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1
INTRODUCTION

1.1 geometric frustration

Whether it concerns biological matter such as membranes, DNA
and viruses, or synthesised anisotropic colloidal particles, the de-
formations inherent to soft matter almost inevitably call for a geo-
metric description. Therefore, the use of geometry has always been
essential in our understanding of the physics of soft matter. How-
ever, only recently has geometry turned into an instrument for the
design and engineering of novel materials. Key concepts are geo-
metrical frustration and the topological defects that are often a
consequence of this frustration [81, 72, 37, 6].
Geometrical frustration refers to the impossibility of local order

to propagate throughout a chosen space. This impossibility is of ge-
ometric nature and could for instance be due to the topology of the
space. Probably your first and most familiar encounter with this
phenomenon was while playing (association) football. The math-
ematically inclined amongst you may have wandered off during
the game and wondered: “Why does the ball contain hexagonal
and pentagonal panels?” The ball cannot contain hexagonal pan-
els only: a perfect tiling of hexagons (an example of local order)
cannot be achieved on the spherical surface (the space considered).
There exists a constraint on the number of faces, F , edges, E, and
vertices, V . The constraint is named after Euler and reads [65]

F −E + V = χ, (1)

where χ is the Euler characteristic. The Euler characteristic is a
quantity insensitive to continuous deformations of the surface of
the ball such as twisting and bending. We call such quantities
topological. Only if one would perform violent operations such
as cutting a hole in the sphere and glueing a handle to the hole
would a surface of differently topology be created [65, 69]. For a
surface with one handle χ = 0, just as for a torus or a coffee
mug. The Euler characteristic χ equals 2 for the spherical sur-
face of the ball. Thus, Euler’s polyhedral formula (eq. (1)) ensures
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2 introduction

the need of 12 pentagonal patches besides the hexagonal ones, no
matter how well inflated the ball is. To see this, write the num-
ber of faces F as the sum of the number of hexagons, H, and
pentagons, P , i.e. F = H + P . One edge is shared by two faces,
hence E = 1

2 (6H + 5P ). Moreover, each vertex is shared among
three faces, hence V = 1

3 (6H + 5P ). Substituting the expressions
for F , E and V into eq. (1) yields P = 12. These pentagons are
the defects. Similarly, protein shells of spherical viruses which en-
close the genetic material consist of pentavalent and hexavalent
subunits [9, 52]. Another condensed matter analog of the geomet-
rically frustrated football is the ‘colloidosome’. Colloidosomes are
spherical colloidal crystals [21, 4, 34] that are of considerable in-
terest as microcapsules for delivery and controlled release of drugs
[21].

Figure 1: Left panel: Geometric frustration in a football. A perfect
tiling of hexagonal panels cannot be achieved everywhere, re-
sulting in black pentagonal panels (defects). Right panel: Ge-
ometric frustration on the globe. The lines of latitude shrink
to a point at the north and south poles (defects). Adapted
from ref. [1].

Another common example of geometric frustration are the lines
of latitude on the surface of a globe. The points where these lines
shrink to a point, that is, the North and South Poles, are the
defects. Just like the pentagons on the football, the defects on the
globe are also required by a topological constraint, namely the
Poincare-Hopf theorem [69]:

∑
a
sa = χ. (2)
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The lines of latitude circle once around both poles. Hence, there
are two defects with a unit winding number, s. (See section 1.5
for a more precise definition.) Similar to the lines of longitude and
latitude on the globe, a coating of a nanoparticle with a mono-
layer of ordered tilted molecules also has two polar defects [58,
57, 70, 105, 20]. Recently, Stellacci and co-workers have been able
to functionalise the defects to assemble linear chains of nanopar-
ticles [20]. A nematic liquid crystal coating possesses four defects
at the vertices of a regular tetrahedron in the ground state [57].
Attaching chemical linkers to these defects could result in a three-
dimensional diamond structure [70], rather than a one-dimensional
chain. Functionalisation of the defects, thus resulting from ordered
structures confined to curved spaces, offers an intriguing route to
directed assembly.
The types of order that we will discuss in this introductory chap-

ter are crystalline and nematic liquid crystalline (1.2). After intro-
ducing mathematical preliminaries in section 1.3, we will discuss
the elasticity of crystals and liquid crystals (section 1.4) and give a
classification of the defects in these phases of matter (section 1.5).
We will elucidate the role of geometry in this subject. In particular,
we will explicitly show that, in contrast to the two examples given
in the introduction, a topological constraint is not necessary for ge-
ometric frustration. In section 1.6 we will review coupling between
defects and curvature. Nematic order on the sphere is discussed in
section 1.7.
This thesis is outlined thoroughly in section 1.8. Subsections

