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6
CURVED CRACK PATHS

6.1 cotterell and rice theory

In the previous chapter, stress intensity factors and kink angles
of straight cracks were obtained. To predict the trajectory of a
crack, we need to calculate the the stress intensity factors and crack
growth direction for curved or kinked cracks. For this we employ
the perturbation theory for slightly curved cracks developed by
Cotterell and Rice [15]. This theory assumes a small deviation
λ (x) of a straight crack, as is illustrated in Fig 55. Let pn (x) and

Figure 55: Schematic of a slightly curved crack with crack tips at
x = −a and x = a, including graphical definitions of pn (x),
ps (x) and λ (x).

ps (x) denote the normal and shear tractions and primes denote
derivatives. The stress intensity factors at the tip at x = a are
approximated by [15]
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where ω = λ′ (a) is the slope at the tip, which is (to leading
order) the angle of the crack tip orientation with the x-direction.
If λ = 0 these expressions reduce to eqs. (214)-(216) for straight
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112 curved crack paths

center cracks. For a semi-infinite crack whose (right) tip is located
at x = d eqs. (233) and (233) reduce to
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6.2 crack paths on a gaussian bump

Based on the stress intensity factors in eqs. (233) and (234), we cal-
culate the kink angle with eq. (186). Next, we grow the crack in the
direction specified by the kink angle by a small increment. This pro-
cess is iterated such that a series of connected line segments forms
a crack path. This path approximates a smooth curved crack tra-
jectory provided the length of the increment, ∆x, is small enough.
We will take ∆x = 0.05x0 and show in Appendix D that this choice
is sufficient. The only point at which the crack path is not smooth
but makes a kink, is at the onset of growth of the pre-existing
crack.
We will start with a straight semi-infinite crack in an elastic

sheet confined to a Gaussian bump. This pre-existing crack is
aligned in the x-direction and its tip is located at d = −8x0. We
will vary the initial offset in the y direction, yoff. A uniform load-
ing of the entire semi-infinite crack leads to an ill-posed problem,
as the stress intensity factors diverge. Instead, we consider a force
dipole at x = xp of magnitude T ≡ γY x0 (with γ thus a dimen-
sionless number indicating the magnitude):

pn = Tδ (x− xp) , (237)
ps = 0. (238)

We will choose xp = −10x0, thus far away from the bump. Sub-
stituting these expressions into eqs. (235) and (236) gives a contri-
bution to the stress intensity factors of:

KI =

√
2T√

π (d− xp)
, (239)

KII =
ωT√

2π (d− xp)
. (240)
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If the slope is positive (negative), i.e. the slope ω > 0 (ω < 0),
then KII > 0 (KII < 0) and hence θk < 0 (θk > 0). Thus the
external loading tries to restore the crack to a straight horizontal
orientation, with ω = 0.
The curvature has a distinct effect on the crack path. Numeri-

cally calculated crack paths for several values of yoff, γ = 1 and
α = 0.5 are presented in Fig. 56. A zoom of the crack paths around
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Figure 56: Crack paths for α = 0.5 (yellow), γ = 1, and yoff = 0 (blue),
yoff = 0.2x0 (green), yoff = 0.4x0 (red), yoff = 0.6x0 (cyan),
yoff = 0.8x0 (magenta), yoff = x0 (yellow), yoff = 1.2x0

(black), yoff = 1.4x0 (grey), yoff = 1.6x0 (purple) and yoff =

1.8x0 (orange).

the bump with the x and y on the same scale is shown in Fig. 57.
We observe that there is a deflection as the crack approaches the
bump. This is can also be inferred from the positive values of ω
for negative x (Fig. 58). ω reaches its maximum at x ≈ −0.3x0.
This corresponds to an inflection point of the crack path. Then ω
crosses zero in between x ≈ x0 and x ≈ 1.5x0 depending on the
value of yoff, the vertical deflection is maximal and the crack turns.
Next is another inflection point beyond x = 2x0, after which the
crack eventually attains a horizontal orientation. Interestingly, the
deflection is largest when yoff is of the order of the width of the
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Figure 57: Crack paths for α = 0.5 (yellow), γ = 1, and yoff = 0 (blue),
yoff = 0.2x0 (green), yoff = 0.4x0 (red), yoff = 0.6x0 (cyan),
yoff = 0.8x0 (magenta), yoff = x0 (yellow), yoff = 1.2x0

(black), yoff = 1.4x0 (grey), yoff = 1.6x0 (purple) and yoff =

1.8x0 (orange). Circle ρ = 1 in dashed green.

bump. This can be seen from Fig. 59, where we plot the maximal
y-deflection ∆ as a function of yoff.
We can also vary the aspect ratio instead of the initial offset.

The crack paths for several values of α are displayed in Fig. 60,
yoff = x0 and γ = 1. The observe that the deflection increases
upon increasing the aspect ratio.

6.3 conclusions

In conclusion, we have numerically calculated crack paths with
Cotterell-Rice perturbation theory. We considered an external nor-
mal loading that tends to grow the pre-existing semi-infinite crack
horizontally. The curvature-induced stresses are competing with
this normal loading. The curvature is responsible for deflecting
the crack path, after which it ‘goes around’ the bump. The magni-
tude of deflection increases with aspect ratio and is largest when
the initial offset is around the width of the bump. Finally, when
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Figure 58: Crack tip angle ω for α = 0.5 (yellow), γ = 1, and yoff = 0
(blue), yoff = 0.6x0 (cyan), yoff = 1.2x0 (black) and yoff =

1.8x0 (orange).

the crack tip has past the bump, the crack turns to a horizontal
orientation.
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Figure 59: The maximal vertical deflection of the crack path as a func-
tion of the initial offset.
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Figure 60: Crack paths for yoff = x0, γ = 1, and α = 0 (blue), α = 0.1
(green), α = 0.2 (red), α = 0.3 (cyan), α = 0.4 (magenta)
and α = 0.5 (yellow).


