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Errata

"Three-mode Principal Component Analysis: Theory and Applications"

(including a very selective list of new three-mode papers)
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DSWO Press, Wassenaarseweg 52, Leiden, The Netherlands

P. 0. Box 9555, 2300 RB Leiden
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Correction

These 1lines should read: 'but it specifies common
angles between the axes of the stimulus space.
However, differential weighting of these axes is
allowed.'

Formula should read: hjlsill + hj25121°

In Figure 2.1 The labels 'Standard PCA' and 'Q-PCA'
should be interchanged.

'SS(Data)' should read 'SS(Total)'.

'SS(Dataf)' should read 'SS(Totalg)'.

Delete two sentences: 'Similarly [..] information'.
'j-centring' should read 'j-centring /standardi-
zation'.

'jk-centring' should read ‘jk-centring /standardi-
zation'.

'183, 186' should read '83,86'.

Chapter 3. Kiers (in press-a, in press-b) has
presented two new taxonomies for three-way models.
His treatment includes several models from the
French school (see also Carlier, et al., 1989, and
Lavit, 1988).

Figure 3.1. The statement for going from IDIOSCAL to
PARAFAC2 is incorrect. The proper expression can be
found on p. 55.

model$

The ‘'number of parameters' indicated in the table
are not corrected for dependence between the

parameters. e.g. for the Tucker3 model, the number
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of independnet parameters should be decreased by
's2+t24u2', and the Tucker2 model by 1524420,

In the table stubs 'diff.' and ‘red.' should be
interchanged.

Three-mode scaling: '21s' should read 'ls'.

The Tucker2 and Tucker3 models are not necessarily
orthonormal, in fact Tucker did nor require this.
The orthonormality is an expedient constraint for
solving the estimation problem, and may be dropped
later, as can for instance be seen in Chapter 5.
'Cpp'r = cpp'r' should read 'cpp'r = cp'pr"
'p.90-92, and section 6.2)' should read 'p.90-92),
and section 6.2'.

The ‘'weak conditions' mentioned here are too
strongly formulated, see the references mentioned.
In contrast to what 1is implied in the text, the
expression Z = GC(H'aE') refers to a 'lateral plane'
representation, i.e. both Z and C are juxtaposed
lateral planes. The proper expression for a
'frontal plane' representation as used verbally in
the text and in the next formula is Z = GC(E'mH').
'W =' should read 'W, ='.

Such procedures have been recently discussed by
Harshman, Kruskal, and Lundy in various permutations
(see reference list).

'for the. communalities' should read 'for factor
analysis by estimating the communalities'.
'estimate' should read ‘'estimating'.

S and s should be underlined.

S ans s should be underlined.

Section 3.7. One of the reviewers missed a section
on resampling plans, such as the bootstrap (Efron,
1982). One application wusing this approach is
contained in Kroonenberg & Snyder (1989).

The papers referred to in this section have now been
published: Van der Kloot & Kroonenberg (1985) and
Van der Kloot, Kroonenberg, & Bakker (1985).

' ' should read 'c '

Cpqr pqr
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'Penrose (1955 -' should read 'Penrose (1956 -', and
the reference given on p. 376 is incorrect (see
below).

It has been shown in Brouwer (1985) that the
SS(Fit)/SS(Total) = R?, given the data have been
centred such that the overall mean is zero.

Formula should start with a minus sign.

Index of last summation sign should be 'r' rather
than " q' ".

The statement 'the Hessian is negative' is not
applicable for the present maximization with
restrictions. Correct approaches may, for instance,
be found in Luenberger (1973, p. 226).

'only the assess' should read ‘only to assess'.

Ada " Zyrrk! " to the end of the formula.

Two alternatives have been proposed for the TUCKALS
algorithm. Weesie & Van Houwelingen (1983)
constructed an algorithm based solely on regression
techniques, rather than on eigenvalue-eigenvector
decompositions, by including the estimation of the
core matrix into the iterative process. The
advantage of their approach is that missing data can
be handled in a natural straightforward way.
Murakami (1983) produced an ALS algorithm for the
Tucker2 model which wuses the multivariable-
multioccasion matrix as its starting point. This
gives the possibility of analysing published
matrices of this kind,‘and is an alterantive for the
Invariant Factors Model of McDonald (1984).

Recently Kroonenberg, Ten Berge, Brouwer, & Kiers
(1989) have shown that the Bauer-Rutishauser step in
the TUCKALS algorithms may be replaced by the
modified Gram-Schmidt orthogonalization procedure.
The latter is slightly faster than the former.

