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Part II

TOROIDAL NEMATICS

In this part, we present a theoretical study of direc-
tor fields in toroidal (rather than spherical) geometries
with degenerate planar boundary conditions. In con-
trast to spherical nematics in Part I, the topology does
not induce defects in nematic toroids. However, we do
find spontaneous chirality: despite the achiral nature
of nematics the director configuration shows a handed-
ness if the toroid is thick enough. In the chiral state
the director field displays a double twist, whereas in the
achiral state there is only bend deformation. The crit-
ical thickness increases as the difference between the
twist and saddle-splay moduli grows. A positive saddle-
splay modulus prefers alignment along the meridians
of the bounding torus, and hence promotes a chiral
configuration. The chiral-achiral transition mimics the
order-disorder transition of the mean-field Ising model.
The role of the magnetisation in the Ising model is
played by the degree of twist. The role of the temper-
ature is played by the aspect ratio of the torus. Re-
markably, an external field does not break the chiral
symmetry explicitly, but shifts the transition. In the
case of toroidal cholesterics, we do find a preference
for one chirality over the other – the molecular chiral-
ity acts as a field in the Ising analogy. Remarkably, an
external field does not break the chiral symmetry ex-
plicitly, but shifts the transition. Finally, we compare
theoretical findings with experimental observations of
chirality in toroidal nematic droplets.





4
CHIRAL SYMMETRY BREAKING

4.1 introduction

The liquid crystal in a common display is twisted due to the ori-
entation of the molecules at the confining glass plates. By manip-
ulating this twist using electric fields, an image can be generated.
More exotic structures can emerge when the liquid crystal is con-
fined by curved rather than flat surfaces. The topology and geom-
etry of the bounding surface can drive the system into structures
that would not be achieved without the presence of external fields.
In this sense, the shape of the surface plays a role akin to that of
an external field. Thus, under confinement by curved surfaces, the
molecules can self-assemble into complex hierarchical structures
with emergent macroscopic properties not observed for flat liquid
crystal cells. However, the design principles and properties of struc-
tures generated by this geometric route are still largely unknown.
As discussed in Part I, spherical nematics have been widely studied
from experimental, theoretical, and simulation points of view and
their intriguing technological potential for divalent nanoparticle
assembly has been already demonstrated [20]. In contrast, there
are virtually no controlled experiments with ordered media in con-
fined volumes with handles, even though there has been much
interest in the interplay between order and toroidal geometries
[94, 7, 43, 28, 27, 6, 114, 84, 10]. Alberto Fernanez-Nieves and
co-workers experimentally generate stable toroidal droplets of a
nematic liquid crystal, using a continuous host with a yield stress.
This approach allows them to perform unique experiments that
probe nematic materials confined within droplets that are topo-
logically different from the sphere. We observe that the toroidal
nematic droplets formed are defect-free. However, polarised mi-
croscopy reveals a twisted nematic orientation in droplets with
planar degenerate (tangential) boundary conditions, despite the
achiral nature of nematics. This phenomenon, which we will iden-
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72 chiral symmetry breaking

tify as spontaneous chiral symmetry breaking1, is subject of the-
oretical study in this chapter. The chirality of nematic toroids
is displayed by the the local average orientation of the nematic
molecules, called the director field and indicated by the unit vec-
tor n. Motivated by experiment, we will assume this director field
to be aligned in the tangent plane of the bounding torus. Fig. 36a
shows an achiral nematic toroid which has its fieldlines aligned
along the azimuthal direction, φ̂. In contrast, the chiral nematic
toroids in Figs. 36b and 36c show a right and left handedness,
respectively, when following the fieldlines anticlockwise (in the az-
imuthal direction). The origin of the chirality lies in two elastic ef-

Figure 36: Schematic of (a) achiral, (b) righthanded and (c) lefthanded
toroidal nematic liquid crystals. The black lines are director
field lines on the bounding torus.

fects of geometric confinement. Firstly, there is a trade-off between
bend and twist deformations. Secondly, another type of director
distortion called saddle-splay couples the director to the curvature
of the boundary, and can consequently favour the chiral state.
These nematic toroids share similarites with polymer bundles

[5, 43, 61, 48, 60, 87, 31]. In fact, twisted DNA toroids have been
analysed with liquid crystal theory [43, 99, 87]. Under the appro-
priate solvent conditions DNA condenses into toroids [53, 5]. These
efficient packings of genetic material are interesting as vehicles in
therapeutic gene delivery; it has been argued [43] that a twist in
DNA toroids, for which there are indications both in simulations
[96, 98] and experiments [14], would unfold more slowly and could
therefore be beneficial for this delivery process. Thus, besides a
way to engineer complex structures, the theory of geometrically
confined liquid crystals may also provide understanding of biolog-
ical systems.

