0 0 0 0

1 2, ,..., kx x x x=  (Saltelli, Tarantola, and Campolongo 2000). Thus, 



211

6

they provide a very limited exploration of the input-output space, if the analysis is limited 
at a point of interest. Additionally, they ignore probabilistic information in the presence of 
uncertainty. More generally, because they are OFAT approaches, they are not capable of 
quantifying the relevance of potential interactions among model inputs (Anderson et al. 
2014; Saltelli et al. 2008). However, differentiation-based methods remain appropriate in 
applications in which the analyst wishes to study how small changes in the input xi affect 
the model output around one or more points of interest. When a better exploration of 
the model input space is sought, then global sensitivity methods are appropriate.

2.2
Global Sensitivity Methods
Global SA methods are used to investigate which model inputs are the most influential 
in determining the uncertainty of the output of a model, and, after uncertainty analysis, 
to obtain additional information about the input–output mapping (Anderson et al. 2014). 
Global SA methods allow analysts to consider the behaviour of the model g(x) in the 
entire k-dimensional domain, as well as the probability distributions specified to address 
the variation of the model inputs. Thus, the formal setting sees the enrichment of the 
model input space �x  with the probability space (�x, B(�x), Px ), where 1) the capital   X 
denotes that the model inputs are now random variables, 2) Px denotes the probability 
distribution that characterizes the analyst’s state of knowledge about the model inputs 
and B(�x) is a Borel σ -algebra.

Global SA methods have become the golden standard of sensitivity analysis under 
uncertainty (Saltelli et al. 2008). A number of global SA techniques have been developed. 
Due to space limitations, we cannot provide a detailed overview of all methods. For 
broad reviews, we refer to (Borgonovo 2006; Saltelli et al. 2005, 2012). For details on 
screening methods, we refer to (Campolongo, Saltelli, and Cariboni 2011; Morris 1991), 
on non-parametric methods to (Helton and Sallaberry 2009; Helton et al. 2006; Storlie 
et al. 2009), on expected value of information-based methods to (Felli and Hazen 1998; 
Oakley 2009; Strong and Oakley 2013). We analyze here in detail the sensitivity measures 
we are to use in this work, namely, variance-based and distribution-based methods. 

As for variance-based techniques, assuming that g(x) in eq. (1) as an integrable function 
on (�x, B(�x), Px ) , and if Px is a product measures, (i.e., we assume that the model inputs 
are independent), then the following expansion of g(x) holds (Efron and Stein 1981):

	  ( ) ( ) ( ) ( )0 , 1,2, , 1 2
1

 , , , ,
n n

i i i j i j k k
i i j

y g g g x g x x g x x x…
= <

= = + + +…+ …∑ ∑x 	 (4)
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In the above equalities, the univariate functions gi(xi) represent the first order effects, 
namely, the part of the response of g(x) due to the individual variation of xi. Similarly, the   

, ( , )i j i jg x x  functions account for the residual interaction between pair of variables; etc. 
[see (Saltelli et al. 2008)]. 

If, in addition, we assume that g(x) is square integrable, by the orthogonality of the 
functions in eq. (5), we obtain the complete ANOVA decomposition of the variance of  
g(x) (Efron and Stein 1981): 	
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Of particular interest are the first and total order sensitivity measures. The first order 
indices are defined, independently in (Iman and Hora 1990; Sobol’ 1993; Wagner 1995):

	  
( [ ( )])

[ ] [ ]
lFIRS i

i
T V y xVS

V y V y
= =


	 (8)

They account for expected reduction in variance of the model output when i iX x=  . 

We note that if the model output is additive, that is, if  
1

( ) ( )
k

j j
j

g h x
=

=∑x , where ( )j jh x   
is a univariate function of jX  , then 

	  
1

1
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j

V
=

=∑ 	 (9)
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that is, a model is additive if the sum of the first order sensitivity indices is unity. The total 
order sensitivity indices are defined by

	  
( [ ( )])

[ ]
iT T

i
O AL V y x

S
V y

−=


	 (10)

with the symbol x-i denoting the fact that all variables are fixed but x_i.  
TOTAL
iS  represents 

the portion of the variance of the model output contributed by iX  individually and 
through all its interactions with the remaining model inputs. 

The presence of interactions indicates that the model is non-additive, that is, its response 
is not the direct sum of the effects of the individual model input variations. In that case, 
the total order sensitivity indices equal the first order indices. Knowledge of the first and 
total order indices allows analysts to obtain information about a structural feature of the 
model input output mapping. 

One of the key assumptions for eqs. (4), (5), (6), and (7) is that the model inputs are 
independent random variables. Under correlations, the interpretation of iV   remains as 
the percentage of model output variance that is reduced when we fix iX , although this 
does not correspond anymore to the functional contribution of iX . If correlations are 
present,  Bedford (Bedford 1998) shows that the variance decomposition loses uniqueness 
and the value of the sensitivity indices becomes dependent on the lexicographical 
ordering of the variables. Oakley and O’Hagan (Oakley and O’Hagan 2004) highlight that 
the tidy correspondence of the functional and variance decompositions is lost. This has 
led authors to introduce sensitivity measures that, while looking at the entire domain, 
naturally accommodate correlations among model inputs. We consider here moment-
independent (also called distribution-based) sensitivity measures. The key-intuition of 
distribution-based sensitivity measures is to measure the discrepancy between a) ( )YF y  
, that represents the degree of belief about Y, and b) | ( )

i iY X xF y=   that represents the 
degree of belief about Y when we receive information that i iX x=  . Then, one can 
consider the quantity:

	  ( ) ( ){ }[ , ]
iXi Y Yd F y F yδ =  	 (11)

where ( ) ( ){ },
iY Y Xd F y F y  is a chosen separation measurement between the 

conditional and unconditional model output distribution.  { },d ��  determines the so-
called inner statistic of the global sensitivity measure (Borgonovo et al. 2013). 