The proof assumes orthonormality, while at p.81, it
was suggested that the proof should be valid without
this assumption. A correct proof is given in Ten

Berge, De Leeuw, & Kroonenberg (1987).
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A different more direct proof is contained in Ten
Berge, De Leeuw, & Kroonenberg (1987).

The discussion on this page should have referred to
Green (1952).

Delete from (5.3): ' and K'K = Ig '

The diagonality problem (NS) is essentially
equivalent with Harshman's PARAFAC (Harshman, &
Lundy, 1984a). A more detailed report on this
equivalence is contained in Brouwer (1985), and
related material is given by Harshman, Kruskal, and
Lundy in various permutations (see reference list).
Sections 6.1-6.8. The 1issue of centring and
standardization has recently received a much more
detailed and algebraic treatment (Harshman & Lundy,
1984b; Kruskal, 1984). Some additional commentary
see Harshman and Lundy (1985).

'pca-data' are commonly called 'profile data';
'mds-data' are commonly called ‘proximity data';
‘anova-data' resemble 'conjoint measurement data'.
see Shepard (1972).

Three-mode data. The ANOVA-first approach (see also
p-195) has been treated in considerable detail by
Kettenring (1983a,b) using the PARAFAC model for the
three-way decomposition. An application with the
Tucker models can be found in Kroonenberg & Van der
Voort (1987).

'Siphjqekr‘ should be ‘Biphjpekp"

In contrast to the statement, averages of
correlations are correlations.

Before the third summation sign an '=' should be
inserted.

Components as latent elements. Probably all that can
ve said 1is that the major components span a space
which captures most of the common variability.
Whether there are directions in this space which
correspond to latent entities or theoretical
constructs is a different matter, and thus the

statements in this section stand to be corrected.
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'session' should read 'section'.

Rotation of components. Most reviewers of the book
have chided the author for not treating this issue
in more depth. (see the reviews for detailed
arguments).

The diagonal matrix lambda should be absorbed into H
rather than G (see also remark, p. 19).

A diagonal cork matrix as suggested here, can only
occur if zp,q CpqrCpqr! = 0, as required by the
all-orthogonality of the core matrix (see Weesie &
Van Houwelingen, 1983). Thus

G; =20 and G = -1 0 is possible, but

02 01
Gy =20 and Gp = 10 is not.
02 01

The cited example indeed shows the required pattern.
The diagonal/antidiagonal phenomenon is also in
concordance with the all-orthogonality.

'HV,' should read 'HV.'.

‘When C. [..] be used' shouid read 'When C, is not
square with, say s<t, C, selects as-dimensional
subspace from the t-dimensional space of H'.

'h q' should read 'ﬁ_q'.

'1.67' should read '1.64'.

Chapter 8: The final and corrected data have now
been reported in Van IJzendoorn, et al. (1985) with,
however, very condensed information on the three-
mode analysis.

Chapter 9. Triple personality data. A reworked
version of this chapter was published as Kroonenberg
(1985).

Section 11.2. From the introduction of this section
one might get the impression that unlike methods for
multidimensional scaling three-mode principal
component analysis needs similarities. The remarks
made refer to the fact that the output of the three-
mode programs are easiest to read when high values

indicate closeness, rather than separateness. Such
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an effect can easily be obtained by converting
dissimilarities into inner products by the standard
Torgerson procedure for classical multidimensional
scaling. When the input data themselves are already
considered proportional to inner products, then high
values should indicate closeness.

Chapter 12: The reference to Levin (1966) was
omitted in this chapter. An extensive treatment of
the analysis of sets of correlation/covariance
matrices is now available in Kroonenberg & Ten Berge
(1987, 1989). Furthermore, insufficient justice was
done to Procrustes procedures (see Gower, 1975; Ten
Berge, 1982).

Chapter 12: The analysis is in this chapter is
performed on a set of correlation matrices. There ae
several reasons why such an analysis is less than
desirable (Harshman and Lundy, 1984, p.l4l).
Especially within the context of structural equation
modeling, there is strong opposition to analysing
correlation rather than covariance matrices (see
e.g. Joreskog, 1971; McDonald, 1984, 3p.292;
Meredith, 1984). The main argument centres around
the different size of one standard deviation unit
for the same variable across different samples.