1 Technically, it is spontaneous achiral symmetry breaking since the symmetry
is the lack of chirality. However, we will conform to the standard convention.
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The organisation of this chapter is as follows. In section 4.2 we
will discuss our calculational method which involves a single varia-
tional Ansatz only for the director fields of both chiral and achiral
toroidal nematics. In section 4.3 we will consider its energetics in
relation to the slenderness, elastic anisotropies, cholesteric pitch
and external fields, and discuss the achiral-chiral transition in the
light of the mean field treatment of the Ising model. In section
4.4 we compare these theoretical results with experimental mea-
surements of the twist in toroidal nematic droplets. Finally, we
conclude in section 4.5.

4.2 toroidal director fields

4.2.1 Free energy of a nematic toroid

We will study the general case in which the director lies in the
tangent plane of the boundary assuming that the anchoring is
strong so that the only energy arises from elastic deformations
captured by the Frank free energy functional [18, 40]:

F [n (x)] =
1
2

∫
dV

(
K1 (∇ · n)2

+ K2 (n · ∇× n)2 + K3 (n×∇× n)2)
−K24

∫
dS · (n∇ · n + n×∇× n) ,

(141)

where dS = ν dS is the area element, with ν the unit normal
vector (outward pointing) and where dV is the volume element.
Due to the anisotropic nature of the nematic liquid crystal, this
expression contains three bulk elastic moduli, K1, K2, K3, rather
than a single one for fully rotationally symmetric systems. In ad-
dition, there is a surface elastic constant K24. K1, K2, K3 and
K24 measure the magnitude of splay, twist, bend and saddle-splay
distortions, respectively. We now provide a geometrical interpre-
tation of the saddle-splay distortions. Firstly, observe that under
perfect planar anchoring conditions n ·ν = 0 and so the first term
in the saddle-splay energy does not contribute:

F24 = −K24

∫
dS ν · (n×∇× n) . (142)
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This remaining term in the saddle-splay energy is often rewritten
as

F24 = K24

∫
dS ν · (n · ∇)n. (143)

because

(n×∇× n)a = εabcnbεcpq∂pnq

= (δapδbq − δaqδbp) nb∂pnq
= −nb∂bna, (144)

where in the last line one uses that 0 = ∂a (1) = ∂a (nbnb) =

2nb∂anb. In other words, the bend is precisely the curvature of the
integral curves of n. Employing the product rule of differention
0 = ∂a (νbnb) = νb∂anb + nb∂aνb yields

F24 = −K24

∫
dS n · (n · ∇) ν. (145)

Upon writing n = n1e1 +n2e2, with e1 and e1 two orthonormal
basis vectors in the plane of the surface, one obtains

F24 = K24

∫
dS niLijnj , (146)

where we note that i, j = 1, 2 (rather than running till 3). Thus
the nematic director couples to the extrinsic curvature tensor [37],
defined as

Lij = −ei · (ej · ∇) ν. (147)

If e1 and e2 are in the directions of principal curvatures, κ1 and
κ2, respectively, one finds

F24 = K24

∫
dS

(
κ1n

2
1 + κ2n

2
2
)

. (148)

We conclude that the saddle-splay term favours alignment of the
director along the direction with the smallest principal curvature
if K24 > 0. The controversial surface energy density K13n∇ · n is
sometimes incorporated in eq. (141), but is in our case irrelevant,
because the normal vector is perpendicular to n, and so n · ν = 0.
We will consider a nematic liquid crystal confined in a handle

body bounded by a torus given by the following implicit equation
for the cartesian coordinates x, y, and z:(

R1 −
√
x2 + y2

)2
+ z2 ≤ R2

2. (149)
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Figure 37: Left panel: Schematic of the boundary of the geometry spec-
ified eq. (149) including graphical definitions of φ and R1.
The torus characterised by a large (red) and a small (blue)
circle. The large circle, or centerline, has radius R1. Right
panel: Schematic of a cut including graphical definitions of
r, ψ and R2.

