
Exploiting Multi-Level Parallelism in Streaming Applications for
Heterogeneous Platforms with GPUs
Balevic, A.

Citation
Balevic, A. (2013, June 26). Exploiting Multi-Level Parallelism in Streaming Applications for
Heterogeneous Platforms with GPUs. ASCI dissertation series. Retrieved from
https://hdl.handle.net/1887/21017

Version: Corrected Publisher’s Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/21017

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/21017

Cover Page

The handle http://hdl.handle.net/1887/21017 holds various files of this Leiden University
dissertation

Author: Balevic, Ana
Title: Exploiting multi-level parallelism in streaming applications for heterogeneous
platforms with GPUs
Issue Date: 2013-06-26

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/21017
https://openaccess.leidenuniv.nl/handle/1887/1�

Chapter 1
Introduction

What started off as a simple graphics card is nowadays a pervasive programmable
accelerator called a Graphics Processing Unit (GPU). The success of GPU as an
accelerator for data parallel computationally intensive tasks inspired numerous appli-
cation designers to parallelize their application hot-spots and port them as kernels to
the GPU architecture. Modern GPUs exhibit massive parallelism and can be used for
general purpose computing, i.e. they are compute-capable. As such, GPUs are well-
suited to address the ever increasing computational demands in automotive, medical,
entertainment and bio-informatics fields. Nowadays, CPUs are often combined with
GPUs and intellectual property (IP) cores implementing special functions, to form
a heterogeneous platform. The emergence of heterogeneous platforms increasingly
blurs the distinction between the embedded systems domain and the high perfor-
mance computing (HPC) domain.

While heterogeneous platforms such as NVIDIA Tegra, Apple A5X ARM system-
on-chip (SoC), and TI’s OMAP 5430 offer the dual benefits of higher performance
and better energy efficiency due to the presence of a CPU and a GPU in a single de-
sign, they also pose unprecedented design and implementation challenges for appli-
cation programmers. Tapping into the parallelization potential of heterogeneous plat-
forms is a challenging task. Even parallel programming for a single multicore proces-
sor is difficult [139], since the programmer is faced with numerous questions - from
finding the parallelism and partitioning the application, to the correct and efficient
realization of communication and synchronization between tasks. Modern platforms
embrace both increasing degrees of parallelism and heterogeneous execution units.
Parallelism in architectural components ranges from fine-grain instruction-level par-
allelism (ILP) typically found in superscalar pipelined processors and VLIW proces-
sors, data parallelism found in vector processor or processor array architectures, to
coarse-grain task-level parallelism (also referred to as process-level parallelism [31]

V

mem mem

CPU GPU
GPU

Heterogeneous Platform

Embedded

HPC

+PC

Figure 1.1: A heterogeneous platform featuring a quadcore CPU and a GPU.

and thread-level parallelism [72]) typically found in multiprocessor systems. A com-
bination of parallelism at different levels of the platform results in multi-level paral-
lelism [31].

Let us examine some forms of parallelism that can be found in a heterogeneous
platform featuring a quadcore central processing unit and a single GPU accelerator
shown in Figure 1.1. To exploit this platform, it is necessary to find parallelism in the
application and map it onto different architectural components of the platform, i.e. in
this case the four CPU cores and the GPU. The classical approach to application par-
allelization involves functional decomposition of the application into different tasks,
thus revealing task parallelism. Task parallelism is a form of parallelism where dif-
ferent tasks execute concurrently on multiple platform components, e.g., processor
cores. After task parallelism in the application is revealed, some classes of applica-
tions, such as streaming applications, can benefit from yet another, closely related
form of parallelism - pipeline parallelism. Streaming applications are the applica-
tions that transform an input stream of data (tokens) into an output stream. As a
result of streaming, the processing of consecutive tokens by different tasks can oc-
cur at the same time, thus resulting in pipeline parallelism. Programming massively
parallel computing accelerators, such as GPUs, requires a fundamentally different
parallelization model. For example, GPUs feature a data parallel architecture based
on an array of parallel processors. To exploit the computational power of GPUs, it is
necessary to find data parallelism in the application and to transform it into the form
of a GPU code (kernel) that GPU threads execute in parallel. By data parallelism,
we refer to the type of parallelism where the same operation is applied to multiple
elements in a data set [31]. Further, the hierarchical decomposition of the application
leads to multi-level parallelism. Multi-level parallelism lets us to combine different
forms and granularities of parallelism on the platform, such as task, data, and pipeline
parallelism.

