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Part III

FRACTURE OF CURVED SOL IDS

In this final part we turn our attention from confined
liquid crystals to geometrically frustrated solids. The
curvature of two-dimensional solids which are forced to
adopt a certain shape, is a source of stress. We study
the effects of the stress on the fracture mechanics of
such solids. We find that the curvature can both de-
crease or increase the critical length at which the crack
starts growing depending on the location and orienta-
tion of the crack, thus both stimulating and inhibit-
ing the onset of crack growth. Finally, the non-uniform
stress generates curved crack trajectories.





5
ONSET OF CRACK GROWTH

5.1 linear elastic fracture mechanics

The first and foremost one should realise when studying how things
break is that fracture occurs through the propagation of one or
more cracks [59]. It is exceptionally rare that materials break be-
cause a series of bonds extending from one end of the sample to
the other end all break simultaneously. A real solid is not so per-
fect and contains flaws at which the stresses are focussed: near
the tip of a crack the stresses and strains become very large. As
a consequence, the material around the tip will fail and the crack
will propagate. If the material behaves linear elastically, the stress
tensor σij at a distance r from the crack tip which is assumed to
be small compared to the crack length a reads [8, 83, 116]

σij =
KI√
2πr

f Iij (θ) +
KII√
2πr

f IIij (θ) , (178)

Close to the crack tip the stress is not infinite as is suggested by
the inverse square root of r in eq. (178), but finite. The small re-
gion in which plastic deformations occur is called the process zone.
If the radius of this zone, rp, is small compared to the crack length
– called an assumption of small scale yielding – eq. (178) describes
the stresses in the annulus rp � r � a well. The sub- and super-
scripts I and II in eq. (178) refer to the modes of fracture, which
are displayed in Fig. 45. In two dimensions, there are two sym-
metry modes of fracture, namely an opening mode (traditionally
labelled as mode I) and a sliding or shearing mode (traditionally
labelled as mode II). For a horizontally aligned crack (i.e. in the
x direction), in mode I vertical displacements are anti-symmetric
in reflection about the x-axis (uy (x,−y) = −uy (x, y)) and hor-
izontal displacements are symmetric (ux (x,−y) = ux (x, y)). In
mode II it is the other way around: vertical displacements are sym-
metric (uy (x,−y) = uy (x, y)) and horizontal displacements are
anti-symmetric (ux (x,−y) = −ux (x, y)). Under general loading
conditions, the problem can be decomposed into these two modes.
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94 onset of crack growth

Figure 45: Left panel: Schematic of mode I fracture. Right panel:
Schematic of mode II fracture.

The functions functions f Iij and f IIij are universal, meaning that
they neither depend on loading conditions nor geometry. Thus, f Iij
and f IIij are the same for cracks in the bulk and at the edge, for
disk-shaped samples, strips, and infinite domains. They only de-
pend on the polar angle θ (where the location of the tip is taken
as the origin, see Fig. 46) and read:

f Irr =−
1
4 cos

(
θ

2

)
+

5
4 cos

(
3θ
2

)
, (179)

f Iθθ =
3
4 cos

(
θ

2

)
+

1
4 cos

(
3θ
2

)
, (180)

f Irθ =
1
4 sin

(
θ

2

)
+

1
4 sin

(
3θ
2

)
, (181)

and

f IIrr =− 5
4 sin

(
θ

2

)
+

3
4 sin

(
3θ
2

)
, (182)

f IIθθ =− 3
4 sin

(
θ

2

)
− 3

4 sin
(

3θ
2

)
, (183)

f IIrθ = cos
(
θ

2

)
+ 3 cos

(
3θ
2

)
. (184)

Eqs. (178)-(184)) follow from Williams’ asymptotic analysis [110]:
solving the equilibrium equations in the vicinity of the crack tip
with the crack modelled as a slit with two edges that are closed
in the reference state but which could open up once loading is
applied. The only variables in eq. (178) which are not universal,
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Figure 46: Schematic of the crack tip coordinates for a crack aligned in
the x-direction.

