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"The aim of our emotions, and the reason we have 
emotions in the first place, is to enhance our lives, to 
make them better, to help us get what we want out of 
life." 
 
Robert C. Solomon (2007) 
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A life well-lived requires a careful balance between short-term and long-term 

reward, between a choice for convenience and expenditure of effort, and between 

letting go and taking control. By keeping higher goals in mind, people are able to 

resist an excess of leisure in favor of personal growth, for example, but also to give 

in to the pleasure of a well-earned vacation. That is, throughout life, people need 

to flexibly adapt their control. This thesis focuses on the question how emotion 

and motivation regulate this adaptation.  

In this introductory chapter, an overview of the scientific basis for a link be-

tween emotion, motivation, and cognitive control is described. After introducing 

the concept of cognitive control, a theoretical framework is proposed that de-

scribes how affective valence and cognitive control may be related. This is followed 

by an elaborate discussion of psychological and neuropsychological theories. An 

outline of the empirical work presented in this thesis concludes this chapter. 

Adaptive cognitive control 

A fundamental issue that cognitive psychologists have been examining since the 

1950s is how humans are able to focus their attention on relevant information and 

shield it against distraction from irrelevant information. This process, referred to 

as executive function or cognitive control, is thought to origin from a dedicated 

cognitive mechanism that orchestrates goal-driven behavior (Norman & Shallice, 

1986; see also, Broadbent, 1958; Posner & Snyder, 1975; Shiffrin & Schneider, 

1977). Cognitive control can be investigated with laboratory tasks assessing reac-

tion times, such as the classical Stroop task (Stroop, 1992). This task requires 

participants to name the ink of color words whereas the word itself should be 

ignored. When the name of a color (e.g., "blue," "green," or "red") is printed in a 

color not denoted by the name (e.g., the word "green" printed in red ink instead of 

green ink), reactions to name the color typically slow down and participants make 

more errors in comparison to conditions where the color of the ink matches the 

name of the color. This effect shows that controlled processing usually cannot 

completely overcome the automatic tendency to read the word (cf. Cattell, 1886; 

Macleod, 1991). Because the sharpness of focused attention in the Stroop task 

determines performance, this paradigm is a valuable tool to investigate the dynam-

ics of cognitive control under the influence of modulating factors, such as mood or 

motivation. Similar measures can be obtained with other laboratory tasks, such as 
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the flanker task, the Simon task, and the anti-saccade task (see Box 1 for a descrip-

tion of these tasks). 

An important function of cognitive control is to adapt the cognitive system to 

situational demands (Kahneman, 1973). According to the ‘difficulty law of motiva-

tion’ (Ach, 1935), people automatically “try harder” when task demands call for it, 

an idea that has already been investigated by Hillgruber (1912). Since then, nu-

merous studies have found support for this claim, showing that demanding situa-

tions trigger subsequent effort mobilization as measured by physiological meas-

ures, subjective evaluations, and behavioral adjustments in laboratory tasks 

(Gendolla, 2000). A similar adaptation can also be shown in the context of cogni-

tive control tasks that use random presentation of confusing (incompatible) and 

nonconfusing (compatible) stimuli, such as the Stroop task. Here, the compatibil-

ity of the immediately preceding trial typically results in a dynamic trial-to-trial 

adjustment in performance (Egner, 2007; Gratton, Coles, & Donchin, 1992). 

Specifically, the Stroop effect is smaller on trials that follow incompatible trials 

than on trials that follow compatible ones. Figure 1C illustrates this sequential 

effect. This trial-to-trial effect has been referred to as conflict adaptation, and is 

thought to reflect a temporary improvement in cognitive control (Botvinick et al., 

2001; for alternative views see Egner, 2007; Gratton et al., 1992; Hommel, Proctor, 

& Vu, 2004; Mayr, Awh, & Laurey, 2003). According to the conflict monitoring 

theory (Botvinick et al., 2001), this adaptation origins from the conflict in infor-

mation processing induced by the preceding incompatible trial. This conflict is 

thought to trigger an adaptive increase in selective attention that helps to prevent a 

future occurrence of such interference (Botvinick et al., 2001; cf. Berlyne, 1960).  