Here, R1 and R2 are the large and small radii, respectively, of
the circles that characterise the outer surface: a torus obtained
by revolving a circle of radius R2 around the z-axis (Fig. 37). We
can conveniently parametrise this solid torus by the coordinates
r ∈ [0,R2], φ ∈ [0, 2π) and ψ ∈ [0, 2π) (illustrated in Fig. 37):

x = (R1 + r cosψ) cosφ, (150)
y = (R1 + r cosψ) sinφ, (151)
z = r sinψ. (152)

The metric reads:

gµν =


1 0 0
0 (R1 + r cosψ)2 0
0 0 r2

 , (153)

with µ, ν ∈ {r,φ,ψ}. It follows that dS = ν
√
g dψ dφ and dV =

√
g dr dψ dφ, where g = det gµν .
For a torus the φ and ψ directions are the principal directions.

The curvature along the ψ direction is everywhere negative (mea-
sured with respect to the outward pointing normal) and the small-
est of the two, so when K24 > 0, the director tends to wind along
the small circle with radius R2 (i.e. meridian).
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4.2.2 Double twist

To minimise the Frank energy we formulate a variational Ansatz
built on several simplifying assumptions [43]. We consider a direc-
tor field which has no radial component (i.e. nr = 0), is tangential
to the centerline (r = 0), and is independent of φ. Furthermore,
since we expect the splay (K1) distortions to be unimportant,
we first take the field to be divergence free (i.e.∇ · n = 0). Re-
calling that in curvilinear coordinates the divergence is ∇ · n =

1√
g∂µ

(√
gnµ

)
, we write :

nψ =
f (r)R1√

gφφ
, (154)

where the other terms in√g play no role as they are independent of
ψ. The φ-component of the director follows from the normalisation
condition. For the radial dependence of f (r) we make the simplest
choice:

f (r) =
ωr

R2
, (155)

and obtain

nψ = ω
ξr/R2

ξ + r
R2

cosψ , (156)

where we have introduced ξ ≡ R1/R2, the slenderness or aspect
ratio of the torus. The variational parameter ω governs the chi-
rality of the toroidal director field. If ω = 0 the director field
corresponds to the axial configuration (Fig 36a). The sign of ω de-
termines the chirality: right handed when ω > 0 (Fig. 36c) and left
handed when ω < 0 (Fig. 36b). The magnitude of ω determines
the degree of twist. Note that the direction of twist is in the radial
direction, as illustrated in Fig. 38. Therefore the toroidal nematic
is doubly twisted, resembling the cylindrical building blocks of the
blue phases [18, 40]. It may be useful to relate ω with a quantity
at the surface, say the angle, α, that the director makes with φ̂.
For the Ansatz, this angle will be different depending on whether
one measures at the inner or outer part of the torus, but for large
ξ we find

ω ≈ nψ (r = R2) = sinα. (157)
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Figure 38: Schematic of the Ansatz for the director fieldlines (ω = 0.6
and ξ = 3), displaying a twist when going radially outward,
including a graphical definition of α.

4.3 chiral symmetry breaking

4.3.1 Results for divergence-free field

Since ω only determines the chirality of the double-twisted config-
uration but not the amount of twist, the free energy is invariant
under reversal of the sign of ω, i.e. F (−ω) = F (ω). This mir-
ror symmetry allows us to write down a Landau-like expansion in
which F only contains even powers of ω,

F = a0 ({Ki}, ξ) + a2 ({Ki}, ξ)ω2 + a4 ({Ki}, ξ)ω4

+O
(
ω6
)

(158)

where {Ki} = {K1,K2,K3,K24}, the set of elastic constants. If
the coefficient a2 > 0, the achiral nematic toroid (ωeq = 0) corre-
sponds to the minimum of F provided that a4 > 0. In contrast, the
mirror symmetry is broken spontaneously whenever a2 < 0 (and
a4 > 0). The achiral-chiral critical transition at a2 = 0 belongs to
the universality class of the mean-field Ising model. Therefore, we
can immediately infer that the value of the critical exponent β in
ωeq ∼ (−a2)