1.8.1 and 1.8.2 (corresponding to Part I and II, respectively) are
about nematic liquid crystals confined to various geometries. In
some aspects a nematic liquid crystal behaves like a liquid. In-
deed, one can capture a nematic in the form of droplets or in
containers of various shapes, just as one can do that for liquid
water. At the same time nematic liquid crystals exhibit, just as
crystals, anisotropy: in a nematic the molecules self-organise. Our
goal in Part I and II is to explore avenues to control this molecular
assembly geometrically by tuning the shape of the boundary of the
nematic liquid crystal. Our interest in part III (subsection 1.8.3) is
the integrity and failure of curved materials. It may, for instance,
be very relevant to know under which conditions a colloidosome
fractures. Part III discusses crack growth in curved elastic films.
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1.2 liquid crystals

Besides the familiar solid, liquid and gas phases, there exist other
fascinating forms of matter, which display phenomena with order
intermediate between conventional isotropic fluids and crystalline
solids. These are therefore called liquid crystalline or mesomorphic
phases [18, 95]. Let us consider the difference between a solid crys-
tal and a liquid crystal. In a solid crystal all the constituents are
located in a periodic fashion, such that only specific translations
return the same lattice. Moreover, the bonds connecting neigh-
bouring crystal sites define a discrete set of vectors which are the
same throughout the system. In a crystal, there is thus both bond-
orientational and translational order. In liquid crystals there is
orientational order, as the anisotropic constituent molecules de-
fine a direction in space, but the translational order is partially
or fully lost. The latter phase, in which there is no translational
order whatsoever, is called a nematic liquid crystal. The mobility
of the translationally disordered molecules is responsible for the
fluidic properties of nematic liquid crystals.

1.3 differential geometry of surfaces

1.3.1 Preliminaries

For a thorough introduction to the differential geometry of sur-
faces, please consult refs. [97, 17, 37]. In this section we will in-
troduce the topic briefly and establish the notation. Points on a
curved surface embedded in the three dimensional world we live in
can be described by a three-component vector R (x) as a function
of the coordinates x =

(
x1,x2

)
. Vectors tangent to this surface

are given by

tα = ∂αR, (3)

where ∂α = ∂
∂xα is the partial derivative with respect to xα. These

are in in general neither normalised nor orthogonal. However, it
does provide a basis in which to express an arbitrary tangent vector
n in:

n = nαtα. (4)



1.3 differential geometry of surfaces 5

Here we have used the Einstein summation convention, i.e., an
index occurring twice in a single term is summed over, provided
that one of the them is a lower (covariant) index and the other is
an upper (contravariant) index. We reserve Greek characters α, β,
γ, . . . as indices for components of vectors and tensors tangent to
the surface. The so-called metric tensor reads

gαβ = tα · tβ, (5)

and its inverse is defined by

gαβgβγ = δαγ , (6)

where δαγ is equal to one if α = γ and zero otherwise. We can lower
and raise indices with the metric tensor and inverse metric tensor,
respectively, in the usual way, e.g.

gαβn
α = nβ (7)

It is straightforward to see that the inner product between two
vectors n and m is

n ·m = nαtα ·mβtβ = gαβn
αmβ = nαmα. (8)

The area of the parallelogram generated by the infinitesimal vec-
tors dx1t1 and dx2t2, is given by the magnitude of their cross
product, and yields the area element

dS =
∣∣∣dx1t1 × dx2t2

∣∣∣
=
√
(t1 × t2)

2
dx1dx2

=
√
|t1|2 |t2|2 − (t1 · t2)

2
dx1dx2

=
√
g11g22 − g12g21dx

1dx2

=
√
gd2x, (9)

where g = det(gαβ), the determinant of the metric tensor, and
d2x is shorthand for dx1dx2. More generally, the magnitude of the
cross product of two vectors m and n is

|m× n| =
∣∣∣γαβmαnβ

∣∣∣ , (10)

which introduces the antisymmetric tensor

γαβ =
√
gεαβ, (11)
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where εαβ is the Levi-Civita symbol satisfying ε12 = −ε21 = 1 and
is zero otherwise.
Since we will encounter tangent unit vectors, e.g. indicating the

orientation of some physical quantity, it is convenient to decom-
pose this vector in a set of orthonormal tangent vectors, e1 (x)
and e2 (x), such that

ei · ej = δij and N · ei = 0, (12)

alternative to the basis defined in eq. 3. Here N is the vector
normal to the surface. We use the Latin letters i, j and k for
the components of vectors expressed in this orthonormal basis. As
they are locally Cartesian, they do not require any administration
of the position of the index. Besides the area element, we need a
generalisation of the partial derivative. This generalisation is the
covariant derivative, Dα, the projection of the derivative onto the
surface. The covariant derivative of n expressed in the orthonormal
basis reads in component form [37]

Dαni = ei · ∂αn
= ei · ∂αnjej + ei · ∂αejnj
= ∂αni + εijAαnj , (13)

where εijAα = ei · ∂αej is called the spin-connection. The final line
is justified because the derivative of any unit vector is perpendicu-
lar to this unit vector. More generally, the covariant derivative of
the vector n along xα is [17]