Depending on the chosen separation measurement,  { },d �� , one obtains a specific 
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sensitivity measure. For instance, for first order variance-based sensitivity measures, the 
inner statistics is obtained setting

( ) ( ){ } 2 2
|[( ) | [, ] ( ) | ]

ii Y i i YY XY X i id Y X x Y Xy xF y F µ µ− = −= − =   	 (12)

where |,
iY Y Xµ µ   are respectively the mean and conditional mean of the model output. 

Setting: 

	 ( ) ( ){ } |
1, | ( ) ( ) |
2 ii

Y

Y Y Y XY Xd F y F y f y f y dy
Ω

= −∫  	 (13)

And averaging over the marginal distribution of iX , we obtain the Bδ  importance 
measure (Borgonovo 2007):

	  |
1 1 | ( ) ( ) |  
2 2 i

Y

B
i Y Y Xf y f y dyδ

Ω

 
= − 

  
∫ 	 (14)

By setting

	 ( ) ( ) ( ){ }|Xsup ,
i

KS
y Y Yi F y F yδ = −  	 (15)

and

	  ( ) ( ) ( ) ( ) ( ) ( ){ }| |Xsup sup ,
i i

KU
y Y y YY X Yi F y F y F y F yδ = − + − 	 (16)

one sensitivity measures that measure separation between cumulative distribution 
functions using the Kolmogorov-Smirnov and Kuiper metrics. For the interpretations 
of these measures, we refer to Baucells and Borgonovo (Baucells and Borgonovo 2013). 
These three sensitivity measures share the following properties: 1) they are well posed in 
the presence of correlations; 2) they do not depend on a particular moment of the model 
output distribution; 3) they are normalized between 0 and 1, 4) they are equal to zero if 
and only if  Y is independent of iX   and 5) they are invariant to monotonic transformation 
of the output. This last property is particularly convenient when estimation is of concern 
(Borgonovo et al. 2013). 

2.3
Estimation and Global Sensitivity Analysis Settings
The computational cost for computing all 

1 , , Si iV …   in the variance decomposition of eq. 
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(6) strictly following their definition equals 2 (2 1)kN −  , with k  representing the number 
of model inputs. This cost makes the calculation rapidly infeasible as N  or k  increase 
or when the computational time of the model increases. This cost has been drastically 
reduced over the last years in a series of works (Homma and Saltelli 1996; Lewandowski 
et al. 2007; Saltelli 2002; Saltelli et al. 2010). As for estimation, in this work, we use the 
algorithm in (Saltelli et al. 2010), which enables the estimation of all first and total order 
indices at a computational cost of ( )2N k +  model runs. 

However, the fact that all global sensitivity measures rest on a common rational has two 
implications. The first, conceptual, is that all their properties depend on the inner statistic. 
The second is practical. They can all be estimated from the same design, because what we 
need to estimate them are the conditional and unconditional model output distributions. 
Using the given data logic (Lewandowski et al. 2007; Plischke et al. 2013) one obtains all 
sensitivity measures for individual model inputs at a cost of N model runs, which is the 
minimal cost within a MC framework. The given data estimation is based on a sequence 
of partitions of the same dataset and is not related to a specific design. For instance, 
in our case, we can use the dataset generated for estimating all first and total order 
indices according to the scheme of (Saltelli et al. 2010) to obtain also distribution-based 
sensitivity measures.  

Finally, we need to conclude this review of global SA with an important methodological 
concept for sensitivity analysis introduced in (Saltelli and Tarantola 2002; Andrea Saltelli 
2002). For a correct result interpretation and communication of sensitivity analysis results, 
it is recommended to clearly frame up front the sensitivity analysis exercise. In global SA, 
this is accomplished using the concept of SA-setting (Saltelli and Tarantola 2002; Andrea 
Saltelli 2002). A setting is a formulation of the SA goal that allows the analyst to frame 
the sensitivity exercise in order to identify the most suitable techniques to obtain the 
desired quantitative insights (Anderson et al. 2014; Borgonovo 2010; Saltelli et al. 2008). 
In the literature, several SA settings have been defined: factor prioritization, factor fixing, 
model structure and sign of change (Borgonovo 2007; Saltelli et al. 2008). In this work, we 
discuss the meaningful settings in the context of LCA.

2.4
Uncertainty quantification in LCA: State of the Art
The distinction that the SA community adopts between local and global approaches has not 
yet become a standard in the LCA community. Nevertheless, a series of methodological 
papers have formalised the use of uncertainty evaluation and propagation techniques 
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in LCA. These techniques serve in some cases the same goal of local SA and global SA 
without, however, directly contemplating the use of similar tools or jargon.