β is 1
2 . To obtain the dependence of the coefficients ai
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on the elastic constants and ξ, we need to evaluate the integral in
eq. (141). We find for the bend, twist and saddle-splay energies:

F3
K3R1

= 2π2
(
ξ −

√
ξ2 − 1

)
/ξ

+ π2
ξ
(

1− 9ξ2 + 6ξ4 + 6ξ
√
ξ2 − 1− 6ξ3

√
ξ2 − 1

)
(ξ2 − 1)

3
2

ω2

+O
(
ω4
)

, (159)
F2

K2R1
= 4π2 ξ3

(ξ2 − 1)
3
2
ω2 +O

(
ω6
)

, (160)

F24
K24R1

= −4π2 ξ3

(ξ2 − 1)
3
2
ω2. (161)

Though the bend and twist energies are Taylor expansions in ω,
the saddle-splay energy is exact. The large ξ asymptotic behavior
of the elastic energy reads2:

F

K3R1
≈ π2

ξ2 + 4π2
(
k− 5

16ξ2

)
ω2 +

π2

2 ω
4 +O

(
ω6
)

, (162)

where k ≡ K2−K24
K3

is the elastic anisotropy in twist and saddle-
splay. The achiral configuration contains only bend energy. For
sufficiently thick toroids, bend distortions are exchanged with twist
and the mirror symmetry is indeed broken spontaneously (Fig. 39).
Interestingly, if K24 > 0 the saddle-splay deformations screen the
cost of twist. If K24 < 0 on the other hand, there is an extra
penalty for twisting. Setting the coefficient of the ω2 term equal
to zero yields the phase boundary:

kc =
−1 + 9ξ2

c − 6ξ4
c − 6ξc

√
ξ2
c − 1 + 6ξ3

c

√
ξ2
c − 1

4ξ2
c

≈ 5
16ξ2

c
if ξ � 1. (163)

Fig. 40 shows the phase diagram as a function of ξ and k. It is
interesting to look at the critical behavior. The degree of twist
close to the transition is

αeq ≈ ωeq ≈ 2
(

5
16ξ2 − k

)1/2
, (164)

2 The fourth order term in the bend energy for general ξ, that reduces to
π2
2 K3R2ξω4 in eq. (162), is not given in eq. (159), because it is too lengthy.
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Figure 39: Left panel: The free energy as a function of ω for ξ = 6
(dashed) and ξ = 5 (solid), when (K2 −K24) /K3 = 10−2.
For ξ = 5 the chiral symmetry is broken spontaneously:
the minimum values of the energy occurs for a nonzero
ω. Right panel: The free energy as a function of ω for
q = 0 (dashed) and qR2 = 10−3 (solid), when ξ = 6,
(K2 −K24) /K3 = 10−2 and K2/K3 = 0.3. For qR2 = 10−3

the chiral symmetry is broken explicitly: the minimum value
of the energy occurs for a nonzero ω, because F contains a
term linear in ω.

where we have used that sinαeq ≈ αeq for small αeq. Upon ex-
panding ξ = ξc + δξ (with δξ < 0) and k = kc + δk (with δk < 0)
around their critical values ξc and kc, respectively, we obtain the
following scaling relations:

αeq ≈
√

5
2

(
−δξ
ξ3
c

)1/2
(165)

αeq ≈ 2 (−δk)1/2 (166)

while keeping k and ξ fixed, respectively. Eqs. (165) and (166) are
analogues to meq ∼ (−t)1/2, relating the equilibrium magnetisa-
tion,meq (in the ferromagnetic phase of the Ising model in Landau
theory), to the reduced temperature, t.