are the prefactors KI and KII . These prefactors are called the
stress intensity factors (of mode I and mode II, respectively),
because they characterise the strength of the stress singularity.
All information about loading, crack length and the shape of the
sample reduce to this one quantity, thus making it one of the most
important concepts in linear elastic fracture mechanics. Indeed, it
is believed to determine the onset and direction of crack growth.
For instance, a mode I crack will start to propagate if KI exceeds
a critical value, Kc. The critical vale for the stress intensity factor,
Kc, which determines the onset of crack growth, is often referred
to as the fracture toughness and it is a material property. If the
crack growth is quasistatic, the growth also comes to a halt if
the stress intensity factor drops below the critical value again. We
call this stable crack growth. The growth is unstable if the crack
continues propagating till the material fails. Several theories for
mixed-mode fracture exist, of which one of them is the criterion
of maximum circumferential, or hoop, stress [116]. This postulates
that the pre-existing crack will grow in the direction θc in which
σθθ (θ) is the largest, thus satisfying

∂σθθ
∂θ
|θ=θc = 0, ∂2σθθ

∂θ2 |θ=θc < 0 (185)

Applying this criterion to eqs. (178)-(184) yields the kink angle

θc = 2 arctan
 −2η

1 +
√

1 + 8η2

 , (186)
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where η ≡ KII/KI . A propagating crack will eventually turn its
orientation such as to be in mode I and experience a maximum
tensile stress. The condition for the onset of crack growth in this
theory of mixed-mode fracture is that the intensity factor in the di-
rection of maximum circumferential stress exceeds a critical value,
which is assumed to be the same as for pure mode I loading:

σθθ (θc)
√

2πr > Kc. (187)

Finally, besides crack growth criteria, the stress intensity factors
also yield the shape of the crack tip opening. The displacement
fields in the vicinity of the crack tip are obtained from the stress
fields given by eqs. (178)-(184):

uIr = KI
1 + ν

Y

√
r

2π

[(5
2 − 4 ν

1 + ν

)
cos

(
θ

2

)
− 1

2 cos
(

3θ
2

)]
,

(188)

uIθ = KI
1 + ν

Y

√
r

2π

[
−
(7

2 − 4 ν

1 + ν

)
sin

(
θ

2

)
+

1
2 sin

(
3θ
2

)]
,

(189)
and

uIIr = KI
1 + ν

Y

√
r

2π

[(
−5

2 − 4 ν

1 + ν

)
sin

(
θ

2

)
+

3
2 sin

(
3θ
2

)]
,

(190)

uIIθ = KI
1 + ν

Y

√
r

2π

[
−
(7

2 − 4 ν

1 + ν

)
cos

(
θ

2

)
+

3
2 cos

(
3θ
2

)]
,

(191)
where Y is Young’s modulus and ν is Poisson’s ratio. For a pure
mode I crack, the vertical displacement at the crack edges (i.e.
θ = ±π) reads

uy (r,±π) = −uθ (r,±π) = ±
4KI

Y

√
r

2π . (192)

Hence, the shape of the crack tip is parabolic.

5.2 cracks in a gaussian bump

5.2.1 Problem formulation

In this chapter we will study cracks in two-dimensional curved
solids. Examples of two-dimensional curved solids are colloidal par-
ticles at a fluid-fluid interface, viral shells or plates, e.g. in aircraft
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structures, where out-of plane deflection may be large compared
to the plate thickness [108, 33, 117]. Besides the in-plane frac-
ture modes introduced in the previous section, there are bending
modes that we will discard in our analysis [111, 89, 33, 117]. We
will focus on the effects of the in-plane stresses generated by the
curvature. As pointed out by Hui et al., in curved plates the near
tip stress fields will display the same singular behaviour as in eq.
(178) [33, 117]. However, the values of the stress intensity factors
are affected by the curvature. In turn, this influences the onset
and direction of growth of pre-existing cracks.

5.2.2 The Gaussian bump

The surface that we will choose to study the effects of the geometric
frustration on cracks is the gaussian bump (Fig. 47), whose height
profile reads

h (x) = αx0 exp
(
−ρ2/2

)
, (193)

where x0 is a measure of the width of bump, ρ = |x|/x0 is the
normalised radial coordinate, and α = h (0) /x0 is the aspect ratio
of the bump. This surface has several convenient and interesting

Figure 47: Schematic of a Gaussian bump. The circle ρ = 1, indicating
the width of the bump, is drawn in dashed green. The circle
ρ = R/x0, which is the edge of the disk, is drawn in black.

