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1
INTRODUCTION

1.1 geometric frustration

Whether it concerns biological matter such as membranes, DNA
and viruses, or synthesised anisotropic colloidal particles, the de-
formations inherent to soft matter almost inevitably call for a geo-
metric description. Therefore, the use of geometry has always been
essential in our understanding of the physics of soft matter. How-
ever, only recently has geometry turned into an instrument for the
design and engineering of novel materials. Key concepts are geo-
metrical frustration and the topological defects that are often a
consequence of this frustration [81, 72, 37, 6].
Geometrical frustration refers to the impossibility of local order

to propagate throughout a chosen space. This impossibility is of ge-
ometric nature and could for instance be due to the topology of the
space. Probably your first and most familiar encounter with this
phenomenon was while playing (association) football. The math-
ematically inclined amongst you may have wandered off during
the game and wondered: “Why does the ball contain hexagonal
and pentagonal panels?” The ball cannot contain hexagonal pan-
els only: a perfect tiling of hexagons (an example of local order)
cannot be achieved on the spherical surface (the space considered).
There exists a constraint on the number of faces, F , edges, E, and
vertices, V . The constraint is named after Euler and reads [65]

F −E + V = χ, (1)

where χ is the Euler characteristic. The Euler characteristic is a
quantity insensitive to continuous deformations of the surface of
the ball such as twisting and bending. We call such quantities
topological. Only if one would perform violent operations such
as cutting a hole in the sphere and glueing a handle to the hole
would a surface of differently topology be created [65, 69]. For a
surface with one handle χ = 0, just as for a torus or a coffee
mug. The Euler characteristic χ equals 2 for the spherical sur-
face of the ball. Thus, Euler’s polyhedral formula (eq. (1)) ensures

1



2 introduction

the need of 12 pentagonal patches besides the hexagonal ones, no
matter how well inflated the ball is. To see this, write the num-
ber of faces F as the sum of the number of hexagons, H, and
pentagons, P , i.e. F = H + P . One edge is shared by two faces,
hence E = 1

2 (6H + 5P ). Moreover, each vertex is shared among
three faces, hence V = 1

3 (6H + 5P ). Substituting the expressions
for F , E and V into eq. (1) yields P = 12. These pentagons are
the defects. Similarly, protein shells of spherical viruses which en-
close the genetic material consist of pentavalent and hexavalent
subunits [9, 52]. Another condensed matter analog of the geomet-
rically frustrated football is the ‘colloidosome’. Colloidosomes are
spherical colloidal crystals [21, 4, 34] that are of considerable in-
terest as microcapsules for delivery and controlled release of drugs
[21].

Figure 1: Left panel: Geometric frustration in a football. A perfect
tiling of hexagonal panels cannot be achieved everywhere, re-
sulting in black pentagonal panels (defects). Right panel: Ge-
ometric frustration on the globe. The lines of latitude shrink
to a point at the north and south poles (defects). Adapted
from ref. [1].

Another common example of geometric frustration are the lines
of latitude on the surface of a globe. The points where these lines
shrink to a point, that is, the North and South Poles, are the
defects. Just like the pentagons on the football, the defects on the
globe are also required by a topological constraint, namely the
Poincare-Hopf theorem [69]:

∑
a
sa = χ. (2)
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The lines of latitude circle once around both poles. Hence, there
are two defects with a unit winding number, s. (See section 1.5
for a more precise definition.) Similar to the lines of longitude and
latitude on the globe, a coating of a nanoparticle with a mono-
layer of ordered tilted molecules also has two polar defects [58,
57, 70, 105, 20]. Recently, Stellacci and co-workers have been able
to functionalise the defects to assemble linear chains of nanopar-
ticles [20]. A nematic liquid crystal coating possesses four defects
at the vertices of a regular tetrahedron in the ground state [57].
Attaching chemical linkers to these defects could result in a three-
dimensional diamond structure [70], rather than a one-dimensional
chain. Functionalisation of the defects, thus resulting from ordered
structures confined to curved spaces, offers an intriguing route to
directed assembly.
The types of order that we will discuss in this introductory chap-

ter are crystalline and nematic liquid crystalline (1.2). After intro-
ducing mathematical preliminaries in section 1.3, we will discuss
the elasticity of crystals and liquid crystals (section 1.4) and give a
classification of the defects in these phases of matter (section 1.5).
We will elucidate the role of geometry in this subject. In particular,
we will explicitly show that, in contrast to the two examples given
in the introduction, a topological constraint is not necessary for ge-
ometric frustration. In section 1.6 we will review coupling between
defects and curvature. Nematic order on the sphere is discussed in
section 1.7.
This thesis is outlined thoroughly in section 1.8. Subsections

1.8.1 and 1.8.2 (corresponding to Part I and II, respectively) are
about nematic liquid crystals confined to various geometries. In
some aspects a nematic liquid crystal behaves like a liquid. In-
deed, one can capture a nematic in the form of droplets or in
containers of various shapes, just as one can do that for liquid
water. At the same time nematic liquid crystals exhibit, just as
crystals, anisotropy: in a nematic the molecules self-organise. Our
goal in Part I and II is to explore avenues to control this molecular
assembly geometrically by tuning the shape of the boundary of the
nematic liquid crystal. Our interest in part III (subsection 1.8.3) is
the integrity and failure of curved materials. It may, for instance,
be very relevant to know under which conditions a colloidosome
fractures. Part III discusses crack growth in curved elastic films.
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1.2 liquid crystals

Besides the familiar solid, liquid and gas phases, there exist other
fascinating forms of matter, which display phenomena with order
intermediate between conventional isotropic fluids and crystalline
solids. These are therefore called liquid crystalline or mesomorphic
phases [18, 95]. Let us consider the difference between a solid crys-
tal and a liquid crystal. In a solid crystal all the constituents are
located in a periodic fashion, such that only specific translations
return the same lattice. Moreover, the bonds connecting neigh-
bouring crystal sites define a discrete set of vectors which are the
same throughout the system. In a crystal, there is thus both bond-
orientational and translational order. In liquid crystals there is
orientational order, as the anisotropic constituent molecules de-
fine a direction in space, but the translational order is partially
or fully lost. The latter phase, in which there is no translational
order whatsoever, is called a nematic liquid crystal. The mobility
of the translationally disordered molecules is responsible for the
fluidic properties of nematic liquid crystals.

1.3 differential geometry of surfaces

1.3.1 Preliminaries

For a thorough introduction to the differential geometry of sur-
faces, please consult refs. [97, 17, 37]. In this section we will in-
troduce the topic briefly and establish the notation. Points on a
curved surface embedded in the three dimensional world we live in
can be described by a three-component vector R (x) as a function
of the coordinates x =

(
x1,x2

)
. Vectors tangent to this surface

are given by

tα = ∂αR, (3)

where ∂α = ∂
∂xα is the partial derivative with respect to xα. These

are in in general neither normalised nor orthogonal. However, it
does provide a basis in which to express an arbitrary tangent vector
n in:

n = nαtα. (4)
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Here we have used the Einstein summation convention, i.e., an
index occurring twice in a single term is summed over, provided
that one of the them is a lower (covariant) index and the other is
an upper (contravariant) index. We reserve Greek characters α, β,
γ, . . . as indices for components of vectors and tensors tangent to
the surface. The so-called metric tensor reads

gαβ = tα · tβ, (5)

and its inverse is defined by

gαβgβγ = δαγ , (6)

where δαγ is equal to one if α = γ and zero otherwise. We can lower
and raise indices with the metric tensor and inverse metric tensor,
respectively, in the usual way, e.g.

gαβn
α = nβ (7)

It is straightforward to see that the inner product between two
vectors n and m is

n ·m = nαtα ·mβtβ = gαβn
αmβ = nαmα. (8)

The area of the parallelogram generated by the infinitesimal vec-
tors dx1t1 and dx2t2, is given by the magnitude of their cross
product, and yields the area element

dS =
∣∣∣dx1t1 × dx2t2

∣∣∣
=
√
(t1 × t2)

2
dx1dx2

=
√
|t1|2 |t2|2 − (t1 · t2)

2
dx1dx2

=
√
g11g22 − g12g21dx

1dx2

=
√
gd2x, (9)

where g = det(gαβ), the determinant of the metric tensor, and
d2x is shorthand for dx1dx2. More generally, the magnitude of the
cross product of two vectors m and n is

|m× n| =
∣∣∣γαβmαnβ

∣∣∣ , (10)

which introduces the antisymmetric tensor

γαβ =
√
gεαβ, (11)
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where εαβ is the Levi-Civita symbol satisfying ε12 = −ε21 = 1 and
is zero otherwise.
Since we will encounter tangent unit vectors, e.g. indicating the

orientation of some physical quantity, it is convenient to decom-
pose this vector in a set of orthonormal tangent vectors, e1 (x)
and e2 (x), such that

ei · ej = δij and N · ei = 0, (12)

alternative to the basis defined in eq. 3. Here N is the vector
normal to the surface. We use the Latin letters i, j and k for
the components of vectors expressed in this orthonormal basis. As
they are locally Cartesian, they do not require any administration
of the position of the index. Besides the area element, we need a
generalisation of the partial derivative. This generalisation is the
covariant derivative, Dα, the projection of the derivative onto the
surface. The covariant derivative of n expressed in the orthonormal
basis reads in component form [37]

Dαni = ei · ∂αn
= ei · ∂αnjej + ei · ∂αejnj
= ∂αni + εijAαnj , (13)

where εijAα = ei · ∂αej is called the spin-connection. The final line
is justified because the derivative of any unit vector is perpendicu-
lar to this unit vector. More generally, the covariant derivative of
the vector n along xα is [17]

Dαn
β = ∂αn

β + Γβαγn
γ , (14)

where the Christoffel symbols are

Γαβγ =
1
2g

αδ (∂γgβδ + ∂βgδγ − ∂δgβγ) . (15)

Finally, with the antisymmetric tensor and the area element in
hand we can state a useful formula in integral calculus, namely
Stokes’ theorem∫

d2x
√
gγαβDαnβ =

∮
dxαnα. (16)

1.3.2 Curvature

The curvature is the deviation from flatness and therefore a mea-
sure of the rate of change of the tangent vectors along the normal,
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or, put the other way around, a measure of the rate of change
of the normal along the tangent vectors. This can be cast in a
curvature tensor defined as

Kαβ = N · ∂βtα = −tβ · ∂αN. (17)

From this tensor we extract the intrinsic Gaussian curvature

G = det
(
Kα
β

)
=

1
2γ

αγγβδKαβKγδ = κ1κ2, (18)

and extrinsic mean curvature

H =
1
2Tr

(
Kα
β

)
=

1
2g

αβKαβ =
1
2 (κ1 + κ2) , (19)

where κ1 = N · ∂1ẽ1 and κ2 = N · ∂2ẽ2 are the extremal or princi-
pal curvatures, the curvature in the principal directions ẽ1 and ẽ2.
These eigenvalues and eigenvectors can be obtained by diagonalis-
ing the matrix associated with the curvature tensor. If at a point
on a surface κ1 and κ2 have the same sign, the Gaussian curvature
is positive and from the outsiders’ point of view the surface curves
away in the same direction whichever way you go, as is the case on
mountaintops, or peaks and in valleys. In contrast, if at a point on
a surface κ1 and κ2 have opposite signs the Gaussian curvature is
negative, the saddle-like surface curves away in opposite directions.
The magnitude of κ1 and κ2 is equal to the inverse of the radius of
the tangent circle in the principal direction (Fig. 2). It turns out
that the Gaussian curvature and the spin-connection are related.
We will see how in a moment by considering the normal (third)
component of the curl (denoted by ∇×) of the spin-connection

(∇×A)3 = ε3jk∂j (e1 · ∂ke2)

= ε3jk∂je1 · ∂ke2

= ε3jk (N · ∂je1) (N · ∂ke2) , (20)

where we have used the product rule and the antisymmetry of εijk
in the second equality sign. The final line is justified by the fact
that the derivative of a unit vector is perpendicular to itself and
therefore we have e.g. ∂je1 = (N · ∂je1)N + (e2 · ∂je1) e2. If we
now with the aid of eqs. (17) and (18) note that

G = (N · ∂1e1) (N · ∂2e2)− (N · ∂1e2) (N · ∂2e1) , (21)
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Figure 2: A saddle surface has negative Gaussian curvature, as κ1 and
κ2 have different signs. The magnitudes of the curvatures κ1

and κ2 are given by the inverse radii of the tangent circles
drawn in blue and red.

we easily see that the normal component of the curl of the spin-
connection equals the Gaussian curvature:

(∇×A) ·N = G, (22)

or alternatively [73]

γαβDαAβ = G. (23)

This geometric interpretation of A will show its importance in
section 1.4, where we will comment on its implications on the
geometric frustration in curved nematic liquid crystal films.
Finally, a popular choice of parametrisation of the surface is the

Monge gauge or height representation in which x = (x, y) and
R = (x, y, f (x, y)), where f (x, y) is the height of the surface
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above the xy-plane. In this representation the Gaussian curvature
reads

G =
det ∂α∂βf

g
, (24)

where the determinant of the metric is given by

g = 1 + (∂xf)
2 + (∂yf)

2 . (25)

1.4 elasticity on curved surfaces and in con-
fined geometries

1.4.1 Elasticity of a two-dimensional nematic liquid crystal

In a nematic liquid crystal the molecules (assumed to be anisotropic)
tend to align parallel to a common axis. The direction of this axis
is labeled with a unit vector, n, called the director (see Fig. 3). The
states n and −n are equivalent. Any spatial distortion of a uniform

n

Figure 3: The director n specifies the average local orientation of the
nematic molecules.

director field costs energy. If we assume that these deformations
are small on the molecular length scale, l,

|∂inj | �
1
l
, (26)

we can construct a phenomenological continuum theory. The re-
sulting Frank free energy F for a two dimensional flat nematic
liquid crystal reads [18, 39, 40]

F =
1
2

∫
d2x

[
k1 (∂ini)

2 + k3 (εij∂inj)
2] , (27)
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where the splay and bend elastic constants, k1 and k3 respectively,
measure the energy of the two independent distortions shown in
Fig. 4. To simplify the equations, one often makes the assumption

Figure 4: Conformations with (left panel) a non-vanishing divergence
of the director and (right panel) a non-vanishing curl of the
director.

of isotropic elasticity. In this approximation the Frank elastic con-
stants are equal, k1 = k3 = k, and up to boundary terms the free
energy reduces to [39]

F =
1
2k
∫
d2x∂inj∂inj . (28)

When the coupling of the director to the curvature tensor Kαβ

[82, 38, 36, 26, 62, 84, 67, 66, 68] is ignored, the elastic free energy
on a curved surface generalises to [58, 78, 70, 104, 105]

F =
1
2k
∫
d2x
√
gDαn

βDαnβ. (29)

In this equation the area element has become dS = d2x
√
g and

partial derivatives have been promoted to covariant derivatives.
Because the director is of unit length, we can conveniently specify
it in terms of its angle with a local orthonormal reference frame,
Θ (x), as follows

n = cos Θ e1 + sin Θ e2. (30)

Then, since ∂αn1 = − sin Θ ∂αΘ = −n2∂αΘ and similarly ∂αn2 =

cos Θ ∂αΘ = n1∂αΘ we see that

∂αni = −εijnj∂αΘ, (31)
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with which we find the covariant derivative to be

Dαni = −εijnj (∂αΘ−Aα) . (32)

Therefore, we can rewrite the elastic energy as [73]

F =
1
2k
∫
d2x
√
g (∂αΘ−Aα) (∂αΘ−Aα) , (33)

where we have used that (−εijnj) (−εijnj) = δjknjnk = cos2 (Θ)+

sin2 (Θ) = 1. This form of the free energy clearly shows that ne-
matic order on a curved surface is geometrically frustrated. The
topological constraints of the introductory section are merely a
special example of the frustration of local order due to the geo-
metric properties of the system. Note that for a curved surface
without such a topological constraint (e.g. a Gaussian bump) the
ground state can be a deformed director field. Since the curl of the
spin-connection equals the Gaussian curvature (eq. (23)), if the
Gaussian curvature is nonzero, the spin-connection is irrotational
and cannot be written as the gradient of a scalar field, Aα 6= ∂αΘ,
just like the magnetic field cannot be described by a scalar field
either. Therefore, F in eq. (33) is nonzero and we can conclude
that there is geometric frustration present in the system.

1.4.2 Elasticity of a two-dimensional solid

Similar to the construction of the continuum elastic energy of a
nematic liquid crystal, we can write down the elastic energy of a
linear elastic solid as an integral of terms quadratic in the deforma-
tions, i.e. strain. This strain is found in the following way. Consider
a point x = (x, y, 0) on an initially flat solid. This point is dis-
placed to x′ (x) = (x′, y′, f) in the deformed solid, and so we may
define a displacement vector u (x) = x′− x = uxex+ uyey + fez.
The square of the line element in the deformed plate is then
given by ds′2 = (dx+ dux)

2 + (dx+ dux)
2 + df2. Noting that

dux = ∂iuxdxi with xi = x, y and similarly for uy and f we find
[44]

ds′2 = ds2 + 2uijdxidxj . (34)

Thus, the strain tensor uij (x) encodes how infinitesimal distances
change in the deformed body with respect to the resting state of
the solid and reads

uij =
1
2 (∂iuj + ∂jui +Aij) , (35)
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where we have omitted non-linear terms of second order in ∂iuj
and where the tensor field Aij (x) is now defined as

Aij ≡ ∂if∂jf . (36)

We will assume that curvature plays its part only through this
coupling of gradients of the displacement field to the geometry
of the surface, and we will therefore adopt the flat space metric.
This is a valid approximation for moderately curved solids, as we
comment on at the end of the section [107, 6]. To leading order in
gradients of the height function, Aij is related to the curvature by
(see eq. (24))

−1
2εikεjl∂k∂lAij = det (∂i∂jf) = G. (37)

Isotropy of the solid leaves two independent scalar combinations
of uij that contribute to the stretching energy [44]:

F =
1
2

∫
dS

(
2µu2

ij + λu2
ii

)
. (38)

The elastic constants λ and µ are called the Lamé coefficients.
Minimisation of this energy with respect to uj leads to the force
balance equation:

∂iσij = 0, (39)

where the stress tensor σij (x) is defined by Hooke’s law

σij = 2µuij + λδijukk. (40)

The force balance equation can be solved by introducing the Airy
stress function, χ (x), which satisfies

σij = εikεjl∂k∂lχ, (41)

since this automatically gives

∂iσij = εjk∂k [∂1, ∂2]χ = 0 (42)

by the commutation of the partial derivatives. If one does not
adopt the flat space metric, the covariant generalisation of the
force balance equation is not satisfied, because the the commuta-
tor of the covariant derivatives, known as the Riemann curvature
tensor, does not vanish. It is actually proportional to the Gaussian
curvature and indicates why the range of validity of this approach
is limited to moderately curved surfaces [107, 6]. Finally, for small
∂iuj the bond angle field, Θ (x), is given by

Θ =
1
2εij∂iuj . (43)
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1.4.3 Elasticity of a three-dimensional nematic liquid crystal

Besides splay and bend, there are two other deformations possible
in a three-dimensional nematic liquid crystal. They are twist and
saddle-splay, measured by elastic moduli K2 and K24. Twist refers
to a helical type of deformation for which the rotation of n has a
component along n. The analog of eq. (27) reads

F [n (x)] =
1
2

∫
dV

(
K1 (∇ · n)2

+K2 (n · ∇× n)2 + K3 (n×∇× n)2)
−K24

∫
dS · (n∇ · n + n×∇× n) .

(44)

The integration of the splay, twist and bend energy density is over
the volume to which the nematic is confined. The saddle-splay
energy per unit volume is a pure divergence term, hence the saddle-
splay energy can be written as the surface integral in eq. (44). In
addition to the energy in eq. (44), there is an energetic contribution
coming from the interfacial interactions, often larger in magnitude.
Therefore, the anchoring of the nematic molecules at the boundary
can be taken as a constraint. In one of the possible anchoring
conditions the director is forced to be tangential to the surface,
yet free to rotate in the plane. In this case of planar degenerate
boundary conditions, we derive in chapter 4 that the saddle-splay
energy reduces to

F24 = K24

∫
dS

(
κ1n

2
1 + κ2n

2
2
)

, (45)

thus coupling the director to the curvature of the boundary sur-
face.

1.5 topological defects

Topological defects are characterised by a small region where the
order is not defined. Topological defects in translationally ordered
media, such as crystals, are called dislocations. Defects in the ori-
entational order, such as in nematic liquid crystals and again crys-
tals, are called disclinations. The defects are topological when they
cannot be removed by a continuous deformation of the order pa-
rameter. As we will see momentarily, they are classified according
to a topological quantum number or topological charge, a quantity
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that may only take on a discrete set of values and which can be
measured on any circuit surrounding the defect.