Dαn
β = ∂αn

β + Γβαγn
γ , (14)

where the Christoffel symbols are

Γαβγ =
1
2g

αδ (∂γgβδ + ∂βgδγ − ∂δgβγ) . (15)

Finally, with the antisymmetric tensor and the area element in
hand we can state a useful formula in integral calculus, namely
Stokes’ theorem∫

d2x
√
gγαβDαnβ =

∮
dxαnα. (16)

1.3.2 Curvature

The curvature is the deviation from flatness and therefore a mea-
sure of the rate of change of the tangent vectors along the normal,
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or, put the other way around, a measure of the rate of change
of the normal along the tangent vectors. This can be cast in a
curvature tensor defined as

Kαβ = N · ∂βtα = −tβ · ∂αN. (17)

From this tensor we extract the intrinsic Gaussian curvature

G = det
(
Kα
β

)
=

1
2γ

αγγβδKαβKγδ = κ1κ2, (18)

and extrinsic mean curvature

H =
1
2Tr

(
Kα
β

)
=

1
2g

αβKαβ =
1
2 (κ1 + κ2) , (19)

where κ1 = N · ∂1ẽ1 and κ2 = N · ∂2ẽ2 are the extremal or princi-
pal curvatures, the curvature in the principal directions ẽ1 and ẽ2.
These eigenvalues and eigenvectors can be obtained by diagonalis-
ing the matrix associated with the curvature tensor. If at a point
on a surface κ1 and κ2 have the same sign, the Gaussian curvature
is positive and from the outsiders’ point of view the surface curves
away in the same direction whichever way you go, as is the case on
mountaintops, or peaks and in valleys. In contrast, if at a point on
a surface κ1 and κ2 have opposite signs the Gaussian curvature is
negative, the saddle-like surface curves away in opposite directions.
The magnitude of κ1 and κ2 is equal to the inverse of the radius of
the tangent circle in the principal direction (Fig. 2). It turns out
that the Gaussian curvature and the spin-connection are related.
We will see how in a moment by considering the normal (third)
component of the curl (denoted by ∇×) of the spin-connection

(∇×A)3 = ε3jk∂j (e1 · ∂ke2)

= ε3jk∂je1 · ∂ke2

= ε3jk (N · ∂je1) (N · ∂ke2) , (20)

where we have used the product rule and the antisymmetry of εijk
in the second equality sign. The final line is justified by the fact
that the derivative of a unit vector is perpendicular to itself and
therefore we have e.g. ∂je1 = (N · ∂je1)N + (e2 · ∂je1) e2. If we
now with the aid of eqs. (17) and (18) note that

G = (N · ∂1e1) (N · ∂2e2)− (N · ∂1e2) (N · ∂2e1) , (21)
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Figure 2: A saddle surface has negative Gaussian curvature, as κ1 and
κ2 have different signs. The magnitudes of the curvatures κ1

and κ2 are given by the inverse radii of the tangent circles
drawn in blue and red.

we easily see that the normal component of the curl of the spin-
connection equals the Gaussian curvature:

(∇×A) ·N = G, (22)

or alternatively [73]

γαβDαAβ = G. (23)

This geometric interpretation of A will show its importance in
section 1.4, where we will comment on its implications on the
geometric frustration in curved nematic liquid crystal films.
Finally, a popular choice of parametrisation of the surface is the

Monge gauge or height representation in which x = (x, y) and
R = (x, y, f (x, y)), where f (x, y) is the height of the surface
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above the xy-plane. In this representation the Gaussian curvature
reads

G =
det ∂α∂βf

g
, (24)

where the determinant of the metric is given by

g = 1 + (∂xf)
2 + (∂yf)

2 . (25)

1.4 elasticity on curved surfaces and in con-
fined geometries

1.4.1 Elasticity of a two-dimensional nematic liquid crystal

In a nematic liquid crystal the molecules (assumed to be anisotropic)
tend to align parallel to a common axis. The direction of this axis
is labeled with a unit vector, n, called the director (see Fig. 3). The
states n and −n are equivalent. Any spatial distortion of a uniform

n

Figure 3: The director n specifies the average local orientation of the
nematic molecules.

director field costs energy. If we assume that these deformations
are small on the molecular length scale, l,

|∂inj | �
1
l
, (26)

we can construct a phenomenological continuum theory. The re-
sulting Frank free energy F for a two dimensional flat nematic
liquid crystal reads [18, 39, 40]

F =
1
2

∫
d2x

[
k1 (∂ini)

2 + k3 (εij∂inj)
2] , (27)



10 introduction

where the splay and bend elastic constants, k1 and k3 respectively,
measure the energy of the two independent distortions shown in
Fig. 4. To simplify the equations, one often makes the assumption

Figure 4: Conformations with (left panel) a non-vanishing divergence
of the director and (right panel) a non-vanishing curl of the
director.