Among these quantitative tools, we may distinguish three main complementary numerical 
approaches that have been proposed in LCA (Heijungs 2010):

•	 uncertainty or error propagation (Heijungs 1994; Lloyd and Ries 2007) or 
uncertainty analysis (Heijungs and Kleijn 2001), defined as the systematic study of the 
propagation of uncertainty from input uncertainties to output uncertainties;

•	 perturbation analysis (Heijungs and Kleijn 2001; Sakai and Yokoyama 2002), or 
marginal analysis (Heijungs 1994; Heijungs et al. 1992), oriented at analysing how much 
small marginal perturbation of the model inputs propagate as smaller or larger deviations 
of the resulting output;

•	 key-issues analysis (Heijungs 1996) or uncertainty importance (Heijungs 2010; 
Mutel, de Baan, and Hellweg 2013), defined as the identification of the most influential 
input that determine the output uncertainty, on which one should focus research efforts 
to obtain more accurate results.

Looking at the definition of local SA and global SA (Section 2.2), perturbation analysis 
corresponds conceptually to a local OFAT approach, while uncertainty importance 
may be considered as a possible class of global SA. According to data availability and 
according to the focus that a study has, a combination of these techniques may be used.  
In combination with these techniques, a MC simulation (Robert and Casella 2010) is 
usually carried out, either using subjective uncertainty estimates, or using uncertainty 
estimates gathered from the analysis of data. 

In the LCA practice, in the few cases where an explicit reference to SA is done, this 
refers to the comparison of alternative scenarios built varying a set of model inputs 
around their mean, or built by comparing results obtained using different input values 
obtained from the literature for selected model inputs, thus to what has been defined as 
perturbation or marginal analysis, both of which are formally OFAT approaches (Björklund 
2002; Huijbregts et al. 2001). Following the OFAT approach, it is up to the practitioner 
to decide which model input to change and by which amount (Mutel et al. 2013), which 
may, in turn, lead to misleading results if the scope of the analysis is assign a measure of 
importance to the model inputs.
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Imbeault-Tétreault and colleagues (Imbeault-Tétreault et al. 2013) analyse the output 
of the life cycle impact assessment (LCIA) phases, considering log-normally distributed 
model inputs from the ecoinvent database (Frischknecht et al. 2004). For each considered 
impact category, the analysis aims at defining the model inputs that are likely to be the 
most influential on the output. The analysis is defined as sensitivity, and corresponds to 
the definition of alternative scenarios and the calculation of sensitivity coefficients, using 
an OFAT approach.

Geldermann et al. (Geldermann, Spengler, and Rentz 2000) use a set of sensitivity intervals 
and weights stemming from the use of multi-criteria decision analysis and the fuzzy 
outranking technique to conduct SA. In (Lewandowska, Foltynowicz, and Podlesny 2004), 
changes in input data of ±1% and ±10% are applied and the impact of inputs on the output 
are calculated based on subjectively-defined qualitative sensitivity indicators (e.g., low 
sensitivity, very high sensitivity). Ardente and colleagues (Ardente et al. 2008), which state 
that SA can be applied with arbitrarily selected ranges of variation, perform the analysis 
on the input data of a study on a solar thermal collector. Based on an investigation of the 
literature, they define alternative scenarios for the key processes of the life cycle (e.g., 
alternative electricity consumption scenarios, or transportation scenarios with minimum, 
average and maximum values). 

Zhou and Schoenung (Zhou and Schoenung 2007) define a framework with the 
application of quality management tools (e.g., process mapping, prioritization matrix) and 
statistical methods (e.g., multi-attribute analysis, cluster analysis) to study the technology 
of a computer display. Alternative weighting schemes are used as a basis of a SA, which 
consist, for each impact category considered in the study, in the tabular comparison of 
the contribution of each impact category to the total impact. Alternative scenarios are 
defined as SA also in (Martínez et al. 2010), which present as SA the change in impact 
scores from the variation of single model inputs in four main phases of the lifecycle of a 
wind turbine, namely maintenance, manufacturing, dismantling, and recycling. Ranges are 
selected in the contour of the mean of each model input considered.

In the LCA-model development field, the work of Verones et al. (Verones, Pfister, and 
Hellweg 2013) use SA for the statistical analysis of regionalized fate factors developed 
for the evaluation of consumptive water use. Once again the SA corresponds to the 
identification of alternative scenarios, built varying local characteristics in a defined range 
(e.g. underlying area, hydraulic properties), and to the comparison of the newly obtained 
fate factor to those obtained in a base average-case.
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In Padey et al. (Padey et al. 2013), we find the first available study which uses global SA, as 
defined in section 2.2, to identify key model inputs explaining the impact variability of wind 
power systems over their entire life cycle. This work represents the only documented 
case of the explicit use of a global SA technique in the field of LCA.

3	
Global SA and impact assessment models: a protocol and an application 
to an LCA noise impact assessment model
3.1
LCA as a complex model: interpretation of techniques currently in use
The LCA framework as defined by the ISO standard (ISO. 2006) may be considered in 
itself as a complex model, which may be analysed by means of SA. In a specific phase of 
LCA, the interpretation phase, the models and their results are analysed and interpreted. 
At this stage, significant issues are identified, also regarding the completeness and the 
variability of data. The ISO standard on LCA recommends performing a sensitivity check 
on the data and methods as part of the evaluation of the information that is used in a 
study (ISO. 2006). The standard does not refer to a particular numerical technique, nor 
addresses the user to a particular approach or way the data should be perturbed, thus 
leaving it open to the LCA-study performer to select the appropriate technique and 
interpret the results. 