1.5.1 Disclinations in a nematic

Consider for concreteness a two-dimensional nematic liquid crys-
tal. A singularity in the director field is an example of a disclina-
tion. Such a point defect can be classified by its winding number,
strength, or topological charge, s, which is the number of times
the director rotates by 2π, when following one closed loop in coun-
terclockwise direction around the singularity:∮

dΘ =
∮
dxα∂αΘ = 2πs. (46)

We can express eq. (46) in differential form by invoking Stokes’
theorem:

γαβDα∂βΘ = qδ (x− xa) , (47)

where we use an alternative labelling, q = 2πs, of the charge of
the defect, which is located at xa. The delta-function obeys

δ (x− xa) =
δ
(
x1 − x1

a

)
δ
(
x2 − x2

a

)
√
g

, (48)

such that the integral over the surface yields one. The far-field
contribution of the defect to the angular director in a flat plane
reads

Θ = sφ+ c, (49)

as it forms a solution to the Euler-Lagrange equation of the elastic
free energy:

∂2Θ = 0. (50)

Here, φ is the azimuthal angle and c is just a phase. Examples
are presented in Fig. 5. Note that since the states n and −n are
equivalent, defects with half-integer strength are also possible. In
fact, it is energetically favourable for an s = 1 defect to unbind
into two s = 1

2 defects [70, 75].
These defects can be detected experimentally by crossed-polarised

microscopy. The image will appear black there where the director
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(a) s = 1, c = 0 (b) s = 1, c = π
4

(c) s = 1, c = π
2 (d) s = 1

2 , c = 0

Figure 5: Director configurations, n1 = cos Φ, n2 = sin Φ, for disclina-
tions of strength s and constant c.

is aligned with one of the polarisers (and thus perpendicular to the
other polariser). Therefore, there are two black (and two coloured)
brushes meeting at an s = ±1/2 defect. There are four black (and
four coloured) brushes meeting at an s = ±1 defect.

1.5.2 Disclinations in a crystal

Though energetically more costly, disclinations also arise in two-
dimensional crystals. At these points, the coordination number
deviates from its ordinary value, which is six for a crystal on a
triangular lattice. Just like in nematic liquid crystals, disclinations
in crystals are labelled by a topological charge, q, which is the angle
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over which the vectors specifying the lattice directions rotate when
following a counterclockwise circuit around the disclination. If we
parametrise these lattice direction vectors with Θ (x), the bond-
angle field, this condition reads mathematically∮

dΘ = q. (51)

Thus for disclinations in a triangular lattice with five-fold and
seven-fold symmetry, as displayed in Fig. 6, q = π

3 and q = −π3
respectively. Analogous to eq. (47), the flat-space differential form

Figure 6: (Left panel) Five-fold and (right panel) seven-fold disclina-
tion. When following a closed counterclockwise loop (red)
around the five-fold disclination, the initial lattice vector a1

rotates via a2, a3, a4 and a5 over an angle of π/3 to a6.

of eq. (51) for a disclination located at xa reads

εij∂i∂jΘ = qδ (x− xa) . (52)

1.5.3 Dislocations

Besides disclinations, dislocations can occur in crystals. Disloca-
tions are characterised by a Burgers vector b. This vector measures
the change in the displacement vector, if we make a counterclock-
wise loop surrounding the dislocation,∮

du = b. (53)

Just as the strength of disclinations can only take values from a
discrete set, the Burgers vector of a dislocation is equal to some
integer multiple of a lattice vector. Also note that a dislocation
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Figure 7: Dislocation in a triangular lattice. The Burgers vector spec-
ifies by how much a clockwise circuit (marked in red, bold)
around the dislocation fails to close. A dislocation can be
viewed as disclination dipole with a moment perpendicular
to its Burgers vector.

can be viewed as a pair of closely spaced disclinations of opposite
charge [71], as can be seen in Fig. 7.
The flat-space differential form of eq. (53) for a dislocation at

xa is

εij∂i∂juk = bkδ (x− xa) , (54)

which again can be obtained by using Stokes’ theorem.

1.6 interaction between curvature and defects

1.6.1 Coupling in liquid crystals

It is possible to recast the free energy in terms of the locations
of the topological defects rather than the director or displacement
field, if smooth (i.e. non-singular) deformations are ignored. In
this case the energy in eq. (33) is minimised with respect to Θ,
which leads to

Dα (∂αΘ−Aα) = 0. (55)

This needs to supplemented with an equation for the effective
charge distribution:

γαβDα (∂βΘ−Aβ) = ρ−G, (56)
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obtained by combining eq. (23) for the curvature and eq. (47) for
the defect density ρ (x),

ρ =
∑
a
qaδ (x− xa) . (57)

Eq. (55) is automatically satisfied if one chooses [104]

∂αΘ−Aα = γ β
α ∂βχ, (58)

where χ (x) is an auxiliary function. At the same time, substituting
eq. (58) into eq. (56) leads to

−D2χ = ρ−G. (59)

The source in this Poisson equation contains both topological point
charges as well as the Gaussian curvature with opposite sign. The
analog of the electrostatic potential is χ. The role of the electric
field is played by ∂αχ. Indeed, substituting eq. (58) in eq. (33),
shows that the energy density is proportional to the square of the
electric field:

F =
1
2k
∫
dS∂αχ∂

αχ. (60)

Next, we formally solve eq. (59)

χ = −
∫
dS′ΓL

(
x, x′

) (
ρ
(
x′
)
−G

(
x′
))

, (61)

where ΓL (x, x′) is the Green function of the Laplace-Beltrami
operator, D2 = DαD

α, satisfying

D2ΓL
(
x, x′

)
= δ

(
x− x′

)
. (62)

Integrating eq.(60) by parts and substituting our expressions for
χ and the Laplacian of χ (eqs. (61) and (59) respectively) results
(up to boundary terms) in

F = −k2

∫
dS

∫
dS′ (ρ (x)−G (x)) ΓL

(
x, x′

) (
ρ
(
x′
)
−G

(
x′
))

,

(63)

from which we again deduce the analogy with two-dimensional
electrostatics. In this analogy the defects are electric point sources
with their electric charge equal to the topological charge q and the
Gaussian curvature with its sign reversed is a background charge
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distribution. Therefore the defects will be attracted towards re-
gions of Gaussian curvature with the same sign as the topological
charge [58, 7, 104, 106, 113, 35, 84, 100]. Such screening will be
perfect if S = ρ everywhere, since F = 0 then. However, unless
the surface contains singularities in the Gaussian curvature, like
the apex of a cone, perfect screening will be impossible, as the
topological charge is quantised whereas the Gaussian curvature is
typically smoothly distributed.

1.6.2 Coupling in crystals

Note that an arbitrary field χ solves eq. (42). However, χ must be
physically possible and we therefore need to accompany eq. (42)
with another equation, which we will obtain by considering the
inversion of eq. (40) [44, 85]:

uij =
1 + ν

Y
σij −

ν

Y
σkkδij (64)

=
1 + ν

Y
εikεjl∂k∂lχ−

ν

Y
∂2χδij (65)

where the two-dimensional Young’s modulus, Y , and Poisson ratio,
ν, are given by

Y =
4µ (µ+ λ)

2µ+ λ
, (66)

ν =
λ

2µ+ λ
. (67)

Applying εikεjl∂k∂l to eq. (65) gives

1
Y
∂4χ = εikεjl∂k∂luij . (68)

By invoking eqs. (35), (43), the differential expressions for the de-
fects, namely eqs. (54) and (52), as well as eq. (37) for the curva-
ture, one can rewrite the right hand side to arrive at the crystalline
analog of eq. (59):

1
Y
∂4χ = ρ−G, (69)

where the defect distribution, ρ, of disclinations with charge qa
and dislocations with Burgers vector bb reads

ρ =
∑
a
qaδ (x− xa) +

∑
b

εijb
b
i∂jδ (x− xb) . (70)
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We can also rewrite the free energy (up to boundary terms) in
terms of the Airy stress function as follows:

F =
1

2Y

∫
dS

(
∂2χ

)2
. (71)

If we integrate this by parts twice and use eq. (69) to eliminate χ
and ∂4χ, we find (up to boundary terms)

F =
Y

2

∫
dS

∫
dS′ (ρ (x)−G (x)) ΓB

(
x, x′

) (
ρ
(
x′
)
−G

(
x′
))

(72)

where ΓB is the Greens function of the biharmonic operator

∂4ΓB
(
x, x′

)
= δ

(
x− x′

)
. (73)

Eq. (72) is the crystalline analog of eq. (63). Again, the defects
can screen the Gaussian curvature. The interaction, however, is
different than the Coulomb interaction in the liquid crystalline
case. If the surface is allowed to bend, disclinations will induce
buckling, illustrated in Fig. 8 with paper models. In these cones,
the integrated Gaussian curvature is determined by the angular
deficit of the disclination∫

dSG = q. (74)

If there are no topological defects (implying that ρ = 0 in eq.
(69)), but the curvature still provides a source of stress of the Airy
stress function χG:

1
Y
∂4χG = −G. (75)

One can solve this equation in two steps. First, we make use of an
auxiliary function U obeying

∂2U = G. (76)

This leaves the following equation to be solved (i.e. the second
step)

1
Y
∂2χG = −U + UH , (77)

where UH is a harmonic function (i.e. satisfying ∂2UH = 0) intro-
duced to fulfil the boundary conditions [107].
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Figure 8: Paper models illustrating the coupling between disclinations
and curvature. Top panel: 5-fold (Bottom panel: 7-fold) coor-
dinated particle in a triangular lattice. Positively (negatively)
charged disclinations and positive (negative) Gaussian curva-
ture attract.

Surprisingly, charge-neutral dislocations and pleats can also screen
the curvature [73, 85, 107, 32, 34]. Pleats are formed by arrays of
dislocations and allow for an extra piece of crystal, just like their
fabric analogs. Since the opening angle of pleats, approximately
equal to nda with a the lattice spacing and nd the dislocation line
density can be arbitrarily small, pleats can actually provide a finer
screening than quantised disclinations.
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1.7 nematic order on the sphere

As a naive guess for the ground state of a two-dimensional nematic
liquid crystal phase on the surface of the sphere, one could imagine
the excess of topological charge to be located at the poles, like in
the case of tilted molecules on the sphere. However, the order
parameter, the director, has the symmetry of a headless arrow
instead of a vector. Therefore, this makes it possible for the two
s = 1 defects to unbind into four s = 1

2 defects relaxing at the
vertices of a regular tetrahedron [57]. The baseball-like nematic
texture is illustrated in Fig. 9. The repulsive nature of defects with

Figure 9: The baseball-like ground state of a two-dimensional spherical
nematic coating has four s = 1

2 at the vertices of a tetra-
hedron in the one-constant approximation. Reprinted figure
with permission from ref. [105]. Copyright 2006 by the Amer-
ican Physical Society.

like charges can be seen from the free energy, which, as shown in
the previous section, can be reformulated entirely in terms of the
defects rather than the director [70, 57]:

F = −πk2
∑
i6=j

sisj log (1− cos θij) +E (R)
∑
j

s2
j . (78)
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Here, θij is the angular separation between defects i and j, i.e.
θij =

dij
R , with dij being the geodesic distance. The first term

yields the long-range interaction of the charges. The second term
accounts for the defect self-energy

E (R) = πk log
(
R

b

)
+Ec, (79)

where we have imposed a cut-off b representing the defect core
size, which has energy Ec. This cut-off needs to be introduced in
order to prevent the free energy from diverging. Heuristically, this
logarithmically diverging term in the free energy is responsible for
the splitting of the two s = 1 defects into four s = 1

2 defects.
Two s = 1 defects contribute

(
2× 12

)
πk log

(
R
b

)
= 2πk log

(
R
b

)
to the free energy, whereas four s = 1

2 defects contribute only(
4×

(
1
2

)2)
πk log

(
R
b

)
= πk log

(
R
b

)
.

In addition to this ground state, other defect structures have
been observed in computer simulations [23, 90, 88, 3]. If there
is a strong anisotropy in the elastic moduli, the four defects are
found to lie on a great circle rather than the vertices of a regular
tetrahedron [88, 3].

1.8 this thesis

1.8.1 Spherical nematic shells (part I)

An experimental model system of spherical nematics is a nematic
double emulsion droplet [24, 54, 56, 49, 55, 86, 50, 41, 51]. This
is a structure in which a water droplet is captured by a larger
nematic liquid crystal droplet, which in turn is dispersed in an
outer fluid (Fig. 10). There are some crucial differences between a
two-dimensional spherical nematic and a nematic double emulsion
droplet. Not only is the nematic coating of a finite thickness, this
thickness can be inhomogeneous as a result of buoyancy-driven
displacement (or other mechanisms) of the inner droplet out of
the centre of the nematic droplet.
Like point disclinations in two dimensions, there exist disclina-

tion lines in a three-dimensional nematic liquid crystal, which are
categorised in similar fashion. However, charge-one lines, and in-
tegral lines in general, do not exist. Such lines lose their singular
cores [12, 63] by ‘escaping in the third dimension’. In shells, such
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Figure 10: Schematic of a nematic double emulsion droplet of radius
R. The inner water droplet of radius a is displaced by an
amount ∆ along the vertical direction, thereby making the
top of the shell thinner.

an escape leads to another type of defect, namely point defects at
the interface, known as boojums (Fig. 11).
In a spherical nematic layer of finite thickness, the baseball struc-

ture with four s = 1
2 disclination lines spanning the shell, becomes

energetically less favourable than two antipodal pairs of boojums
beyond a critical thickness [105]. Instead of unbinding, the singular
lines escape in the third dimension, leaving two pairs of boojums
on the bounding surfaces. This divalent configuration is separated
from the tetravalent configuration by a large energy barrier. As a
consequence, both configurations are observed in droplets in the
same emulsion. Also, trivalent shells with two s = 1

2 disclination
lines and one pair of boojums coexist. In chapter 2 (based on ref.
[56]) we study the energetics of thin trivalent shells and find the
optimal isosceles arrangement of the defects.
If, in addition, the shell thickness is inhomogeneous, the energy

landscape becomes even more complex. As a consequence of the
inhomogeneity the defects cluster in the thinnest part of the shell,
where the length of the disclination lines (or distance between
boojums forming a pair) are shorter. Since the self-energy of the
disclination is proportional to its length, it is attracted towards
this region of the shell. In chapter 3 (based on refs. [56, 41]), an in-
vestigation of thick and inhomogeneous divalent shells shows that
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Figure 11: (a) Schematic of the deconfined defect configuration in a
homogeneous shell. Two pairs (each encircled in red) of boo-
jums, indicated by green dots, are located at the top and
bottom of the shell. (b) Schematic of the confined defect
configuration in an inhomogeneous shell. All boojums are
located at the thinnest, top part of the shell, inside the red
rectangle. (c) Zoom of the thinnest section of the inhomoge-
neous shell in (b).

pairs of surface defects can make abrupt transitions between the
state in which the defects are confined in the thinnest part of the
shell, and the deconfined state, in which the interdefect repulsion
places them diametrically. These confinement and deconfinement
transitions occur when the thickness or thickness inhomogeneity
is varied.

1.8.2 Toroidal nematics (part II)

The torus has an Euler characteristic equal to zero. Hence, in a
nematic droplet of toroidal shape no defects need to be present.
The director field to be expected naively in such a geometry is one
which follows the tubular axis, as shown in Fig. 12. This achiral
director configuration contains only bend energy. In chapter 4 we
show, however, that if the toroid becomes too fat it is favourable
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to reduce bend deformations by twisting. The price of twisting is
screened by saddle-splay deformations provided that K24 > 0 [77,
42]. The twisted configuration is chiral. Chirality stems from the
Greek word for hand, and is indeed in this context easily explained:
your right hand cannot be turned into a left hand by moving and
rotating it. It is only when viewed in the mirror that your right
hand appears to be a left hand and vica versa. Indeed, for small
aspect ratios and small values of (K2 −K24) /K3 nematic toroids
display either a right- or left-handedness despite the achiral nature
of nematics. This phenomenon is recognised as spontaneous chiral
symmetry breaking. Typical corresponding plots of the energy as
a function of the amount of twist are shown in Fig. 12.

Figure 12: Energy as a function of the degree of twist has either a single
achiral minimum (dashed blue) or shows spontaneous chiral
symmetry breaking in toroidal nematics (red) depending on
the aspect ratio and elastic constants. The chiral state is
favoured for fat toroids and small values of (K2 −K24) /K3.
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1.8.3 Cracks in curved solids (part III)

In chapter 5 we study cracks in curved solids rather than the crys-
tallographic defects discussed in section 1.6.2. We consider an elas-
tic film that is deformed into the shape of a Gaussian bump. The
stresses resulting from this geometric frustration affect the onset
of crack growth leading to fracture of the body. We find that the
critical crack length at which growth begins depends on the loca-
tion and orientation of the crack. The critical crack size can be
decreased by the curvature, but also increased. In chapter 6 we
calculate the path that a crack takes for several locations of the
initial crack and several aspect ratios of the bump. We find that
an incoming crack is deflected from the bump.





Part I

SPHERICAL NEMATICS

We present a theoretical study of the director fields
and energetics of spherical nematic liquid crystal shells
with degenerate planar boundary conditions. There are
divalent, trivalent and tetravalent shells with two, three
and four defects at the outer boundary, respectively.
For ultrathin trivalent shells, we find that the defects
are optimally arranged in an isosceles triangle. We cal-
culate the energy and the stability of this trivalent
ground state, and compare this with the tetravalent
and divalent defect configurations. For thick divalent
shells with two pairs of surface defects, we investigate
the effect of thickness inhomogeneity. The pairs of de-
fects can undergo abrupt transitions from a configu-
ration of maximum separation to a state in which the
defects are confined to the thinner hemisphere. We con-
struct a phase diagram that maps out the stability and
coexistence of these two configurations as a function
of shell thickness and thickness inhomogeneity. Our re-
sults compare favourably with the experimentally ob-
served transitions in nematic double emulsion droplets
and explain their hysteretic character.





2
THIN SHELLS

2.1 introduction

One of today’s major drives in condensed matter physics is the as-
sembly of mesoscale particles into complex structures [29]. By cre-
ating anisotropy in the interparticle interactions, one can increase
the complexity and functionality of these structures. A proposed
way to achieve anisotropic interactions is by coating a spherical
particle or droplet with an orientationally ordered phase [70]. The
topology of the sphere enforces defects in the coating. Since these
defects are very distinct regions on the sphere, they are suitable
for the attachment of linkers acting as bonds between the particles.
For instance, in the case of a vector order parameter, topology re-
quires two defects, creating a particle with two binding sites. In
fact, de Vries et al. have already assembled such divalent nanopar-
ticle into chains [20]. Nematic rather than vector order allows for
defects of charge one-half, referring to the 180 degrees rotation ex-
perienced by the local average orientation of the nematic molecules,
n, when encircling the defect. In fact, it is energetically favourable
for defects of charge one to split into two charge one-half defects
(Fig. 13a). Nematic order on the sphere has four topological de-
fects of charge one half in its ground state, such that the sum of
all charges is equal to 2, the Euler characteristic of the sphere, as
demanded by the Poincare-Hopf theorem. Their mutual repulsion
drives them as far away from each other as possible: at the vertices
of a regular tetrahedron [57]. Thus, chemical functionalisation of
the defects in the ground-state of two-dimensional nematic liquid
crystal on the sphere would thus result in the diamond structure
[70]. In section 3.2, however, we show the results of experimen-
tal investigations of nematic shells generated by trapping a water
droplet inside a nematic droplet, revealing the existence of shells
with valencies of two and three [24, 56, 41], besides the tetravalent
shell. In the remainder of this chapter, we will focus on the defect
separations (section 2.3), energetics (section 2.4) and fidelity of the

31
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(b)

(a)

Figure 13: (a) In a two-dimensional nematic a s = 1 topological defect
(black dot in left panel) can lower its elastic energy by split-
ting into two s = 1/2 defects (purple dots in right panel).
(b) A singular line (left panel) spanning the shell with a
winding number of one at the boundaries is topologically
and energetically unstable. The singular core is indicated by
a black dot in the top view shown in the top panel and by
the vertical bold line in a cut shown in the bottom panel.
One way of reducing the elastic energy escaping in the third
(vertical) dimension (right panel), thereby leaving a point
defect (green dot), called boojum, on each boundary.

bonds (section 2.5) in thin spherical nematic shells with three-fold
valence. We will make a comparison with divalent and tetravalent
shells and find the optimal valency as a function of shell thickness
as well as the energy barrier between shells of different valency
(section 2.4). We will conclude in section 2.6.