of isotropic elasticity. In this approximation the Frank elastic con-
stants are equal, k1 = k3 = k, and up to boundary terms the free
energy reduces to [39]

F =
1
2k
∫
d2x∂inj∂inj . (28)

When the coupling of the director to the curvature tensor Kαβ

[82, 38, 36, 26, 62, 84, 67, 66, 68] is ignored, the elastic free energy
on a curved surface generalises to [58, 78, 70, 104, 105]

F =
1
2k
∫
d2x
√
gDαn

βDαnβ. (29)

In this equation the area element has become dS = d2x
√
g and

partial derivatives have been promoted to covariant derivatives.
Because the director is of unit length, we can conveniently specify
it in terms of its angle with a local orthonormal reference frame,
Θ (x), as follows

n = cos Θ e1 + sin Θ e2. (30)

Then, since ∂αn1 = − sin Θ ∂αΘ = −n2∂αΘ and similarly ∂αn2 =

cos Θ ∂αΘ = n1∂αΘ we see that

∂αni = −εijnj∂αΘ, (31)
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with which we find the covariant derivative to be

Dαni = −εijnj (∂αΘ−Aα) . (32)

Therefore, we can rewrite the elastic energy as [73]

F =
1
2k
∫
d2x
√
g (∂αΘ−Aα) (∂αΘ−Aα) , (33)

where we have used that (−εijnj) (−εijnj) = δjknjnk = cos2 (Θ)+

sin2 (Θ) = 1. This form of the free energy clearly shows that ne-
matic order on a curved surface is geometrically frustrated. The
topological constraints of the introductory section are merely a
special example of the frustration of local order due to the geo-
metric properties of the system. Note that for a curved surface
without such a topological constraint (e.g. a Gaussian bump) the
ground state can be a deformed director field. Since the curl of the
spin-connection equals the Gaussian curvature (eq. (23)), if the
Gaussian curvature is nonzero, the spin-connection is irrotational
and cannot be written as the gradient of a scalar field, Aα 6= ∂αΘ,
just like the magnetic field cannot be described by a scalar field
either. Therefore, F in eq. (33) is nonzero and we can conclude
that there is geometric frustration present in the system.

1.4.2 Elasticity of a two-dimensional solid

Similar to the construction of the continuum elastic energy of a
nematic liquid crystal, we can write down the elastic energy of a
linear elastic solid as an integral of terms quadratic in the deforma-
tions, i.e. strain. This strain is found in the following way. Consider
a point x = (x, y, 0) on an initially flat solid. This point is dis-
placed to x′ (x) = (x′, y′, f) in the deformed solid, and so we may
define a displacement vector u (x) = x′− x = uxex+ uyey + fez.
The square of the line element in the deformed plate is then
given by ds′2 = (dx+ dux)

2 + (dx+ dux)
2 + df2. Noting that

dux = ∂iuxdxi with xi = x, y and similarly for uy and f we find
[44]

ds′2 = ds2 + 2uijdxidxj . (34)

Thus, the strain tensor uij (x) encodes how infinitesimal distances
change in the deformed body with respect to the resting state of
the solid and reads

uij =
1
2 (∂iuj + ∂jui +Aij) , (35)
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where we have omitted non-linear terms of second order in ∂iuj
and where the tensor field Aij (x) is now defined as

Aij ≡ ∂if∂jf . (36)

We will assume that curvature plays its part only through this
coupling of gradients of the displacement field to the geometry
of the surface, and we will therefore adopt the flat space metric.
This is a valid approximation for moderately curved solids, as we
comment on at the end of the section [107, 6]. To leading order in
gradients of the height function, Aij is related to the curvature by
(see eq. (24))

−1
2εikεjl∂k∂lAij = det (∂i∂jf) = G. (37)

Isotropy of the solid leaves two independent scalar combinations
of uij that contribute to the stretching energy [44]:

F =
1
2

∫
dS

(
2µu2

ij + λu2
ii

)
. (38)

The elastic constants λ and µ are called the Lamé coefficients.
Minimisation of this energy with respect to uj leads to the force
balance equation:

∂iσij = 0, (39)

where the stress tensor σij (x) is defined by Hooke’s law

σij = 2µuij + λδijukk. (40)

The force balance equation can be solved by introducing the Airy
stress function, χ (x), which satisfies

σij = εikεjl∂k∂lχ, (41)

since this automatically gives

∂iσij = εjk∂k [∂1, ∂2]χ = 0 (42)

by the commutation of the partial derivatives. If one does not
adopt the flat space metric, the covariant generalisation of the
force balance equation is not satisfied, because the the commuta-
tor of the covariant derivatives, known as the Riemann curvature
tensor, does not vanish. It is actually proportional to the Gaussian
curvature and indicates why the range of validity of this approach
is limited to moderately curved surfaces [107, 6]. Finally, for small
∂iuj the bond angle field, Θ (x), is given by

Θ =
1
2εij∂iuj . (43)
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1.4.3 Elasticity of a three-dimensional nematic liquid crystal

Besides splay and bend, there are two other deformations possible
in a three-dimensional nematic liquid crystal. They are twist and
saddle-splay, measured by elastic moduli K2 and K24. Twist refers
to a helical type of deformation for which the rotation of n has a
component along n. The analog of eq. (27) reads

F [n (x)] =
1
2

∫
dV

(
K1 (∇ · n)2

+K2 (n · ∇× n)2 + K3 (n×∇× n)2)
−K24

∫
dS · (n∇ · n + n×∇× n) .