features. First, it has a flat counterpart (unlike e.g. a sphere), such
that one can tune α continuously from zero to a finite value. Sec-
ond, it has a varying Gaussian curvature with regions of positive
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and negative curvature. The curvature is positive for ρ < 1 and
negative for ρ > 1. Indeed, from eq. (75) we find [107]

G (ρ) =
α2

x2
0

exp
(
−ρ2

) 1− ρ2

(1 + α2ρ2 exp (−ρ2))2 (194)

≈α
2

x2
0

exp
(
−ρ2

) (
1− ρ2

)
. (195)

The latter approximation is valid, because we are working in the
regime of small α2. Finally, we consider the origin of the Gaussian
bump to be located at the centre of the disk of radius R. If one
considers samples much smaller than the width of the bump R�
x0, then G → α2/x2

0 and so the Gaussian bump reduces to a
spherical cap with radius of curvature of x0/α.

5.2.3 Decomposing the problem

We need to solve for the equilibrium equations of linear elasticity
with an infinitely narrow cut (representing the crack) in a Gaus-
sian bump, possibly under external loading. This external loading
is usually applied at the boundary of the sample, though in prin-
ciple could also be applied at the crack edges. We will decompose
the problem of a crack with stress-free edges in a Gaussian bump
loaded at the boundary into two other problems, called A and B.
The first of these two problems is finding the stress field, σGij (x),
prior to the introduction of the crack, due to curvature and exter-
nal loading only. Next, in problem B, we solve for the stress field,
σ0
ij (x), for a crack whose edges are loaded, but in which there is

neither curvature nor loading at the boundary of the sample. The
traction, p, applied at the crack edges is such that it cancels the
tractions in the first problem, i.e. the traction on the top crack
edge is

pi = −σGijνj , (196)

with ν the normal vector of the top crack edge, and the traction
loading on the bottom crack edge is equal but opposite. Thus, the
stresses generated by the curvature serve as traction on the crack
edges. Superposing the stress fields in problem A with the stress
fields in problem B, σij (x) = σGij (x) + σ0

ij (x), solves the initial
problem (see Fig. 48). It satisfies the equilibrium equations (eq.
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Figure 48: The solution of the problem on the left hand side of this
schematic equation is obtained by superposing the stress
fields in A and B. In A there is geometric frustration due
to the nonzero curvature, but no crack. In B there is no
curvature, but there is a crack whose edges are loaded such
as to cancel the stresses generated in A at the crack location.
In B, the arrows representing the forces at the crack edge are
drawn non-vertical intentionally, because generally σGxy 6= 0
and hence there could be a shear force.

(39)),

∂iσij = ∂iσ
G
ij + ∂iσ

0
ij = 0, (197)

as well as the equation for the Airy stress function (eq. 75)

1
Y
∂4χ =

1
Y
∂4χG +

1
Y
∂4χ0 = −G. (198)

Moreover, conditions at both the boundary of the sample and at
the crack edge are correct. In the absence of any curvature, this de-
composition reduces to the usual equivalence of crack face loading
and far field loading. Since σG does not contain any singularity,
the stress intensity factors of σ0 are equal to the stress intensity
factors of the full solution σ.

5.2.4 Stress fields in the absence of cracks

The first problem involves solving for the stresses as a result of
Gaussian curvature only, prior to the introduction of the crack.
Firstly, we will take the circular boundary of the disk traction-
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free. For the stress components σGρρ (ρ) and σGρφ (ρ) evaluated at
the boundary we thus have

pρ =σ
G
ρρ (R/x0) = 0, (199)

pφ =σGρφ (R/x0) = 0. (200)

Due to rotational symmetry σGρφ = 0 [107]. The trace of the stress
tensor, however, reads [107]

σGρρ+ σGφφ =
α2

4 Y

(
x2

0
R2 exp

(
−R

2

x2
0

)
− x2

0
R2 + exp

(
−ρ2

))
. (201)

From this starting point we obtain σGρρ and σGφφ. Again, employing
rotational symmetry the force-balance in the ρ direction reads

ρ
∂σGρρ
∂ρ

+ σGρρ − σGφφ = 0. (202)

Substituting eq. (201) to eliminate σGφφ yields a differential equa-
tion for σGρρ whose solution is

σGρρ =
C

ρ2 −
α2Y

8ρ2 exp
(
−ρ2

)
+
α2Y

8
x2

0
R2

[
exp

(
−R

2

x2
0

)
− 1

]
. (203)