2.2 divalent, trivalent and tetravalent shells

In this section we will present the experiments, performed by
Teresa Lopez-Leon and Alberto Fernandez-Nieves, that corrobo-
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rate our calculations in this chapter and chapter 3. To fabricate
spherical nematic shells, one generates double emulsions with a
microcapillary device [103]; these consist of a nematic drop that
contains a smaller aqueous drop, all inside an aqueous continu-
ous phase. Both the inner and outer water phases contain 1 wt%
polyvinyl alcohol (PVA), which stabilises the emulsion against coa-
lescence and enforces tangential anchoring of the rod-like molecules
of the nematic liquid crystal, pentylcyanobiphenyl (5CB). The re-
sulting double-emulsion drops are characterized by an outer ra-
dius, R, of around 50 µm and an inner radius, a, that are varied
to produce shells of different average thicknesses, h = R− a, as
schematically shown in Fig. 10. With this microfluidic method the
thinnest shells that one can generate have h ≈ 1 µm. However, it is
possible to significantly reduce this value by increasing the volume
of the inner drop once the double emulsion is formed. One achieves
this by inducing a difference in osmotic pressure between the in-
ner and outer water phases through the addition of a salt, CaCl2.
As pentylcyanobiphenyl has a finite permeability to water, an in-
coming flow of water from the outer phase can be established if
the inner drop contains a higher salt concentration than the outer
phase. By controlling this difference, one can control the kinetics
of the process and ultimately the thickness of the shells.
Imaging the thinnest shells using optical microscopy and chang-

ing the focal plane of our microscope allows for precise determi-
nation of the position of the four defects; they are distributed
throughout the shell, as shown by the images in Fig. 14a,b and by
the schematic diagram in Fig. 14c. To obtain a meaningful value
of the angular positions, one determines the position of all defects
in a large number of shells with similar inner and outer drop sizes
and plot the distribution for the central angle, θij , which is the an-
gle subtended by two defects (i and j) with respect to the centre
of the drop, and the distribution for the surface angle, α, which is
the angle subtended by two defects with respect to another defect.
The resulting distributions are both Gaussian; they are centred
at θij = 109◦ and α = 60◦ and have a width of ∆θij = 20◦ and
∆α = 12◦, as shown in Fig. 14d,e. The defects are thus located on
the vertices of a regular tetrahedron.
There coexist divalent configurations (Fig. 15a,b) which, instead

of four charge half defect lines spanning the shell, have two pairs of
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Figure 14: (a), (b) Cross-polarised images of a very thin shell with four
s = 1/2 defects. In (a), two of the four defects are in focus,
whereas in (b) we focus on the upper defect. (c) Schematic
diagram of the observed arrangement of the four defects.
(d), (e) Histograms for the central angle, θij , and the surface
angle, α, between defects. Ref. [56].

point defects, called boojums, residing on the boundary surfaces.
They arise because the thickness of the nematic coating is nonzero:
the elastic energy of a singular line with a winding number of one
at the boundary is reduced by escaping in the third dimension,
as is illustrated in Fig. 13b. This route thus forms an alternative
to splitting into s = 1/2 lines spanning the shell. The defects
maximise their distance and align, on average, along the diameter
of the drop (Fig. 15a,b), as schematically shown in Fig. 15c, and
by the central angle distribution in Fig. 15d.
Surprisingly, also structures containing both boojums as well

as charge one-half disclination lines coexist (Fig. 16a-c). These de-
fects structures have three-fold valence yet they are still consistent
with Poincare-Hopf’s theorem, because the total topological charge
of the defects at the boundary is 1 + 1/2 + 1/2 = 2, the Euler
characteristic of the sphere. The three defects form an isosceles
triangle, where the unequal angle originates from the single s = 1
defect, as schematically shown in Fig. 16d. The distribution for
the two equal angles is centred at α2 = 68◦ and has a width of
∆α2 = 15◦, as shown in Fig. 16e, whereas the distribution of the
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Figure 15: (a), (b) Cross-polarised images of a very thin shell with two
s = 1 defects. (c) Schematic diagram of the observed ar-
rangement of the two defects. (d) Histogram of the central
angle, θ12. Ref. [56].

unequal angle is centred at α1 = 46◦ and has a width of ∆α1 = 12◦,
as shown in Fig. 16f. Again, also this energetically stable defect
configuration arises because of the thickness of the nematic coat-
ing is finite, and the energy barrier separating it from other defect
structures will be reported in this chapter. The observed isosceles
arrangement of the two s = 1/2 defects and the s = 1 defect
is consistent with our calculation of the equilibrium configuration
for these three defects on a spherical surface in the next section,
which corresponds to α1 = 66◦ and α1 = 48◦.
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Figure 16: (a), (b) Cross-polarised images of a very thin shell with three
defects, two s = 1/2 and an s = 1. In (a), one of the three
defects is clearly in focus, with another defect slightly below
this one. In (b) the third defect is in focus. (c) Schematic
diagram of the three-dimensional arrangement of the three
defects. (d) Isosceles triangle formed by the three defects,
with α1 the unequal surface angle. (e),(f) Histograms of the
surface angles, α1 and α2. Ref. [56].

2.3 trivalent ground state

The free energy of a thin curved nematic film (see section 1.4)
reads

F =
1
2

∫
dA

[
k1
(
Din

i
)2

+ k3 (Dinj −Djni)
(
Dinj −Djni

)]
,

(80)

where k1 and k3 are the two-dimensional splay and bend elastic
constants and where Di is the covariant derivative. Eq. (80) can be
recast in terms of defect separation rather than the director field
n. For a spherical nematic, the elastic energy in the one-constant
approximation k = k1 = k3 reads (see eq. (78))

F = −πk
Z∑
i<j

sisj log (1− cos θij) +
Z∑
i

Ei (R) , (81)
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where si is the topological charge of defect i, θij is the angular
distance between defects i and j, and Z is the number of defects
or valence number. The self-energy Ei (R) is given by

Ei (R) = πKs2
i log

(
R

a

)
+Ec, (82)

where R is the radius of the sphere and a is a small scale cut-off
preventing a divergence of the energy. Ec represents a core en-
ergy, which depends on the details of the microscopic interactions.
The self-energy is responsible for the splitting of +1 defect in an
ideal two-dimensional nematic, because of its proportionality with
s2
i . The other term in eq. (81) describes the repulsion between
like-charged defects. We wish to find the optimal location for the
defects in a thin homogeneous shell given that s1 = 1, s2 = 1

2 and
s3 = 1

2 . This requires minimising the interaction term of the free
energy. We minimise the interaction energy with respect to three
independent variables, namely θ12, θ13 and the angle, C, subtended
by the two curved triangular sides (circular arcs) meeting at the
charge-one defect. If we apply the law of cosines on the sphere:

cos θ23 = cos θ12 cos θ13 + sin θ12 sin θ13 cosC, (83)

we can eliminate θ23 in favour of C in the free energy, and de-
mand ∂F

∂θ12
= ∂F

∂θ13
= ∂F

∂C = 0. From the latter equation, ∂F∂C = 0,
we obtain C = π, implying that the defects lie on a great circle
(see Figs. 17 and 18). There is always a circle that can be drawn
through three points on a sphere; the maximal radius of this circle
reflects the repulsive nature of the defects. With some straightfor-
ward algebra the other two equations, ∂F

∂θ12
and ∂F

∂θ13
= 0, then lead

to

θ12 = θ13 = π− arccos 2
3 ≈ 0.73π ≈ 131.8◦, (84)

θ23 = 2 arccos 2
3 ≈ 0.54π ≈ 96.4◦. (85)

We thus find that the defects are located at the vertices of an
isosceles triangle rather than equilateral triangle, shown in Figs.
17 and 18. This less symmetric configuration arises because of the
asymmetry in the magnitude of the charges of the defect: the two
+1/2 defects repel each other less strongly than a charge one and
charge one-half such that θ12 and θ13 are larger than θ23. This is
in marked contrast with the regular tetrahedral configuration in
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Figure 17: Four views on the bend texture of the director field on
the sphere containing a +1 defect and two +1/2 defects
arranged in an isosceles triangle with θ12 = θ13 ≈ 132◦,
θ23 ≈ 96.4◦, α1 ≈ 48◦ and α2 = α3 ≈ 66◦.

which all the defects are equidistant, because all four charges are
indistinguishable. The fact that s2 and s3 are of equal magnitude
is still reflected in the equal length of two of the sides (θ12 = θ23)
of triangle. Perhaps surprisingly, the distance between two charge
one-half defects is smaller in the trivalent state than in the more
‘crowded’ tetravalent state. The surface angles of the flat triangle
can be found be simple trigonometry: by realising that the triangle
formed by two defects and the centre of the sphere is also an
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Figure 18: Four views on the splay texture of the director field on
the sphere containing a +1 defect and two +1/2 defects
arranged in an isosceles triangle with θ12 = θ13 ≈ 132◦,
θ23 ≈ 96.4◦, α1 ≈ 48◦ and α2 = α3 ≈ 66◦.

isosceles triangle (of which two sides have a length equal to the
radius) we obtain

α1 = π− θ12 = arccos 2
3 ≈ 48.2◦ (86)

α2 = α3 =
θ12
2 =

π

2 −
arccos 2

3
2 ≈ 65.9◦ (87)

This is in close agreement with the experimental values reported in
the previous section, which are are α1 ≈ 68◦ and α2 ≈ 46◦. Given
the defect locations the energy-minimising director field can be
found by means of a stereographic projection of the planar solu-
tion [57]. The bend texture is displayed in Fig. 18. Rotating this
director field over an angle α yields the same free energy in the one-
constant approximation. The splay texture (Fig. 17) corresponds
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to α = π/2. We note that the escape in the third dimension, in
which singular region is distributed over a larger distance of the
order of the thickness, occurs in shells of finite thickness and is
somewhat different than the problem of three point defects in a
two-dimensional nematic solved above. However, we expect that
the defect separations will be marginally affected as long as the
thickness is small compared to the radius.

2.4 valence transitions

We will now proceed with an estimate of the energy of the trivalent
shell when this escape is taken into account. In doing so, we follow
the arguments in ref. [105]. We first consider the energy when
three singular lines are spanning the shell at angular distances
reported above. We estimate this energy as the product of the
two-dimensional result and the thickness, h, thus effectively taking
k = Kh:

E′Z=3 = πKh
[(

1 + 2× 1
4

)
log

(
R

a

)
− 0.54 + 3Ec

πKh

]
. (88)

A heuristic yet adequate method to include the escape is to replac-
ing the microscopic cut-off by the thickness of the shell, since the
singular core is spread out over spatial dimensions of the order of
h. To account for the pair of boojums an energy 4.2Kπh is added
[11, 105, 41]. We then obtain

EZ=3 = πKh
[
log

(
R

h

)
+

1
2 log

(
R

a

)
+ 3.65 + 2Ec

πKh

]
. (89)

By comparing this to the energy of a shell with four disclination
lines

EZ=4 = πKh
[
log

(
R

a

)
− 0.43 + 4Ec

πKh

]
, (90)

we can find the critical value for h above which the trivalent defect
configuration is energetically preferable over the tetravalent one:

h∗34/R = e4.08−2Ec/πKh
√
a

R
(91)

Similarly, one can find the critical value for h below which the
trivalent defect configuration is energetically preferable over the
divalent one by setting EZ=3 equal to the approximation of the
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energy of a shell with two diametrically opposite pairs of surface
defects, EZ=2. Again, we will first find the energy of a shell with
two singular lines

E′Z=2 = πKh
[
2 log

(
R

a

)
− 0.69 + 2Ec

πKh

]
, (92)

after which we apply the same trick as we used to find EZ=3 to
obtain

EZ=2 = πKh
[
2 log

(
R

h

)
+ 7.69

]
. (93)

We find a very similar value

h∗23/R = e4.04−2Ec/πKh
√
a

R
. (94)

The energy as a function of thickness is plotted in Fig. 19 for
all three different valencies. Since h∗23 < h∗34 there is no h for
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Figure 19: Elastic energy as a function of shell thickness for divalent
(red), trivalent (green) and tetravalent (blue) defect config-
uration for R/a = 105 and Ec = 0. Either the divalent or
tetravalent configuration, but not the trivalent configuration,
is lowest in energy.

which the trivalent shell has lower energy than both the divalent
and tetravalent shell. The energy barriers between them however
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are very large. The energy barrier for going from the trivalent to
tetravalent shell lies in undoing the escape and is thus the differ-
ence between E′Z=3 and EZ=3:

∆E3→4 = πKh

(
log

(
h

a

)
− 4.19 + Ec

πKh

)
. (95)

The energy barrier for going from the trivalent to tetravalent shell
lies in overcoming the repulsion between the two +1/2 defects and
can thus be estimated by the difference between E′Z=2 and E′Z=3:

∆E3→2 = πKh
(1

2 log
(
R

a

)
− 0.15− Ec

πKh

)
. (96)

Since K ≈ 10−11N , for a thin shell with h = 1 µm, these barriers
are four orders of magnitude larger than the thermal energy scale
(at room temperature), kBT , where T denotes temperature and kB
is Boltzmann’s constant, thus providing stability of the trivalent
state. Valence transitions are unlikely to occur.

2.5 bond fidelity

In this section, we will consider the fidelity of the three bonds by
considering its robustness against thermal fluctuations. We will
expand the energy around the equilibrium values for the zenith and
azimuthal angles, {θ0

i ,φ0
i }. We parametrise the departures from

the equilibrium angles with a 2Z-component vector q, whose first
three components are the deviations along the lines of longitude
of the sphere and whose final three components are the deviations
along the lines of latitude of the sphere. We thus have

qi = δθi, (97)
q3+i = δφi sin θi. (98)

Again we employ the law of cosine on the sphere:

cos θij = cos
(
θ0
i + qi

)
cos

(
θ0
j + qj

)
+ sin

(
θ0
i + qi

)
sin

(
θ0
j + qj

)
× cos

(
φ0
i − φ0

j +
q3+i
sin θ0

i

− q3+j
sin θ0

j

)
, (99)
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to rewrite F in eq. (81) as an expansion to quadratic order in q:

F = F
(
θ0
i ,φ0

i

)
+

1
2
∑
ij

Mijqiqj +O
(
q4
)

. (100)

The 6× 6 matrix M can thus be found by

Mij =

(
∂2F

∂qi∂qj

)
qi=qj=0

. (101)

This calculation is performed without loss of generality upon choos-
ing the ground state defect locations to be on the equator, i.e.
θ0
i = π/2. We diagonalise this matrix:

M = UDUT . (102)

The matrix D has the following eigenvalues on the diagonal:

{λi} =
πk

20 {0, 0, 0, 15, 17, 18}. (103)

The columns of the matrix U are the corresponding orthonormal
eigenvectors, {ui}, and UT is the transpose of U . The eigenvec-
tors belonging to the three zero eigenvalues represent rigid body
rotations. The other eigenvectors are

u4 =



0
0
0
0
− 1√

2
1√
2


, u5 =



4√
34
3√
34
3√
34

0
0
0


, u6 =



0
0
0√

2
3

1√
6

1√
6


. (104)

The fourth and sixth eigenvalues also correspond to deformations
that keep the defects located at a great circle. The fourth one cor-
responds to a displacement of the charge one-half defects such that
their distance to the charge one defect grows or shrinks in equal
manner and hence preserves the isosceles shape of the triangle (Fig.
20a). The sixth eigenvalue corresponds to a mode of deformation
that does not posses this property, thus breaking the symmetry of
reflection across the bisector of the distinct angle (Fig. 20c). The
mode of deformation corresponding to the fifth eigenvalue, how-
ever, retains the isosceles shape of the triangle, but shrinks the
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Figure 20: Schematics of the three non-trivial eigenmodes correspond-
ing to (a) u4, (b) u5 and (c) u6. The defects (represented by
dots) continue to lie on a great circle in (a) and (c), but not
in (b). The defects continue to form an isosceles triangle in
(a) and (b), but not in (c).

size of the triangle as the defects do not lie on a great circle any-
more (Fig. 20b). We change the basis from qi to wi, which is the
departure from the trivalent ground state in the i-th eigendirection:

qi = Uijwj . (105)

This basis transformation yields to quadratic order in wi:

F = F
(
θ0
i ,φ0

i

)
+

1
2λ4w

2
4 + λ5w

2
5 + λ6w

2
6. (106)

By equipartition, each term contributes 1
2kBT . The eigenvalues

corresponding to the trivalent modes of deformation are equal or
larger than the the tetravalent ones (which are 3

8πk and 3
4πk [70,

105]): the trivalent ground state is thus somewhat better protected
against thermal fluctuations.

2.6 conclusion

In a spherical nematic shell of finite thickness a stable defect struc-
ture with two s = 1/2 lines and one pair of boojums is observed
experimentally, besides the bipolar and regular tetrahedral con-
figuration. If the shell is thin and homogeneous in thickness, the
repulsive interdefect interaction pushes the defects to lie on a great
circle. The strength of the interaction depends on the charges of
the defects. Consequently, the defects are located at the vertices of
an isosceles triangle rather than an equilateral triangle, in contrast
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to the tetravalent ground state in which the defects are equidis-
tant. In the energetically most favourable trivalent configuration,
we obtain for the central angles θ12 = θ13 = 0.73π, θ23 = 0.54π
and for the angles in the (flat) isosceles triangle α1 = 48◦ and
α2 = α3 = 66◦. These values are in good agreement with experi-
mental values. Estimations of the elastic energy show that there is
no shell thickness for which the trivalent ground state is lower than
both the tetravalent and divalent ground state. However, there are
large energy barriers to provide stability for the trivalent state once
it is created.





3
THICK SHELLS

3.1 introduction

Many systems in condensed matter physics and elasticity can be
treated as two-dimensional, though only very few, like graphene
[74] and colloidal crystals at liquid-liquid interfaces [21, 4, 34],
are truly monolayers. The theory of plates and membranes [44],
superfluid [102] and liquid crystal films [6] can all be neatly de-
scribed by a reduction of the number of spatial dimensions from
three to two by assuming that the thickness is small compared
to the other two dimensions and approximately constant. This re-
duction of dimensions usually simplifies the analysis significantly,
because the number of variables to solve for is reduced and in addi-
tion one can employ well developed mathematical machinery such
as complex analysis that is well suited to tackle two-dimensional
problems. For instance, the use of conformal mappings has been
applied successfully in superfluid films [102]. Another example of
the use of a conformal mapping was in the study of the tetravalent
defect configuration in a two-dimensional nematic on a spherical
surface [57]. From the previous chapter (chapter 2) we learned
that a finite shell thickness allows for shells with different valency.
Experiments on nematic double emulsion droplets also show that
the thickness inhomogeneity of the shell plays a crucial role [56].
Since the density difference between the inner drop and the liquid
crystal, buoyancy displaces the inner drop out of the centre of the
larger drop along the gravitational direction, as shown schemati-
cally in Fig. 10. This leads to a rich variety of defect structures, as
shown in Fig. 21. One of the striking manifestations of the inho-
mogeneity are very abrupt confinement and deconfinement transi-
tions in shells with two pairs of surface defects, called boojums1.
When the shell is rather thick and homogeneous, the two pairs

1 At this point it is interesting to note that in the solid analogue of the liquid
crystal shell, thickness inhomogeneity is also important. It affects the buckling
and folding of these solid capsules [16].

47
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A CB

D FE
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Figure 21: Defect evolution with thickness inhomogeneity. Cross-
polarised images illustrating the various angular configura-
tions of the defects in shells with four defects (A-C), shells
with three defects (D-F) and shells with two defects (G-I) for
different values of the shell thickness. Thickness and thick-
ness inhomogeneity increase from left to right. Ref. [56].

are aligned diametrically (Figs. 11a and 21I). However, upon in-
creasing the thickness inhomogeneity beyond a critical value, one
pair migrates rapidly toward the other pair such that eventually
all defects are confined to the thinnest section of the shell (Figs.
11b, 11c and 21G-H). This migration is in this chapter called the
confinement transition and the reverse process, in which the boo-
jum pairs maximise their angular separation, is referred to as the
deconfinement transition. The investigation of these phenomena,
and more generally the theoretical study of the director fields and
energetics of inhomogeneous divalent nematic shells, is the main
concern of this chapter. Although the thickness truly makes this
a three-dimensional problem, we are able to use two-dimensional
techniques such as conformal mappings to find an Ansatz for the
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director field in spherical shells. This method is presented in detail
in section 3.2. In section 3.3, we study the homogeneous shells as a
function of thickness, taking into account the elastic anisotropies.
In section 3.4, we construct a phase diagram for inhomogeneous
shells that maps out the stability and coexistence of the confined
and deconfined configurations as a function of shell thickness and
thickness inhomogeneity. Our findings are shown to be in qualita-
tive agreement with recent experimental studies. Finally, the effect
of elastic anisotropy on the deconfinement transition is briefly dis-
cussed in the concluding section 3.5.

3.2 director fields in divalent nematic shells

The experimental system under consideration is a nematic double
emulsion droplet: a nematic liquid crystal droplet of radius R that
encapsulates a smaller water droplet of radius a, as depicted in Fig.
10 and discussed in section . We defined a thickness h ≡ R− a of
the shell. Since in general the displacement of the inner water
droplet out of the centre of the nematic droplet, ∆, is nonzero, h
should be thought of as an average quantity. A surfactant or poly-
mer is added to the inner and outer water phases for two reasons.
First of all, it stabilises the double emulsion droplet, because it
prevents the inner water droplet to coalesce with the continuous
water phase. Secondly, it anchors the nematic molecules parallel
to the interfaces. In modelling this experimental system we will
employ elasticity theory for nematic liquid crystals, in which one
constructs a Frank free energy functional as an expansion in spa-
tial distortions of the local average orientation of the molecules,
i.e. the unit director field, n (x), that respect the symmetries of
the nematic liquid crystal [18, 40]:

F [n (x)] =
1
2

∫
dV

(
K1 (∇ · n)2 +K2 (n · ∇× n)2

+ K3 (n×∇× n)2)−K24

∫
dS · (n∇ · n + n×∇× n) ,

(107)

provided that we assume that these deformations are small on
the molecular length scale. Here, K1, K2, K3 and K24 are elastic
constants measuring the amount of splay, twist, bend and saddle-
splay deformations respectively. In most of the work presented, we
will work in the one-constant approximation, in which the splay,
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twist and bend elastic constants are taken to be equal: K = K1 =

K2 = K3. Then, eq. (141) reduces to

F [n (x)] =
1
2K

∫
dV (∂inj)

2

−
(
K24 −

1
2K

) ∫
dS · (n∇ · n + n×∇× n) .