2

Leveraging task, pipeline and data parallelism on the same platform makes it nec-
essary to use different programming models and APIs. The architectural diversity
between platform components puts additional pressure on the designer, since differ-
ent platform components typically require different programming models and skill
sets. Numerous languages, libraries and tools have been developed which share the
same goal - to make the parallelization process easier for the designer. While it is
hard to set a clear boundary, we roughly classify the parallelization approaches into
three main categories according to the degree of automation:

• Explicit parallel programming

• Semi-automatic approaches (parallel languages, directive-based compilation,
run-time environments)

• Automatic parallelization (transformation frameworks)

Explicit parallel programming using the programming model and the application
programming interface (API) provided by the vendor is still the most dominant cat-
egory used for parallelizing applications today. Parallelization for multicore pro-
cessors includes writing a multi-threaded application using C/C++ POSIX Pthreads,
Win32MT, or Boost libraries, which provide concepts for expressing task parallelism
(i.e. using threads) and implementing synchronization in the parallel program. GPUs
are typically programmed using a vendor specific programming language such as
NVIDIA’s CUDA [37], or using the OpenCL standard [122] for heterogeneous par-
allel programming.

The semi-automatic approaches have been rapidly gaining momentum in the last
few years. Examples of semi-automatic parallelization approaches include languages
for expressing parallelism explicitly, e.g. StreamIt [127], directive-based compila-
tion, e.g. OpenMP [40,102], OpenACC [103], run-time libraries and task-scheduling
environments, such as StartPU [9, 10], or a combination of a run-time environment
and directive-driven code parallelization, as in HMPP [47] and OmpSs [11, 48].
While the designer still needs to partition the application and identify parallel tasks,
semi-automatic approaches relive the programmer of having to explicitly write par-
allel code using vendor specific APIs and libraries. Instead, the parallel code is gen-
erated following the designer’s parallelization directives.

The automatic transformation of sequential code into a parallel executable is one
of the ultimate parallel computing goals [49]. While we are still a long way from
automatic parallelization of arbitrary code, significant progress has been made in
parallelization of more specific applications under some constraints (see Chapter 2).

The challenge addressed in this dissertation is compile-time generation of struc-
tured, multi-level parallel programs which exploit different forms of parallelism, such

3

1.1. RESEARCH FRAMEWORK

as task, data, and pipeline parallelism, for efficient mapping onto heterogeneous plat-
forms with massively parallel computing accelerators (such as GPUs).

1.1 Research Framework

The research work that resulted in this dissertation began in late 2009 within an
industry-academia research cooperation in the framework of the Tera-Scale Multi-
Core Architectures (TSAR) project. The TSAR project (2008-2012) is an European
project in the MEDEA+ framework conducted by an international consortium of in-
dustrial and academic institutions comprised of BULL, UPMC/LIP6, Thales Com-
munications, FZI, Philips Medical Systems, ACE Associated Compiler Experts bv,
Compaan Design bv, and Leiden Embedded Research Center (LERC).

During the TSAR project, there was a close collaboration between LERC and Lei-
den University’s spin-off company Compaan Design on novel solutions for the chal-
lenges of automatic parallelization for heterogeneous platforms with GPU accelera-
tors. The role of LERC was to capture the total system view of high-performance
streaming applications on platforms with a GPU accelerator, while using and further
advancing tools and techniques developed at LERC and Compaan.

LERC and Compaan have a long tradition of research [2,81,97,98] on the Kahn Pro-
cess Networks (KPNs) [76] model of computation and its polyhedral variant called
Polyhedral Process Networks (PPNs). The Kahn Process Network (KPN) model
of computation was introduced in 1974 by the prominent French scientist Gilles
Kahn [76]. The initial purpose of the KPN model was modeling parallel programs in
distributed systems. In the period 2000 - 2009, the Kahn Process Networks (KPN)
and its variants gained large acceptance in embedded systems design due to the clear
separation of communication and computation [83]. A Kahn Process Network de-
scribes an application as a network of concurrent autonomous processes that com-
municate via tokens over channels. For example, on heterogeneous platform in Fig-
ure 1.1, each KPN process can be concurrently executed on a different architectural
component that has its own private memory. In the KPN, the tokens are transmitted
over unidirectional communication channels. Each KPN communication channel has
exactly one writer process and exactly one reader process. Furthermore, each KPN
channel is an infinite, first-in first-out (FIFO) queue of tokens.

