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Part I

SPHERICAL NEMATICS

We present a theoretical study of the director fields
and energetics of spherical nematic liquid crystal shells
with degenerate planar boundary conditions. There are
divalent, trivalent and tetravalent shells with two, three
and four defects at the outer boundary, respectively.
For ultrathin trivalent shells, we find that the defects
are optimally arranged in an isosceles triangle. We cal-
culate the energy and the stability of this trivalent
ground state, and compare this with the tetravalent
and divalent defect configurations. For thick divalent
shells with two pairs of surface defects, we investigate
the effect of thickness inhomogeneity. The pairs of de-
fects can undergo abrupt transitions from a configu-
ration of maximum separation to a state in which the
defects are confined to the thinner hemisphere. We con-
struct a phase diagram that maps out the stability and
coexistence of these two configurations as a function
of shell thickness and thickness inhomogeneity. Our re-
sults compare favourably with the experimentally ob-
served transitions in nematic double emulsion droplets
and explain their hysteretic character.





2
THIN SHELLS

2.1 introduction

One of today’s major drives in condensed matter physics is the as-
sembly of mesoscale particles into complex structures [29]. By cre-
ating anisotropy in the interparticle interactions, one can increase
the complexity and functionality of these structures. A proposed
way to achieve anisotropic interactions is by coating a spherical
particle or droplet with an orientationally ordered phase [70]. The
topology of the sphere enforces defects in the coating. Since these
defects are very distinct regions on the sphere, they are suitable
for the attachment of linkers acting as bonds between the particles.
For instance, in the case of a vector order parameter, topology re-
quires two defects, creating a particle with two binding sites. In
fact, de Vries et al. have already assembled such divalent nanopar-
ticle into chains [20]. Nematic rather than vector order allows for
defects of charge one-half, referring to the 180 degrees rotation ex-
perienced by the local average orientation of the nematic molecules,
n, when encircling the defect. In fact, it is energetically favourable
for defects of charge one to split into two charge one-half defects
(Fig. 13a). Nematic order on the sphere has four topological de-
fects of charge one half in its ground state, such that the sum of
all charges is equal to 2, the Euler characteristic of the sphere, as
demanded by the Poincare-Hopf theorem. Their mutual repulsion
drives them as far away from each other as possible: at the vertices
of a regular tetrahedron [57]. Thus, chemical functionalisation of
the defects in the ground-state of two-dimensional nematic liquid
crystal on the sphere would thus result in the diamond structure
[70]. In section 3.2, however, we show the results of experimen-
tal investigations of nematic shells generated by trapping a water
droplet inside a nematic droplet, revealing the existence of shells
with valencies of two and three [24, 56, 41], besides the tetravalent
shell. In the remainder of this chapter, we will focus on the defect
separations (section 2.3), energetics (section 2.4) and fidelity of the
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Figure 13: (a) In a two-dimensional nematic a s = 1 topological defect
(black dot in left panel) can lower its elastic energy by split-
ting into two s = 1/2 defects (purple dots in right panel).
(b) A singular line (left panel) spanning the shell with a
winding number of one at the boundaries is topologically
and energetically unstable. The singular core is indicated by
a black dot in the top view shown in the top panel and by
the vertical bold line in a cut shown in the bottom panel.
One way of reducing the elastic energy escaping in the third
(vertical) dimension (right panel), thereby leaving a point
defect (green dot), called boojum, on each boundary.

bonds (section 2.5) in thin spherical nematic shells with three-fold
valence. We will make a comparison with divalent and tetravalent
shells and find the optimal valency as a function of shell thickness
as well as the energy barrier between shells of different valency
(section 2.4). We will conclude in section 2.6.