(108)

Furthermore, we discard the surface term in eq. (108), effectively
taking 2K24 = K. For a typical droplet size of 50 µm the an-
choring energy is much larger than the total elastic energy. There-
fore, we can take the preferred tangential alignment of the ne-
matic molecules at the interface as a constraint, thus establishing a
boundary condition complementing the free energy. Our approach
to minimising the free energy with respect to the director field, will
be to find a realistic Ansatz given certain locations of the defects.
By varying these locations for different shell geometries we obtain
the energy landscape as a function of defect positions, thickness
and thickness inhomogeneity. The technique we employ to obtain
the Ansatz is the method of conformal mappings. With the inverse
stereographic projection we can find an Ansatz for a director field
in a homogeneous shell (section 3.2.1). Then, by using an electro-
static analogy we can expand the Ansatz to the inhomogeneous
case (section 3.2.2). An additional numerical minimisation takes
care of the escape of the disclination lines in the third dimension.

3.2.1 The inverse stereographic projection and the Ansatz for the
homogeneous shell

The Ansatz for the director n of the homogeneous bipolar shell,
with two straight disclination lines along the z-axis, simply reads

n (x) = cosα θ̂+ sinα φ̂, (109)

where θ̂ and φ̂ are the unit vectors corresponding to the zenith, θ,
and azimuthal, φ, angles respectively. Note that α is the angle over
which n = θ̂ is rotated at each point on the sphere with respect to
an orthonormal reference frame. Thus, the director fieldlines for
α = 0 and α = π/2 correspond to the meridians and circles of
latitude. To find the Ansatz for any other locations of the disclina-
tion lines, however, we perform an inverse stereographic projection
(Fig. 22). A director field in the flat uv-plane (Fig. 23), minimising
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Figure 22: The inverse stereographic mapping given by eq. (248) of the
the uv-plane onto the sphere with radius R.

the free energy (see appendix A), is projected onto the concentric
surfaces of spheres with radii, R, varying between a and R, i.e.
a ≤ R ≤ R, that fill up the shell. Hereby, angles are preserved, i.e.
this mapping is conformal. This director field contains two charge-
one point defects, as we eventually wish to construct an Ansatz
with two charge-one line defects spanning the shell. We find (see

Figure 23: (a) Point defects (red dots) in the uv-plane located at (ui, 0).
The angular director field, Φ (r) is the sum of the single
defect solutions Φi = ωi. (b) Schematic of the resulting
fieldlines.

appendix A)

n = cos (Φ− φ) θ̂+ sin (Φ− φ) φ̂. (110)
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with Φ given by

Φ = α+
∑
i=1,2

arctan (Yi,Xi) , (111)

Xi = tan
(
θ

2

)
cosφ− sgn (ui) tan

(
θi
2

)
, (112)

Yi = tan
(
θ

2

)
sinφ, (113)

as the director field on the sphere, depicted in Fig. 24. In ref. [57] it
was shown that this field on the sphere minimises the free energy
in the one-constant approximation, provided that it possesses two
charge-one defects. They are located at zenith angles

θi = 2 arctan
(
|ui|
2R

)
. (114)

At the same time this expression is an Ansatz for a homoge-

Figure 24: Top view of the director field on the sphere, given by eq.
(110).

neous shell with two straight disclination lines spanning the shell,
provided we build it out of concentric spheres of radius R. The di-
rector lies along the spheres, including the special case that these
spheres are the surfaces of the inner or outer droplets. Therefore,
the tangential boundary conditions are satisfied.

3.2.2 An electrostatic analogy and the Ansatz for the inhomoge-
neous shell

The concentric spheres that fill up the homogeneous shell are dis-
placed if the shell is inhomogeneous. Moreover, the disclination
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lines are no longer straight. To construct an Ansatz for the di-
rector in inhomogeneous shells we need to find equations for the
displaced spheres and the defect lines. For this, we exploit an elec-
trostatic analogy, namely, calculating the equipotential (solid in
Fig. 25) and electric (dashed green) field lines of an infinitely long
charged line running parallel to a conducting plane (blue) at a
distance d. By the method of images, solving this electrostatic

Figure 25: Equipotential (solid) and field (dashed green) lines of an in-
finitely long charged line, indicated with a cross, running
along the y-direction, parallel to a conducting plane (blue)
at a distance d. The two equipotential circles, drawn in bold,
correspond to two non-concentric droplets whose centres, in-
dicated by dots, are displaced by ∆.

problem is equivalent to solving for the equipotential and electric
field lines of two oppositely charged parallel running cylinders, or,
equivalently, a 2D point charge and its mirror charge. These can
be extracted from the complex potential [91, 30]

ψ (w) = log
(
w+ id

w− id

)
. (115)

where w = x+ iz is a complex number. Note that ψ is a confor-
mal transformation, just like the inverse stereographic projection
is, mapping a region bounded by two non-concentric circles into
a vertical strip (see appendix B). Thus, the level curves of the
real and imaginary parts of ψ (w) are the equipotential and elec-
tric field lines, respectively. These two families of orthogonal lines,
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together forming what is known as an isothermic net, read math-
ematically

<[ψ (w)] = log
∣∣∣∣∣w+ id

w− id

∣∣∣∣∣ = constant, (116)

=[ψ (w)] = arg
(
w+ id

w− id

)
= constant. (117)

We see that eq. (116) describes circles of Apollonius (see appendix
B) with inverse points ±id. We can rewrite it as

x2 + (z − η)2 = R2, (118)

with radius, R, and displacement with respect to the origin, η,
which are related by

R2 = η2 − d2. (119)

Rotating the circular equipotential lines around the z-axis creates
the non-intersecting spheres. By choosing two of these spheres
(drawn in bold in Fig. 25) as the surfaces of our inner and outer
droplets in addition to a choice of d, we can fix the geometry. The
relative displacement of the inner droplet with respect to its con-
centric position, ∆, is given by

∆ = ηa − ηR, (120)

where ηa and ηR are the vertical displacements from the origin of
the inner and outer spheres, respectively. We take η < 0, such that
∆ > 0. This implies that the thinnest part of the shell is at the top,
like in Figs. 25 and 10. The other spheres fill up the shell. Since
the spheres are the surfaces of revolution of the circles around the
z-axis, we obtain the equation for the spheres simply by addition
of y2 to the left hand side of eq. (118):

x2 + y2 + (z − η)2 = R2. (121)

Two independently chosen electric field lines will serve as discli-
nation lines. These lines run perpendicular to the equipotential
lines, and thus perpendicular to the surface of the inner and outer
droplet, as is demanded by the tangential boundary conditions.
Similar to the calculation of the equipotential lines, one can obtain
the equations for the electric field lines from eq. (117) (appendix
B). We find that the electric field lines are also circles:

(x− ε)2 + z2 = S2, (122)



3.2 director fields in divalent nematic shells 55

with radii, S, and displacements, ε, now in the x-direction, which
are related as follows:

S2 = ε2 + d2. (123)

Since only the circular arc that is inside the shell matters, we care
about the points of intersection of the two defect lines with the
spheres that fill up the shell. We would like to find the zenith
angle on each sphere, βi , that these points of intersection make.
We assign a different character than θi, because βi does not have
a constant value as it depends on the displacement (or radius) of
the sphere. Let us therefore refine our definition of θi as the zenith
angle of the defect on the outer-most sphere. Now, the following
geometrical relations hold:

x = ±R sin βi, (124)
z = η+R cos βi. (125)

Then, by substituting x and z in eq. (122) and eliminating d in
favour of R by applying eq. (119) we find an expression for εi as
a function of βi, η and R (assuming sin βi 6= 0):

εi = ±
R+ η cos βi

sin βi
= ±R+ ηR cos θi

sin θi
(126)

where the last equality follows from the constantness of εi, as we
are moving along the same circle. We find the solution for βi

βi = 2 arctan
εi +

√
ε2i + d2

R− η

 . (127)

Not surprisingly, βi is increasing as the radius of the sphere is
decreasing. If θi = 0 or θi = π, the disclination lines are straight
and βi = 0 or βi = π, respectively. Next, we find η as a function
of the spatial coordinates x, y and z, since it is the only variable,
besides the parametric dependence on d and θi, on which βi is
depending. Put differently, given some point in space, on which
sphere is it? To answer this question we resort to eq. (121), yielding
the following result:

η (x) =
x2 + y2 + z2 + d2

2z . (128)

We have now acquired all the necessary information to construct
the Ansatz for the director field in an inhomogeneous shell. We
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take the Ansatz for the director field in a homogeneous shell, eq.
(110), and make the following replacements

θi → βi, (129)
z → z − η. (130)

The first substitution concerns the defect lines. The second ac-
counts for the displacement of the spheres and implies the substi-
tution

θ → β = arccos
(

(z − η)
x2 + y2 + (z − η)2

)
, (131)

with β being the zenith angle on the displaced sphere. Finally,
together with eqs. (126)-(131) we obtain the Ansatz for the director
in inhomogeneous shells with two charge-one disclination lines:

n = cos (Φ− φ) β̂+ sin (Φ− φ) φ̂. (132)

where Φ is now given by

Φ = α+
∑
i=1,2

arctan (Yi,Xi) , (133)

Xi = tan
(
β

2

)
cosφ− sgn (ui) tan

(
βi
2

)
, (134)

Yi = tan
(
β

2

)
sinφ. (135)

The disclination lines can be put anywhere except for the south
pole. In the case of a bipolar defect arrangement, i.e. θi = 0 and
θi = π, we draw on each sphere the director given by eq. (109),
with the substitution in eq. (131) and find an Ansatz for the bipolar
inhomogeneous shell that reads

n (x) = β̂ = cos β cosφx̂ + cos β sinφŷ− sin βẑ. (136)

The Ansatz is then subjected to a numerical minimisation, em-
ploying the finite element method [93] suitable for non-trivial ge-
ometries, to ensure the escape of the disclination lines leaving a
point defect at the inner and outer surface for each line (see Figs.
26a and 26b). We refine the mesh at these defects to obtain good
accuracy on the rapidly changing director (Fig. 26c).
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(a) (b) (c)

Figure 26: (a,b) Director field of the shell for (a) h
R = 0.2 and (b) h

R =

0.77. The disclination lines escape in the third dimension
leaving two pairs of boojums. Each pair is encircled in red
in (a). The director field in (b) resembles a slightly distorted
director field of a single nematic droplet. (c) A typical mesh
used in the numerical minimisation is refined around the
locations of the defects.

3.3 energetics of homogeneous shells

First, we calculate the free energy for the Ansatz in (109), in which
the defects are located at opposite poles on the sphere, by inte-
grating the free energy density over the spherical shell except for
a cut-off region determined by 0 < θ < b

r and π− b
r < θ < π with

r the radial coordinate. The result reads

F =2π
(
K1 cos2 α+K3 sin2 α

)
(
R log 2R

b
− (R− h) log 2 (R− h)

b
− 2h

)
+ 2π (K3 − 2K24) h (137)

Ki=K−−−−→2πK
(
R log 2R

b
− (R− h) log 2 (R− h)

b
− 2h

)
.

(138)

Note that splay and bend deformations can be transformed into
each other by tuning α, but the total energy is unchanged if K1 =

K3, as is shown graphically in Fig. 27a. Furthermore, note that
the saddle-splay term is proportional to the thickness, in contrast
to the splay and bend energy which both contain a logarithmic
divergence. We therefore expect that, as a first approach, it is
not so important in determining the defect locations. Since these
defects repel each other, for homogeneous shells we always find
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Figure 27: The splay (solid blue), bend (dashed red), and their sum
(dashed-dotted green) as a function of α when (a) θ12 = π

and (b) θ12 = 0.1π, in both cases b
R = 0.025.

this bipolar arrangement as the free energy minimum, irrespective
of thickness. Placing the defects at a different angular separation,
θ12, from each other, eq. (110), leads to an increase in the elastic
energy, since F ∼ − log (1− cos θ12) [57, 70, 105]. Moreover, the
splay and bend cannot be efficiently transferred into one another
by a global rotation (changing α), e.g. splay no longer vanishes for
α = π/2 whereas it did for eq. (109). This is presented graphically
in Fig. 27b. Note that the director field minimising the free energy
for K1 6= K3 is not equal to the Ansatz [3, 88, 23, 55, 49]. Besides
the elastic anisotropy the escape of the defect lines in the third
dimension modifies the energetics. As a result, there are two pairs
of boojums residing on the interfaces. We can effectively take the
escape into account in our calculations of the energy by replacing
the cut-off b by the thickness h and adding 4.2πKh for each pair
of boojums[105, 11]. We obtain in the one-constant approximation

F = 2πK
(
R log 2R

h
− (R− h) log 2 (R− h)

h
+ 2.2h

)
. (139)

In Fig. 28 we compare this analytical estimate with numerical re-
sults from our procedure outlined in the previous section. We find
a good agreement, in particular for small h

R , as expected. In this
regime, the free energy rises as the volume of the shell increases.
For large h

R , our result deviates from eq. (139). Remarkably, as the
thickness is increased, the free energy decreases after some critical
value, h∗/R ≈ 0.6. The size of the inner droplet, which is 2a, is no
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Figure 28: Free energy of the bipolar shell as a function of thickness.
The line is given by the analytical estimate in eq. (139).

longer larger that the scale over which the escape happens, which
is roughly h. Equating these two length scales gives a consistent
back-of-the-envelope estimate h∗/R ≈ 2/3. As a result, when h

becomes comparable to R, the inner droplet no longer forms an
obstruction that makes the shell locally look like a slab in which
the lines can escape. Rather, the point of view that a slight direc-
tor distortion is induced in a single nematic droplet (resulting in
an energy cost) is more appropriate in this regime. This cross-over
is illustrated in Figs. 26a and 26b.

3.4 energetics of inhomogeneous shells

3.4.1 Buoyancy versus elastic forces

Before we study the effect of the thickness inhomogeneity on the
mechanics of the nematic liquid crystal, we first investigate its ori-
gin. In our experiments we observe that the inner water droplet
is displaced along the vertical direction. This implies that grav-
ity plays its part, but it does not necessarily mean that it is the
density mismatch between the nematic and water that drives the
motion of the inner droplet. Another possibility would be that the
elastic forces push the droplet out of the centre, while gravity only
breaks the symmetry. To identify the origin of the thickness in-
homogeneity, we will compare the magnitude of the elastic forces
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with Archimedes force. Therefore we map out the elastic energy as
a function of the displacement ∆

h for several values of h
R , as shown

in Fig. 29. Our first observation is that the stability of this pertur-

Figure 29: The elastic free energy of the liquid crystal as a function of
the relative displacement of the inner droplet. In (a), (b) and
(c), hR = 0.6, 0.3, 0.2, respectively, the energy is minimised
when the droplet is on the periphery of the larger droplet,
resulting in an elastic force of the order of K pushing the
inner droplet outwards. (d) For a thinner shell with h

R = 0.1,
there is a restoring force on the inner droplet, driving it back
to the centre of the outer one.

bation is a nontrivial function of the thickness. For h
R = 0.2, 0.3, 0.6

we observe that the energy decreases as a function of ∆. This is
in agreement with a calculation done for h

R = 0.77 in ref. [24].
However, for a relative thin shell of h

R = 0.1 there is an elastic
minimum for ∆ = 0. Second, the magnitude of the elastic force
is less than or of the order of fe ∼ K ≈ 10−11N . This is much
smaller than the net force from buoyancy and the weight of the
droplet fb = (ρnem − ρw) gV with the volume of the water droplet
V = 4

3πa
3. For a ≈ 50 µm and a difference in density between 5CB

and water of roughly 3× 10 kg m−3 at room temperature[19], we
find fb ≈ 2× 10−10N . Therefore, we conclude that buoyancy is
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indeed responsible for displacing the inner water droplet from the
centre in our experiments. If one would try to match the density
of the nematic to the water density, as was done in some of the
experiments in ref. [24], where the density difference was brought
down to 2 kg m−3, fb and fe will be of the same order, but only
when the inner droplet is at the periphery. Also in the regime of
small a these forces will become comparable.

3.4.2 Confined and deconfined defect configurations

In the remainder of this chapter we will compare two distinct defect
configurations. In one configuration the defects are at maximum
angular separation from each other at opposite sites on the sphere.
We will refer to this as the deconfined state. In the other case
the defects are trapped or confined to the thinnest top part of the
shell. The defects are located symmetrically at an angle θi from the
vertical axis so that their angular separation is simply θ12 = 2θi
(provided that 2θi ≤ π). The energy can be estimated to grow
with the thickness of the shell where the defects are located. This
is roughly the minimal thickness at the top of the shell, for which
there is a simple geometrical relation hmin = h− ∆. From this
one immediately sees that h and ∆ take opposite roles. We thus
expect the confined state to be energetically favourable over the
deconfined state when the shell is sufficiently thin and inhomoge-
neous, i.e. low h and high ∆. This heuristic argument has led us to
a systematic study of the energy landscape as a function of defect
location. We classify three cases: I) the confined state is the only
energy minimum, see Figs. 30a and 31a; II) both the confined and
deconfined state are minima, one of them is local and the other is
global, see Fig. 30b; III) the deconfined state is the only energy
minimum, see Fig. 30c and 31b-c.

3.4.3 Phase diagram

We construct a phase diagram as a function of thickness and thick-
ness inhomogeneity. We find that for a given thickness there is
a deconfined minimum below a critical value of the relative dis-
placement ∆c

h , marked green in Fig. 32, which is monotonously
increasing with the thickness. The confined state is found to min-
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Figure 30: The free energy for a shell as a function of the central angle
between two defects on the outer surface in the confined
configuration, when (a) h

R = 0.2 and ∆
h = 0.831, (b) h

R = 0.7
and ∆

R = 0.939, (c) h
R = 0.8 and ∆

h = 0.946. Note that
for 2θi = π the defects are aligned horizontally, rather than
vertically as in the deconfined conformation. The dashed line
indicates the energy of the deconfined configuration. These
graphs suggest a confined global minimum at θ

π ≈ 0.17 in (a),
a local confined minimum at θ

π ≈ 0.1 and a global deconfined
minimum in (b) and a global deconfined minimum in (c).

imise the energy (at least) locally above another critical value, ∆d
h ,

marked in purple in Fig. 32, which is also larger for thicker shells.
Therefore, as anticipated in the previous section, we find that the
confined defect state minimises the elastic energy for thin and inho-
mogeneous shells, whereas the deconfined defect state minimises
the energy for rather homogeneous and thick shells. Since these
two critical values for ∆

h are different there exist two minima for
∆d
h < ∆

h < ∆c
h . We can thus divide the phase diagram into three

regions: a deconfined minimum-only, confined minimum-only and
coexisting region coloured purple, green and blue in Fig. 32, re-
spectively. These phases are separated by lines marking where, as
in a first-order phase transition, a local energy minimum is lost.
We remark that the energy differences between the deconfined and
weakly confined states for thin and homogeneous shells become too
small to conclude with certainty that ∆c

h goes to a finite value and
the deconfinement transition reaches ∆d

h = 0 at extremely low h.
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Figure 31: (a) Free energy of a shell of uniform thickness with h/R =

0.2, as a function of the angular perturbation of one of the
two pairs of defects, δθ. When ∆ = 0 the inner and outer
drops are concentric and θ12 = π minimises the free en-
ergy irrespective of thickness. (b) Free energy of a shell with
∆/h = 0.831, as a function of δθ. In this case, the θ12 = π

arrangement no longer minimizes the free energy. (e) Free
energy as a function of the angular perturbation from the
elastic-energy minimum, which is located at 30◦ for the shell
in (b).

3.4.4 Comparison with experiment

In this section we make a comparison with the experiments on
nematic double emulsion droplet performed in the lab of Alberto
Fernandez-Nieves. The nematic double emulsion droplets create in-
homogeneous shells, because buoyancy displaces the inner droplet
upward from its concentric position along the gravitational direc-
tion. The short-range steric repulsion from the polymer polyvinyl
alcohol (PVA), prevents the inner droplet from coalescing with the
continuous phase [56, 41]. Therefore, we assume that the thinnest
part of the shell, hmin, is effectively constant. By osmosis the thick-
ness inhomogeneity can be modified. We find

∆
h
= 1− u0

u
3

√√√√ 1− (1− u)3

1− (1− u0)
3 (140)

where u ≡ h
R and u0 is the value of u when the shell becomes

homogeneous, see appendix C. This path through the phase di-
agram is indicated in red in Fig. 32. If we traverse this path in
the direction of decreasing thickness we find that the angular sep-
aration between the defects, θ12, changes abruptly from π to a
value much smaller than that, as does the order parameter in a
first-order phase transition. In the model this occurs in both the-
ory (red squares in Fig. 33) at u/u0 ≈ 30 and in the experiment
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Figure 32: Phase diagram of the confined (green), deconfined (purple)
and coexistence phase (blue) as a function of thickness of the
shell, h

R , and thickness inhomogeneity, ∆
h . The confinement

(green), ∆c
h , and deconfinement (purple), ∆d

h , transition lines
separate these phases. The red line represents the assumed
experimental trajectory of constant hmin.