An important milestone in compiler research has been the introduction of the poly-
hedral model which is mathematical representation of program code that enables pro-
gram analysis and transformation [42, 55, 86]. In the polyhedral model, the iteration
domains of program statements are represented as polytopes. The mathematical rep-
resentation of the program code provides a powerful basis for further transformations.
To be represented in the polyhedral model, the program code needs to satisfy certain

4

1.1. RESEARCH FRAMEWORK

properties (see e.g., Chapter 2). While significant progress has been made on extend-
ing the boundaries of programs that could be represented in the polyhedral model,
see e.g. [119], in this thesis we consider only the programs that can be expressed as
Static Affine Nested Loop Programs (SANLPs) (Section 2.1). A Polyhedral Process
Network (PPN) [134] emerged as an important variation of the KPN model, where
program statements, dependence edges, and the input and output arguments of the
statements are described as polytopes automatically obtained by polyhedral analysis
of SANLPs [3, 134]. A PPN of a SANLP can be automatically derived from its C
code using, e.g., the Compaan compiler. A simple two-node PPN is illustrated in

(b) PPN:(a) SANLP:

for (i = 0; i<10; i++)
 P: produce(&data[i]);

for (j = 0; j<10; j++)
 C: consume(data[j]);

E
C P

0<=i<10

0<=j<10

τ

Figure 1.2: SANLP containing two loop nests surrounding statements P and C, and
the corresponding PPN model.

Figure 1.2. The produce function writes an element of data array, and the consume
function reads an element of data array. The PPN containing two nodes is depicted
in Figure 1.2(b). Nodes P and C represent a producer-consumer (P/C) pair of tasks.
The tasks are automatically derived from the SANLP shown in Figure 1.2(a). The
nodes P and C sequentially execute iterations of their loops in the program source
code, i.e. node P executes iterations of the i-loope, and node C executes iterations of
the j-loop. The dependence relationship between a producer iteration and a consumer
iteration is known exactly, i.e. we know on which iterations it exists. The nodes com-
municate over the channel E by sending and receiving data packets called tokens.
After the node P fires, i.e. executes statement produce, the token τk is written into
channel E. After the consumer node C fires and reads token τk from channel E, it
executes the next iteration of the statement consume. If no data exists on E, process
C blocks. The PPN model briefly described above presents the basis for our research,
as it provides a parallel, polyhedral specification of the application as a starting point.

LERC contributed to the TSAR project with several technical reports, software pro-
totypes and international peer-reviewed publications [15, 17–20]. The close collabo-
ration between LERC, Compaan Design and ACE Associated Compiler Experts on
the TSAR project shaped the research questions and set the framework for the re-
search and development done during the course of this thesis. In the next section, we
give further details on the research challenge and the questions posed in this thesis.

5

1.2. PROBLEM STATEMENT

1.2 Problem Statement

One of the major challenges in the domain of parallel programming is how to auto-
matically parallelize sequential streaming applications and map them onto heteroge-
neous platforms, such as the platform illustrated in Figure 1.3 that features architec-
turally diverse components (such as CPUs, GPUs, FPGAs). Heterogeneous platforms
with accelerators provide numerous parallelization opportunities but require different
programming models and APIs.

To address the parallelization challenge for mapping streaming applications onto
heterogeneous platforms we build upon the work done at LERC and Compaan on
the parallelization of C code [81, 131]. The tools developed in the scope of the prior
work give us a parallel specification of the application as the starting point. More
specifically, applying the Compaan compiler to a sequential streaming application
leads to a parallel model of the input application in the form of a PPN specification.

VV

mem mem

CPU GPUGPU

Heterogeneous Platform

Programming

Challenge
C

Sequential

Applications ?
1

3

2
+

Figure 1.3: The Programming Challenge.