(44)

The integration of the splay, twist and bend energy density is over
the volume to which the nematic is confined. The saddle-splay
energy per unit volume is a pure divergence term, hence the saddle-
splay energy can be written as the surface integral in eq. (44). In
addition to the energy in eq. (44), there is an energetic contribution
coming from the interfacial interactions, often larger in magnitude.
Therefore, the anchoring of the nematic molecules at the boundary
can be taken as a constraint. In one of the possible anchoring
conditions the director is forced to be tangential to the surface,
yet free to rotate in the plane. In this case of planar degenerate
boundary conditions, we derive in chapter 4 that the saddle-splay
energy reduces to

F24 = K24

∫
dS

(
κ1n

2
1 + κ2n

2
2
)

, (45)

thus coupling the director to the curvature of the boundary sur-
face.

1.5 topological defects

Topological defects are characterised by a small region where the
order is not defined. Topological defects in translationally ordered
media, such as crystals, are called dislocations. Defects in the ori-
entational order, such as in nematic liquid crystals and again crys-
tals, are called disclinations. The defects are topological when they
cannot be removed by a continuous deformation of the order pa-
rameter. As we will see momentarily, they are classified according
to a topological quantum number or topological charge, a quantity
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that may only take on a discrete set of values and which can be
measured on any circuit surrounding the defect.

1.5.1 Disclinations in a nematic

Consider for concreteness a two-dimensional nematic liquid crys-
tal. A singularity in the director field is an example of a disclina-
tion. Such a point defect can be classified by its winding number,
strength, or topological charge, s, which is the number of times
the director rotates by 2π, when following one closed loop in coun-
terclockwise direction around the singularity:∮

dΘ =
∮
dxα∂αΘ = 2πs. (46)

We can express eq. (46) in differential form by invoking Stokes’
theorem:

γαβDα∂βΘ = qδ (x− xa) , (47)

where we use an alternative labelling, q = 2πs, of the charge of
the defect, which is located at xa. The delta-function obeys

δ (x− xa) =
δ
(
x1 − x1

a

)
δ
(
x2 − x2

a

)
√
g

, (48)

such that the integral over the surface yields one. The far-field
contribution of the defect to the angular director in a flat plane
reads

Θ = sφ+ c, (49)

as it forms a solution to the Euler-Lagrange equation of the elastic
free energy:

∂2Θ = 0. (50)

Here, φ is the azimuthal angle and c is just a phase. Examples
are presented in Fig. 5. Note that since the states n and −n are
equivalent, defects with half-integer strength are also possible. In
fact, it is energetically favourable for an s = 1 defect to unbind
into two s = 1

2 defects [70, 75].
These defects can be detected experimentally by crossed-polarised

microscopy. The image will appear black there where the director
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(a) s = 1, c = 0 (b) s = 1, c = π
4

(c) s = 1, c = π
2 (d) s = 1

2 , c = 0

Figure 5: Director configurations, n1 = cos Φ, n2 = sin Φ, for disclina-
tions of strength s and constant c.

is aligned with one of the polarisers (and thus perpendicular to the
other polariser). Therefore, there are two black (and two coloured)
brushes meeting at an s = ±1/2 defect. There are four black (and
four coloured) brushes meeting at an s = ±1 defect.

1.5.2 Disclinations in a crystal

Though energetically more costly, disclinations also arise in two-
dimensional crystals. At these points, the coordination number
deviates from its ordinary value, which is six for a crystal on a
triangular lattice. Just like in nematic liquid crystals, disclinations
in crystals are labelled by a topological charge, q, which is the angle
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over which the vectors specifying the lattice directions rotate when
following a counterclockwise circuit around the disclination. If we
parametrise these lattice direction vectors with Θ (x), the bond-
angle field, this condition reads mathematically∮

dΘ = q. (51)

Thus for disclinations in a triangular lattice with five-fold and
seven-fold symmetry, as displayed in Fig. 6, q = π

3 and q = −π3
respectively. Analogous to eq. (47), the flat-space differential form

Figure 6: (Left panel) Five-fold and (right panel) seven-fold disclina-
tion. When following a closed counterclockwise loop (red)
around the five-fold disclination, the initial lattice vector a1

rotates via a2, a3, a4 and a5 over an angle of π/3 to a6.