(black circles in Fig. 33) at u/u0 ≈ 20. The abruptness of the con-
finement transition is marked by the the short timescale of only
tens of seconds, compared to the hours over which the osmosis oc-
curs, in which the pair of defects located at the thicker hemisphere
moves toward the top of the shell (see Fig. 34). Upon decreasing
the thickness and consequently the thickness inhomogeneity even
further the defects spread and the angular separation increases
again. When the shell is approximately homogeneous (Fig. 35a),
the effect of confinement has weakened so much that the defects
are aligned antipodally. The axis joining them can now point in
any direction though, as shown by the two shells in Figs. 35b and
35c. In this case, the energy of the thin shell does not depend
on the orientation of this axis, in contrast to what happens for
thicker shells, whose boojums axis are aligned along the gravita-
tional direction. This also confirms that the defect deconfinement
transition in the phase diagram goes to ∆ = 0 for low h. Upon
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Figure 33: Angular separation between the defects as a function of nor-
malised shell thickness, u/u0, in the experiment (black cir-
cles) [41] and in theory (red squares). An increase (decrease)
of u/u0 is established by shrinking (expanding) the inner
water droplet. The open symbols depict the hysteresis.

reversing the path through the phase diagram, i.e. traverse the red
path in Fig. 32 in the direction of increasing thickness, we first find
that the defects move toward each other gradually. Upon increas-
ing the thickness even further we find that θ12 increases rapidly
to its maximum possible value at u

u0
≈ 50 and u

u0
≈ 80 in the

model and experiment, respectively, as the mutual repulsion be-
tween the pairs of defects becomes too large. It is thus favourable
to have one pair of boojums at the thickest part of the shell. Note
that the thickness at which this deconfinement transition occurs
is thus larger than the thickness at which the confinement transi-
tion occurs. This hysteresis between the confinement and decon-
finement transitions is due to phase coexistence. The green and
purple curves in Fig. 32 (corresponding to the confinement and
deconfinement transition) intersect the red curve (assumed experi-
mental path) at different points in the phase diagram. Finally, we
remark that we have not observed any splitting of the defects into
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Figure 34: Bright field images of a shell (top view) undergoing the con-
finement transition. (a) One defect pair, encircled in green,
is at the top of the shell before the transition. The other pair
of boojums, encircled in blue, moves from the lower hemi-
sphere in (b)-(d) to the upper hemisphere in (e)-(g).The ar-
row indicates the direction of motion. The circle is dashed if
the defect pair is located in the lower hemisphere. The time
span is tens of seconds. 2R = 133 µm and 2a = 125 µm.
Ref. [41].

disclination lines of charge one-half during this process of shell
thinning and thickening.

3.5 conclusion

In this study, we have crossed from a two-dimensional description
of a spherical nematic liquid crystal to a spherical divalent shell
with a finite thickness and possible inhomogeneity. Irrespective of
thickness, we always find an antipodal arrangement as the free
energy minimum in homogeneous shells of nematic liquid crystals.
However, this scenario changes when the shell thickness is suffi-
ciently inhomogeneous. The repulsion between the pairs of boo-
jums competes with the minimisation of the distance between the
defects within a pair. As a result, the defects undergo a confine-
ment transition to the thinnest part of the shell. Conversely, the
defects confined in the thinner hemisphere make a deconfinement
transition that maximises their separation. The critical displace-
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(a) (b) (c)

Figure 35: (a) Bright field image of two thin shells obtained after osmot-
ically shrinking the corresponding thicker shells. The loca-
tion of the defects are easily seen in cross-polarisation by (b)
focusing the shells at the top, to see the upper pair of boo-
jums, and (c) at the bottom, to see the lower pair of boojums.
The defects are a diameter away, with θ12 = π. Interestingly,
for these thin shells, the direction of the axis joining the two
pairs of boojums is not correlated with the gravitational z-
axis. The dimensions of the upper shell are 2R = 138.8 µm
and 2a = 137.5 µm, corresponding to u/u0 = 1.05. Ref.
[41].

ment of the inner droplet for which these transitions occur are
in general not equal, i.e. there is hysteresis present. These tran-
sitions are also present in our experiment, where a water droplet
encapsulates a nematic liquid crystal droplet to make a spherical
nematic shell. We have showed that these shells are inhomoge-
neous due to the buoyancy that displaces the inner droplet along
the gravitational direction. Additional to the confinement and de-
confinement transitions, a continuous evolution is observed, when
thin shells become less inhomogeneous. Though we found an excel-
lent qualitative agreement between theory and experiment for all
these phenomena, an exact quantitative agreement is still lacking,
possibly due to a lack of validity of the one-constant approxima-
tion. It would be interesting to extend this study by investigating
the role of elastic anisotropy on the defect transitions in nematic
shells. Since it is more difficult to exchange splay and bend when
the defects are confined, there will be more distortions of the type
weighted with the largest Frank constant in this state and we ex-
pect that the region in the phase diagram occupied by the confined
state will be smaller if elastic anisotropy is included. This would
imply that the confinement and deconfinement transitions occur
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at smaller thickness if K1 6= K3. It should be noted though that
the Ansatz will no longer be accurate if the elastic anisotropy is
large. Finally, it would be worthwhile to pursue a study on chiral-
ity in nematic shells, because chirality can emerge spontaneously
in geometrically confined liquid crystals (see chapter 4).



Part II

TOROIDAL NEMATICS

In this part, we present a theoretical study of direc-
tor fields in toroidal (rather than spherical) geometries
with degenerate planar boundary conditions. In con-
trast to spherical nematics in Part I, the topology does
not induce defects in nematic toroids. However, we do
find spontaneous chirality: despite the achiral nature
of nematics the director configuration shows a handed-
ness if the toroid is thick enough. In the chiral state
the director field displays a double twist, whereas in the
achiral state there is only bend deformation. The crit-
ical thickness increases as the difference between the
twist and saddle-splay moduli grows. A positive saddle-
splay modulus prefers alignment along the meridians
of the bounding torus, and hence promotes a chiral
configuration. The chiral-achiral transition mimics the
order-disorder transition of the mean-field Ising model.
The role of the magnetisation in the Ising model is
played by the degree of twist. The role of the temper-
ature is played by the aspect ratio of the torus. Re-
markably, an external field does not break the chiral
symmetry explicitly, but shifts the transition. In the
case of toroidal cholesterics, we do find a preference
for one chirality over the other – the molecular chiral-
ity acts as a field in the Ising analogy. Remarkably, an
external field does not break the chiral symmetry ex-
plicitly, but shifts the transition. Finally, we compare
theoretical findings with experimental observations of
chirality in toroidal nematic droplets.
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CHIRAL SYMMETRY BREAKING

4.1 introduction

The liquid crystal in a common display is twisted due to the ori-
entation of the molecules at the confining glass plates. By manip-
ulating this twist using electric fields, an image can be generated.
More exotic structures can emerge when the liquid crystal is con-
fined by curved rather than flat surfaces. The topology and geom-
etry of the bounding surface can drive the system into structures
that would not be achieved without the presence of external fields.
In this sense, the shape of the surface plays a role akin to that of
an external field. Thus, under confinement by curved surfaces, the
molecules can self-assemble into complex hierarchical structures
with emergent macroscopic properties not observed for flat liquid
crystal cells. However, the design principles and properties of struc-
tures generated by this geometric route are still largely unknown.
As discussed in Part I, spherical nematics have been widely studied
from experimental, theoretical, and simulation points of view and
their intriguing technological potential for divalent nanoparticle
assembly has been already demonstrated [20]. In contrast, there
are virtually no controlled experiments with ordered media in con-
fined volumes with handles, even though there has been much
interest in the interplay between order and toroidal geometries
[94, 7, 43, 28, 27, 6, 114, 84, 10]. Alberto Fernanez-Nieves and
co-workers experimentally generate stable toroidal droplets of a
nematic liquid crystal, using a continuous host with a yield stress.
This approach allows them to perform unique experiments that
probe nematic materials confined within droplets that are topo-
logically different from the sphere. We observe that the toroidal
nematic droplets formed are defect-free. However, polarised mi-
croscopy reveals a twisted nematic orientation in droplets with
planar degenerate (tangential) boundary conditions, despite the
achiral nature of nematics. This phenomenon, which we will iden-

71
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tify as spontaneous chiral symmetry breaking1, is subject of the-
oretical study in this chapter. The chirality of nematic toroids
is displayed by the the local average orientation of the nematic
molecules, called the director field and indicated by the unit vec-
tor n. Motivated by experiment, we will assume this director field
to be aligned in the tangent plane of the bounding torus. Fig. 36a
shows an achiral nematic toroid which has its fieldlines aligned
along the azimuthal direction, φ̂. In contrast, the chiral nematic
toroids in Figs. 36b and 36c show a right and left handedness,
respectively, when following the fieldlines anticlockwise (in the az-
imuthal direction). The origin of the chirality lies in two elastic ef-

Figure 36: Schematic of (a) achiral, (b) righthanded and (c) lefthanded
toroidal nematic liquid crystals. The black lines are director
field lines on the bounding torus.

fects of geometric confinement. Firstly, there is a trade-off between
bend and twist deformations. Secondly, another type of director
distortion called saddle-splay couples the director to the curvature
of the boundary, and can consequently favour the chiral state.
These nematic toroids share similarites with polymer bundles

[5, 43, 61, 48, 60, 87, 31]. In fact, twisted DNA toroids have been
analysed with liquid crystal theory [43, 99, 87]. Under the appro-
priate solvent conditions DNA condenses into toroids [53, 5]. These
efficient packings of genetic material are interesting as vehicles in
therapeutic gene delivery; it has been argued [43] that a twist in
DNA toroids, for which there are indications both in simulations
[96, 98] and experiments [14], would unfold more slowly and could
therefore be beneficial for this delivery process. Thus, besides a
way to engineer complex structures, the theory of geometrically
confined liquid crystals may also provide understanding of biolog-
ical systems.

1 Technically, it is spontaneous achiral symmetry breaking since the symmetry
is the lack of chirality. However, we will conform to the standard convention.
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The organisation of this chapter is as follows. In section 4.2 we
will discuss our calculational method which involves a single varia-
tional Ansatz only for the director fields of both chiral and achiral
toroidal nematics. In section 4.3 we will consider its energetics in
relation to the slenderness, elastic anisotropies, cholesteric pitch
and external fields, and discuss the achiral-chiral transition in the
light of the mean field treatment of the Ising model. In section
4.4 we compare these theoretical results with experimental mea-
surements of the twist in toroidal nematic droplets. Finally, we
conclude in section 4.5.

4.2 toroidal director fields

4.2.1 Free energy of a nematic toroid

We will study the general case in which the director lies in the
tangent plane of the boundary assuming that the anchoring is
strong so that the only energy arises from elastic deformations
captured by the Frank free energy functional [18, 40]:

F [n (x)] =
1
2

∫
dV

(
K1 (∇ · n)2

+ K2 (n · ∇× n)2 + K3 (n×∇× n)2)
−K24

∫
dS · (n∇ · n + n×∇× n) ,

(141)

where dS = ν dS is the area element, with ν the unit normal
vector (outward pointing) and where dV is the volume element.
Due to the anisotropic nature of the nematic liquid crystal, this
expression contains three bulk elastic moduli, K1, K2, K3, rather
than a single one for fully rotationally symmetric systems. In ad-
dition, there is a surface elastic constant K24. K1, K2, K3 and
K24 measure the magnitude of splay, twist, bend and saddle-splay
distortions, respectively. We now provide a geometrical interpre-
tation of the saddle-splay distortions. Firstly, observe that under
perfect planar anchoring conditions n ·ν = 0 and so the first term
in the saddle-splay energy does not contribute:

F24 = −K24

∫
dS ν · (n×∇× n) . (142)
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This remaining term in the saddle-splay energy is often rewritten
as

F24 = K24

∫
dS ν · (n · ∇)n. (143)

because

(n×∇× n)a = εabcnbεcpq∂pnq

= (δapδbq − δaqδbp) nb∂pnq
= −nb∂bna, (144)

where in the last line one uses that 0 = ∂a (1) = ∂a (nbnb) =

2nb∂anb. In other words, the bend is precisely the curvature of the
integral curves of n. Employing the product rule of differention
0 = ∂a (νbnb) = νb∂anb + nb∂aνb yields

F24 = −K24

∫
dS n · (n · ∇) ν. (145)

Upon writing n = n1e1 +n2e2, with e1 and e1 two orthonormal
basis vectors in the plane of the surface, one obtains

F24 = K24

∫
dS niLijnj , (146)

where we note that i, j = 1, 2 (rather than running till 3). Thus
the nematic director couples to the extrinsic curvature tensor [37],
defined as

Lij = −ei · (ej · ∇) ν. (147)

If e1 and e2 are in the directions of principal curvatures, κ1 and
κ2, respectively, one finds

F24 = K24

∫
dS

(
κ1n

2
1 + κ2n

2
2
)

. (148)

We conclude that the saddle-splay term favours alignment of the
director along the direction with the smallest principal curvature
if K24 > 0. The controversial surface energy density K13n∇ · n is
sometimes incorporated in eq. (141), but is in our case irrelevant,
because the normal vector is perpendicular to n, and so n · ν = 0.
We will consider a nematic liquid crystal confined in a handle

body bounded by a torus given by the following implicit equation
for the cartesian coordinates x, y, and z:(

R1 −
√
x2 + y2

)2
+ z2 ≤ R2

2. (149)
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Figure 37: Left panel: Schematic of the boundary of the geometry spec-
ified eq. (149) including graphical definitions of φ and R1.
The torus characterised by a large (red) and a small (blue)
circle. The large circle, or centerline, has radius R1. Right
panel: Schematic of a cut including graphical definitions of
r, ψ and R2.

Here, R1 and R2 are the large and small radii, respectively, of
the circles that characterise the outer surface: a torus obtained
by revolving a circle of radius R2 around the z-axis (Fig. 37). We
can conveniently parametrise this solid torus by the coordinates
r ∈ [0,R2], φ ∈ [0, 2π) and ψ ∈ [0, 2π) (illustrated in Fig. 37):

x = (R1 + r cosψ) cosφ, (150)
y = (R1 + r cosψ) sinφ, (151)
z = r sinψ. (152)

The metric reads:

gµν =


1 0 0
0 (R1 + r cosψ)2 0
0 0 r2

 , (153)

with µ, ν ∈ {r,φ,ψ}. It follows that dS = ν
√
g dψ dφ and dV =

√
g dr dψ dφ, where g = det gµν .
For a torus the φ and ψ directions are the principal directions.

The curvature along the ψ direction is everywhere negative (mea-
sured with respect to the outward pointing normal) and the small-
est of the two, so when K24 > 0, the director tends to wind along
the small circle with radius R2 (i.e. meridian).
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4.2.2 Double twist

To minimise the Frank energy we formulate a variational Ansatz
built on several simplifying assumptions [43]. We consider a direc-
tor field which has no radial component (i.e. nr = 0), is tangential
to the centerline (r = 0), and is independent of φ. Furthermore,
since we expect the splay (K1) distortions to be unimportant,
we first take the field to be divergence free (i.e.∇ · n = 0). Re-
calling that in curvilinear coordinates the divergence is ∇ · n =

1√
g∂µ

(√
gnµ

)
, we write :

nψ =
f (r)R1√

gφφ
, (154)

where the other terms in√g play no role as they are independent of
ψ. The φ-component of the director follows from the normalisation
condition. For the radial dependence of f (r) we make the simplest
choice:

f (r) =
ωr

R2
, (155)

and obtain

nψ = ω
ξr/R2

ξ + r
R2

cosψ , (156)

where we have introduced ξ ≡ R1/R2, the slenderness or aspect
ratio of the torus. The variational parameter ω governs the chi-
rality of the toroidal director field. If ω = 0 the director field
corresponds to the axial configuration (Fig 36a). The sign of ω de-
termines the chirality: right handed when ω > 0 (Fig. 36c) and left
handed when ω < 0 (Fig. 36b). The magnitude of ω determines
the degree of twist. Note that the direction of twist is in the radial
direction, as illustrated in Fig. 38. Therefore the toroidal nematic
is doubly twisted, resembling the cylindrical building blocks of the
blue phases [18, 40]. It may be useful to relate ω with a quantity
at the surface, say the angle, α, that the director makes with φ̂.
For the Ansatz, this angle will be different depending on whether
one measures at the inner or outer part of the torus, but for large
ξ we find

ω ≈ nψ (r = R2) = sinα. (157)
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Figure 38: Schematic of the Ansatz for the director fieldlines (ω = 0.6
and ξ = 3), displaying a twist when going radially outward,
including a graphical definition of α.

4.3 chiral symmetry breaking

4.3.1 Results for divergence-free field

Since ω only determines the chirality of the double-twisted config-
uration but not the amount of twist, the free energy is invariant
under reversal of the sign of ω, i.e. F (−ω) = F (ω). This mir-
ror symmetry allows us to write down a Landau-like expansion in
which F only contains even powers of ω,

F = a0 ({Ki}, ξ) + a2 ({Ki}, ξ)ω2 + a4 ({Ki}, ξ)ω4

+O
(
ω6
)

(158)

where {Ki} = {K1,K2,K3,K24}, the set of elastic constants. If
the coefficient a2 > 0, the achiral nematic toroid (ωeq = 0) corre-
sponds to the minimum of F provided that a4 > 0. In contrast, the
mirror symmetry is broken spontaneously whenever a2 < 0 (and
a4 > 0). The achiral-chiral critical transition at a2 = 0 belongs to
the universality class of the mean-field Ising model. Therefore, we
can immediately infer that the value of the critical exponent β in
ωeq ∼ (−a2)

β is 1
2 . To obtain the dependence of the coefficients ai
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on the elastic constants and ξ, we need to evaluate the integral in
eq. (141). We find for the bend, twist and saddle-splay energies:

F3
K3R1

= 2π2
(
ξ −

√
ξ2 − 1

)
/ξ

+ π2
ξ
(

1− 9ξ2 + 6ξ4 + 6ξ
√
ξ2 − 1− 6ξ3

√
ξ2 − 1

)
(ξ2 − 1)

3
2

ω2

+O
(
ω4
)

, (159)
F2

K2R1
= 4π2 ξ3

(ξ2 − 1)
3
2
ω2 +O

(
ω6
)

, (160)

F24
K24R1

= −4π2 ξ3

(ξ2 − 1)
3
2
ω2. (161)

Though the bend and twist energies are Taylor expansions in ω,
the saddle-splay energy is exact. The large ξ asymptotic behavior
of the elastic energy reads2:

F

K3R1
≈ π2

ξ2 + 4π2
(
k− 5

16ξ2

)
ω2 +

π2

2 ω
4 +O

(
ω6
)

, (162)

where k ≡ K2−K24
K3

is the elastic anisotropy in twist and saddle-
splay. The achiral configuration contains only bend energy. For
sufficiently thick toroids, bend distortions are exchanged with twist
and the mirror symmetry is indeed broken spontaneously (Fig. 39).
Interestingly, if K24 > 0 the saddle-splay deformations screen the
cost of twist. If K24 < 0 on the other hand, there is an extra
penalty for twisting. Setting the coefficient of the ω2 term equal
to zero yields the phase boundary:

kc =
−1 + 9ξ2

c − 6ξ4
c − 6ξc

√
ξ2
c − 1 + 6ξ3

c

√
ξ2
c − 1

4ξ2
c

≈ 5
16ξ2

c
if ξ � 1. (163)

Fig. 40 shows the phase diagram as a function of ξ and k. It is
interesting to look at the critical behavior. The degree of twist
close to the transition is

αeq ≈ ωeq ≈ 2
(

5
16ξ2 − k

)1/2
, (164)

2 The fourth order term in the bend energy for general ξ, that reduces to
π2
2 K3R2ξω4 in eq. (162), is not given in eq. (159), because it is too lengthy.
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Figure 39: Left panel: The free energy as a function of ω for ξ = 6
(dashed) and ξ = 5 (solid), when (K2 −K24) /K3 = 10−2.
For ξ = 5 the chiral symmetry is broken spontaneously:
the minimum values of the energy occurs for a nonzero
ω. Right panel: The free energy as a function of ω for
q = 0 (dashed) and qR2 = 10−3 (solid), when ξ = 6,
(K2 −K24) /K3 = 10−2 and K2/K3 = 0.3. For qR2 = 10−3

the chiral symmetry is broken explicitly: the minimum value
of the energy occurs for a nonzero ω, because F contains a
term linear in ω.

where we have used that sinαeq ≈ αeq for small αeq. Upon ex-
panding ξ = ξc + δξ (with δξ < 0) and k = kc + δk (with δk < 0)
around their critical values ξc and kc, respectively, we obtain the
following scaling relations:

αeq ≈
√

5
2

(
−δξ
ξ3
c

)1/2
(165)

αeq ≈ 2 (−δk)1/2 (166)

while keeping k and ξ fixed, respectively. Eqs. (165) and (166) are
analogues to meq ∼ (−t)1/2, relating the equilibrium magnetisa-
tion,meq (in the ferromagnetic phase of the Ising model in Landau
theory), to the reduced temperature, t.