At different stages of an LCA study, uncertainty may be analysed and propagated. Focusing 
on the LCI and LCIA phases, one may be interested in understanding the uncertainty that 
propagates from the inventory to the impact scores, and to understand which of the 
model inputs are important in determining the uncertainty of the output.  

Considering a full set of processes and economic flows which are used in LCA, 
the output variance could well be the result of the variance of thousands of terms. 
Uncertainty importance or key issues analysis, as defined in (Heijungs 2010), respond to 
the impossibility of defining a distribution function for the thousands uncertain model 
inputs of the equation that should be considered, due simply to a lack of sufficient data. 
In such case, a global SA as formally defined may not be performed, without running 
the risk of obtaining unrepresentative results. However, this condition does not hold 
true for the LCIA phase of LCA, in which the LCIA model-developer typically has a full 
visibility over the model inputs and the input-output mapping. In such a case, it is possible, 
by analysing the data at hand (e.g. a deposition map, an elevation map), to identify the 
distribution for the model inputs and apply a global SA approach. Therefore, for the case 
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of characterisation models it is recommendable to use global SA techniques, which allow 
to fully evaluating the complex non-linear, non-monotonic models that are used in LCA. 

The characterization models and resulting characterisation factors are often a major 
source of uncertainty for LCA studies (Heijungs et al. 2007). Yet this is a topic that has not 
attracted sufficient attention from the field of LCA, and especially among model-developers. 
Together with the evaluation of how to propagate uncertainty in characterisation models, 
an accurate SA should be conducted and documented. In this study, we focus on the 
development phase of an impact assessment model and we limit the focus to uncertainty 
about the way the interaction between technosphere and biosphere has been modelled 
(Koning et al. 2002). We focus here on how to identify the sources of such uncertainties 
in the input model inputs, on how to classify them in terms of statistical importance, and 
on how to apportion the total uncertainty of the output to each of the inputs that are 
used in characterization models to calculate characterization factors. 

3.2
A protocol for the LCIA-global SA of a characterization model
3.3
Global sensitivity analysis settings for characterization models
In this section, we demonstrate the use of global SA to develop and study a characterisation 
model in LCIA. The protocol here proposed is applicable to all other parts of the LCA 
framework that require the use of complex non-linear IAMs, as well as to other IAMs 
used in the environmental sciences. We propose a combination of global SA techniques to 
be applied in the study of impact assessment models developed for LCIA, with particular 
attention to the case of newly-developed impact categories. 

As a starting point for the protocol, let us consider the characterisation model ϑ 
represented in Figure 1, as part of the impact assessment phase of LCA (ISO. 2006).
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Figure 1. Characterization model in relationship to the LCA framework

The characterisation model is a function of a series of model inputs [e.g. effect factor, 
fate factor, damage factor; see (Rosenbaum, Margni, and Jolliet 2007)], which are, in 
turn, dependent on the stressor-specific components that characterise a certain impact 
category (e.g. temperature, deposition, concentration). 

We may define a generic characterisation model for a generic impact category c:

	 ( )cs cQ ϑ= x  	 (17)

where ϑc represents the non-linear function representing the characterization model for 
impact category c, per stressor s and Qcs is the characterisation factor, which is a function 
of a variety of model inputs x. 

At this stage the LCA analyst may consider a generic ϑ that represents a generic 
characterisation model, of which one wants to understand the behaviour and study the 
structure, without any a priori physical assumption (Rabitz and Aliş 1999) on the nature 
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of the model input–output relationships.  We consider all model inputs that influence 
the characterization model and are part of its structure. The following steps may be 
considered as a paradigm of action for any characterisation model in LCIA (see Figure 1).

 

 
Figure 2. Protocol for the analysis of an LCIA characterization model
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The protocol in Figure 2 nests model development with uncertainty analysis and global 
SA. In the model development phase, the LCA analysis identifies the uncertain model 
inputs (step 1a in Figure 2), and identifies the input-output programming of the LCIA 
characterization model (1b; i.e. the LCIA model input-output relationships). 

Step 2 deals with what is commonly identified as uncertainty analysis (or uncertainty 
propagation). The analyst identifies the probability distribution functions for the uncertain 
model inputs (2a). The distributions can be obtained from expert opinions or from 
available data (which can be collected either in the literature, or from the analysis of 
spatially-explicit data in GIS collected during the model development exercise). A MC 
sample of the model inputs is generated (2b). This generation can be obtained using a 
crude MC generator. However, for a more efficient exploration of the model input space 
a Latin Hypercube or a quasi-random design is preferred [the reviewer is referred to 
(Helton and Davis 2002; Owen 1998, 2006; Sobol’ et al. 1992) for additional details]. The 
following step (2c) consists in the evaluation of the model in correspondence of the 
generated sample to obtain the model output distribution. 

In step 3, the analyst establishes the sensitivity analysis settings, that is, she formulates the 
sensitivity questions and identifies the sensitivity measures for obtaining the consistent 
answers. If computational time allows, the model can be run according to specific designs 
to obtain the appropriate sensitivity measures. Otherwise, the dataset generated by MC 
simulation is post-processed to obtain the required sensitivity measures. Before coming 
to conclusions and recommendations, it is suggested to assess the confidence in the 
estimates of the sensitivity measures. This can be done, for instance, using bootstrapping 
(Archer, Saltelli, and Sobol 1997). 