Demanding that the stress is finite at the origin sets the integration
constant C = Y α2/8. We thus find

σGρρ =
α2

8 Y

(
ρ−2

[
1− exp

(
−ρ2

)]
+
x2

0
R2

[
exp

(
−R

2

x2
0

)
− 1

])
,

(204)

for the radial stress component. Substituting σGρρ back into eq.
(201) yields for the azimuthal component

σGφφ =
α2

8 Y
(
ρ−2

[
exp

(
−ρ2

)
− 1

]
+ 2 exp

(
−ρ2

)
+
x2

0
R2

[
exp

(
−R

2

x2
0

)
− 1

])
. (205)

These stress components are plotted as a function of ρ in Fig. 49a.
If instead of traction-free boundary conditions (eqs. (199)-(200)),
we apply a radial force of magnitude P ,

pρ =P , (206)
pφ =0, (207)
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Figure 49: Stress components σGρρ (red) and σGφφ (blue) for P = 0 and
R/x0 → ∞ (top panel), R/x0 = 0.01 (bottom panel) as
a function of the rescaled radius. Inset: Schematic of σGρρ
and σGφφ indicated by red and blue arrows, respectively. The
bump is indicated by the green dashed circle ρ = 1.
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we can simply superpose a uniform stress field σρρ = P and σφφ =

P to the obtained expression for σij :

σGρρ =
α2

8 Y
(
ρ−2

[
1− exp

(
−ρ2

)]
+
x2

0
R2

[
exp

(
−R

2

x2
0

)
− 1

])
+ P , (208)

σGφφ =
α2

8 Y
(
ρ−2

[
exp

(
−ρ2

)
− 1

]
+ 2 exp

(
−ρ2

)
+
x2

0
R2

[
exp

(
−R

2

x2
0

)
− 1

])
+ P . (209)

In an infinite medium (R →∞), the non-vanishing stress compo-
nents reduce to

σGrr =
α2

8 Y ρ−2
(
1− exp

(
−ρ2

))
+ P , (210)

σGφφ =
α2

8 Y
(
ρ−2

[
exp

(
−ρ2

)
− 1

]
+ 2 exp

(
−ρ2

))
+ P .

(211)

Finally, in the spherical cap regime (R� x0) we find (Fig. 49b)

σGρρ ≈
α2

16Y
(
R2/x2

0 − ρ2
)
+ P , (212)

σGφφ ≈
α2

16Y
(
R2/x2

0 − 3ρ2
)
+ P . (213)

The azimuthal stress is compressive for |x| > R/
√

3 ≈ 0.58R for
P = 0.

5.2.5 Results for small center cracks

Now that we have solved for the stresses prior to the introduction
of the crack, we can calculate the stress intensity factors by means
of weight function. The stress intensity factor is an integral over
the length of the crack, which we define as 2a for a crack in the
bulk. The product of the applied traction at the crack edge with
the weight function, m (x, a), comprises the integrand:

KI =
∫ a

−a
m (ξ, a) py (ξ) dξ, (214)

KII =
∫ a

−a
m (ξ, a) px (ξ) dξ. (215)
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The weight function can be viewed as the stress intensity factor for
a force dipole at x, i.e. py (ξ) = δ (ξ − x) for mode I or px (ξ) =
δ (ξ − x) for mode II. The weight function depends on the length
of the crack, but also on the location of the applied traction and
diverges at the tip. For instance, the weight function for the tip at
x = a of a crack in an infinite plane is

m (x, a) = 1√
πa

√
a+ ξ

a− ξ
. (216)

The stress intensity factors for such a centre crack in a Gaussian
bump are thus

KI =
1√
πa

∫ a

−a
dξ

√
a+ ξ

a− ξ
σ̃Gyy (ξ, 0) , (217)

KII =
1√
πa

∫ a

−a
dξ

√
a+ ξ

a− ξ
σ̃Gxy (ξ, 0) , (218)

where σ̃Gij (x, y) is the stress due to geometric frustration only. The
origin of the xy coordinate system is at the middle of the crack.1

If the crack size is small enough compared to the length scale over
which the stresses vary, i.e.

a
∣∣∣∂xσ̃Giy∣∣∣� σ̃Giy, (219)

it is legitimate to take σGiy out of the integrand and we obtain the
following result