4.3.2 Effects of external fields and cholesteric pitch

Due to the inversion symmetry of nematics, F [n] = F [−n], an
external magnetic field, H, couples quadratically to the compo-
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Figure 40: Phase diagram as a function of the toroidal slenderness and
the elastic anisotropy in twist and saddle-splay constant,
k ≡ (K2 −K24) /K3. The twisted (yellow region) and ax-
ial (cyan region) configuration are separated by a bound-
ary line in the absence of an external field (solid black),
when H =

√
0.1K3/

(√
χaR2

)
φ̂ (dashed blue) and when

H =
√

0.1K3/
(√
χaR2

)
ẑ (dash-dotted red).

nents of n rather than linearly as in spin systems. The magnetic
free energy contribution reads:

Fm = −χa2

∫
dV (n ·H)2 , (167)

where χa = χ‖ − χ⊥, the difference between the magnetic suscep-
tibilities parallel and perpendicular to n. Consequently, there is
no explicit chiral symmetry breaking due to H as is the case in
the Ising model. Rather, H shifts the location of the critical tran-
sition in the phase diagram. For concreteness, we will consider
two different applied fields, namely a uniaxial field H = Hzẑ =

Hz sin(ψ)r̂ + Hz cos(ψ)ψ̂ and an azimuthal field H = Hφφ̂, as
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if produced by a conducting wire going through the hole of the
toroid. For H = Hzẑ we find

Fm = −π2χaH
2
zR1R

2
2ξ

2
(

2ξ
(
ξ −

√
ξ2 − 1

)
− 1

)
ω2

≈ −π
2

4 χaH
2
zR1R

2
2ω

2 if ξ � 1. (168)

For a positive χa this energy contribution is negative, implying
that a larger area in the phase diagram is occupied by the twisted
configuration. The new phase boundary (Fig. 40), which is now a
surface in the volume spanned by ξ, k and Hz instead of a line,
reads:

kc =
[
−1 + 9ξ2

c − 6ξ4
c − 6ξc

√
ξ2
c − 1 + 6ξ3

c

√
ξ2
c − 1

− χa (Hz)
2
c R

2
2

K3

(
ξ2
c − 1

)
ξc

×
(
−2ξc + 2ξ3

c +
√
ξ2
c − 1− 2ξ2

c

√
ξ2
c − 1

)]
/
(
4ξ2
c

)
≈ 5

16ξ2
c
+
χa (Hz)

2
c R

2
2

16K3
if ξ � 1. (169)

In contrast, an azimuthal field favours the axial configuration, con-
tributing a postive ω2-term to the energy when χa > 0:

Fm = −π2χaH
2
φR1R

2
2

+
2π2

3 χaH
2
φR1R

2
2ξ
(

2ξ2
(
ξ −

√
ξ2 − 1

)
−
√
ξ2 − 1

)
ω2

≈ −π2χaH
2
φR1R

2
2 +

π2

2 χaH
2
φR1R

2
2ω

2 if ξ � 1. (170)

Consequently, this yields a shifted phase boundary (Fig. 40):

kc =
[
−1 + 9ξ2

c − 6ξ4
c − 6ξc

√
ξ2
c − 1 + 6ξ3

c

√
ξ2
c − 1

−
2χa (Hφ)

2
c R

2
2

3K3

(
ξ2
c − 1

)
×
(

1 + ξ2
c − 2ξ4

c + 2ξ3
c

√
ξ2
c − 1

)]
/
(
4ξ2
c

)
≈ 5

16ξ2
c
−
χa (Hφ)

2
c R

2
2

8K3
if ξ � 1. (171)

Similar results (eqs. (168)-(171)) hold for an applied electric field
E instead of a magnetic field; the analog of χa is the dielectric
anisotropy. There could however be another physical mechanism at
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play in a nematic insulator, namely the flexoelectric effect [64, 18].
Splay and bend deformations induce a polarisation

P = e1n∇ · n + e3n×∇× n, (172)

where e1 and e3 are called the flexoelectric coefficients. Note that
the first term in eq. (172) is irrelevant for the divergence-free
Ansatz. A coupling of P with E

FP = −
∫
dVP ·E (173)

could potentially lead to a shift of the transition. In the particuar
case when E = Ezẑ = Ez sin(ψ)r̂ +Ez cos(ψ)ψ̂, however, the ω2

contribution from eq. (173) vanishes, thus not yielding such a shift.
If we now consider toroidal cholesterics rather than nematics,

the chiral symmetry is broken explicitly (Fig. 39). A cholesteric
pitch of 2π/q gives a contribution to the free energy of:

Fcn = K2 q
∫

dV n · ∇× n. (174)

Substituting eq. (156) yields

Fcn = −8π2K2 q R1R2 ξ
(
ξ −

√
ξ2 − 1

)
ω+O

(
ω3
)

≈ −4π2K2 q R1R2 ω+O
(
ω3
)

if ξ � 1. (175)

Therefore, at the critical line in the phase diagram spanned by k
and ξ, the degree of twist or surface angle scales (for large ξ) with
the helicity of the cholesteric as

αeq ≈ (2K2R2 q/K3)
1/3 ∼ q1/3. (176)

This is the analog scaling relation of meq ∼ H1/3 in the mean-field
Ising model.

4.3.3 Results for the two-parameter Ansatz

Motivated by experiments (see section 4.4), we can introduce an
extra variational paramer γ to allow for splay deformations, in
addition to ω:

nψ = ω
ξr/R2

ξ + γ r
R2

cosψ . (177)
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(Note that eq. (156) is recovered by setting γ = 1 in eq. (177).)
In subsection 4.3.1 analytical results for γ = 1 were presented. In
this subsection we will slightly improve these results by finding the
optimal value of γ numerically. First, we discretise the azimuthally
symmetric director field in the r and ψ direction. Next, we compute
the Frank free energy density (eq. (141)) by taking finite differences
[25] of the discretised nematic field. After summation over the
volume elements the Frank free energy will become a function of
ω and γ for a given set of elastic constants and a given aspect ratio.
Because of the normalisation condition on n, the allowed values
for ω and γ are constrained to the open diamond-like interval for
which −ξ < γ < ξ and |γ|−ξξ < ω < ξ−|γ|

ξ holds.

2 4 6 8 10 12

ξ
0.00

0.05

0.10

0.15

0.20

α
π

Figure 41: Twist angle α (in units of π) at ψ = π/2 versus the slender-
ness ξ for k = 0.012 (green), k = 0.006 (red), k = 0 (blue),
k = −0.006 (magenta) and k = −0.012 (cyan). The dashed
lines represent α for γ = 1, the solid lines represent α found
for the optimal γ.

The minima of the energy surface can be found by employing
the conjugate gradient method. We have looked at the difference
between the γ = 1 case and the case where the value of γ is chosen
to minimise the energy. This was done for various choices of k. We
have chosen the material properties of 5CB, i.e. K1 = 0.64K3 and
K2 = 0.3K3 [40]. The value for of K24 has not been so accurately
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Figure 42: The phase boundary as a function of the toroidal slender-
ness ξ and elastic anisotropy k for γ as a variational param-
eter(solid) and for γ = 1 (dashed). The inset zooms in on
the phase boundary for small ξ.

determined, but previous measurements [2, 45, 79, 92, 46, 77] seem
to suggest that K24 ≈ K2, corresponding to k ≈ 0.
We are interested in how the phase boundary changes by in-

troducing the variational parameter γ. Therefore, the twist angle
α, evaluated at the surface of the torus at ψ = π

2 , versus the
slenderness ξ is shown in Fig. 41. For the particular choices of k
there are two noticeable differences between the single-parameter
Ansatz and the two-parameter Ansatz. Firstly, for small values of
ξ, α is changed significantly. Secondly, for larger values of ξ we see
that if there is a chiral-achiral phase transition, ξc is shifted by a
small amount. In Fig. 42 we further investigate how introducing
γ influences the phase boundary, by plotting the phase boundary
as a function of the toroidal slenderness ξ and elastic anisotropy
k for both γ as a variational parameter (solid) and for γ = 1
(dashed). Observe that, for both the small ξ and small k regime,
the difference is significant.
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4.4 comparison with experiment

To make nematic toroidal droplets, Alberto Fernandez-Nieves and
co-workers inject a nematic liquid crystal, namely 4-n-pentyl-4’-
cyanobiphenyl (5CB), through a needle into a rotating bath con-
taining a yield-stress material consisting of (i) 1.5 wt% polyacry-
lamide microgels (carbopol ETD 2020), (ii) 3 wt% glycerin, (iii)
30 wt% ethanol, (iv) 1 wt% polyvinyl alcohol (PVA), and (v) 64.5
wt% ultrapure water [77]. The presence of PVA guarantees degen-
erate tangential (or planar) anchoring for the liquid crystal at the
surface of the droplets; they confirmed this by making spherical
droplets and checking their bipolar character. We also note that
the continuous phase is neutralized to pH 7, where the sample
transmission is more than 90% [13]. However, the most relevant
property of this phase is its yield stress, σy. During formation of
the torus, the stresses involved are larger than σy and hence the
continuous phase essentially behaves as if it were a liquid. The com-
bination of the viscous drag exerted by the outer phase over the
extruded liquid crystal and its rotational motion causes the liquid
crystal to form a curved jet, as shown in Fig. 43a, which even-
tually closes onto itself, resulting in a toroidal nematic droplet,
such as that shown in Fig. 43b in bright field and in Fig. 43c be-
tween cross-polarizers. Once the torus has been formed, the elas-
ticity of the continuous phase provides the required force to over-
come the surface tension force that would naturally tend to trans-
form the toroidal droplet into a spherical droplet [76]. Remarkably,
when these droplets are observed along their side view under cross-
polarizers, their central region remains bright irrespective of the
orientation of the droplet with respect to the incident polarization
direction, as shown in Fig. 43d-f; the corresponding bright-field
images are shown in Fig. 43g-i. Note that for an axial torus with
its director field along the tube, the cross-polarized image should
appear black for an orientation of 0◦ and 90◦ with respect to the
incident polarization direction. Hence our result is suggestive of
a twisted structure. In fact, twisted bipolar droplets also have a
central bright region, when viewed between cross-polarizers, irre-
spective of their orientation [109, 47, 22, 112].
We then quantify our results by measuring the twist angle in our

toroidal droplets along the z direction, from (r = R2, ψ = 90◦) to
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Figure 43: Toroidal droplets. (a) Formation of a toroidal liquid crystal
droplet inside a material with yield stress. (b and c) The
top view of a typical stable toroidal droplet of nematic liq-
uid crystal is shown in (b) when viewed in bright field and
in (c) when viewed under cross-polarizers. (d-f) Side view of
a typical toroidal droplet with ξ = 1.8 when viewed under
cross-polarizers for orientations of 0◦, 45◦, and 90◦ with re-
spect to the incident polarization direction. Note that the
center part of the toroid remains bright irrespective of its ori-
entation. (g-i) Corresponding bright-field images. The dark
regions of the toroid in these images are due to light refrac-
tion. (Scale bar: 100µm.) Ref. [77].
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(r = R2, ψ = 270◦) (see Fig. 37). The method relies on the fact
that linearly polarized light follows the twist of a nematic liquid
crystal if the polarization direction is either parallel or perpendic-
ular to the nematic director at the entrance of the sample, pro-
vided the Mauguin limit is fulfilled [115]; the corresponding mode
of propagation is referred to as extraordinary or ordinary waveg-
uiding, respectively. We then image the torus from above (Fig.
44A), rotate the polarizer to ensure that the incident polarization
direction is parallel or perpendicular to the nematic director at
(r = R2, ψ = 90◦), and then rotate the analyzer an angle φexit
with respect to the polarizer while monitoring the transmitted in-
tensity, T. The minimum in T, shown in Fig. 44B, reflects the lack
of light propagation through the analyzer, indicating that the in-
cident polarization direction has rotated an amount τ such that it
is perpendicular to the analyzer after exiting the torus at (r = R2,
ψ = 270◦). The image of the torus in this situation exhibits four
black regions where extinction occurs, as shown in Fig. 44C; these
correspond to waveguiding of ordinary and extraordinary waves.
It is along these regions that we measure T. The counterclockwise
rotation of the incident polarization direction by an angle of −56◦

exactly corresponds to the twist angle of the nematic along the
z direction through the center of the circular cross section. How-
ever, to increase the precision of our estimate, we fit the T vs.
φexit results to the theoretically expected transmission [115], leav-
ing τ as a free parameter. We find τ = (52.9± 0.4)◦ for ξ = 3.5.
Moreover, within the experimentally accessed ξ-range, we find that
the twist is nonzero and that it monotonously decreases with in-
creasing aspect ratio, as shown in Fig. 44D. Remarkably, these
features are captured by our theoretical calculations for large ξ,
as shown by the dashed line in Fig. 44D. We note that the devia-
tions of the experiment and the theory for small ξ result from the
inadequacy of the Ansatz in describing the highly twisted struc-
tures observed experimentally at these low values of ξ. This can be
partially resolved by lifting the constraint that γ = 1. This intro-
duces a second variational parameter in the Ansatz, which allows
the nematic field to splay. The result qualitatively captures the
experimental trend for all aspect ratios, as shown by the solid line
in Fig. 44D. By further comparing the experiment to the theory
in the high ξ-region, we obtain a value for the saddle-splay elastic
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Figure 44: Determination of the twist angle and its dependence with
slenderness. (A) A torus with ξ = 3.5 when viewed from
the top and between crosspolarizers. (B) Transmission, T,
as a function of the angle between the incident polariza-
tion direction and the analyzer, φexit. The line is a fit to
the theoretical expectation in the Mauguin limit [115] with
the twist angle, τ , as the only free parameter. We obtain
τ = (52.9± 0.4)◦. (C) Top view of the same torus at the
minimum of the transmission curve. We measure T along
the four black regions that are observed, which are dark-
est for the indicated direction of the polarizer and analyzer.
The sense of rotation of the analyzer indicates the nematic
arrangement is right-handed; this likely results from the way
the torus is generated, as all tori generated in the same way
have the same handedness. (D) Twist angle as a function of ξ.
The dashed line represents the theoretical prediction based
on eq. (156), for K24 = 1.02K2. The solid line represents the
theoretical prediction based on the improved Ansatz includ-
ing the second variational parameter γ for the same value
of K24, where we have used that K1 = 0.64K3 for 5CB [40].
(Scale bar: 200µm.) Ref. [77].
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constant of K24 = 1.02K2, which is slightly larger than the twist
elastic constant, supporting our interpretation on the relevance
of saddle-splay distortions. However, our analysis cannot exclude
the possibility of a slightly smaller value of K24 and hence of a
twisted-to-axial transition for extremely large ξ.

4.5 conclusions

We have investigated spontaneous chiral symmetry breaking in
toroidal nematic liquid crystals. As in the case of nematic tactoids
[80, 101], the two ingredients for this macroscopic chirality are ori-
entational order of achiral microscopic constituents and a curved
confining boundary. This phenomenon occurs when both the as-
pect ratio of the toroid and K2−K24

K3
are small. The critical behavior

of this structural transition belongs to the same universality class
as the ferromagnet-paramagnet phase transition in the Ising model
in dimensions above the upper critical dimension. The analogues
of the magnetisation, reduced temperature and external field are
the degree of twist (or surface angle), slenderness or K2−K24

K3
, and

(cholesteric) helicity in liquid crystal toroids, respectively. Critical
exponents are collected in Table 1.

Liquid crystal toroid Mean-field Ising model Exponent

αeq ∼ (−δξ)β meq ∼ (−t)β β = 1/2

αeq ∼ (−δk)β

αeq ∼ q1/δ meq ∼ H1/δ δ = 3

Table 1: Dictionary of the critical behavior of the structural transition
in liquid crystal toroids and the thermal phase transition in
the mean-field Ising model.

Thus, the helicity rather than an external field breaks the chiral
symmetry explicitly. Remarkably, since an external field couples
quadratically to the director field, it induces a shift of the phase
boundary. An azimuthally aligned field favours the mirror sym-
metric director configuration, whereas a homogeneous field in the
z-direction favours the doubly twisted configuration.
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A minimization of the elastic energy analogous to the one pre-
sented in this article for toroidal droplets, has also been carried out
for spherical droplets [112]. The analytical results reproduce qual-
itatively the twisted textures observed experimentally in spheri-
cal bipolar droplets [109]. In this case, detailed measurements of
the dependence of the twist angle on the elastic moduli were car-
ried out by changing temperature which in turn affects the elastic
moduli. The measured exponent β was 0.75± 0.1 for 8CB and
0.76± 0.1 for 8OCB [47], rather than the 1

2 exponent we calcu-
lated in our mean field energy minimizations that entirely neglect
thermal fluctuations.



Part III

FRACTURE OF CURVED SOL IDS

In this final part we turn our attention from confined
liquid crystals to geometrically frustrated solids. The
curvature of two-dimensional solids which are forced to
adopt a certain shape, is a source of stress. We study
the effects of the stress on the fracture mechanics of
such solids. We find that the curvature can both de-
crease or increase the critical length at which the crack
starts growing depending on the location and orienta-
tion of the crack, thus both stimulating and inhibit-
ing the onset of crack growth. Finally, the non-uniform
stress generates curved crack trajectories.





5
ONSET OF CRACK GROWTH

5.1 linear elastic fracture mechanics

The first and foremost one should realise when studying how things
break is that fracture occurs through the propagation of one or
more cracks [59]. It is exceptionally rare that materials break be-
cause a series of bonds extending from one end of the sample to
the other end all break simultaneously. A real solid is not so per-
fect and contains flaws at which the stresses are focussed: near
the tip of a crack the stresses and strains become very large. As
a consequence, the material around the tip will fail and the crack
will propagate. If the material behaves linear elastically, the stress
tensor σij at a distance r from the crack tip which is assumed to
be small compared to the crack length a reads [8, 83, 116]

σij =
KI√
2πr

f Iij (θ) +
KII√
2πr

f IIij (θ) , (178)

Close to the crack tip the stress is not infinite as is suggested by
the inverse square root of r in eq. (178), but finite. The small re-
gion in which plastic deformations occur is called the process zone.
If the radius of this zone, rp, is small compared to the crack length
– called an assumption of small scale yielding – eq. (178) describes
the stresses in the annulus rp � r � a well. The sub- and super-
scripts I and II in eq. (178) refer to the modes of fracture, which
are displayed in Fig. 45. In two dimensions, there are two sym-
metry modes of fracture, namely an opening mode (traditionally
labelled as mode I) and a sliding or shearing mode (traditionally
labelled as mode II). For a horizontally aligned crack (i.e. in the
x direction), in mode I vertical displacements are anti-symmetric
in reflection about the x-axis (uy (x,−y) = −uy (x, y)) and hor-
izontal displacements are symmetric (ux (x,−y) = ux (x, y)). In
mode II it is the other way around: vertical displacements are sym-
metric (uy (x,−y) = uy (x, y)) and horizontal displacements are
anti-symmetric (ux (x,−y) = −ux (x, y)). Under general loading
conditions, the problem can be decomposed into these two modes.

93



94 onset of crack growth

Figure 45: Left panel: Schematic of mode I fracture. Right panel:
Schematic of mode II fracture.

The functions functions f Iij and f IIij are universal, meaning that
they neither depend on loading conditions nor geometry. Thus, f Iij
and f IIij are the same for cracks in the bulk and at the edge, for
disk-shaped samples, strips, and infinite domains. They only de-
pend on the polar angle θ (where the location of the tip is taken
as the origin, see Fig. 46) and read:

f Irr =−
1
4 cos

(
θ

2

)
+

5
4 cos

(
3θ
2

)
, (179)

f Iθθ =
3
4 cos

(
θ

2

)
+

1
4 cos

(
3θ
2

)
, (180)

f Irθ =
1
4 sin

(
θ

2

)
+

1
4 sin

(
3θ
2

)
, (181)

and

f IIrr =− 5
4 sin

(
θ

2

)
+

3
4 sin

(
3θ
2

)
, (182)

f IIθθ =− 3
4 sin

(
θ

2

)
− 3

4 sin
(

3θ
2

)
, (183)

f IIrθ = cos
(
θ

2

)
+ 3 cos

(
3θ
2

)
. (184)

Eqs. (178)-(184)) follow from Williams’ asymptotic analysis [110]:
solving the equilibrium equations in the vicinity of the crack tip
with the crack modelled as a slit with two edges that are closed
in the reference state but which could open up once loading is
applied. The only variables in eq. (178) which are not universal,
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Figure 46: Schematic of the crack tip coordinates for a crack aligned in
the x-direction.

are the prefactors KI and KII . These prefactors are called the
stress intensity factors (of mode I and mode II, respectively),
because they characterise the strength of the stress singularity.
All information about loading, crack length and the shape of the
sample reduce to this one quantity, thus making it one of the most
important concepts in linear elastic fracture mechanics. Indeed, it
is believed to determine the onset and direction of crack growth.
For instance, a mode I crack will start to propagate if KI exceeds
a critical value, Kc. The critical vale for the stress intensity factor,
Kc, which determines the onset of crack growth, is often referred
to as the fracture toughness and it is a material property. If the
crack growth is quasistatic, the growth also comes to a halt if
the stress intensity factor drops below the critical value again. We
call this stable crack growth. The growth is unstable if the crack
continues propagating till the material fails. Several theories for
mixed-mode fracture exist, of which one of them is the criterion
of maximum circumferential, or hoop, stress [116]. This postulates
that the pre-existing crack will grow in the direction θc in which
σθθ (θ) is the largest, thus satisfying

∂σθθ
∂θ
|θ=θc = 0, ∂2σθθ

∂θ2 |θ=θc < 0 (185)

Applying this criterion to eqs. (178)-(184) yields the kink angle

θc = 2 arctan
 −2η

1 +
√

1 + 8η2

 , (186)
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where η ≡ KII/KI . A propagating crack will eventually turn its
orientation such as to be in mode I and experience a maximum
tensile stress. The condition for the onset of crack growth in this
theory of mixed-mode fracture is that the intensity factor in the di-
rection of maximum circumferential stress exceeds a critical value,
which is assumed to be the same as for pure mode I loading:

σθθ (θc)
√

2πr > Kc. (187)

Finally, besides crack growth criteria, the stress intensity factors
also yield the shape of the crack tip opening. The displacement
fields in the vicinity of the crack tip are obtained from the stress
fields given by eqs. (178)-(184):

uIr = KI
1 + ν

Y

√
r

2π

[(5
2 − 4 ν

1 + ν

)
cos

(
θ

2

)
− 1

2 cos
(

3θ
2

)]
,

(188)

uIθ = KI
1 + ν

Y

√
r

2π

[
−
(7

2 − 4 ν

1 + ν

)
sin

(
θ

2

)
+

1
2 sin

(
3θ
2

)]
,

(189)
and

uIIr = KI
1 + ν

Y

√
r

2π

[(
−5

2 − 4 ν

1 + ν

)
sin

(
θ

2

)
+

3
2 sin

(
3θ
2

)]
,

(190)

uIIθ = KI
1 + ν

Y

√
r

2π

[
−
(7

2 − 4 ν

1 + ν

)
cos

(
θ

2

)
+

3
2 cos

(
3θ
2

)]
,

(191)
where Y is Young’s modulus and ν is Poisson’s ratio. For a pure
mode I crack, the vertical displacement at the crack edges (i.e.
θ = ±π) reads

uy (r,±π) = −uθ (r,±π) = ±
4KI

Y

√
r

2π . (192)

Hence, the shape of the crack tip is parabolic.