2.2 divalent, trivalent and tetravalent shells

In this section we will present the experiments, performed by
Teresa Lopez-Leon and Alberto Fernandez-Nieves, that corrobo-
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rate our calculations in this chapter and chapter 3. To fabricate
spherical nematic shells, one generates double emulsions with a
microcapillary device [103]; these consist of a nematic drop that
contains a smaller aqueous drop, all inside an aqueous continu-
ous phase. Both the inner and outer water phases contain 1 wt%
polyvinyl alcohol (PVA), which stabilises the emulsion against coa-
lescence and enforces tangential anchoring of the rod-like molecules
of the nematic liquid crystal, pentylcyanobiphenyl (5CB). The re-
sulting double-emulsion drops are characterized by an outer ra-
dius, R, of around 50 µm and an inner radius, a, that are varied
to produce shells of different average thicknesses, h = R− a, as
schematically shown in Fig. 10. With this microfluidic method the
thinnest shells that one can generate have h ≈ 1 µm. However, it is
possible to significantly reduce this value by increasing the volume
of the inner drop once the double emulsion is formed. One achieves
this by inducing a difference in osmotic pressure between the in-
ner and outer water phases through the addition of a salt, CaCl2.
As pentylcyanobiphenyl has a finite permeability to water, an in-
coming flow of water from the outer phase can be established if
the inner drop contains a higher salt concentration than the outer
phase. By controlling this difference, one can control the kinetics
of the process and ultimately the thickness of the shells.
Imaging the thinnest shells using optical microscopy and chang-

ing the focal plane of our microscope allows for precise determi-
nation of the position of the four defects; they are distributed
throughout the shell, as shown by the images in Fig. 14a,b and by
the schematic diagram in Fig. 14c. To obtain a meaningful value
of the angular positions, one determines the position of all defects
in a large number of shells with similar inner and outer drop sizes
and plot the distribution for the central angle, θij , which is the an-
gle subtended by two defects (i and j) with respect to the centre
of the drop, and the distribution for the surface angle, α, which is
the angle subtended by two defects with respect to another defect.
The resulting distributions are both Gaussian; they are centred
at θij = 109◦ and α = 60◦ and have a width of ∆θij = 20◦ and
∆α = 12◦, as shown in Fig. 14d,e. The defects are thus located on
the vertices of a regular tetrahedron.
There coexist divalent configurations (Fig. 15a,b) which, instead

of four charge half defect lines spanning the shell, have two pairs of
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Figure 14: (a), (b) Cross-polarised images of a very thin shell with four
s = 1/2 defects. In (a), two of the four defects are in focus,
whereas in (b) we focus on the upper defect. (c) Schematic
diagram of the observed arrangement of the four defects.
(d), (e) Histograms for the central angle, θij , and the surface
angle, α, between defects. Ref. [56].

point defects, called boojums, residing on the boundary surfaces.
They arise because the thickness of the nematic coating is nonzero:
the elastic energy of a singular line with a winding number of one
at the boundary is reduced by escaping in the third dimension,
as is illustrated in Fig. 13b. This route thus forms an alternative
to splitting into s = 1/2 lines spanning the shell. The defects
maximise their distance and align, on average, along the diameter
of the drop (Fig. 15a,b), as schematically shown in Fig. 15c, and
by the central angle distribution in Fig. 15d.
Surprisingly, also structures containing both boojums as well

as charge one-half disclination lines coexist (Fig. 16a-c). These de-
fects structures have three-fold valence yet they are still consistent
with Poincare-Hopf’s theorem, because the total topological charge
of the defects at the boundary is 1 + 1/2 + 1/2 = 2, the Euler
characteristic of the sphere. The three defects form an isosceles
triangle, where the unequal angle originates from the single s = 1
defect, as schematically shown in Fig. 16d. The distribution for
the two equal angles is centred at α2 = 68◦ and has a width of
∆α2 = 15◦, as shown in Fig. 16e, whereas the distribution of the
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Figure 15: (a), (b) Cross-polarised images of a very thin shell with two
s = 1 defects. (c) Schematic diagram of the observed ar-
rangement of the two defects. (d) Histogram of the central
angle, θ12. Ref. [56].

unequal angle is centred at α1 = 46◦ and has a width of ∆α1 = 12◦,
as shown in Fig. 16f. Again, also this energetically stable defect
configuration arises because of the thickness of the nematic coat-
ing is finite, and the energy barrier separating it from other defect
structures will be reported in this chapter. The observed isosceles
arrangement of the two s = 1/2 defects and the s = 1 defect
is consistent with our calculation of the equilibrium configuration
for these three defects on a spherical surface in the next section,
which corresponds to α1 = 66◦ and α1 = 48◦.
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Figure 16: (a), (b) Cross-polarised images of a very thin shell with three
defects, two s = 1/2 and an s = 1. In (a), one of the three
defects is clearly in focus, with another defect slightly below
this one. In (b) the third defect is in focus. (c) Schematic
diagram of the three-dimensional arrangement of the three
defects. (d) Isosceles triangle formed by the three defects,
with α1 the unequal surface angle. (e),(f) Histograms of the
surface angles, α1 and α2. Ref. [56].