Affective valence and cognitive control 

It has since long been recognized that cognitive control is not only needed in 

situations of cognitive interference and conflict, but that it should also be recruited 

when coming across dangerous situations (Baddeley, 1972; Norman & Shallice, 

1986). This implies that cognitive control adaptations may be informed by affec-

tive signals in general, of which conflict could just be a special case. Some prelimi-

nary evidence for this possibility has been provided by neuroimaging studies on 

the function of the Anterior Cingulate Cortex (ACC) a brain region thought to 

register the need for extra cognitive control (Botvinick et al., 2001). It has been 
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Box 1: Cognitive control paradigms 

 
A. Stroop task 

gray

Gray

 

black

… Gray!

 
B. Flanker task 

  
C. Simon task 

left

 

left

 
D. Anti-saccade task 

Psychologists use a wide variety of 

laboratory tasks to measure conflict 

interference and cognitive control in 

humans. Nonetheless, all these tasks 

share an important feature: they 

induce information processing 

conflict between the processing of 

relevant and irrelevant information 

(cf. Botvinick, Braver, Barch, 

Carter, & Cohen, 2001). A. For 

example, in the classical Stroop task 

(Stroop, 1992), the tendency to 

automatically read the word 

interferes with color naming. B. In 

the flanker task (Eriksen & Eriksen, 

1974), distracting flankers interfere 

with the manual response to the 

central target. C. The automatic 

tendency to respond to the stimulus 

location interferes with a response 

to the relevant dimension in the 

Simon task (Simon & Rudell, 1967).  

+ +

 

+ +

Don’t 
look

 

In all these tasks, incompatible stimuli (right picture) make people slower and 

less accurate in comparison to compatible conditions (left picture). Moreover, 

sequential analyses have provided evidence for trial-to-trial adjustments, 

indicating conflict adaptation across these paradigms (for a review, see Egner, 

2007). D. The anti-saccade task (Hallett, 1978) is another example of a conflict 

task. Subjects are instructed to either move their eyes to the target (pro-saccade 

instruction) or to look in the direction opposite to the target (anti-saccade 

instruction). This task usually involves a block-wise manipulation of instruc-

tions, which does not allow studying sequential effects. Because monkeys can 

also be trained to perform the anti-saccade task, they provide an important 

animal model to investigate neural processing related to inhibitory control 

(Munoz & Everling, 2004). 
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Conflict adaptation: Direct effect: Indirect effect:

 
Figure 1. A. Demands drive behavior via the mobilization of effort and cognitive 

control. Affective states may influence effort and cognitive control either directly or 

indirectly. Whereas direct effects can have immediate consequences for behavior, 

indirect effects are mediated via the evaluation or appraisal of situational demands. B. 

Example of a randomly selected sequence of Stroop trial being either compatible (C) or 

incompatible (I). Sequential-effect analyses compare Trial N compatibility effects (as 

indicated by upper-case letters C and I) on behavior as a function of the compatibility of 

the preceding trial (Trial N-1; indicated by lower-case letters c and i). C. Example of 

conflict adaptation: the Stroop interference effect is smaller on trials that follow incom-

patible trials than on trials that follow compatible ones. A hypothetical direct improve-

ment of cognitive control will reduce the interference effect, whereas a hypothetical 

indirect improvement of cognitive control will increase conflict adaptation. 
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shown that the ACC not only monitors information processing conflict, but that it 

also responds to situations involving negative emotions, such as monetary loss, 

pain, negative feedback, and social rejection (Botvinick, 2007; Bush, Luu, & Pos-

ner, 2000; Shackman et al., 2011). These data point to the interesting possibility of 

a common affective factor driving this neural activation. That is, demanding 

situations may trigger a negative state like aversive stimuli do. Historically, this 