This parallel model can be instantiated, for example, as task-parallel C/C++ code.
Compaan generates tasks that are mapped on threads, e.g. implemented using POSIX
Pthreads or Intel’s Thread Building Blocks (TBB) libraries, for parallel execution
on one or more microprocessors. As indicated in Section 1, GPUs became the off-
the-shelf hardware of choice for accelerating computationally intensive data parallel
workloads on heterogeneous platforms. The natural next question that arises in the
context of PPN-based parallelization is how to make use of the tremendous com-
putational power of data parallel accelerators such as GPUs, while still reaping the
benefits of task and pipeline parallelism at the platform level. In this context, we
formulate our main research question as follows:� �
How to parallelize sequential streaming applications and efficiently map
them onto heterogeneous platforms with massively parallel computing
accelerators (such as a GPUs) using a model−based approach? � �

6

1.2. PROBLEM STATEMENT

To address this question we broke it down into the following three sub-questions:

• How to generate data parallel kernels for execution on massively parallel
computing accelerators, such as GPUs, from the PPN model. To exploit
the computational power of massively parallel accelerators, such as GPUs, the
data parallelism in the application must be made explicit and brought into a
form that is compliant with the accelerator’s programming model. Although
the PPN model provides a parallel specification, it primarily captures task par-
allelism. The question is how to identify data parallel operations in the PPN,
and transform the components of the PPN model into the form of data parallel
kernels that can be executed on a massively parallel accelerator, such as GPU.

• How to derive multi-level parallel programs featuring task, pipeline, and
data parallelism from the standard polyhedral specification. A heteroge-
neous platform contains parallelism at many levels - from platform-level task
parallelism between different cores to data parallelism within a GPU acceler-
ator and vector processing units. Parallelizing compilers today enable us to
target parallelism within a single platform component, such as a single CPU, a
GPU, or an FPGA. To efficiently exploit heterogeneous platforms it is neces-
sary to exploit parallelism within different platform components. The question
is how to derive at compile-time structured, multi-level programs in which
each module can be transformed into a well-suited parallelism form for the
given target architecture.

• How to efficiently solve the problem of host-accelerator communication
overhead. As numerous experiments in the literature have shown (see e.g.,
[66]), computational acceleration of kernels is only one side of the performance
coin. For streaming applications, the actual performance is often dominated
by the time to transfer the input data to the accelerator and transfer the results
back. The data transfer time can easily outweigh the benefits of the GPU accel-
eration. The question that we want to address is how to reduce host-accelerator
communication overhead by overlapping data transfers and computation on
host and its accelerator in a model-based manner.

The solutions to these challenges would enable us to extend the range of paralleliza-
tion options in Compaan’s heterogeneous compilation toolflow to include the increas-
ingly popular data parallel accelerators (such as GPUs), and would also open the door
towards easier, model-based experimentation with multi-level parallelism and auto-
tuning, leading towards more efficient parallelization of streaming applications and
their mapping onto heterogeneous platforms.

7

1.3. APPROACH AND CONTRIBUTIONS

1.3 Approach and Contributions

To address the challenges presented in Section 1.2, we present a novel compile-time
approach for the transformation of sequential streaming applications into multi-level
parallel programs that can exploit task, data and pipeline parallelism on heteroge-
neous platforms with GPUs. Figure 1.4 illustrates the contributions of this thesis

V

mem mem

CPU GPU

PCIe

(KPN2GPU)

Coarse-Grain Task Parallelism

Data Parallelism

VIN DCT Q VLE

C Efficient Host-Accelerator Data Exchange

Data Parallelism Identification
and Mapping to GPU

Multi-Level
Parallelization

3

1

2

Pipeline
Parallelism

M-JPEG PPN

(Chapter 4)

(Chapter 5)

(Chapter 3)

“zoom in”

Figure 1.4: Parallelization and Mapping of Streaming Applications onto Heteroge-
neous Platform: A Compiler-assisted Approach for Generation of Multi-Level Pro-
grams, GPU Acceleration and Efficient Host-Accelerator Data Exchange.

on the example of multi-level parallelization and mapping of a sample streaming ap-
plication (the M-JPEG encoder) onto a heterogeneous platform featuring a quadcore
CPU and a GPU accelerator.