2.3 trivalent ground state

The free energy of a thin curved nematic film (see section 1.4)
reads

F =
1
2

∫
dA

[
k1
(
Din

i
)2

+ k3 (Dinj −Djni)
(
Dinj −Djni

)]
,

(80)

where k1 and k3 are the two-dimensional splay and bend elastic
constants and where Di is the covariant derivative. Eq. (80) can be
recast in terms of defect separation rather than the director field
n. For a spherical nematic, the elastic energy in the one-constant
approximation k = k1 = k3 reads (see eq. (78))

F = −πk
Z∑
i<j

sisj log (1− cos θij) +
Z∑
i

Ei (R) , (81)
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where si is the topological charge of defect i, θij is the angular
distance between defects i and j, and Z is the number of defects
or valence number. The self-energy Ei (R) is given by

Ei (R) = πKs2
i log

(
R

a

)
+Ec, (82)

where R is the radius of the sphere and a is a small scale cut-off
preventing a divergence of the energy. Ec represents a core en-
ergy, which depends on the details of the microscopic interactions.
The self-energy is responsible for the splitting of +1 defect in an
ideal two-dimensional nematic, because of its proportionality with
s2
i . The other term in eq. (81) describes the repulsion between
like-charged defects. We wish to find the optimal location for the
defects in a thin homogeneous shell given that s1 = 1, s2 = 1

2 and
s3 = 1

2 . This requires minimising the interaction term of the free
energy. We minimise the interaction energy with respect to three
independent variables, namely θ12, θ13 and the angle, C, subtended
by the two curved triangular sides (circular arcs) meeting at the
charge-one defect. If we apply the law of cosines on the sphere:

cos θ23 = cos θ12 cos θ13 + sin θ12 sin θ13 cosC, (83)

we can eliminate θ23 in favour of C in the free energy, and de-
mand ∂F

∂θ12
= ∂F

∂θ13
= ∂F

∂C = 0. From the latter equation, ∂F∂C = 0,
we obtain C = π, implying that the defects lie on a great circle
(see Figs. 17 and 18). There is always a circle that can be drawn
through three points on a sphere; the maximal radius of this circle
reflects the repulsive nature of the defects. With some straightfor-
ward algebra the other two equations, ∂F

∂θ12
and ∂F

∂θ13
= 0, then lead

to

θ12 = θ13 = π− arccos 2
3 ≈ 0.73π ≈ 131.8◦, (84)

θ23 = 2 arccos 2
3 ≈ 0.54π ≈ 96.4◦. (85)

We thus find that the defects are located at the vertices of an
isosceles triangle rather than equilateral triangle, shown in Figs.
17 and 18. This less symmetric configuration arises because of the
asymmetry in the magnitude of the charges of the defect: the two
+1/2 defects repel each other less strongly than a charge one and
charge one-half such that θ12 and θ13 are larger than θ23. This is
in marked contrast with the regular tetrahedral configuration in
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Figure 17: Four views on the bend texture of the director field on
the sphere containing a +1 defect and two +1/2 defects
arranged in an isosceles triangle with θ12 = θ13 ≈ 132◦,
θ23 ≈ 96.4◦, α1 ≈ 48◦ and α2 = α3 ≈ 66◦.

which all the defects are equidistant, because all four charges are
indistinguishable. The fact that s2 and s3 are of equal magnitude
is still reflected in the equal length of two of the sides (θ12 = θ23)
of triangle. Perhaps surprisingly, the distance between two charge
one-half defects is smaller in the trivalent state than in the more
‘crowded’ tetravalent state. The surface angles of the flat triangle
can be found be simple trigonometry: by realising that the triangle
formed by two defects and the centre of the sphere is also an
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Figure 18: Four views on the splay texture of the director field on
the sphere containing a +1 defect and two +1/2 defects
arranged in an isosceles triangle with θ12 = θ13 ≈ 132◦,
θ23 ≈ 96.4◦, α1 ≈ 48◦ and α2 = α3 ≈ 66◦.

isosceles triangle (of which two sides have a length equal to the
radius) we obtain

α1 = π− θ12 = arccos 2
3 ≈ 48.2◦ (86)

α2 = α3 =
θ12
2 =

π

2 −
arccos 2

3
2 ≈ 65.9◦ (87)