If the results are in accordance with intuition and confidence in the estimates allows, 
conclusions can be drawn and the model can be given to decision makers and used in 
LCA (step 4). If not, one needs to repeat the analysis. In the case repetition is due to 
results not in accordance with intuition, then the analyst needs to establish whether the 
sensitivity results reveal some hidden phenomenon that was not taken into account or a 
numerical error is present in the code or in the distribution assignment (in this case, we 
are in a debugging mode). The remedy is to intervene on the code or on the model input 
distributions. If the repetition is due to low confidence in the estimates, then the remedy 
is an analysis at a larger sample size, if computing time permits.
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3.4
Application of LCIA-global SA protocol to the noise characterization 
model
The protocol is here applied to a characterisation model developed for the quantification 
of the impacts on humans of sound emissions from various classes of sources in a life 
cycle [noise-model, from now on; (Cucurachi et al. 2012; Cucurachi and Heijungs 2014)]. 
Cucurachi et al. (Cucurachi et al. 2012) define a theoretical framework for the inclusion 
of the impacts of noise on humans in LCA studies. In Cucurachi and Heijungs (Cucurachi 
and Heijungs 2014), the methodology has been operationalized and characterisation 
factors are provided to be used in LCA studies. In the following, the protocol is applied 
to the two acceptations of this IAM.

Step 1: Noise-model definition 
The noise-model is based on the quantification of the noise impacts of sound emitted 
by any source operating in a life cycle (Cucurachi et al. 2012). The sound power emitted 
by a source, or combination thereof, at the emission compartment determines a change 
in sound pressure at the exposure compartment. A series of conditions intervene to 
attenuate or propagate the trajectory of sound waves, thus influencing the way the 
sound emissions are perceived eventually as noise by human targets that are exposed 
to them. Generic characterisation factors are calculated according to the formula:

	
( ) ( )

20 2020 10 10
attD A

cs
amb

Q Nf
W

α β− +

= × × ×  	 (18)

where ambW  represents the environmental sound power at the emission compartment, 
thus assuming that some sound emissions are already present in the environment,  Nf  
represents the number of targets that are exposed to the sound power,  D  is a directivity 
factor that determines the direction of propagation, attA  defines a series of attenuations 
factors that intervene and limit the propagation of sound waves between emitting source 
and receiver, α  is a specific factor related to the frequency of emission, β  refers to a 
penalty added according to the time of the day the emission takes place. Furthermore,   

attA  may be expanded into:

	 att div atm ground otherA A A A A= + + +…  	 (19)

thus it represents a series of context-specific attenuation factors that are a function of 
the distance between source and receiver ( divA  ), the atmospheric conditions ( atmA ), 
the ground composition ( groundA ), and any other attenuation that may be relevant to the 
system under study ( otherA  ). For the sake of simplicity, we omit in the characterisation 
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factors formulas the indexes used in LCA to define the compartments of emission and 
exposure and refer to (Cucurachi et al. 2012; Cucurachi and Heijungs 2014) for more 
details on the model. 

We may consider the complete formula for the calculation of the characterisation factors 
as the input-output-noise-model to which we want to apply the LCIA-global SA settings, 
and the model inputs reported below in eqs. (18) and (19) as the uncertain variables that 
will be analysed (step 1a in Figure 2). We considered two alternative configurations of 
the noise-model:

•	 Simple model, based on eq. (18), and considering  attA  as an uncertain model 	
	 input with a given distribution (see table 1):

	 ( ) ( ,  , , ,  ,  )SM SM amb atty f W D A Nfϑ α β= =x  	 (20)

•	 Extended model, including the expansion of attA   to be, in turn, a function of 	
	 the specific local conditions of e.g. temperature, humidity (see Table IV),

	 ( ) ( , ,  [ , ,Rel , , , ], , )EM EM amb atty f W D A T Prs Hum fm d G Nfϑ β= =x  	 (21)

In the extended model, attA  is calculated by an iterative process involving a combination 
of intermediate calculation model inputs and uncertain variables, on which attA  depends 
([ , ,Rel , , , ]T Prs Hum fm d G  ; see Table IV). In the simple model the analysis is limited to 
assigning a probability distribution to attA , based on the a priori knowledge of the model. 
A series of additional model inputs is introduced, and compared in the analysis with 
the simple model composition. Model input α  (i.e., frequency component) is excluded 
from the extended model, because it becomes dependent on fm . The two alternative 
configurations refer to two different times of the process of development of an LCIA 
model. Respectively, the simple configuration refers to the phase of theoretical definition 
of the model, the extended configuration to a later phase in which the modeler has 
already a deeper knowledge of the functioning of the model and more data is available 
on the variables that are used. 

We then proceeded according to the protocol and a computer model was created to 
encode the input-output mapping for the simple and extended model configurations 
(step 1b of the protocol in Figure 2). 
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Step 2: Uncertainty analysis  
In order to identify the most-representative distributions for the model inputs (step 2a 
of the protocol; see Figure 2), the data provided in Cucurachi and Heijungs (Cucurachi 
and Heijungs 2014) were confronted with data from the noise literature. In Table IV 
below, the distributions are defined for the input variables for both the simple and the 
extended configurations. Similar distributions were chosen for variables that appear in 
both the simple and extended noise-model. 

Table IV. Uncertain inputs in the noise-model in the two alternative configurations 

Given the low calculation time required by the running of the two configurations of the 
model a MC sample of N=120000 was selected. Sobol’ quasi-random sequences (Bratley 
and Fox 1988; Sobol 1998, 2001) were used to generate the sample for the uncertain 
inputs (step 2b). Data was stored and used for the calculation of the two outputs SMy  
and EMy , according to the defined computational model (step 2c).