• Contribution I [15, 18, 19]: We provide a novel method for generation of
data and task parallel kernels for massively parallel computing accelerators.
We propose a compilation flow that consists of identifying data parallelism in
the PPN specification, capturing the data parallelism in an intermediate model
called Data Parallel View (DPV) (see Section 3.5), and generation of task and
data parallel code from the DPV model. To validate our approach, we devel-
oped the KPN2GPU compiler targeting massively parallel GPU accelerators
that transforms the PPN specification into CUDA host and kernel code using

8

1.4. RELATED WORK

the proposed approach. In addition, we leverage the task-parallel nature of the
PPN specification to exploit task parallelism on the second generation Fermi-
architecture GPUs.

• Contribution II [16, 21]: We propose novel transformations and concepts for
capturing the notions of program structure and hierarchy in the polyhedral
model. We first introduce support for a hierarchical intermediate representation
in the polyhedral model, which we call Hierarchical Polyhedral Reduced De-
pendence Graph (HiPRDG) (see Section 4.4). Second, we present the concept
of the slicing (see Section 4.5) for transformation of the standard polyhedral
model of an application into its HiPRDG. The slicing allows the designer to se-
lect the desired granularity of tokens that are communicated between program
modules and have consistent code and data structures generated at compile-
time. Once a HiPRDG is obtained, we present a method for automatic deriva-
tion of a multi-level program (see Section 4.6). Each node of a HiPRDG is
transformed into an independent program module, making it possible to derive
a multi-level parallel program using state of the art polyhedral techniques and
tools.

• Contribution III [17, 20]: We also propose a novel stream buffer design (see
Section 5.4.1) to improve the efficiency of the communication between host
and accelerator(s). Leveraging the stream buffer design, we introduce support
for asynchronous kernel offloading (see Section 5.4) in a PPN, and provide a
model-based approach for data-driven execution with overlapping of commu-
nication and computation on host and accelerator(s).

All these novel methods and techniques contribute significantly to the efficient par-
allelization and mapping of streaming applications using the PPN model onto hetero-
geneous platforms. Our approach enables model-based generation of task and data
parallel kernels for accelerators and provides improved host-accelerator communi-
cation, ultimately leading to improved performance. Moreover, it also extends the
polyhedral model in such a way that it makes possible to derive multi-level programs
with desired type and granularity of parallelism at each level.

1.4 Related Work

In Section 1, we presented the challenges of parallel computing for heterogeneous
platforms. We classified the parallelization approaches according to the degree of
automation in three main categories. In Figure 1.5 we illustrate the three categories
in the landscape of parallel computing. We will first position our research work in the

9

1.4. RELATED WORK

landscape of parallel computing and then address related work with respect to each
of three main challenges addressed in this thesis.

Automatic
Parallelization

Explicit Parallel
Programming

POSIX Threads

CUDA

OpenMP

OpenCL

OpenACC

Semi-Automatic (Languages,
Directive-Based Parallelization)

task + pipeline parallelism
Compaan/PNgen

data parallelism
(LooPo, Pluto, PoCC,
ROSE, SUIF, CHiLL)
(single component view)

Intel’s
TBB

Transformation frameworks

Classical Compiler Analysis:

Polyhedral Model:

SM

data parallelism – CETUS, PGI

CAPS/HMPP
memory
model

DM

this thesis

VV

mem

CPU GPU

+run-time environments
OpenMP, TBB, StarSS, StarPU

skeleton approaches

GPU

mem

Figure 1.5: The Landscape of Parallel Programming

In the field of explicit parallel programming, the prominent examples include multi-
threaded programming using POSIX PThreads, Win32MT, and Boost libraries for
programming multicore CPUs, and CUDA for programming GPUs. The CUDA pro-
gramming model has been generalized by industry into the OpenCL standard target-
ing portable programming of heterogeneous platforms with accelerators. OpenCL is
a promising standard for future work since it introduces supports for programming
microprocessors, graphics processing units, and other future accelerators in a portable
manner. We leverage the parallel programming APIs and libraries to automatically
generate the compilable source code for the target platform.