4.3.2 Effects of external fields and cholesteric pitch

Due to the inversion symmetry of nematics, F [n] = F [−n], an
external magnetic field, H, couples quadratically to the compo-
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10-4 10-3 10-2 10-1 100

k

100

101

102

ξ

Figure 40: Phase diagram as a function of the toroidal slenderness and
the elastic anisotropy in twist and saddle-splay constant,
k ≡ (K2 −K24) /K3. The twisted (yellow region) and ax-
ial (cyan region) configuration are separated by a bound-
ary line in the absence of an external field (solid black),
when H =

√
0.1K3/

(√
χaR2

)
φ̂ (dashed blue) and when

H =
√

0.1K3/
(√
χaR2

)
ẑ (dash-dotted red).

nents of n rather than linearly as in spin systems. The magnetic
free energy contribution reads:

Fm = −χa2

∫
dV (n ·H)2 , (167)

where χa = χ‖ − χ⊥, the difference between the magnetic suscep-
tibilities parallel and perpendicular to n. Consequently, there is
no explicit chiral symmetry breaking due to H as is the case in
the Ising model. Rather, H shifts the location of the critical tran-
sition in the phase diagram. For concreteness, we will consider
two different applied fields, namely a uniaxial field H = Hzẑ =

Hz sin(ψ)r̂ + Hz cos(ψ)ψ̂ and an azimuthal field H = Hφφ̂, as



4.3 chiral symmetry breaking 81

if produced by a conducting wire going through the hole of the
toroid. For H = Hzẑ we find

Fm = −π2χaH
2
zR1R

2
2ξ

2
(

2ξ
(
ξ −

√
ξ2 − 1

)
− 1

)
ω2

≈ −π
2

4 χaH
2
zR1R

2
2ω

2 if ξ � 1. (168)

For a positive χa this energy contribution is negative, implying
that a larger area in the phase diagram is occupied by the twisted
configuration. The new phase boundary (Fig. 40), which is now a
surface in the volume spanned by ξ, k and Hz instead of a line,
reads:

kc =
[
−1 + 9ξ2

c − 6ξ4
c − 6ξc

√
ξ2
c − 1 + 6ξ3

c

√
ξ2
c − 1

− χa (Hz)
2
c R

2
2

K3

(
ξ2
c − 1

)
ξc

×
(
−2ξc + 2ξ3

c +
√
ξ2
c − 1− 2ξ2

c

√
ξ2
c − 1

)]
/
(
4ξ2
c

)
≈ 5

16ξ2
c
+
χa (Hz)

2
c R

2
2

16K3
if ξ � 1. (169)

In contrast, an azimuthal field favours the axial configuration, con-
tributing a postive ω2-term to the energy when χa > 0:

Fm = −π2χaH
2
φR1R

2
2

+
2π2

3 χaH
2
φR1R

2
2ξ
(

2ξ2
(
ξ −

√
ξ2 − 1

)
−
√
ξ2 − 1

)
ω2

≈ −π2χaH
2
φR1R

2
2 +

π2

2 χaH
2
φR1R

2
2ω

2 if ξ � 1. (170)

Consequently, this yields a shifted phase boundary (Fig. 40):

kc =
[
−1 + 9ξ2

c − 6ξ4
c − 6ξc

√
ξ2
c − 1 + 6ξ3

c

√
ξ2
c − 1

−
2χa (Hφ)

2
c R

2
2

3K3

(
ξ2
c − 1

)
×
(

1 + ξ2
c − 2ξ4

c + 2ξ3
c

√
ξ2
c − 1

)]
/
(
4ξ2
c

)
≈ 5

16ξ2
c
−
χa (Hφ)

2
c R

2
2

8K3
if ξ � 1. (171)

Similar results (eqs. (168)-(171)) hold for an applied electric field
E instead of a magnetic field; the analog of χa is the dielectric
anisotropy. There could however be another physical mechanism at
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play in a nematic insulator, namely the flexoelectric effect [64, 18].
Splay and bend deformations induce a polarisation

P = e1n∇ · n + e3n×∇× n, (172)

where e1 and e3 are called the flexoelectric coefficients. Note that
the first term in eq. (172) is irrelevant for the divergence-free
Ansatz. A coupling of P with E

FP = −
∫
dVP ·E (173)

could potentially lead to a shift of the transition. In the particuar
case when E = Ezẑ = Ez sin(ψ)r̂ +Ez cos(ψ)ψ̂, however, the ω2

contribution from eq. (173) vanishes, thus not yielding such a shift.
If we now consider toroidal cholesterics rather than nematics,

the chiral symmetry is broken explicitly (Fig. 39). A cholesteric
pitch of 2π/q gives a contribution to the free energy of:

Fcn = K2 q
∫

dV n · ∇× n. (174)

Substituting eq. (156) yields

Fcn = −8π2K2 q R1R2 ξ
(
ξ −

√
ξ2 − 1

)
ω+O

(
ω3
)

≈ −4π2K2 q R1R2 ω+O
(
ω3
)

if ξ � 1. (175)

Therefore, at the critical line in the phase diagram spanned by k
and ξ, the degree of twist or surface angle scales (for large ξ) with
the helicity of the cholesteric as

αeq ≈ (2K2R2 q/K3)
1/3 ∼ q1/3. (176)

This is the analog scaling relation of meq ∼ H1/3 in the mean-field
Ising model.

4.3.3 Results for the two-parameter Ansatz

Motivated by experiments (see section 4.4), we can introduce an
extra variational paramer γ to allow for splay deformations, in
addition to ω:

nψ = ω
ξr/R2

ξ + γ r
R2

cosψ . (177)
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(Note that eq. (156) is recovered by setting γ = 1 in eq. (177).)
In subsection 4.3.1 analytical results for γ = 1 were presented. In
this subsection we will slightly improve these results by finding the
optimal value of γ numerically. First, we discretise the azimuthally
symmetric director field in the r and ψ direction. Next, we compute
the Frank free energy density (eq. (141)) by taking finite differences
[25] of the discretised nematic field. After summation over the
volume elements the Frank free energy will become a function of
ω and γ for a given set of elastic constants and a given aspect ratio.
Because of the normalisation condition on n, the allowed values
for ω and γ are constrained to the open diamond-like interval for
which −ξ < γ < ξ and |γ|−ξξ < ω < ξ−|γ|

ξ holds.

2 4 6 8 10 12

ξ
0.00

0.05

0.10

0.15

0.20

α
π

Figure 41: Twist angle α (in units of π) at ψ = π/2 versus the slender-
ness ξ for k = 0.012 (green), k = 0.006 (red), k = 0 (blue),
k = −0.006 (magenta) and k = −0.012 (cyan). The dashed
lines represent α for γ = 1, the solid lines represent α found
for the optimal γ.

The minima of the energy surface can be found by employing
the conjugate gradient method. We have looked at the difference
between the γ = 1 case and the case where the value of γ is chosen
to minimise the energy. This was done for various choices of k. We
have chosen the material properties of 5CB, i.e. K1 = 0.64K3 and
K2 = 0.3K3 [40]. The value for of K24 has not been so accurately
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ξ

Figure 42: The phase boundary as a function of the toroidal slender-
ness ξ and elastic anisotropy k for γ as a variational param-
eter(solid) and for γ = 1 (dashed). The inset zooms in on
the phase boundary for small ξ.

determined, but previous measurements [2, 45, 79, 92, 46, 77] seem
to suggest that K24 ≈ K2, corresponding to k ≈ 0.
We are interested in how the phase boundary changes by in-

troducing the variational parameter γ. Therefore, the twist angle
α, evaluated at the surface of the torus at ψ = π

2 , versus the
slenderness ξ is shown in Fig. 41. For the particular choices of k
there are two noticeable differences between the single-parameter
Ansatz and the two-parameter Ansatz. Firstly, for small values of
ξ, α is changed significantly. Secondly, for larger values of ξ we see
that if there is a chiral-achiral phase transition, ξc is shifted by a
small amount. In Fig. 42 we further investigate how introducing
γ influences the phase boundary, by plotting the phase boundary
as a function of the toroidal slenderness ξ and elastic anisotropy
k for both γ as a variational parameter (solid) and for γ = 1
(dashed). Observe that, for both the small ξ and small k regime,
the difference is significant.
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4.4 comparison with experiment