of eq. (51) for a disclination located at xa reads

εij∂i∂jΘ = qδ (x− xa) . (52)

1.5.3 Dislocations

Besides disclinations, dislocations can occur in crystals. Disloca-
tions are characterised by a Burgers vector b. This vector measures
the change in the displacement vector, if we make a counterclock-
wise loop surrounding the dislocation,∮

du = b. (53)

Just as the strength of disclinations can only take values from a
discrete set, the Burgers vector of a dislocation is equal to some
integer multiple of a lattice vector. Also note that a dislocation
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Figure 7: Dislocation in a triangular lattice. The Burgers vector spec-
ifies by how much a clockwise circuit (marked in red, bold)
around the dislocation fails to close. A dislocation can be
viewed as disclination dipole with a moment perpendicular
to its Burgers vector.

can be viewed as a pair of closely spaced disclinations of opposite
charge [71], as can be seen in Fig. 7.
The flat-space differential form of eq. (53) for a dislocation at

xa is

εij∂i∂juk = bkδ (x− xa) , (54)

which again can be obtained by using Stokes’ theorem.

1.6 interaction between curvature and defects

1.6.1 Coupling in liquid crystals

It is possible to recast the free energy in terms of the locations
of the topological defects rather than the director or displacement
field, if smooth (i.e. non-singular) deformations are ignored. In
this case the energy in eq. (33) is minimised with respect to Θ,
which leads to

Dα (∂αΘ−Aα) = 0. (55)

This needs to supplemented with an equation for the effective
charge distribution:

γαβDα (∂βΘ−Aβ) = ρ−G, (56)
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obtained by combining eq. (23) for the curvature and eq. (47) for
the defect density ρ (x),

ρ =
∑
a
qaδ (x− xa) . (57)

Eq. (55) is automatically satisfied if one chooses [104]

∂αΘ−Aα = γ β
α ∂βχ, (58)

where χ (x) is an auxiliary function. At the same time, substituting
eq. (58) into eq. (56) leads to

−D2χ = ρ−G. (59)

The source in this Poisson equation contains both topological point
charges as well as the Gaussian curvature with opposite sign. The
analog of the electrostatic potential is χ. The role of the electric
field is played by ∂αχ. Indeed, substituting eq. (58) in eq. (33),
shows that the energy density is proportional to the square of the
electric field:

F =
1
2k
∫
dS∂αχ∂

αχ. (60)

Next, we formally solve eq. (59)

χ = −
∫
dS′ΓL

(
x, x′

) (
ρ
(
x′
)
−G

(
x′
))

, (61)

where ΓL (x, x′) is the Green function of the Laplace-Beltrami
operator, D2 = DαD

α, satisfying

D2ΓL
(
x, x′

)
= δ

(
x− x′

)
. (62)

Integrating eq.(60) by parts and substituting our expressions for
χ and the Laplacian of χ (eqs. (61) and (59) respectively) results
(up to boundary terms) in

F = −k2

∫
dS

∫
dS′ (ρ (x)−G (x)) ΓL

(
x, x′

) (
ρ
(
x′
)
−G

(
x′
))

,

(63)

from which we again deduce the analogy with two-dimensional
electrostatics. In this analogy the defects are electric point sources
with their electric charge equal to the topological charge q and the
Gaussian curvature with its sign reversed is a background charge
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distribution. Therefore the defects will be attracted towards re-
gions of Gaussian curvature with the same sign as the topological
charge [58, 7, 104, 106, 113, 35, 84, 100]. Such screening will be
perfect if S = ρ everywhere, since F = 0 then. However, unless
the surface contains singularities in the Gaussian curvature, like
the apex of a cone, perfect screening will be impossible, as the
topological charge is quantised whereas the Gaussian curvature is
typically smoothly distributed.

1.6.2 Coupling in crystals

Note that an arbitrary field χ solves eq. (42). However, χ must be
physically possible and we therefore need to accompany eq. (42)
with another equation, which we will obtain by considering the
inversion of eq. (40) [44, 85]:

uij =
1 + ν

Y
σij −

ν

Y
σkkδij (64)

=
1 + ν

Y
εikεjl∂k∂lχ−

ν

Y
∂2χδij (65)

where the two-dimensional Young’s modulus, Y , and Poisson ratio,
ν, are given by

Y =
4µ (µ+ λ)

2µ+ λ
, (66)

ν =
λ

2µ+ λ
. (67)

Applying εikεjl∂k∂l to eq. (65) gives

1
Y
∂4χ = εikεjl∂k∂luij . (68)

By invoking eqs. (35), (43), the differential expressions for the de-
fects, namely eqs. (54) and (52), as well as eq. (37) for the curva-
ture, one can rewrite the right hand side to arrive at the crystalline
analog of eq. (59):