In the field of the semi-automatic parallelization, the emphasis is on directive-
based parallelization. The most widely-adopted semi-automatic approach for parallel
programming is the Open Multiprocessing (OpenMP) programming. OpenMP is a
shared-memory, parallel programming approach for C, C++ and Fortran, which en-
ables incremental directive-based parallelization. OpenMP is a collection of compiler
directives (pragmas), runtime libraries and compiler extensions. The OpenMP API
specifies a set of parallel constructs which are used as annotations in the form of com-
piler directives (pragmas) to guide the compiler which instantiates parallel threads.
Support for accelerators, such as a mechanism to describe regions of code where data
and/or computation should be moved on a wide variety of compute-capable devices,
is planned to be introduced in the next OpenMP standard. Inspired by OpenMP,
a novel directive-based standard for acceleration on GPUs called OpenACC was re-

10

1.4. RELATED WORK

cently introduced by Cray and NVIDIA. The OpenACC API uses directives and com-
piler analysis to compile regular C and Fortran for the GPU. The OpenACC standard
is introduced not only to make GPU programming easier, but also to allow the pro-
grammer to maintain a single source version. Ignoring the OpenACC directives will
compile the program for the CPU. In C++, support for multi-threaded constructs was
introduced via Intel Thread Building Blocks (TBB) and Microsoft Parallel Patterns li-
brary (PPL). Both Intel’s TBB and Microsoft’s PPL use C++ templates and run-time
threading support. The TBB provides loop parallelization constructs and parallel
programming skeletons (templates) as a part of the language syntax, concurrent data
structures, locks, and support task based programming, but requires from the pro-
grammer to apply them appropriately. There is also an increasing number of environ-
ments that combine multiple features of parallel programming, such as for example
CAPS’ HMPP, StarSs, and CHPS. CAPS’ HMPP is a directive-based compiler target-
ing multi and many-core architectures with accelerators. HMPP enables offloading of
functions or regions of code on GPUs and many-core accelerators as well as the trans-
fer of data to and from the target device memory. StarSs (OMPSs, OpenMPT) is a
task based programming model that also provides pragmas to annotate tasks in source
code, and then performs computation of dataflow dependencies between tasks, and
provides a runtime system supporting different platforms [61, 92, 107]. CHPS [73]
is a collaborative execution environment that allows to cooperatively execute a sin-
gle application on a heterogeneous desktop platform with a GPU, and to do so relies
on its own task description scheme. Explicit and semi-automatic parallelization ap-
proaches can also be combined with run-time task scheduling frameworks, such as
StarPU [9,10]. In addition, there is an increasing number of skeleton based program-
ming approaches that provide template libraries for common parallel programming
patterns [41, 51, 87]. However, the use of a semi-automatic approach still requires an
experienced parallel programmer aware of different parallel programming patterns,
methods, and mapping mechanisms to identify parallelism in the application and pro-
vide parallelization directives in the framework-specific format.

Automatic parallelization frameworks analyze the sequential code, convert it into
some intermediate representation, and automatically generate parallel code for the
given target architecture. Within the field of automatic parallelization frameworks,
most work is done using classical compiler analysis with major players including
compiler frameworks such as CETUS [12, 85] and PGI [126].

The polyhedral model is emerging as the most advanced internal representation for
manipulation and transformation of programs, due to its strong mathematical foun-
dation. Feautrier significantly contributed to the polyhedral model analysis with his
work on program representation and static dataflow analysis which models depen-
dence between operations in program as a system of linear inequalities and equali-
ties which can be then solved using integer linear programming solvers, such as PIP

11

1.4. RELATED WORK

[54, 55, 58]. Once the dependences are known, it is possible to apply various trans-
formations, such as scheduling [42,56,57,67,86]. Recent advances in the polyhedral
model include tiling and fusion [32], vectorization [129], parametric tiling [23], and
iterative optimizations [110, 111]. The breakthrough in code generation in the poly-
hedral model by the CLooG tool [28], made the polyhedral model more applicable
to real world problems. The polyhedral model is gradually being adopted by leading
edge research and commercial compiler tool-flows. This highly active area of re-
search resulted in several polyhedral frameworks, such as Stanford University’s SUIF
[136], University of Passau’s LooPo [68, 86] University of Ohio’s PLuTo [33], joint
open source effort PoCC [1], University of Utah’s CHiLL [36, 70], gcc GRAPHITE
[108], and the commercial R-stream compiler [117], to name a few. We classify poly-
hedral frameworks in two main categories based on the memory model used for com-
munication into shared memory (SM) and distributed memory (DM) frameworks.
While most of the compiler frameworks presented above belong to the first category,
the pn and Compaan compilers based on the long line of research on dataflow and pro-
cess network models of computation [46, 77, 79, 81, 114, 116, 120, 131] belong to the
second category. These compilers assume a distributed memory model in which each
autonomous process communicates with other processes exclusively via tokens. The
research work presented in this thesis is highly influenced by the work done on the
Compaan [81] and the Daedalus frameworks [2, 97, 98, 128], the work of Rijpkema
on deriving process networks from nested loop algorithms [46,114,115], the work of
Stefanov on code transformations like skewing and unfolding [119,120], the work of
Meijer on node splitting for asynchronous data parallelism [94], the work of Turjan
on deriving and characterizing process networks [131], the work of Zissulescu on
Read/Execute/Write code generation format [145], and the modelling work and ini-
tial GPU experiments done by Nikolov [99]. The research in this dissertation makes
a step towards combining the two directions in the parallelizing compiler research
based on the polyhedral model as indicated in Figure 1.5. Inspired by the Y-Chart
paradigm [80] that promotes matching between the application and the architecture
specification, we aim to make it possible to combine tools develop in SM and DM
research by generating multi-level programs (MLPs), in which each program module
can be parallelized using some of the polyhedral frameworks above, and mapped onto
the desired component on the heterogeneous platform. Inspired by the distributed
memory model adopted by dataflow approaches, we make independent execution of
program modules on diverse architectural components possible using private memory
within each module and token-based communication between program modules.