To make nematic toroidal droplets, Alberto Fernandez-Nieves and
co-workers inject a nematic liquid crystal, namely 4-n-pentyl-4’-
cyanobiphenyl (5CB), through a needle into a rotating bath con-
taining a yield-stress material consisting of (i) 1.5 wt% polyacry-
lamide microgels (carbopol ETD 2020), (ii) 3 wt% glycerin, (iii)
30 wt% ethanol, (iv) 1 wt% polyvinyl alcohol (PVA), and (v) 64.5
wt% ultrapure water [77]. The presence of PVA guarantees degen-
erate tangential (or planar) anchoring for the liquid crystal at the
surface of the droplets; they confirmed this by making spherical
droplets and checking their bipolar character. We also note that
the continuous phase is neutralized to pH 7, where the sample
transmission is more than 90% [13]. However, the most relevant
property of this phase is its yield stress, σy. During formation of
the torus, the stresses involved are larger than σy and hence the
continuous phase essentially behaves as if it were a liquid. The com-
bination of the viscous drag exerted by the outer phase over the
extruded liquid crystal and its rotational motion causes the liquid
crystal to form a curved jet, as shown in Fig. 43a, which even-
tually closes onto itself, resulting in a toroidal nematic droplet,
such as that shown in Fig. 43b in bright field and in Fig. 43c be-
tween cross-polarizers. Once the torus has been formed, the elas-
ticity of the continuous phase provides the required force to over-
come the surface tension force that would naturally tend to trans-
form the toroidal droplet into a spherical droplet [76]. Remarkably,
when these droplets are observed along their side view under cross-
polarizers, their central region remains bright irrespective of the
orientation of the droplet with respect to the incident polarization
direction, as shown in Fig. 43d-f; the corresponding bright-field
images are shown in Fig. 43g-i. Note that for an axial torus with
its director field along the tube, the cross-polarized image should
appear black for an orientation of 0◦ and 90◦ with respect to the
incident polarization direction. Hence our result is suggestive of
a twisted structure. In fact, twisted bipolar droplets also have a
central bright region, when viewed between cross-polarizers, irre-
spective of their orientation [109, 47, 22, 112].
We then quantify our results by measuring the twist angle in our

toroidal droplets along the z direction, from (r = R2, ψ = 90◦) to
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Figure 43: Toroidal droplets. (a) Formation of a toroidal liquid crystal
droplet inside a material with yield stress. (b and c) The
top view of a typical stable toroidal droplet of nematic liq-
uid crystal is shown in (b) when viewed in bright field and
in (c) when viewed under cross-polarizers. (d-f) Side view of
a typical toroidal droplet with ξ = 1.8 when viewed under
cross-polarizers for orientations of 0◦, 45◦, and 90◦ with re-
spect to the incident polarization direction. Note that the
center part of the toroid remains bright irrespective of its ori-
entation. (g-i) Corresponding bright-field images. The dark
regions of the toroid in these images are due to light refrac-
tion. (Scale bar: 100µm.) Ref. [77].
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(r = R2, ψ = 270◦) (see Fig. 37). The method relies on the fact
that linearly polarized light follows the twist of a nematic liquid
crystal if the polarization direction is either parallel or perpendic-
ular to the nematic director at the entrance of the sample, pro-
vided the Mauguin limit is fulfilled [115]; the corresponding mode
of propagation is referred to as extraordinary or ordinary waveg-
uiding, respectively. We then image the torus from above (Fig.
44A), rotate the polarizer to ensure that the incident polarization
direction is parallel or perpendicular to the nematic director at
(r = R2, ψ = 90◦), and then rotate the analyzer an angle φexit
with respect to the polarizer while monitoring the transmitted in-
tensity, T. The minimum in T, shown in Fig. 44B, reflects the lack
of light propagation through the analyzer, indicating that the in-
cident polarization direction has rotated an amount τ such that it
is perpendicular to the analyzer after exiting the torus at (r = R2,
ψ = 270◦). The image of the torus in this situation exhibits four
black regions where extinction occurs, as shown in Fig. 44C; these
correspond to waveguiding of ordinary and extraordinary waves.
It is along these regions that we measure T. The counterclockwise
rotation of the incident polarization direction by an angle of −56◦