This is in close agreement with the experimental values reported in
the previous section, which are are α1 ≈ 68◦ and α2 ≈ 46◦. Given
the defect locations the energy-minimising director field can be
found by means of a stereographic projection of the planar solu-
tion [57]. The bend texture is displayed in Fig. 18. Rotating this
director field over an angle α yields the same free energy in the one-
constant approximation. The splay texture (Fig. 17) corresponds
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to α = π/2. We note that the escape in the third dimension, in
which singular region is distributed over a larger distance of the
order of the thickness, occurs in shells of finite thickness and is
somewhat different than the problem of three point defects in a
two-dimensional nematic solved above. However, we expect that
the defect separations will be marginally affected as long as the
thickness is small compared to the radius.

2.4 valence transitions

We will now proceed with an estimate of the energy of the trivalent
shell when this escape is taken into account. In doing so, we follow
the arguments in ref. [105]. We first consider the energy when
three singular lines are spanning the shell at angular distances
reported above. We estimate this energy as the product of the
two-dimensional result and the thickness, h, thus effectively taking
k = Kh:

E′Z=3 = πKh
[(

1 + 2× 1
4

)
log

(
R

a

)
− 0.54 + 3Ec

πKh

]
. (88)

A heuristic yet adequate method to include the escape is to replac-
ing the microscopic cut-off by the thickness of the shell, since the
singular core is spread out over spatial dimensions of the order of
h. To account for the pair of boojums an energy 4.2Kπh is added
[11, 105, 41]. We then obtain

EZ=3 = πKh
[
log

(
R

h

)
+

1
2 log

(
R

a

)
+ 3.65 + 2Ec

πKh

]
. (89)

By comparing this to the energy of a shell with four disclination
lines

EZ=4 = πKh
[
log

(
R

a

)
− 0.43 + 4Ec

πKh

]
, (90)

we can find the critical value for h above which the trivalent defect
configuration is energetically preferable over the tetravalent one:

h∗34/R = e4.08−2Ec/πKh
√
a

R
(91)

Similarly, one can find the critical value for h below which the
trivalent defect configuration is energetically preferable over the
divalent one by setting EZ=3 equal to the approximation of the
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energy of a shell with two diametrically opposite pairs of surface
defects, EZ=2. Again, we will first find the energy of a shell with
two singular lines

E′Z=2 = πKh
[
2 log

(
R

a

)
− 0.69 + 2Ec

πKh

]
, (92)

after which we apply the same trick as we used to find EZ=3 to
obtain

EZ=2 = πKh
[
2 log

(
R

h

)
+ 7.69

]
. (93)

We find a very similar value

h∗23/R = e4.04−2Ec/πKh
√
a

R
. (94)

The energy as a function of thickness is plotted in Fig. 19 for
all three different valencies. Since h∗23 < h∗34 there is no h for

0.0 0.1 0.2 0.3
h
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2

4
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KR

Figure 19: Elastic energy as a function of shell thickness for divalent
(red), trivalent (green) and tetravalent (blue) defect config-
uration for R/a = 105 and Ec = 0. Either the divalent or
tetravalent configuration, but not the trivalent configuration,
is lowest in energy.

which the trivalent shell has lower energy than both the divalent
and tetravalent shell. The energy barriers between them however
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are very large. The energy barrier for going from the trivalent to
tetravalent shell lies in undoing the escape and is thus the differ-
ence between E′Z=3 and EZ=3:

∆E3→4 = πKh

(
log

(
h

a

)
− 4.19 + Ec

πKh

)
. (95)

The energy barrier for going from the trivalent to tetravalent shell
lies in overcoming the repulsion between the two +1/2 defects and
can thus be estimated by the difference between E′Z=2 and E′Z=3:

∆E3→2 = πKh
(1

2 log
(
R

a

)
− 0.15− Ec

πKh

)
. (96)

Since K ≈ 10−11N , for a thin shell with h = 1 µm, these barriers
are four orders of magnitude larger than the thermal energy scale
(at room temperature), kBT , where T denotes temperature and kB
is Boltzmann’s constant, thus providing stability of the trivalent
state. Valence transitions are unlikely to occur.