KI =
σ̃Gyy (0, 0)
√
πa

∫ a

−a
dξ

a+ ξ√
a2 − ξ2

=
√
πaσ̃Gyy (0, 0) , (220)

KII =
σ̃Gxy (0, 0)
√
πa

∫ a

−a
dξ

a+ ξ√
a2 − ξ2

=
√
πaσ̃Gxy (0, 0) . (221)

This result holds irrespective of the details of the shape of the
surface. For a Gaussian bump with a crack that is aligned radially,
eqs. (220) and (221) reduce to

KI =
√
πa σGφφ (ρ

∗) , (222)
KII = 0, (223)

1 The tilde is there to distinguish it from σGij which generally is a function of
ρ, and thus, although it describes the same physical quantity, is a different
function of its arguments.
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where ρ∗ is the distance to the crack from the centre of the bump.
Since KII the crack will grow radially if KI > Kc. For the bump
this implies that the critical length, ac, at which radial cracks will
grow is

ac =
K2
c

π
(
σGφφ (ρ

∗)
)2 . (224)

We plot this quantity in Fig. 50 for several aspect ratios of the
bump in an infinite plane (i.e. R → ∞)) and P = 0.01Y . We

0 1 2 3 4 5

ρ ∗
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

ac
l

Figure 50: Normalised critical length of the small straight crack in the
radial direction versus normalised radial distance of the lo-
cation of the crack for P = 0.01Y and aspect ratios α = 0
(blue), α = 0.1 (green), α = 0.2 (red), α = 0.3 (cyan) and
α = 0.4 (magenta).

have normalised ac by the length, l, at which a crack under 1%
strain (i.e. P = 0.01Y ) would grow in the flat case (i.e. α = 0).
The critical size is smallest if the crack is located at the top of the
bump (ρ∗ = 0), where σGφφ has its maximum. The critical crack
length is largest at ρ∗ ≈ 1.8, where σGφφ has its minimum. Since
σGφφ flips sign at ρ∗ ≈ 1.1, the normalised critical crack length ac/l
crosses unity for ρ∗ ≈ 1.1. For cracks located at radial distances
smaller than this value, ac/l < 1 and the curvature thus stimulates
crack growth. On the other hand, if the crack is located sufficiently
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far from the bump, ac/l > 1 and the crack growth is suppressed. It
should be noted that for cracks located such that we find K1 < 0
(signalled by a divergence of ac), the stress field is not given by eqs.
(178)-(184)), because the crack edges would have to interpenetrate.
As can be seen from eq. (192), K1 < 0 would give uy (r, π) < 0
on the top edge and uy (r, π) > 0 on the bottom edge. In practice,
crack closure or bulging occurs [8]. If α increases (or P decreases)
further there will be an annular region for which this occurs.
For a small crack in the azimuthal direction rather than radial

direction, we find

KI =
√
πa σGρρ (ρ

∗) , (225)
KII = 0. (226)

and the critical crack length is given by

ac =
K2
c

π
(
σGρρ (ρ

∗)
)2 . (227)

For small azimuthal cracks, the curvature suppresses the crack
growth independently of the value of ρ∗, as is shown in Fig. 51,
because σGρρ > 0. The critical crack length is smaller in the presence
of curvature than in the absence of curvature, no matter where the
azimuthal crack is located.
Next we will consider the general case in which the orientation of

the crack makes an angle β with the radial direction. The traction
at the crack edge reads

py ≈ σ̃Gyy (0, 0) = σGρρ (ρ
∗) sin2 β + σGφφ (ρ

∗) cos2 β, (228)

px ≈ σ̃Gxy (0, 0) =
(
σGφφ (ρ

∗)− σGρρ (ρ∗)
)

sin β cos β. (229)

The stress intensity factors are therefore

KI =
√
πa
(
σGρρ (ρ

∗) sin2 β + σGφφ (ρ
∗) cos2 β

)
, (230)

KII =
√
πa
(
σGφφ (ρ

∗)− σGρρ (ρ∗)
)

sin β cos β. (231)