exactly corresponds to the twist angle of the nematic along the
z direction through the center of the circular cross section. How-
ever, to increase the precision of our estimate, we fit the T vs.
φexit results to the theoretically expected transmission [115], leav-
ing τ as a free parameter. We find τ = (52.9± 0.4)◦ for ξ = 3.5.
Moreover, within the experimentally accessed ξ-range, we find that
the twist is nonzero and that it monotonously decreases with in-
creasing aspect ratio, as shown in Fig. 44D. Remarkably, these
features are captured by our theoretical calculations for large ξ,
as shown by the dashed line in Fig. 44D. We note that the devia-
tions of the experiment and the theory for small ξ result from the
inadequacy of the Ansatz in describing the highly twisted struc-
tures observed experimentally at these low values of ξ. This can be
partially resolved by lifting the constraint that γ = 1. This intro-
duces a second variational parameter in the Ansatz, which allows
the nematic field to splay. The result qualitatively captures the
experimental trend for all aspect ratios, as shown by the solid line
in Fig. 44D. By further comparing the experiment to the theory
in the high ξ-region, we obtain a value for the saddle-splay elastic
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Figure 44: Determination of the twist angle and its dependence with
slenderness. (A) A torus with ξ = 3.5 when viewed from
the top and between crosspolarizers. (B) Transmission, T,
as a function of the angle between the incident polariza-
tion direction and the analyzer, φexit. The line is a fit to
the theoretical expectation in the Mauguin limit [115] with
the twist angle, τ , as the only free parameter. We obtain
τ = (52.9± 0.4)◦. (C) Top view of the same torus at the
minimum of the transmission curve. We measure T along
the four black regions that are observed, which are dark-
est for the indicated direction of the polarizer and analyzer.
The sense of rotation of the analyzer indicates the nematic
arrangement is right-handed; this likely results from the way
the torus is generated, as all tori generated in the same way
have the same handedness. (D) Twist angle as a function of ξ.
The dashed line represents the theoretical prediction based
on eq. (156), for K24 = 1.02K2. The solid line represents the
theoretical prediction based on the improved Ansatz includ-
ing the second variational parameter γ for the same value
of K24, where we have used that K1 = 0.64K3 for 5CB [40].
(Scale bar: 200µm.) Ref. [77].
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constant of K24 = 1.02K2, which is slightly larger than the twist
elastic constant, supporting our interpretation on the relevance
of saddle-splay distortions. However, our analysis cannot exclude
the possibility of a slightly smaller value of K24 and hence of a
twisted-to-axial transition for extremely large ξ.

4.5 conclusions

We have investigated spontaneous chiral symmetry breaking in
toroidal nematic liquid crystals. As in the case of nematic tactoids
[80, 101], the two ingredients for this macroscopic chirality are ori-
entational order of achiral microscopic constituents and a curved
confining boundary. This phenomenon occurs when both the as-
pect ratio of the toroid and K2−K24

K3
are small. The critical behavior

of this structural transition belongs to the same universality class
as the ferromagnet-paramagnet phase transition in the Ising model
in dimensions above the upper critical dimension. The analogues
of the magnetisation, reduced temperature and external field are
the degree of twist (or surface angle), slenderness or K2−K24

K3
, and

(cholesteric) helicity in liquid crystal toroids, respectively. Critical
exponents are collected in Table 1.

Liquid crystal toroid Mean-field Ising model Exponent

αeq ∼ (−δξ)β meq ∼ (−t)β β = 1/2

αeq ∼ (−δk)β

αeq ∼ q1/δ meq ∼ H1/δ δ = 3

Table 1: Dictionary of the critical behavior of the structural transition
in liquid crystal toroids and the thermal phase transition in
the mean-field Ising model.

Thus, the helicity rather than an external field breaks the chiral
symmetry explicitly. Remarkably, since an external field couples
quadratically to the director field, it induces a shift of the phase
boundary. An azimuthally aligned field favours the mirror sym-
metric director configuration, whereas a homogeneous field in the
z-direction favours the doubly twisted configuration.
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A minimization of the elastic energy analogous to the one pre-
sented in this article for toroidal droplets, has also been carried out
for spherical droplets [112]. The analytical results reproduce qual-
itatively the twisted textures observed experimentally in spheri-
cal bipolar droplets [109]. In this case, detailed measurements of
the dependence of the twist angle on the elastic moduli were car-
ried out by changing temperature which in turn affects the elastic
moduli. The measured exponent β was 0.75± 0.1 for 8CB and
0.76± 0.1 for 8OCB [47], rather than the 1

2 exponent we calcu-
lated in our mean field energy minimizations that entirely neglect
thermal fluctuations.