Simple model

Variable Probability distribution function

Wamb Background sound power level [dB] Lognormal (meanlog=2.3, sdlog=1.09)

D Directivity component [dB] Normal (mean=3, standard deviation=1)

Aatt Attenuation factors [dB] Normal (mean=5, standard deviation=1)

Nf Population level Lognormal (meanlog=2.3, sdlog=1.09)

α Perceived frequency model input [dB] Uniform (min=-26.2,max=2)

β Penalty for time of the day [dB] Triangular (0;10;5)

Extended model

Variable Probability distribution function

Wamb Background sound power level [dB] Lognormal (meanlog=2.3, sdlog=1.09)

D Directivity component [dB] Normal (mean=3, standard deviation=1)

Nf Population level Lognormal (meanlog=2.3, sdlog=1.09)

β Time of the day penalty [dB] Triangular (0;10;5)

T Temperature [˚C] Normal (mean=15, standard deviation=5)

Prs Ambient pressure [Pa] Uniform (min=2000,max=101325)

RelHum Relative humidity [%] Uniform (min=10,max=100)

fm Frequency of the emission [Hz] Triangular (63;8000;4000)

d Distance from source to receiver [m] Lognormal (meanlog=3.9, sdlog=1.09)

G Ground composition factor Triangular (0;1;0.5)
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Step 3: Global Sensitivity Analysis  
The analysis proceeded with definition of the global SA settings (step 3a). The following 
settings were defined as a basis of the global SA of the noise-model:

1.	 	 LCIA Model Structure: to determine whether the behaviour of the quantity 
of interest (model output) is the result of individual effects or of interactions among 
the model outputs. This goal is reached by estimating first order sensitivity indices and 
comparing their value to unity (see section 2.2). Possibly, if computing time allows, one 
can estimate also the total order sensitivity indices or higher order indices.  

2.	 	 Factor prioritization: to determine key uncertainty drivers in the impact 
assessment model, namely the model outputs on which to put resources to reduce 
uncertainty. The process can possibly identify those model inputs that can be fixed to a 
nominal value without the risk of adding extra uncertainty to the model. For the LCIA-
global SA of a characterization model, the estimation of the important measures defined 
in section 2.2 offers a valuable piece of information on the importance of a certain model 
input in a characterization model.

Based on the settings, we proceeded with estimating the global SA measures presented in 
section 2.2. As mentioned in section 2.3, first order variance based sensitivity indices and 
the sensitivity measures Bδ ,  KSδ  and KUδ can be estimated from the same MC sample 
with no additional model evaluations, while a specific design is necessary to estimate total 
indices. We used the sobol2007 function of the package sensitivity of the software [R] 
(Cran-R n.d.). The function allows implementing MC estimations of both first- and total- 
order sensitivity indices simultaneously, at a computational cost of N(k+2) (Saltelli et al. 
2010). The same MC sample was used both to estimate the total indices in the required 
specific design and for the estimation of the sensitivity measures in eqs. (8), (14),(15), and 
(16).

Setting 1: LCIA Model Structure. In order to study the structure of the model, first 
and total order indices were calculated for the simple and the extended noise-model. In 
Table V, the results are reported for both configurations (step 6 of the protocol).
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Table V. First order and Total order sensitivity indices a

a Top contributors in bold

Table V shows that, in the simple model configuration, the highest contributor to the 
output variance is Nf  the population level, which contributes for about 18% of the 
output variance. The total sum of the first order indices adds up to around 20%, suggesting 
the presence of strong interactions between model inputs even in the simple model 
configuration. The results of the total order indices show that Nf  explains 85% of the 
output variance when all interactions with other inputs are considered.

In the extended model configuration, Table V shows that the highest contributors are, 
respectively, D , β , and d . However, the total sum of the first order indices adds to less 
than 1%, thus suggesting that interactions strongly influence the model behaviour. Thus, 
as far as this setting is concerned, we can conclude that the model is non-additive, and 
interaction effects dominate over individual effects.

Simple model

Analysis of model structure

Variable First Order Total order

Wamb
Background sound power level [dB] 0.021 0.296

D Directivity component [dB] 0.002 0.047

Aatt
Attenuation factors [dB] 0.002 0.052

Nf Population level 0.175 0.858

α Perceived frequency model input [dB] 0.026 0.183

β Penalty for time of the day [dB] 0.003 0.062

Extended model    
Variable First Order Total order

Wamb
Background sound power level [dB] 0.003 0.422

D Directivity component [dB] 0.009 0.009

Nf Population level 0.003 0.932

β Time of the day penalty [dB] 0.006 0.978

T Temperature [˚C] 0.003 0.003

Prs Ambient pressure [Pa] 0.003 0.517

RelHum Relative humidity [%] 0.003 0.003

fm Frequency of the emission [Hz] 0.003 0.261

d Distance from source to receiver [m] 0.004 0.946

G Ground composition factor 0.003 0.068
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We then come to the analysis of the Key-Uncertainty Drivers. 