1
Y
∂4χ = ρ−G, (69)

where the defect distribution, ρ, of disclinations with charge qa
and dislocations with Burgers vector bb reads

ρ =
∑
a
qaδ (x− xa) +

∑
b

εijb
b
i∂jδ (x− xb) . (70)
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We can also rewrite the free energy (up to boundary terms) in
terms of the Airy stress function as follows:

F =
1

2Y

∫
dS

(
∂2χ

)2
. (71)

If we integrate this by parts twice and use eq. (69) to eliminate χ
and ∂4χ, we find (up to boundary terms)

F =
Y

2

∫
dS

∫
dS′ (ρ (x)−G (x)) ΓB

(
x, x′

) (
ρ
(
x′
)
−G

(
x′
))

(72)

where ΓB is the Greens function of the biharmonic operator

∂4ΓB
(
x, x′

)
= δ

(
x− x′

)
. (73)

Eq. (72) is the crystalline analog of eq. (63). Again, the defects
can screen the Gaussian curvature. The interaction, however, is
different than the Coulomb interaction in the liquid crystalline
case. If the surface is allowed to bend, disclinations will induce
buckling, illustrated in Fig. 8 with paper models. In these cones,
the integrated Gaussian curvature is determined by the angular
deficit of the disclination∫

dSG = q. (74)

If there are no topological defects (implying that ρ = 0 in eq.
(69)), but the curvature still provides a source of stress of the Airy
stress function χG:

1
Y
∂4χG = −G. (75)

One can solve this equation in two steps. First, we make use of an
auxiliary function U obeying

∂2U = G. (76)

This leaves the following equation to be solved (i.e. the second
step)

1
Y
∂2χG = −U + UH , (77)

where UH is a harmonic function (i.e. satisfying ∂2UH = 0) intro-
duced to fulfil the boundary conditions [107].
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Figure 8: Paper models illustrating the coupling between disclinations
and curvature. Top panel: 5-fold (Bottom panel: 7-fold) coor-
dinated particle in a triangular lattice. Positively (negatively)
charged disclinations and positive (negative) Gaussian curva-
ture attract.

Surprisingly, charge-neutral dislocations and pleats can also screen
the curvature [73, 85, 107, 32, 34]. Pleats are formed by arrays of
dislocations and allow for an extra piece of crystal, just like their
fabric analogs. Since the opening angle of pleats, approximately
equal to nda with a the lattice spacing and nd the dislocation line
density can be arbitrarily small, pleats can actually provide a finer
screening than quantised disclinations.
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1.7 nematic order on the sphere

As a naive guess for the ground state of a two-dimensional nematic
liquid crystal phase on the surface of the sphere, one could imagine
the excess of topological charge to be located at the poles, like in
the case of tilted molecules on the sphere. However, the order
parameter, the director, has the symmetry of a headless arrow
instead of a vector. Therefore, this makes it possible for the two
s = 1 defects to unbind into four s = 1

2 defects relaxing at the
vertices of a regular tetrahedron [57]. The baseball-like nematic
texture is illustrated in Fig. 9. The repulsive nature of defects with

Figure 9: The baseball-like ground state of a two-dimensional spherical
nematic coating has four s = 1

2 at the vertices of a tetra-
hedron in the one-constant approximation. Reprinted figure
with permission from ref. [105]. Copyright 2006 by the Amer-
ican Physical Society.

like charges can be seen from the free energy, which, as shown in
the previous section, can be reformulated entirely in terms of the
defects rather than the director [70, 57]:

F = −πk2
∑
i6=j

sisj log (1− cos θij) +E (R)
∑
j

s2
j . (78)
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Here, θij is the angular separation between defects i and j, i.e.
θij =

dij
R , with dij being the geodesic distance. The first term

yields the long-range interaction of the charges. The second term
accounts for the defect self-energy

E (R) = πk log
(
R

b

)
+Ec, (79)

where we have imposed a cut-off b representing the defect core
size, which has energy Ec. This cut-off needs to be introduced in
order to prevent the free energy from diverging. Heuristically, this
logarithmically diverging term in the free energy is responsible for
the splitting of the two s = 1 defects into four s = 1

2 defects.
Two s = 1 defects contribute

(
2× 12

)
πk log

(
R
b

)
= 2πk log

(
R
b

)
to the free energy, whereas four s = 1

2 defects contribute only(
4×

(
1
2

)2)
πk log

(
R
b

)
= πk log

(
R
b

)
.

In addition to this ground state, other defect structures have
been observed in computer simulations [23, 90, 88, 3]. If there
is a strong anisotropy in the elastic moduli, the four defects are
found to lie on a great circle rather than the vertices of a regular
tetrahedron [88, 3].