5.2 cracks in a gaussian bump

5.2.1 Problem formulation

In this chapter we will study cracks in two-dimensional curved
solids. Examples of two-dimensional curved solids are colloidal par-
ticles at a fluid-fluid interface, viral shells or plates, e.g. in aircraft
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structures, where out-of plane deflection may be large compared
to the plate thickness [108, 33, 117]. Besides the in-plane frac-
ture modes introduced in the previous section, there are bending
modes that we will discard in our analysis [111, 89, 33, 117]. We
will focus on the effects of the in-plane stresses generated by the
curvature. As pointed out by Hui et al., in curved plates the near
tip stress fields will display the same singular behaviour as in eq.
(178) [33, 117]. However, the values of the stress intensity factors
are affected by the curvature. In turn, this influences the onset
and direction of growth of pre-existing cracks.

5.2.2 The Gaussian bump

The surface that we will choose to study the effects of the geometric
frustration on cracks is the gaussian bump (Fig. 47), whose height
profile reads

h (x) = αx0 exp
(
−ρ2/2

)
, (193)

where x0 is a measure of the width of bump, ρ = |x|/x0 is the
normalised radial coordinate, and α = h (0) /x0 is the aspect ratio
of the bump. This surface has several convenient and interesting

Figure 47: Schematic of a Gaussian bump. The circle ρ = 1, indicating
the width of the bump, is drawn in dashed green. The circle
ρ = R/x0, which is the edge of the disk, is drawn in black.

features. First, it has a flat counterpart (unlike e.g. a sphere), such
that one can tune α continuously from zero to a finite value. Sec-
ond, it has a varying Gaussian curvature with regions of positive
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and negative curvature. The curvature is positive for ρ < 1 and
negative for ρ > 1. Indeed, from eq. (75) we find [107]

G (ρ) =
α2

x2
0

exp
(
−ρ2

) 1− ρ2

(1 + α2ρ2 exp (−ρ2))2 (194)

≈α
2

x2
0

exp
(
−ρ2

) (
1− ρ2

)
. (195)

The latter approximation is valid, because we are working in the
regime of small α2. Finally, we consider the origin of the Gaussian
bump to be located at the centre of the disk of radius R. If one
considers samples much smaller than the width of the bump R�
x0, then G → α2/x2

0 and so the Gaussian bump reduces to a
spherical cap with radius of curvature of x0/α.

5.2.3 Decomposing the problem

We need to solve for the equilibrium equations of linear elasticity
with an infinitely narrow cut (representing the crack) in a Gaus-
sian bump, possibly under external loading. This external loading
is usually applied at the boundary of the sample, though in prin-
ciple could also be applied at the crack edges. We will decompose
the problem of a crack with stress-free edges in a Gaussian bump
loaded at the boundary into two other problems, called A and B.
The first of these two problems is finding the stress field, σGij (x),
prior to the introduction of the crack, due to curvature and exter-
nal loading only. Next, in problem B, we solve for the stress field,
σ0
ij (x), for a crack whose edges are loaded, but in which there is

neither curvature nor loading at the boundary of the sample. The
traction, p, applied at the crack edges is such that it cancels the
tractions in the first problem, i.e. the traction on the top crack
edge is

pi = −σGijνj , (196)

with ν the normal vector of the top crack edge, and the traction
loading on the bottom crack edge is equal but opposite. Thus, the
stresses generated by the curvature serve as traction on the crack
edges. Superposing the stress fields in problem A with the stress
fields in problem B, σij (x) = σGij (x) + σ0

ij (x), solves the initial
problem (see Fig. 48). It satisfies the equilibrium equations (eq.
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Figure 48: The solution of the problem on the left hand side of this
schematic equation is obtained by superposing the stress
fields in A and B. In A there is geometric frustration due
to the nonzero curvature, but no crack. In B there is no
curvature, but there is a crack whose edges are loaded such
as to cancel the stresses generated in A at the crack location.
In B, the arrows representing the forces at the crack edge are
drawn non-vertical intentionally, because generally σGxy 6= 0
and hence there could be a shear force.

(39)),

∂iσij = ∂iσ
G
ij + ∂iσ

0
ij = 0, (197)

as well as the equation for the Airy stress function (eq. 75)

1
Y
∂4χ =

1
Y
∂4χG +

1
Y
∂4χ0 = −G. (198)

Moreover, conditions at both the boundary of the sample and at
the crack edge are correct. In the absence of any curvature, this de-
composition reduces to the usual equivalence of crack face loading
and far field loading. Since σG does not contain any singularity,
the stress intensity factors of σ0 are equal to the stress intensity
factors of the full solution σ.

5.2.4 Stress fields in the absence of cracks

The first problem involves solving for the stresses as a result of
Gaussian curvature only, prior to the introduction of the crack.
Firstly, we will take the circular boundary of the disk traction-
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free. For the stress components σGρρ (ρ) and σGρφ (ρ) evaluated at
the boundary we thus have

pρ =σ
G
ρρ (R/x0) = 0, (199)

pφ =σGρφ (R/x0) = 0. (200)

Due to rotational symmetry σGρφ = 0 [107]. The trace of the stress
tensor, however, reads [107]

σGρρ+ σGφφ =
α2

4 Y

(
x2

0
R2 exp

(
−R

2

x2
0

)
− x2

0
R2 + exp

(
−ρ2

))
. (201)

From this starting point we obtain σGρρ and σGφφ. Again, employing
rotational symmetry the force-balance in the ρ direction reads

ρ
∂σGρρ
∂ρ

+ σGρρ − σGφφ = 0. (202)

Substituting eq. (201) to eliminate σGφφ yields a differential equa-
tion for σGρρ whose solution is

σGρρ =
C

ρ2 −
α2Y

8ρ2 exp
(
−ρ2

)
+
α2Y

8
x2

0
R2

[
exp

(
−R

2

x2
0

)
− 1

]
. (203)

Demanding that the stress is finite at the origin sets the integration
constant C = Y α2/8. We thus find

σGρρ =
α2

8 Y

(
ρ−2

[
1− exp

(
−ρ2

)]
+
x2

0
R2

[
exp

(
−R

2

x2
0

)
− 1

])
,

(204)

for the radial stress component. Substituting σGρρ back into eq.
(201) yields for the azimuthal component

σGφφ =
α2

8 Y
(
ρ−2

[
exp

(
−ρ2

)
− 1

]
+ 2 exp

(
−ρ2

)
+
x2

0
R2

[
exp

(
−R

2

x2
0

)
− 1

])
. (205)

These stress components are plotted as a function of ρ in Fig. 49a.
If instead of traction-free boundary conditions (eqs. (199)-(200)),
we apply a radial force of magnitude P ,

pρ =P , (206)
pφ =0, (207)
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Figure 49: Stress components σGρρ (red) and σGφφ (blue) for P = 0 and
R/x0 → ∞ (top panel), R/x0 = 0.01 (bottom panel) as
a function of the rescaled radius. Inset: Schematic of σGρρ
and σGφφ indicated by red and blue arrows, respectively. The
bump is indicated by the green dashed circle ρ = 1.
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we can simply superpose a uniform stress field σρρ = P and σφφ =

P to the obtained expression for σij :

σGρρ =
α2

8 Y
(
ρ−2

[
1− exp

(
−ρ2

)]
+
x2

0
R2

[
exp

(
−R

2

x2
0

)
− 1

])
+ P , (208)

σGφφ =
α2

8 Y
(
ρ−2

[
exp

(
−ρ2

)
− 1

]
+ 2 exp

(
−ρ2

)
+
x2

0
R2

[
exp

(
−R

2

x2
0

)
− 1

])
+ P . (209)

In an infinite medium (R →∞), the non-vanishing stress compo-
nents reduce to

σGrr =
α2

8 Y ρ−2
(
1− exp

(
−ρ2

))
+ P , (210)

σGφφ =
α2

8 Y
(
ρ−2

[
exp

(
−ρ2

)
− 1

]
+ 2 exp

(
−ρ2

))
+ P .

(211)

Finally, in the spherical cap regime (R� x0) we find (Fig. 49b)

σGρρ ≈
α2

16Y
(
R2/x2

0 − ρ2
)
+ P , (212)

σGφφ ≈
α2

16Y
(
R2/x2

0 − 3ρ2
)
+ P . (213)

The azimuthal stress is compressive for |x| > R/
√

3 ≈ 0.58R for
P = 0.

5.2.5 Results for small center cracks

Now that we have solved for the stresses prior to the introduction
of the crack, we can calculate the stress intensity factors by means
of weight function. The stress intensity factor is an integral over
the length of the crack, which we define as 2a for a crack in the
bulk. The product of the applied traction at the crack edge with
the weight function, m (x, a), comprises the integrand:

KI =
∫ a

−a
m (ξ, a) py (ξ) dξ, (214)

KII =
∫ a

−a
m (ξ, a) px (ξ) dξ. (215)
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The weight function can be viewed as the stress intensity factor for
a force dipole at x, i.e. py (ξ) = δ (ξ − x) for mode I or px (ξ) =
δ (ξ − x) for mode II. The weight function depends on the length
of the crack, but also on the location of the applied traction and
diverges at the tip. For instance, the weight function for the tip at
x = a of a crack in an infinite plane is

m (x, a) = 1√
πa

√
a+ ξ

a− ξ
. (216)

The stress intensity factors for such a centre crack in a Gaussian
bump are thus

KI =
1√
πa

∫ a

−a
dξ

√
a+ ξ

a− ξ
σ̃Gyy (ξ, 0) , (217)

KII =
1√
πa

∫ a

−a
dξ

√
a+ ξ

a− ξ
σ̃Gxy (ξ, 0) , (218)

where σ̃Gij (x, y) is the stress due to geometric frustration only. The
origin of the xy coordinate system is at the middle of the crack.1

If the crack size is small enough compared to the length scale over
which the stresses vary, i.e.

a
∣∣∣∂xσ̃Giy∣∣∣� σ̃Giy, (219)

it is legitimate to take σGiy out of the integrand and we obtain the
following result

KI =
σ̃Gyy (0, 0)
√
πa

∫ a

−a
dξ

a+ ξ√
a2 − ξ2

=
√
πaσ̃Gyy (0, 0) , (220)

KII =
σ̃Gxy (0, 0)
√
πa

∫ a

−a
dξ

a+ ξ√
a2 − ξ2

=
√
πaσ̃Gxy (0, 0) . (221)

This result holds irrespective of the details of the shape of the
surface. For a Gaussian bump with a crack that is aligned radially,
eqs. (220) and (221) reduce to

KI =
√
πa σGφφ (ρ

∗) , (222)
KII = 0, (223)

1 The tilde is there to distinguish it from σGij which generally is a function of
ρ, and thus, although it describes the same physical quantity, is a different
function of its arguments.
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where ρ∗ is the distance to the crack from the centre of the bump.
Since KII the crack will grow radially if KI > Kc. For the bump
this implies that the critical length, ac, at which radial cracks will
grow is

ac =
K2
c

π
(
σGφφ (ρ

∗)
)2 . (224)

We plot this quantity in Fig. 50 for several aspect ratios of the
bump in an infinite plane (i.e. R → ∞)) and P = 0.01Y . We
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Figure 50: Normalised critical length of the small straight crack in the
radial direction versus normalised radial distance of the lo-
cation of the crack for P = 0.01Y and aspect ratios α = 0
(blue), α = 0.1 (green), α = 0.2 (red), α = 0.3 (cyan) and
α = 0.4 (magenta).

have normalised ac by the length, l, at which a crack under 1%
strain (i.e. P = 0.01Y ) would grow in the flat case (i.e. α = 0).
The critical size is smallest if the crack is located at the top of the
bump (ρ∗ = 0), where σGφφ has its maximum. The critical crack
length is largest at ρ∗ ≈ 1.8, where σGφφ has its minimum. Since
σGφφ flips sign at ρ∗ ≈ 1.1, the normalised critical crack length ac/l
crosses unity for ρ∗ ≈ 1.1. For cracks located at radial distances
smaller than this value, ac/l < 1 and the curvature thus stimulates
crack growth. On the other hand, if the crack is located sufficiently
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far from the bump, ac/l > 1 and the crack growth is suppressed. It
should be noted that for cracks located such that we find K1 < 0
(signalled by a divergence of ac), the stress field is not given by eqs.
(178)-(184)), because the crack edges would have to interpenetrate.
As can be seen from eq. (192), K1 < 0 would give uy (r, π) < 0
on the top edge and uy (r, π) > 0 on the bottom edge. In practice,
crack closure or bulging occurs [8]. If α increases (or P decreases)
further there will be an annular region for which this occurs.
For a small crack in the azimuthal direction rather than radial

direction, we find

KI =
√
πa σGρρ (ρ

∗) , (225)
KII = 0. (226)

and the critical crack length is given by

ac =
K2
c

π
(
σGρρ (ρ

∗)
)2 . (227)

For small azimuthal cracks, the curvature suppresses the crack
growth independently of the value of ρ∗, as is shown in Fig. 51,
because σGρρ > 0. The critical crack length is smaller in the presence
of curvature than in the absence of curvature, no matter where the
azimuthal crack is located.
Next we will consider the general case in which the orientation of

the crack makes an angle β with the radial direction. The traction
at the crack edge reads

py ≈ σ̃Gyy (0, 0) = σGρρ (ρ
∗) sin2 β + σGφφ (ρ

∗) cos2 β, (228)

px ≈ σ̃Gxy (0, 0) =
(
σGφφ (ρ

∗)− σGρρ (ρ∗)
)

sin β cos β. (229)

The stress intensity factors are therefore

KI =
√
πa
(
σGρρ (ρ

∗) sin2 β + σGφφ (ρ
∗) cos2 β

)
, (230)

KII =
√
πa
(
σGφφ (ρ

∗)− σGρρ (ρ∗)
)

sin β cos β. (231)

For the radial and azimuthal crack (β = 0 and β = π/2, respec-
tively) we recover KII = 0, and there will thus not be a kink.
However, for intermediate values of α, i.e. β (mod π/2) 6= 0, the
mode II stress intensity factor does not vanish. Therefore, if the
crack does grow, it will grow in a different direction than the di-
rection of the pre-existing crack. This kink angle can be calculated
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Figure 51: Normalised critical length of the small straight crack in the
azimuthal direction versus normalised radial distance of the
location of the crack for P = 0.01Y and aspect ratios α = 0
(blue), α = 0.1 (green), α = 0.2 (red), α = 0.3 (cyan) and
α = 0.4 (magenta).

with the maximum hoop stress criterium (eq. (186)) and is plot-
ted for β = π/4 in the top panel of Fig. 52 as a function of ρ for
several values of α. The sign of the kink angle is determined by
the sign of KII . If KII is positive (negative), that is, η is positive
(negative), assuming P is large enough to prevent a nonphysical
negative KI , then θc is negative (positive). The sign of θc is inde-
pendent of the crack location, because σGρρ ≥ σGφφ for all ρ∗, but is
depending on the value for β, as is illustrated in the top panels of
Fig. 53 and Fig. 54 for ρ∗ = 2 and ρ∗ = 0.5. We find KII < 0
(or KII > 0) for 0 < β (mod π) < π

2 (or π
2 < β (mod π) < π)

and so θc > 0 (or θc < 0). For all values of β this implies that the
crack direction will be corrected toward the azimuthal direction.
The top panel of Fig. 53 also shows that the value for which the
kink angle is the largest (which is where the ratio of the mode
II and mode I stress intensity factors is the largest) occurs at a
value for β which is typically somewhat smaller than π/4. Since
the loading is mixed mode, the stress that enters in the formula
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Figure 52: Kink angle (top panel) and normalised critical length of the
small straight crack (bottom panel) versus normalised radial
distance of the location of the crack for β = π/4 and P =

0.01Y and aspect ratios α = 0 (blue), α = 0.1 (green),
α = 0.2 (red), α = 0.3 (cyan) and α = 0.4 (magenta). Inset:
Schematic with graphical definitions of ρ∗, β and θc.
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Figure 53: Kink angle (top panel) and normalised critical length of the
small straight crack (bottom panel) versus the orientation of
the crack for ρ∗ = 2 and P = 0.01Y and aspect ratios α = 0
(blue), α = 0.1 (green), α = 0.2 (red), α = 0.3 (cyan) and
α = 0.4 (magenta).
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Figure 54: Kink angle (top panel) and normalised critical length of the
small straight crack (bottom panel) versus the orientation of
the crack for ρ∗ = 0.5 and P = 0.01Y and aspect ratios
α = 0 (blue), α = 0.1 (green), α = 0.2 (red), α = 0.3 (cyan)
and α = 0.4 (magenta).
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for the critical crack length is the circumferential stress (evaluated
for θ = θc in eq. (178)), and eq. (187) gives

ac =
K2
c

π
(
σGyy (ρ

∗) f Iθθ (θc) + σGxy (ρ
∗) f IIθθ (θc)

)2 . (232)

We again plot the critical size as a function of crack location in
the bottom panel of Fig. 52, now for β = π/4, and as a function
of β in the bottom panel of Fig. 53 for ρ∗ = 2. The latter shows
that the curvature suppresses crack growth the most when the
crack is oriented radially (i.e. β = 0, π), and stimulates crack
growth the most when the crack is aligned azimuthally (i.e. β =

π/2, 3π/2). For ρ∗ . 1.1, the curvature stimulates the crack
growth irrespective of the orientation of the crack, as is shown in
the bottom panel of Fig. 54 for ρ∗ = 0.5.

5.3 conclusions

The critical length of the crack can both be enhanced or dimin-
ished by geometry-induced stress, in contrast to uniformly applied
outward force at the boundary of the disk, which always stimulates
crack growth. For a radial crack in a Gaussian bump, the critcal
length decreases for cracks located at distances to the top smaller
than ρ∗ ≈ 1.1. For radial cracks located at ρ∗ & 1.1 the critical
length is increased by the curvature. This effect is strongest when
ρ∗ ≈ 1.8. The critical size of an azimuthally oriented crack is de-
creased by the curvature irrespective of position. In addition to
the critical size, also the kink angle depends on the location and
orientation of the crack. The pre-existing crack will start to grow
in a direction with a larger azimuthal component.