Figure 8. Result of 500 bootstrap runs of the calculation of first order indices for the simple and 
the extended model

For the model at hand interaction effects strongly influence the model behaviour, limiting 
the possibility of extracting conclusive information from first order variance-based indices. 
The total order indices suggest that, for a number of model inputs (in bold in Table V), 
the contribution to the output variance is almost totally due to interactions. At the same 
time the extremely low values for model inputs D , T , and RelHum may again suggest 
a methodological issue in the estimation of variance-based measure in the presence 
of a multiplicative function. The estimation of first order indices becomes particularly 
challenging in the presence of nonlinearities and interaction, e.g., multiplications, between model 
outputs [(Borgonovo et al. 2013); p. 3; see also the multiplicative model in (Borgonovo et 
al. 2013), for which estimation of variance based sensitivity measures results inaccurate].

We then used bootstrapping (Archer et al. 1997) to assess our confidence in the estimates. 
For the case of the total order indices, such analysis could not be conducted due to the 
specific design that was used. On the other hand, it was possible to use the generated 
MC sample to obtain confidence intervals for the first order indices. Figure 3 displays the 
confidence intervals obtained using 500 bootstrap replicates.

Figure 3 shows that for the simple model we have limited variability in the estimates, 
and, therefore, we are confident about the ranking obtained with FIRST

iS . Conversely, a 
great variability is obtained for the calculation of the first order variance-based sensitivity 
indices for the extended model. This variability should lead an analyst to a diminished 
confidence in the obtained ranking. 
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Based on the results of the confidence test and on the considerations above, we used 
an ensemble of sensitivity measures to reinforce the analysis. As described in section 2.3, 
from the same dataset used to compute the first and total order indices, it is possible to 
estimate also the importance measures Bδ , KSδ  and KUδ . The values are reported in 
Table VI (step 7 of the LCIA-global SA).

The confidence of the results was tested, once again, by means of bootstrapping. We 
show the results of 500 bootstrap runs for the Bδ importance measure (see Figure 9). 
For both configurations of the noise-model we have limited variability of the estimates, 
thus suggesting that the distance-based importance measures are better able to deal with 
the noise-model interactions.

 

Figure 9. Result of 500 bootstrap runs of the calculation of Bδ for the simple and the extended 
model

In the simple configuration, the most influential factors are Nf (population level) and 
Wamb (background sound power level) according to all of the three distance-based 
measures used. The importance of Wamb had not been spotted by the variance-based 
indices estimated in section 0. Other model outputs have an intermediate influence on 
the output. According to distance-based sensitivity measures, the background context 
of emission is the model input to focus the attention for model development if the 
attenuations were not considered in the full specification, together with the number of 
targets that are exposed to a level of sound emissions that may be perceived as noise 
(Cucurachi et al. 2012).
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Table VI. Importance measures for the simple and extended noise-model configurations 

 
In the extended configuration, β (time of the day penalty) and d (distance of propagation) 
become the most influential factors. The importance of β had not been spotted by the 
first order variance-based indices, but is revealed by the total indices. 

The results in Table VI suggest that, if more resources were to be available, a modeller 
would have to investigate the exact time of the day an emission is taking place, and the 
exact distance between the source of the sound emission and the receiver/receivers. 
Such information also provides a way of prioritizing the recording of information at the 
LCI phase of an LCA study, expanding on the information gathered using the variance-
based techniques.

Simple model

Variable Importance measure

    Bδ KSδ KUδ

Wamb
Background sound power level [dB] 0.29 0.27 0.29

D Directivity component [dB] 0.13 0.05 0.08

Aatt
Attenuation factors [dB] 0.12 0.05 0.07

Nf Population level 0.31 0.29 0.32

α Perceived frequency model input [dB] 0.17 0.16 0.18

β Penalty for time of the day [dB] 0.01 0.06 0.08

Extended model

Variable Importance measure

   
Bδ KSδ KUδ

Wamb
Background sound power level [dB] 0.13 0.04 0.06

D Directivity component [dB] 0.15 0.11 0.13

Nf Population level 0.12 0.08 0.09

β Time of the day penalty [dB] 0.30 0.27 0.29

T Temperature [˚C] 0.15 0.03 0.05

Prs Ambient pressure [Pa] 0.14 0.12 0.13

RelHum Relative humidity [%] 0.15 0.03 0.05

fm Frequency of the emission [Hz] 0.20 0.19 0.20

d Distance from source to receiver [m] 0.22 0.20 0.21

G Ground composition factor 0.15 0.03 0.05
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Step 4: Results Evaluation
With these results in mind, following the final decision step 4 of the protocol presented 
in Figure 2, we decided that the results provide sufficient information to judge the 
noise-model. It was resolved that no further analyses were needed and that the N
selected was suitable to obtain accurate estimates. We turned, then, to the investigation 
of the extent to which measures agree/disagree in the identification of key uncertainty 
drivers (Kleijnen and Helton 1999). The inputs for both configurations of the model did 
not have the same influence with respect to the global sensitivity measures used. The 
calculation of the correlation coefficient among Savage scores allows us to study the 
accordance among different rankings [see (Borgonovo, Gatti, and Peccati 2010)]. Such a 
technique emphasizes the agreement/disagreement for the most important variables and 
places reduced weight on agreement/disagreement for the variables of low importance 
[(Kleijnen and Helton 1999); p. 166]. Table VII displays the resulting correlations mong 
Savage scores are presented.