1.8 this thesis

1.8.1 Spherical nematic shells (part I)

An experimental model system of spherical nematics is a nematic
double emulsion droplet [24, 54, 56, 49, 55, 86, 50, 41, 51]. This
is a structure in which a water droplet is captured by a larger
nematic liquid crystal droplet, which in turn is dispersed in an
outer fluid (Fig. 10). There are some crucial differences between a
two-dimensional spherical nematic and a nematic double emulsion
droplet. Not only is the nematic coating of a finite thickness, this
thickness can be inhomogeneous as a result of buoyancy-driven
displacement (or other mechanisms) of the inner droplet out of
the centre of the nematic droplet.
Like point disclinations in two dimensions, there exist disclina-

tion lines in a three-dimensional nematic liquid crystal, which are
categorised in similar fashion. However, charge-one lines, and in-
tegral lines in general, do not exist. Such lines lose their singular
cores [12, 63] by ‘escaping in the third dimension’. In shells, such
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Figure 10: Schematic of a nematic double emulsion droplet of radius
R. The inner water droplet of radius a is displaced by an
amount ∆ along the vertical direction, thereby making the
top of the shell thinner.

an escape leads to another type of defect, namely point defects at
the interface, known as boojums (Fig. 11).
In a spherical nematic layer of finite thickness, the baseball struc-

ture with four s = 1
2 disclination lines spanning the shell, becomes

energetically less favourable than two antipodal pairs of boojums
beyond a critical thickness [105]. Instead of unbinding, the singular
lines escape in the third dimension, leaving two pairs of boojums
on the bounding surfaces. This divalent configuration is separated
from the tetravalent configuration by a large energy barrier. As a
consequence, both configurations are observed in droplets in the
same emulsion. Also, trivalent shells with two s = 1

2 disclination
lines and one pair of boojums coexist. In chapter 2 (based on ref.
[56]) we study the energetics of thin trivalent shells and find the
optimal isosceles arrangement of the defects.
If, in addition, the shell thickness is inhomogeneous, the energy

landscape becomes even more complex. As a consequence of the
inhomogeneity the defects cluster in the thinnest part of the shell,
where the length of the disclination lines (or distance between
boojums forming a pair) are shorter. Since the self-energy of the
disclination is proportional to its length, it is attracted towards
this region of the shell. In chapter 3 (based on refs. [56, 41]), an in-
vestigation of thick and inhomogeneous divalent shells shows that
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Figure 11: (a) Schematic of the deconfined defect configuration in a
homogeneous shell. Two pairs (each encircled in red) of boo-
jums, indicated by green dots, are located at the top and
bottom of the shell. (b) Schematic of the confined defect
configuration in an inhomogeneous shell. All boojums are
located at the thinnest, top part of the shell, inside the red
rectangle. (c) Zoom of the thinnest section of the inhomoge-
neous shell in (b).

pairs of surface defects can make abrupt transitions between the
state in which the defects are confined in the thinnest part of the
shell, and the deconfined state, in which the interdefect repulsion
places them diametrically. These confinement and deconfinement
transitions occur when the thickness or thickness inhomogeneity
is varied.

1.8.2 Toroidal nematics (part II)

The torus has an Euler characteristic equal to zero. Hence, in a
nematic droplet of toroidal shape no defects need to be present.
The director field to be expected naively in such a geometry is one
which follows the tubular axis, as shown in Fig. 12. This achiral
director configuration contains only bend energy. In chapter 4 we
show, however, that if the toroid becomes too fat it is favourable
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to reduce bend deformations by twisting. The price of twisting is
screened by saddle-splay deformations provided that K24 > 0 [77,
42]. The twisted configuration is chiral. Chirality stems from the
Greek word for hand, and is indeed in this context easily explained:
your right hand cannot be turned into a left hand by moving and
rotating it. It is only when viewed in the mirror that your right
hand appears to be a left hand and vica versa. Indeed, for small
aspect ratios and small values of (K2 −K24) /K3 nematic toroids
display either a right- or left-handedness despite the achiral nature
of nematics. This phenomenon is recognised as spontaneous chiral
symmetry breaking. Typical corresponding plots of the energy as
a function of the amount of twist are shown in Fig. 12.

Figure 12: Energy as a function of the degree of twist has either a single
achiral minimum (dashed blue) or shows spontaneous chiral
symmetry breaking in toroidal nematics (red) depending on
the aspect ratio and elastic constants. The chiral state is
favoured for fat toroids and small values of (K2 −K24) /K3.
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1.8.3 Cracks in curved solids (part III)

In chapter 5 we study cracks in curved solids rather than the crys-
tallographic defects discussed in section 1.6.2. We consider an elas-
tic film that is deformed into the shape of a Gaussian bump. The
stresses resulting from this geometric frustration affect the onset
of crack growth leading to fracture of the body. We find that the
critical crack length at which growth begins depends on the loca-
tion and orientation of the crack. The critical crack size can be
decreased by the curvature, but also increased. In chapter 6 we
calculate the path that a crack takes for several locations of the
initial crack and several aspect ratios of the bump. We find that
an incoming crack is deflected from the bump.