6
CURVED CRACK PATHS

6.1 cotterell and rice theory

In the previous chapter, stress intensity factors and kink angles
of straight cracks were obtained. To predict the trajectory of a
crack, we need to calculate the the stress intensity factors and crack
growth direction for curved or kinked cracks. For this we employ
the perturbation theory for slightly curved cracks developed by
Cotterell and Rice [15]. This theory assumes a small deviation
λ (x) of a straight crack, as is illustrated in Fig 55. Let pn (x) and

Figure 55: Schematic of a slightly curved crack with crack tips at
x = −a and x = a, including graphical definitions of pn (x),
ps (x) and λ (x).

ps (x) denote the normal and shear tractions and primes denote
derivatives. The stress intensity factors at the tip at x = a are
approximated by [15]

KI =
1√
πa

∫ a

−a

√
a+ ξ

a− ξ

(
pn −

3
2ωps + λp′s + 2λ′ps

)
dξ,

(233)

KII =
1√
πa

∫ a

−a

√
a+ ξ

a− ξ

(
ps + λp′n +

1
2ωpn

)
dξ, (234)

where ω = λ′ (a) is the slope at the tip, which is (to leading
order) the angle of the crack tip orientation with the x-direction.
If λ = 0 these expressions reduce to eqs. (214)-(216) for straight
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center cracks. For a semi-infinite crack whose (right) tip is located
at x = d eqs. (233) and (233) reduce to

KI =

√
2
π

∫ d

−∞

√
1

d− ξ

(
pn −

3
2ωps + λp′s + 2λ′ps

)
dξ,

(235)

KII =

√
2
π

∫ d

−∞

√
1

d− ξ

(
ps + λp′n +

1
2ωpn

)
dξ. (236)

6.2 crack paths on a gaussian bump

Based on the stress intensity factors in eqs. (233) and (234), we cal-
culate the kink angle with eq. (186). Next, we grow the crack in the
direction specified by the kink angle by a small increment. This pro-
cess is iterated such that a series of connected line segments forms
a crack path. This path approximates a smooth curved crack tra-
jectory provided the length of the increment, ∆x, is small enough.
We will take ∆x = 0.05x0 and show in Appendix D that this choice
is sufficient. The only point at which the crack path is not smooth
but makes a kink, is at the onset of growth of the pre-existing
crack.
We will start with a straight semi-infinite crack in an elastic

sheet confined to a Gaussian bump. This pre-existing crack is
aligned in the x-direction and its tip is located at d = −8x0. We
will vary the initial offset in the y direction, yoff. A uniform load-
ing of the entire semi-infinite crack leads to an ill-posed problem,
as the stress intensity factors diverge. Instead, we consider a force
dipole at x = xp of magnitude T ≡ γY x0 (with γ thus a dimen-
sionless number indicating the magnitude):

pn = Tδ (x− xp) , (237)
ps = 0. (238)

We will choose xp = −10x0, thus far away from the bump. Sub-
stituting these expressions into eqs. (235) and (236) gives a contri-
bution to the stress intensity factors of:

KI =

√
2T√

π (d− xp)
, (239)

KII =
ωT√

2π (d− xp)
. (240)
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If the slope is positive (negative), i.e. the slope ω > 0 (ω < 0),
then KII > 0 (KII < 0) and hence θk < 0 (θk > 0). Thus the
external loading tries to restore the crack to a straight horizontal
orientation, with ω = 0.
The curvature has a distinct effect on the crack path. Numeri-

cally calculated crack paths for several values of yoff, γ = 1 and
α = 0.5 are presented in Fig. 56. A zoom of the crack paths around
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Figure 56: Crack paths for α = 0.5 (yellow), γ = 1, and yoff = 0 (blue),
yoff = 0.2x0 (green), yoff = 0.4x0 (red), yoff = 0.6x0 (cyan),
yoff = 0.8x0 (magenta), yoff = x0 (yellow), yoff = 1.2x0

(black), yoff = 1.4x0 (grey), yoff = 1.6x0 (purple) and yoff =

1.8x0 (orange).

the bump with the x and y on the same scale is shown in Fig. 57.
We observe that there is a deflection as the crack approaches the
bump. This is can also be inferred from the positive values of ω
for negative x (Fig. 58). ω reaches its maximum at x ≈ −0.3x0.
This corresponds to an inflection point of the crack path. Then ω
crosses zero in between x ≈ x0 and x ≈ 1.5x0 depending on the
value of yoff, the vertical deflection is maximal and the crack turns.
Next is another inflection point beyond x = 2x0, after which the
crack eventually attains a horizontal orientation. Interestingly, the
deflection is largest when yoff is of the order of the width of the
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Figure 57: Crack paths for α = 0.5 (yellow), γ = 1, and yoff = 0 (blue),
yoff = 0.2x0 (green), yoff = 0.4x0 (red), yoff = 0.6x0 (cyan),
yoff = 0.8x0 (magenta), yoff = x0 (yellow), yoff = 1.2x0

(black), yoff = 1.4x0 (grey), yoff = 1.6x0 (purple) and yoff =

1.8x0 (orange). Circle ρ = 1 in dashed green.

bump. This can be seen from Fig. 59, where we plot the maximal
y-deflection ∆ as a function of yoff.
We can also vary the aspect ratio instead of the initial offset.

The crack paths for several values of α are displayed in Fig. 60,
yoff = x0 and γ = 1. The observe that the deflection increases
upon increasing the aspect ratio.

6.3 conclusions

In conclusion, we have numerically calculated crack paths with
Cotterell-Rice perturbation theory. We considered an external nor-
mal loading that tends to grow the pre-existing semi-infinite crack
horizontally. The curvature-induced stresses are competing with
this normal loading. The curvature is responsible for deflecting
the crack path, after which it ‘goes around’ the bump. The magni-
tude of deflection increases with aspect ratio and is largest when
the initial offset is around the width of the bump. Finally, when
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Figure 58: Crack tip angle ω for α = 0.5 (yellow), γ = 1, and yoff = 0
(blue), yoff = 0.6x0 (cyan), yoff = 1.2x0 (black) and yoff =

1.8x0 (orange).

the crack tip has past the bump, the crack turns to a horizontal
orientation.
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Figure 59: The maximal vertical deflection of the crack path as a func-
tion of the initial offset.
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Figure 60: Crack paths for yoff = x0, γ = 1, and α = 0 (blue), α = 0.1
(green), α = 0.2 (red), α = 0.3 (cyan), α = 0.4 (magenta)
and α = 0.5 (yellow).
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A
ANSATZ FOR THE HOMOGENEOUS SHELL

In this appendix, we show how to arrive at eq. (110). The Euler-
Lagrange equation for the angular field, Φ, defined as the angle
of the director with a cartesian reference frame (u, v), is Laplace’s
equation, except at the defect cores. This equation obeys the su-
perposition principle. Therefore, the planar director field can be
written as the sum of the director fields of two individual defects,
Φ1 and Φ2, positioned at r1 and r2. Thus we write,

Φ (r) = Φ1 + Φ2 = α+ ω1 + ω2, (241)

where ωi is the azimuthal angle in the reference frame that has
ri as its origin, as is shown in Fig. 23a. Here, α is again a global
constant. If we take ri = (ui, 0) the defects lie on the u-axis. We
have

ωi = arctan (v,u− ui) , (242)

where the two-argument arctan (y,x) is as the ordinary arctan
(
y
x

)
,

except that it takes into account in which quadrant the point (x, y)
is. The resulting director field,

n = cos Φ û + sin Φ v̂, (243)

with

Φ = α+
∑
i=1,2

arctan (v,u− ui) , (244)

is displayed in Fig. 23b for α = 0. We rewrite this by substituting
the following identities,

û = cosω ρ̂− sinω ω̂, (245)
v̂ = sinω ρ̂+ cosω ω̂, (246)

where ω and ρ are the azimuth angle and the radial distance in
the uv-plane, respectively. The result reads

n = cos (Φ− ω) ρ̂+ sin (Φ− ω) ω̂. (247)
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This field is projected onto a sphere by means of an inverse stere-
ographic projection[57], illustrated in Fig. 22. Each point on the
sphere is represented by a point in the plane by the following re-
lation:

u+ iv = 2R tan
(
θ

2

)
eiφ. (248)

Then, noting that the planar polar unit vectors, (ρ̂, ω̂) are mapped
to the spherical ones, (θ̂, φ̂), we find eq. (110).



B
CONFORMAL MAPP INGS AND THE CIRCLES
OF APOLLONIUS

To obtain the director field on the sphere minimising the free en-
ergy we use the inverse stereographic projection, in eq. (248). An-
other example of a conformal mapping is ψ (w) in eq. (115),

ψ (w) = log
(
w−A
w−B

)
, (249)

with −A = B = id and d real, to which we could associate elec-
tric potential to the real part, as this holomorphic function must
obey Laplace’s equation. (Note that the analogy with electrostat-
ics made in section 3.2.2 is to aid the explanation and not unique;
we could have made an analogy with two-dimensional fluid flow
just as well.) This maps an ‘inhomogeneous annulus’, i.e. the area
bounded by two non-concentric circles, in the complex w-plane to a
vertical strip in the complex ψ-plane. Likewise, the non-concentric
equipotential circles and electric field circles are mapped to verti-
cal equipotential and horizontal electric fieldlines, as in a capacitor.
It is the Möbius transformation

τ (w) =
w+ id

w− id
, (250)

that maps the inhomogeneous annulus to a homogeneous one, i.e.
the region bounded by two concentric circles. Consequently, this
annulus in the complex τ plane is mapped to the vertical strip by
the transformation

ψ = log τ . (251)

The mapping is illustrated schematically in Fig. 61. The equipo-
tential (solid black) and electric field (dashed green) lines in the w
plane can thus be found by setting the real and imaginary parts
of ψ (w) constant:

<[ψ (w)] = log
∣∣∣∣w−Aw−B

∣∣∣∣ = constant, (252)

=[ψ (w)] = arg
(
w−A
w−B

)
= constant. (253)
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Figure 61: Schematic of the mapping of eq. (249).

Eq. (252) describes the circles of Apollonius characterised by in-
verse points A and B. Instead of the more familiar specification of
a circle as all the points that are a radius away from a centre, eq.
(252) defines a circle as the locus of points for which the ratio of
the distance to A and the distance to B is constant. It is straight-
forward to show that eq. (252) indeed defines circles by rewriting
it into

x2 + (z + d)2

x2 + (z − d)2 = C, (254)

where C is a constant. Some simple algebra now leads to the usual
equation of a circle

x2 + (z − η)2 = R2, (255)

with radius, R, and displacement, η:

R =

[(1 +C

1−C

)2
− 1

] 1
2

d, (256)

η = −1 +C

1−C d. (257)

A look at these eqs. yields the relation between the displacements
and radii of the circles:

R2 = η2 − d2. (258)

The electric field lines, which run perpendicular to the equipoten-
tial lines, are also circles. Since the argument of the product of
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two complex numbers is the sum of the arguments of the individ-
ual complex numbers, we can rewrite eq. (253) as

arg (w−A)− arg (w−B) = γ, (259)

In reference to Fig. 62, consider two fixed points A and B on
a circle inscribing the triangle ABw, where w is a third point
somewhere on the circular arc AB, then simple geometry tells
us the angle AwB, called γ, is constant. Now, eq. (259) simply
follows from the fact that the sum of the angles of any (Euclidean)
triangle should be π. Alternatively, one can carry out the algebraic

Figure 62: The electric field lines are circular arcs given by eq. (259),
shown here for generic A and B.

manipulations to find that

(x− ε)2 + z2 = S2, (260)

with radii, S, and displacements in the x-direction, ε, related in
the following way:

S2 = ε2 + d2. (261)





C
EXPERIMENTAL PATH THROUGH PHASE
SPACE

In this appendix we derive the experimental trajectory through
phase space, eq. (140), determined by a constant hmin. With a
straightforward geometrical consideration we can relate hmin to ∆:

∆
h
= 1− hmin

h
. (262)

As mentioned in the main text, the thickness is modified by a
flow of water with volume δV that passes through the shell. We
take δV > 0 if the volume of the double emulsion droplet, Vtot, is
increased and δV < 0 if it is decreased. Upon writing δV = 4

3πv
3,

we obtain for the radius of the double emulsion droplet

R3 = R′3 + v3, (263)

where R′ is the radius of the double emulsion droplet before the
flow of water. Since we assume that the volume of the shell, Vshell,
is conserved, the inner radius changes similarly

a3 = a′3 + v3. (264)

By invoking eqs. (263) and (264) we can write for v
R′ :

(
v

R′

)3
=

(
1− h

R

)3
−
(
a′

R′

)3

1−
(
1− h

R

)3 . (265)

We wish to find the path through phase space, that is, we want
to write ∆

h as a function of h
R . We find for the displacement (eq.

(262))

∆
h
= 1− hmin

R′

(
h

R′

)−1
. (266)

Now by using eqs. (263) and (264), note that

h

R′
=

[
1 +

(
v

R′

)3] 1
3
−

( a′
R′

)3
+
(
v

R′

)3


1
3

. (267)
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Substitution of eq. (265) into eq. (267), in turn substituted into
eq. (266) yields

∆
h
= 1− u0

u
3

√√√√ 1− (1− u)3

1− (1− u0)
3 , (268)

where u ≡ h
R . In plotting Fig. 33, we have chosen a′

R′ = 1−u0, with
u0 = 0.0153 the normalised thickness at which the shell becomes
homogeneous. This is in agreement with experimental observations
where the radius of the droplet is about 70 µm and the thickness
of the order of µm then. If we draw this trajectory in the phase
diagram (Fig. 32), we observe that, as we decrease thickness, it
crosses from the bipolar regime to the non-bipolar regime via the
regime of coexistence.



D
CRACK INCREMENT ( IN )DEPENDENCE

In this appendix we show that ∆x = 0.05x0 is sufficiently small.
The crack path does not change significantly upon reducing ∆x =

0.1x0 to ∆x = 0.05x0, as is shown in Fig. 63. This is also true for

8 6 4 2 0 2 4 6 8
x/x0

1.0

1.1

1.2

1.3

y/x0

Figure 63: Crack paths for α = 0.5, γ = 1, yoff = x0 and ∆x = 0.1
(dashed blue) and ∆x = 0.05 (green).

the crack tip angle and the opening mode stress intensity factor as
shown in Figs. 64 and 65 respectively. The kink angle, however,
decreases upon reducing the stepsize, indicating that the crack
path becomes smoother (Fig. 66). Indeed, in the limit that ∆x
goes to zero, θk should vanish. Only at the onset of growth of the
pre-existing crack a kink is expected, since the loading is in mixed
modes. Also KII becomes smaller as we reduce ∆x, and attains
very small values compared to KI (Fig. 67). Our approach is thus
consistent with another criterion of smooth crack growth, namely
the condition KII = 0.
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Figure 64: Crack tip angle for α = 0.5, γ = 1, yoff = x0 and ∆x = 0.1
(dashed blue) and ∆x = 0.05 (green).
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Figure 65: Opening mode stress intensity factor for α = 0.5, γ = 1,
yoff = x0 and ∆x = 0.1 (dashed blue) and ∆x = 0.05
(green).
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Figure 66: The kink angle for α = 0.5, γ = 1, yoff = x0 and ∆x = 0.1
(dashed blue) and ∆x = 0.05 (green).
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Figure 67: The mode II stress intensity factor for α = 0.5, γ = 1, yoff =

x0 and ∆x = 0.1 (dashed blue) and ∆x = 0.05 (green).
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SAMENVATTING

Dit proefschrift gaat over geometrische frustratie. Geometrische
frustratie treedt op wanneer lokale orde niet door de gehele ruimte
kan worden gehandhaafd. Een vaak voorkomend gevolg zijn defec-
ten. Een vertrouwd voorbeeld van dit verschijnsel is de voetbal.
Het oppervlak van de voetbal is zowel bedekt met zeshoeken, tra-
ditioneel wit gekleurd, en vijfhoeken, doorgaans zwart. Een bete-
geling van zeshoeken - een voorbeeld van orde - is onmogelijk op
een boloppervlak - de ruimte - en andere veelhoeken - de defecten
- zijn noodzakelijk. Een ander voorbeeld zijn de breedtecirkels op
de aarde, die tot een punt krimpen bij de noord- en zuidpool. Die
twee punten vormen de defecten en hebben elk een windingsgetal
van 1. De totale som van het windingsgetal wordt bepaald door de
topologie van het oppervlak.

Figuur 68: Twee vertrouwde voorbeelden van geometrische frustratie.
Links: Geometrische frustratie in een voetbal. Een perfecte
betegeling van witte zeshoeken is onmogelijk, resulterend
in twaalf zwarte vijfhoeken (de defecten). Rechts: Geometri-
sche frustratie op de aardbol. De breedtecirkels krimpen tot
een punt bij de noord- en zuidpool (defecten). Aangepast
van ref. [1].

Geometrische frustratie treedt ook op in materialen, bijvoor-
beeld vloeibare kristallen. In een nematisch vloeibaar kristal wijzen
de staafvormige moleculen in eenzelfde richting, n. Die richting

143



144 bibliography

wordt de director genoemd. Idealiter wijst n overal dezelfde kant
op. Echter, dit is soms onmogelijk als het nematisch vloeibaar kris-
tal in een bepaalde geometrie wordt opgesloten. Zoals de naam al
suggereert, is een nematisch vloeibaar kristal niet alleen geordend,
maar ook vloeibaar en dus kunnen druppels van nematisch vloei-
baar kristal gecreëerd worden. Ook nematische bolschillen kunnen
gemaakt worden door een druppel water in te kapselen door een
grotere druppel van nematisch vloeibaar kristal. De randvoorwaar-
den zijn zodanig dat de director zich parallel aan de grensopper-
vlakken wil richten.

In deel I kijken we naar de verschillende schikkingen van de-
fecten in zulke nematische bolschillen. Dit is interessant, omdat
defecten deze druppels een valentie kunnen geven en zo wellicht
nieuwe structuren en materialen kunnen worden ontworpen. De de-
fecten vormen aparte plekken op de bol, die in potentie gebruikt
kunnen worden om gerichte verbindingen te bewerkstelligen, zoals
dat in de natuur op atomaire schaal gebeurt. Een van de mogelijke
director veldenlijnen is als de breedtecirkels, dus met twee defec-
ten. Soortgelijke bipolaire systemen zijn al via de defecten tot een
ketting aaneengeregen. Aangezien er geen onderscheid is te ma-
ken tussen n en −n, zijn defecten met een half windingsgetal ook
mogelijk. In eenzelfde emulsie kunnen zowel bolschillen met een
valentie van twee, drie en vier voorkomen, zodanig dat het totale
windingsgetal twee bedraagt.

In hoofdstuk 2 berekenen we de energetisch meest optimale po-
sitionering van de drie afstotende defecten: dit is een gelijkbenige
driehoek. De trivalente dunne bolschil is energetisch onvoordeli-
ger dan de tetravalente dunne bolschil. De trivalente toestand is
echter toch stabiel in bolschillen met een eindige dikte, door een
zogenaamde ‘ontsnapping in de derde dimensie’ van de director
veldlijnen. We berekenen deze energetische barriere en de robuust-
heid tegen thermische fluctuaties.
In hoofdstuk 3 concentreren we ons op de divalente bolschil.

Als het gevolg van een dichtheidsverschil tussen water en het ne-
matisch vloeibaar kristal wordt de binnenste druppel naar boven
verplaatst en is de dikte van de nematische bolschil inhomogeen.
De dikte en de inhomogeniteit van de dikte van de schil beïnvloe-
den de locatie van de defecten. We onderscheiden twee toestanden.
In één van de twee toestanden zitten de defecten gevangen in het
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dunste halfrond, terwijl in de andere toestand de defecten zich juist
zo ver mogelijk van elkaar vandaan bevinden. We vinden dat er
zowel continue als abrupte overgangen kunnen plaatsvinden tus-
sen deze twee toestanden als de dikte van de bolschil en diens
inhomogeniteit veranderen.
In hoofdstuk 4 (deel II) beschouwen we nematische druppels in

de vorm van een torus in plaats van een bol. De druppel kan deze
ongebruikelijke vorm behouden door speciale eigenschappen van
het dispersiemiddel. De topologie van het grensoppervlak vereist
geen defecten. We ontdekken echter wel een twist in het director-
veld ten gevolge van de opsluiting van het nematisch vloeibaar
kristal in deze vorm boven een kritische waarde van de dikte van
de torus. Dit directorveld is bovendien chiraal. Er zijn twee energe-
tische minima die elkanders spiegelbeeld zijn. Deze spontane chi-
raliteit wordt verklaard door twee elastische effecten. Ten eerste is
twist voordeliger dan buiging van de director. Ten tweede ontdek-
ten we dat een andere elastische vervorming, namelijk een elasti-
sche vervorming op de rand genaamd zadelspreiding, de director
koppelt aan de excentrieke kromming van het grensvlak en daar-
mee bijdraagt aan een chirale toestand mits de corresponderende
elastische constante positief is. Een extern veld breekt de spiegel-
symmetrie niet expliciet, maar verschuift de kritische waarde van
de dikte waarop de overgang plaatsvindt tussen de chirale and
symmetrische toestand. Een moleculaire chiraliteit breekt de sym-
metrie wel expliciet.
In deel III beschouwen we de invloed van geometrische frustra-

tie op scheurgroei. Als een elastische film wordt geforceerd een
bepaalde vorm aan te nemen, zoals bijvoorbeeld een (Gaussische)
bult, dan leidt de kromming van de film tot rek in het materiaal.
Deze spanning heeft effect op de scheurgroei. Rondom de scheurtip
is er een verhoogde spanning, die gekarakteriseerd wordt door twee
spanningsintensiteitsfactoren. Als de spanningsintensiteitsfactor in
de richting van maximale trekspanning boven een kritische waarde,
de scheurgroeiweerstand, uitkomt begint de scheur te groeien, met
mogelijk gevolg dat het materiaal breekt. De richting van scheur-
groei hangt ook van de twee spanningsintensiteitsfactoren af. Aan-
gezien de spanningsintensiteitsfactoren toenemen met de lengte
van de scheur, is er een kritische lengte waarop de scheur begint
met groeien. In hoofdstuk 5 berekenen we die kritische lengte voor
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scheuren in gekromde platen. Deze lengte is een functie van de loca-
tie en oriëntatie van de scheur. Voor scheuren in de richting van de
azimut leidt de kromming tot een verlaging van de kritische lengte
ongeacht de locatie. Voor radieel (ten opzichte van de bump) geori-
ënteerde scheuren leidt de kromming ook tot een verlaging van de
kritische lengte als de scheur zich binnen een bepaalde straal tot
de top van de bump begeeft, maar een verhoging van de kritische
lengte als de scheur zich daarbuiten bevindt. De grootte van de
straal is grofweg de breedte van de bump. Ook de hoek tussen de
oriëntatie van de scheur en de richting waarin deze groeit is afhan-
kelijk van de locatie en orientatie van de scheur. In hoofdstuk 6
berekenen we numeriek het gehele pad dat een aanvankelijk rechte
semi-oneindige scheur aflegt. Dit doen we met behulp van storings-
rekening voor licht gekromde scheuren ontwikkeld door Cotterell
en Rice. Deze afbuiging is het grootst als de scheur aankomt ter
hoogte van de breedte van de bump.
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