Table VII. Correlation among Savage scores across global sensitivity measures

Simple model

   
First Order

 
Total order

Bδ KSδ KUδ
 
First Order

 
1

 
0.93

 
0.46

 
0.51

 
0.51

Total order 0.93 1 0.68 0.72 0.72

Bδ  
0.46

 
0.68

 
1

 
0.96

 
0.96

KSδ 0.51 0.72 0.96 1 1

KUδ 0.51 0.72 0.96 1 1

Extended model

   
First Order

 
Total order

Bδ KSδ KUδ
 
First Order

 
1

 
0.68

 
0.59

 
0.60

 
0.62

 
Total order

 
0.68

 
1

 
0.66

 
0.73

 
0.72

Bδ 0.59 0.66 1 0.98 0.99

KSδ 0.60 0.73 0.98 1 0.99

KUδ 0.62 0.72 0.99 0.99 1
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In the simple configuration of the model, the correlation coefficients suggest that most 
measures agree with the ranking of inputs. The Savage scores for the measures Bδ , KSδ  
and KUδ  strongly correlate to one another (~1). A lower positive correlation of Savage 
scores is obtained comparing the measure Bδ  with both first and total order indices. 
For the extended model, the rankings between variance-based and the other importance 
measures put forward a similar picture. Greater differences are highlighted between the 
invariant importance measures and the first and total order indices, with Bδ  once again 
presenting the lowest correlation value.

In summary, the calculation of the correlation of Savage scores and the use of bootstrap 
sampling further helps the LCA modeler to study and understand the developed model, 
and it is advised as a supporting analysis for the protocol presented in the previous 
sections. In our case, the analysis shows that the factors ambW  and Nf  can confidently 
be considered as the key uncertainty drivers for the simple model, while factors d  and  
β  are the key drivers in the extended configuration.

4
Discussion: striving towards improved life cycle assessment models
The LCA community is recognizing the need of improving its methods for the sensitivity 
and uncertainty analyses of LCA codes. Our work has investigated this issue, unveiling 
several aspects. First, we have seen that the complexity of LCA models might make 
it impossible to perform a fully blown global SA at the whole LCA scale, due to its 
complexity. However, we have seen that global SA is applicable in portions of the evaluation 
and, in particular, in the crucial LCIA phase, where performing a full-fledged global SA not 
only becomes possible, but is capable of producing insights for the analyst that would 
otherwise go lost. The SA measures are responsive to non-linearities in LCIA models, 
also in the presence of correlated inputs. The ability to capture dependencies among 
factors and the importance of factors to the output of the model makes the protocol 
extendable to other phases of LCA, in which input are used to calculate an output. For 
instance, at the inventory phase the influence of inventory items on the output of a study 
may be also evaluated taking into account model-structure measures and importance 
measures. 

The protocol proposed here allows extracting information on a model (LCIA or 
otherwise) directly from the results of a MC simulation, without the need to obtain a 
specific design. This is advantageous, because most of the software packages that are used 



233

6

to conduct LCA studies already contain MC subroutines* . MC simulation alone, however, 
does not allow the analyst to identify key drivers of uncertainty, and to understand the 
structure of the input-output model (Anderson et al. 2014). In this respect, an issue is 
represented by the need to define a joint distribution function that truly represents the 
decision-maker’s degree of belief about the model inputs. In the context of LCIA model 
development, modellers typically have sufficient data to define how the model inputs are 
distributed. 

In the preliminary phases of the analysis, global SA can help gathering focus on important 
factors based on estimates and expert judgement. Later, a complete global SA can be 
performed when a better coverage of data is available. In our application, we considered two 
different configurations of the same model that correspond to two model development 
stages. As noted, even though some inputs had the same distribution function in both 
configurations, their importance changed. 

Finally, a combination of measures is recommended for the identification of key uncertainty 
drivers. Using an ensemble of sensitivity measures allows an analyst to overcome the 
limitations of each single method and to obtain a robust ranking of model outputs. Then, 
an analyst has information about which values is possible to fix in the remainder of the 
analysis. This is particularly relevant in the context of LCIA modelling, where it is common 
to use characterisation factors that are often representative of certain average conditions 
(e.g. a certain geographical location is taken as representative of a wide area). Here, 
the protocol can guide the modeller in deciding which model inputs could be averaged 
without affecting the uncertainty of the model. Once the modeller has a clear idea of the 
structure of the model and of the key input drivers, it is also possible to further evaluate 
the need to produce geographically-explicit characterisation factors with high level of 
spatial resolution. For all LCIA models for which only few inputs would be determinant in 
varying the output, it would be a questionable use of resources to define characterisation 
factors that are specific to highly-localised conditions. Those model inputs with the largest 
values of all measures should be prioritized and further analysed and localised.

	

* Also, fully-documented computer subroutines are freely available for the most used global sensitivity 
tools, allowing for a straightforward application of the measures to any context, including that of LCA, 
without any additional modelling time. For the calculation of sensitivity measures in this article both [R] 
and Matlab® (MathWorks 2013) subroutines were used.	
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5
Conclusions
This article has discussed the use of global SA techniques to increase the trust in LCIA 
models, thus of LCA as a tool of sustainability assessment. The application of the proposed 
global SA techniques would increase the confidence of decision makers and users of 
existing LCIA models, and also of any future developments of novel impact assessment 
models and characterisation factors. Relying on an ensemble of sensitivity measures, the 
protocol provides the LCA modeller with a series of powerful tools that increase the 
validity of the LCA framework, and particularly the transparency of the modelling phase 
of LCIA characterisation models. 

The insights of this work can be extended to all other tools of the environmental, climate 
change and risk sciences in which complex models are used and where global SA is a 
key-ingredient to increase model validity and reliability. 
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