The second paragraph on p. 275 contains somewhat
confusing statements about  eigenvalues. The
following remarks taken from Harshman's review
clarify the 1issue: "When performing a two-way
analysis using a singular value decomposition (SVD)
of raw data, the eigenvalues and related sums of
squares are obtained from the squared singular
values, whereas when doing an SVD of a covariance or
correlation matrix, one examines the unsquared
singular values to obtain the eigenvalues and
related sums of squares of the original data from
which the covariances were computed. Likewise, when
TMFA is applied to raw data, one looks at squared

core elements, but  when it is applied to
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covariances, one should examine the unsquared core
elements. If this is done, "eigenvalues" obtained
from two-way and three-way methods are directly
comparable." (p.331).

Chapter 13. For a different analysis of the hospital
data see Kroonenberg, Lammers, & Stoop (1985).
Chapter 14. These data were also analysed by curve
fitting with logistic regression, see Jansen & Bus
(1984).

The column means in Table 14.4 should read:

'12 13 17 27' giving column effects '-5 -4 0 10',
and residuals for Q of '-4 -2 1 0 2 0'. Eliminating
the 'maybe too many positive scores'of Q (1. -4,-5),
and invalidating the remark about Q.

Chapter 15. Strictly speaking, it is not correct to
use the name ‘'correspondence analysis' in this
chapter, as the basic properties of correspondence
analysis do not hold. For a further investigation
into a proper three-mode correspondence analysis,
see Kroonenberg (1989).

Delete '+ log rij'

'-18' should read '-8'.

'Nesselroode' should read 'Nesselroade'.

‘model of application' should read ‘'model by
application'.

Insert after Einhorn:

Fienberg, S.E. The analysis of cross-classified
categorical data (2nd edition). Cambridge, MA: MIT
Press, 1980. .

'1987' should read '1978'.

'791' should read '591'.

The correct reference is: Penrose, R. (1956). On the
best  approximate solutions of linear matrix
equations. Proceedings of the Cambridge
Philosophical Society, 52, 17-19.

'alternative' should read 'alternating'.

Entry Joint plots: '163-165' should read '164-166'.
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Three-mode principal component analysis
Theory and applications
Pieter M. Kroonenberg

In multivariate analysis the data are usually contained in a single matrix with n rows
and m columns, corresponding with n individuals and m variables. Or, to put it
differently, the data have two modes: individuals and variables. It has already been
known for a long time that this particular two-mode representation of data is too
restrictive in a number of very important cases. Often there are three modes, the
additional mode being replications, occasions, conditions, points-of-view, and so
on. The data must be collected in a three-mode matrix, which has n rows, m
columns, and k slices. Of course this 'data-box’ can be flattened into an ordinary
two-way matrix in various ways, but often there is no unique obvious way in which
this should be done. Moreover most data analysis techniques that can be applied to
the two-way matrix obtained by summation or concatenation over one of the
modes, simply ignore the fact that the data were originally three mode.

In the early sixties Tucker introduced a form of principal component analysis which
works directly on the three-mode matrix, and has parameters for all three modes.
This was an enormous step ahead, because there was no need to flatten databoxes
any more. Somewhat later individual differences models were introduced in
multidimensional scaling. They are also based on three-mode data, and pretty
soon the two developments were integrated by Tucker and Carroll. For the
individual differences models specialized algorithms are available, but for
Tuckers’s three-mode component model the available algorithms were somewhat
ad hoc and suboptimal.

In Three-mode principal component analysis perhaps the main emphasis is on the
development and study of a satisfactory algorithm for Tuckers’s technique,
together with a friendly computer program. But this is not all. Models for three-mode
data are also discussed in considerable detail. Inportant data analytic decisions,
which must be taken before the programs can be applied, are spelled out. A
chapter on the analysis of residuals shows that the job is not done if the program
has run. About half of the book is used to analyze meticulously a number of
examples, which are chosen in such a way that each of them is representative for a
large class of data structures. There are semantic differentials, three-way contin-
gency tables, replicated correlation matrices, three-way similarity data, and multi-
variate time-series data. All examples are used to show which plots can be made,
how the residuals should be analyzed, how the key parameters should be
interpreted, and so on.

Three-mode principal component analysis says about everything there is to say
about this class of techniques. The book does this on a mathematical and computa-
tional level, but more importantly it illustrates everything that is said by using a
number of very real and very interesting examples.

DSWO PRESS

ISBN 90 6695 002 1



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