2.5 bond fidelity

In this section, we will consider the fidelity of the three bonds by
considering its robustness against thermal fluctuations. We will
expand the energy around the equilibrium values for the zenith and
azimuthal angles, {θ0

i ,φ0
i }. We parametrise the departures from

the equilibrium angles with a 2Z-component vector q, whose first
three components are the deviations along the lines of longitude
of the sphere and whose final three components are the deviations
along the lines of latitude of the sphere. We thus have

qi = δθi, (97)
q3+i = δφi sin θi. (98)

Again we employ the law of cosine on the sphere:

cos θij = cos
(
θ0
i + qi

)
cos

(
θ0
j + qj

)
+ sin

(
θ0
i + qi

)
sin

(
θ0
j + qj

)
× cos

(
φ0
i − φ0

j +
q3+i
sin θ0

i

− q3+j
sin θ0

j

)
, (99)
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to rewrite F in eq. (81) as an expansion to quadratic order in q:

F = F
(
θ0
i ,φ0

i

)
+

1
2
∑
ij

Mijqiqj +O
(
q4
)

. (100)

The 6× 6 matrix M can thus be found by

Mij =

(
∂2F

∂qi∂qj

)
qi=qj=0

. (101)

This calculation is performed without loss of generality upon choos-
ing the ground state defect locations to be on the equator, i.e.
θ0
i = π/2. We diagonalise this matrix:

M = UDUT . (102)

The matrix D has the following eigenvalues on the diagonal:

{λi} =
πk

20 {0, 0, 0, 15, 17, 18}. (103)

The columns of the matrix U are the corresponding orthonormal
eigenvectors, {ui}, and UT is the transpose of U . The eigenvec-
tors belonging to the three zero eigenvalues represent rigid body
rotations. The other eigenvectors are

u4 =



0
0
0
0
− 1√

2
1√
2


, u5 =



4√
34
3√
34
3√
34

0
0
0


, u6 =



0
0
0√

2
3

1√
6

1√
6


. (104)

The fourth and sixth eigenvalues also correspond to deformations
that keep the defects located at a great circle. The fourth one cor-
responds to a displacement of the charge one-half defects such that
their distance to the charge one defect grows or shrinks in equal
manner and hence preserves the isosceles shape of the triangle (Fig.
20a). The sixth eigenvalue corresponds to a mode of deformation
that does not posses this property, thus breaking the symmetry of
reflection across the bisector of the distinct angle (Fig. 20c). The
mode of deformation corresponding to the fifth eigenvalue, how-
ever, retains the isosceles shape of the triangle, but shrinks the
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Figure 20: Schematics of the three non-trivial eigenmodes correspond-
ing to (a) u4, (b) u5 and (c) u6. The defects (represented by
dots) continue to lie on a great circle in (a) and (c), but not
in (b). The defects continue to form an isosceles triangle in
(a) and (b), but not in (c).

size of the triangle as the defects do not lie on a great circle any-
more (Fig. 20b). We change the basis from qi to wi, which is the
departure from the trivalent ground state in the i-th eigendirection:

qi = Uijwj . (105)

This basis transformation yields to quadratic order in wi:

F = F
(
θ0
i ,φ0

i

)
+

1
2λ4w

2
4 + λ5w

2
5 + λ6w

2
6. (106)

By equipartition, each term contributes 1
2kBT . The eigenvalues

corresponding to the trivalent modes of deformation are equal or
larger than the the tetravalent ones (which are 3

8πk and 3
4πk [70,

105]): the trivalent ground state is thus somewhat better protected
against thermal fluctuations.

2.6 conclusion

In a spherical nematic shell of finite thickness a stable defect struc-
ture with two s = 1/2 lines and one pair of boojums is observed
experimentally, besides the bipolar and regular tetrahedral con-
figuration. If the shell is thin and homogeneous in thickness, the
repulsive interdefect interaction pushes the defects to lie on a great
circle. The strength of the interaction depends on the charges of
the defects. Consequently, the defects are located at the vertices of
an isosceles triangle rather than an equilateral triangle, in contrast
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to the tetravalent ground state in which the defects are equidis-
tant. In the energetically most favourable trivalent configuration,
we obtain for the central angles θ12 = θ13 = 0.73π, θ23 = 0.54π
and for the angles in the (flat) isosceles triangle α1 = 48◦ and
α2 = α3 = 66◦. These values are in good agreement with experi-
mental values. Estimations of the elastic energy show that there is
no shell thickness for which the trivalent ground state is lower than
both the tetravalent and divalent ground state. However, there are
large energy barriers to provide stability for the trivalent state once
it is created.