Next, we discuss related work in the context of three main challenges addressed in
this thesis:

Compiler-based identification of data parallelism has been an active research area
for decades. The parallelization techniques developed already in the 80s and 90s

12

1.4. RELATED WORK

proposed partitioning (also known as tiling) [74, 75, 112, 123, 125, 137, 138] of itera-
tion domain into tiles that are assigned to different processors for execution. Bond-
hugula [32, 33] was the first to integrate the tiling transformation in the polyhedral
model. This work resulted in the polyhedral framework PLuTo targeting coarse-
grain parallelization on chip multicore processors and locality optimization. Fur-
ther, Baskaran adopted the tiling approach in PLuTo for generation of data parallel
CUDA kernels for GPUs [24–26]. Semi-automatic approaches for GPU paralleliza-
tion are for example, extensions of the CETUS research compiler [12, 85] for auto-
matic conversion of OpenMP-annotated code into GPU code [84], the HMPP codelet
approach [47], and OpenACC directive-based GPU parallelization supported by the
PGI compiler [126].

Our approach to model-drive code generation for GPUs was inspired by the struc-
tured scheduling approach proposed by Feautrier [60]. Instead of specifying the
graph of independent tasks manually, we automatically obtain a task-graph struc-
ture in form of a PPN automatically from the application SANLP using the Compaan
compiler. We then leverage the task-graph structure of the PPN model to generate
independent tasks for processing on the GPU or CPU. We obtain data parallel CUDA
kernels by applying scheduling transforms on each PPN node separately. We use
Feautrier’s time-optimal scheduling algorithm to illustrate identification of data par-
allel operations within the nodes [56]. The result of parallelizing each PPN process
is a CUDA kernel featuring maximal data parallelism. Such kernels could be further
optimized using CUDA auto-tuning tools, such as e.g., [144]. Our methodology for
data parallelism identifcation and intermediate representation is however not tied to a
specific scheduling algorithm, which makes it possible to combine the work done in
this thesis with advanced scheduling and tiling techniques that are being developed in
the compiler community. Recently, NVIDIA introduced support in CUDA for con-
current kernel execution [105] on GPU. As a natural application of the task-parallel
PPN model which is used as the basis for accelerator mapping, we also provide sup-
port for exploiting task parallelism on accelerators.

When executing parts of a program on a GPU accelerator, the overall performance
benefits can be seriously affected by data transfers to/from the GPU. The data trans-
fers are one of the major bottlenecks and can possibly diminish benefits from the GPU
acceleration [66]. This makes efficient orchestration of data transfers a highly rele-
vant problem. NVIDIA introduced the concept of CUDA streams and asynchronous
data transfers to mitigate this issue. In case of a streaming application, data transfers
to/from the GPU can potentially be overlapped with the GPU kernels following the
code pattern for asynchronous data transfers introduced in [100]. Although powerful,
this approach requires a custom-made solution for each application. In line with the
proposed approach, task-scheduling frameworks such as StarPU [10] make use of
asynchronous data transfers to the GPU to minimize the impact of data transfers. In

13

1.4. RELATED WORK

the context of PPN mapping on heterogeneous platforms, Nikolov [99] experimented
with synchronous kernel offloading via replacement of sequential code within a PPN
node with synchronous GPU host code. We advance execution of PPNs on platforms
with GPU accelerators, by introducing the asynchronous stream buffer design for
more efficient implementation of host-accelerator PPN channels. By combining the
dataflow nature of the PPN model with the concepts for asynchronous transfers, we
present a model-driven solution for generation of asynchronous code for overlapping
computation and communication.