For the radial and azimuthal crack (β = 0 and β = π/2, respec-
tively) we recover KII = 0, and there will thus not be a kink.
However, for intermediate values of α, i.e. β (mod π/2) 6= 0, the
mode II stress intensity factor does not vanish. Therefore, if the
crack does grow, it will grow in a different direction than the di-
rection of the pre-existing crack. This kink angle can be calculated
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Figure 51: Normalised critical length of the small straight crack in the
azimuthal direction versus normalised radial distance of the
location of the crack for P = 0.01Y and aspect ratios α = 0
(blue), α = 0.1 (green), α = 0.2 (red), α = 0.3 (cyan) and
α = 0.4 (magenta).

with the maximum hoop stress criterium (eq. (186)) and is plot-
ted for β = π/4 in the top panel of Fig. 52 as a function of ρ for
several values of α. The sign of the kink angle is determined by
the sign of KII . If KII is positive (negative), that is, η is positive
(negative), assuming P is large enough to prevent a nonphysical
negative KI , then θc is negative (positive). The sign of θc is inde-
pendent of the crack location, because σGρρ ≥ σGφφ for all ρ∗, but is
depending on the value for β, as is illustrated in the top panels of
Fig. 53 and Fig. 54 for ρ∗ = 2 and ρ∗ = 0.5. We find KII < 0
(or KII > 0) for 0 < β (mod π) < π

2 (or π
2 < β (mod π) < π)

and so θc > 0 (or θc < 0). For all values of β this implies that the
crack direction will be corrected toward the azimuthal direction.
The top panel of Fig. 53 also shows that the value for which the
kink angle is the largest (which is where the ratio of the mode
II and mode I stress intensity factors is the largest) occurs at a
value for β which is typically somewhat smaller than π/4. Since
the loading is mixed mode, the stress that enters in the formula



5.2 cracks in a gaussian bump 107
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Figure 52: Kink angle (top panel) and normalised critical length of the
small straight crack (bottom panel) versus normalised radial
distance of the location of the crack for β = π/4 and P =

0.01Y and aspect ratios α = 0 (blue), α = 0.1 (green),
α = 0.2 (red), α = 0.3 (cyan) and α = 0.4 (magenta). Inset:
Schematic with graphical definitions of ρ∗, β and θc.
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Figure 53: Kink angle (top panel) and normalised critical length of the
small straight crack (bottom panel) versus the orientation of
the crack for ρ∗ = 2 and P = 0.01Y and aspect ratios α = 0
(blue), α = 0.1 (green), α = 0.2 (red), α = 0.3 (cyan) and
α = 0.4 (magenta).
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Figure 54: Kink angle (top panel) and normalised critical length of the
small straight crack (bottom panel) versus the orientation of
the crack for ρ∗ = 0.5 and P = 0.01Y and aspect ratios
α = 0 (blue), α = 0.1 (green), α = 0.2 (red), α = 0.3 (cyan)
and α = 0.4 (magenta).
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for the critical crack length is the circumferential stress (evaluated
for θ = θc in eq. (178)), and eq. (187) gives

ac =
K2
c

π
(
σGyy (ρ

∗) f Iθθ (θc) + σGxy (ρ
∗) f IIθθ (θc)

)2 . (232)

We again plot the critical size as a function of crack location in
the bottom panel of Fig. 52, now for β = π/4, and as a function
of β in the bottom panel of Fig. 53 for ρ∗ = 2. The latter shows
that the curvature suppresses crack growth the most when the
crack is oriented radially (i.e. β = 0, π), and stimulates crack
growth the most when the crack is aligned azimuthally (i.e. β =

π/2, 3π/2). For ρ∗ . 1.1, the curvature stimulates the crack
growth irrespective of the orientation of the crack, as is shown in
the bottom panel of Fig. 54 for ρ∗ = 0.5.

5.3 conclusions

The critical length of the crack can both be enhanced or dimin-
ished by geometry-induced stress, in contrast to uniformly applied
outward force at the boundary of the disk, which always stimulates
crack growth. For a radial crack in a Gaussian bump, the critcal
length decreases for cracks located at distances to the top smaller
than ρ∗ ≈ 1.1. For radial cracks located at ρ∗ & 1.1 the critical
length is increased by the curvature. This effect is strongest when
ρ∗ ≈ 1.8. The critical size of an azimuthally oriented crack is de-
creased by the curvature irrespective of position. In addition to
the critical size, also the kink angle depends on the location and
orientation of the crack. The pre-existing crack will start to grow
in a direction with a larger azimuthal component.