Hierarchical decomposition of the program structure has been extensively studied
in the context of dataflow models. The Ptolemy [34] environment enables modelling,
prototyping and simulation of heterogeneous systems using object-oriented software
technology to model each subsystem and to integrate these subsystems into a whole.
Ptolemy II [45] provides support for hierarchically combining a large variety of mod-
els of computation [64]. Its modelling language allows hierarchical nesting of the
models, leading to a more structured approach to heterogeneity [50, 90, 95]. Auto-
pipe [35] provides an application development environment that allows designer to
map streaming applications for execution on architecturally diverse computing plat-
forms. The StreamIt language [127] for parallelization of streaming applications
provides programming constructs that allow a designer to construct parallel programs
with multiple levels of nested parallelism [65]. The StarSs framework [107] provides
an environment for hierarchical task-based programming of heterogeneous platforms.
However, when using a polyhedral compiler, multi-level (hierarchical) parallelization
still needs to be performed by the designer. To derive a parallel program with two
levels of parallelism, the designer first needs to manually restructure the input appli-
cation and then to re-run the compiler on each of the program modules separately.
The result of running a polyhedral compiler on each program module separately is
a set of unrelated polyhedral models. Recent work on hierarchical parallelization
in the Compaan compiler [81] enables a designer to indicate to the compiler that
some functions need to be further analyzed, which results in the compile framework
to automatically re-run the compiler toolchain on each of the functions separately.
However, the transformations involved in restructuring the program for hierarchical
modelling, such as outlining of functions and creation of composite data structures,
must be first manually performed by the designer. Our approach for multi-level par-
allelization aims to eliminate the manual restructuring by performing all transforms
directly on the polyhedral model. Moreover, due to the particular way in which we
approach the transformation, the resulting hierarchical polyhedral intermediate rep-
resentation is a graph in which each node is annotated with a fully fledged polyhedral
specification. As a result, our approach enables structured derivation of multi-level
programs, in which each program module can be independently parallelized to obtain
a desired form of parallelism.

14

1.5. THESIS OUTLINE

1.5 Thesis Outline

The remainder of this thesis is organized as follows:

In Chapter 2, we list the requirements for representing programs in the polyhedral
model, give an overview of compiler concepts and techniques used in this thesis, and
briefly present the architecture and programming model of compute-capable GPUs.

In Chapter 3, we present a three-step transformation approach for identification and
exploitation of data parallelism in PPN representation for mapping onto massively
parallel accelerators, such as GPUs. Furthermore, we present several memory-related
optimization techniques and show how to exploit task-parallelism on accelerators.

In Chapter 4, we present our novel hierarchical internal representation in the poly-
hedral model, i.e. Hierarchical Polyhedral Reduced Dependence Graph (HiPRDG)
and describe a method for derivation of the HiPRDG representation from the standard
application specification in the polyhedral model. Furthermore, we present a novel
approach for hybrid generation of structured, multi-level programs featuring multiple
forms of parallelism.

In Chapter 5, we present an approach for reduction of host-accelerator overhead
which makes use of a novel stream buffer design for model-based overlapping of host-
accelerator communication and computation leading to asynchronous data-driven ex-
ecution of PPNs on heterogeneous platforms with accelerators.

In Chapter 6, to evaluate the concepts and techniques presented in Chapters 3, 4, and
Chapter 5, we perform an extensive parallelization case study on an example stream-
ing multimedia application (the M-JPEG encoder). We show the benefits achieved
through exploiting data parallelism on a GPU accelerator, token adjustment and
multi-level parallelization, and wrap up by discussing the overall performance gains.

Finally, in Chapter 7, we conclude the thesis by presenting the summary of the
research work along with concluding remarks on prerequisites for further progress
and a proposal of future research directions.

15

1.5. THESIS OUTLINE

16