idea comes close to Hull’s (1943) ‘law of least effort’, which assumes that organ-

isms tend to avoid demanding situations. More recent studies indeed have shown 

that situational demands become hedonically marked (Winkielman, Schwarz, 

Fazendeiro, & Reber, 2003) and usually are associated with negative valence 

(Botvinick, 2007; Lewin, 1935; Morsella, Feinberg, Cigarchi, Newton, & Williams, 

2011). One of the functions of the resulting negative emotional state may be to 

guide future behavioral optimization, such as the tuning of cognitive control (cf. 

Cabanac, 1992). 

The theoretical framework in this dissertation builds on the assumption that 

aversive states, irrespectively of being triggered by negative stimuli or demanding 

situations, help to mobilize cognitive effort. Thus, negative emotions may directly 

improve attentional focus, a hypothesis dating back to the work by Easterbrook 

(1959). Besides these direct effects, affect may also modulate the emotions trig-

gered by the demand, thus regulating cognitive control indirectly (see Figure 1A 

for an illustration). For example, positive emotions may undo the negative state 

induced by the demand (Fredrickson, Mancuso, Branigan, & Tugade, 2000). In 

addition, indirect effects may also occur because the evaluation of the situational 

demands is changed by one's emotional state. For example, it has been shown that 

mood states have an informational function, making people more optimistic when 

in a positive mood than in a negative mood (Schwarz & Clore, 1983). Thus, 

congruence between mood and task demands modulates how demand is perceived 

and subsequently how the mind and body prepare for adaptation (Gendolla, 

2000). To put it simple, positive affect may counteract and negative affect may 

facilitate the sensitivity to demands and subsequent control adaptation.  

Using a classic Stroop task as an example, Figure 1 illustrates how direct and 

indirect effects on cognitive control impact behavior differently. For example, a 

direct effect that leads to a general improvement of cognitive control would reduce 

interference effects, that is, it speeds up responding to incompatible trials and 

slows down responding to compatible trials. On the other hand, an indirect effect 

via the negative appraisal of demands may cause a transient trial-to-trial adapta-
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tion increase in cognitive control. Thus, increased conflict adaptation should 

reduce interference effects in trials following incompatible (conflict) trials. 

Beyond valence: core affect and cognitive control 

The rationale presented in the previous section suggests that affective valence (i.e., 

whether affect is positive or negative) may be an important determinant of cogni-

tive control regulation. However, emotional states are multifaceted phenomena 

and different aspects of emotions may have different effects on cognitive control. 

Therefore, it is important also to consider the impact of factors other than valence. 

Since the work of Wilhelm Wundt (cf. Reisenzein, 1992), emotion researchers 

have been using dimensional descriptions to account for the wide variety of 

emotional states. As a result, several different theoretical frameworks have 

emerged that describe emotional states with various dimensions and structures, 

including Russell's (1980) circumplex model, Watson and Tellegen's (1985) posi-

tive and negative affect distinction, Thayer's (1989) dissociation between tense and 

energetic arousal, and Larsen and Diener's (1992) description of eight combina-

tions of pleasantness and activation.  

However, recent psychometric studies have shown that all these models share a 

similar structure, which can be described with a Cartesian space that includes the 

dimensions valence and arousal (Yik, Russell, & Barrett, 1999). The valence or 

hedonic axis defines where emotions are on a bipolar pleasant versus unpleasant 

dimension, whereas the arousal axis indicates the arousal or activation level on a 

low activation (sleep) versus high activation dimension (see Figure 2A). The 

combination of these two fundamental dimensions has been referred to as core 

affect (Russell, 2003). Core affect describes the affective experience manifest in 

both emotions and moods. Whereas moods are long-term affective states and 

usually not object-specific, emotions are short-lived and usually directed to a 

particular object that triggered it. Figure 2 shows that different states of emotions 

and moods can all be described in a framework that includes a valence and arousal 

dimension. An anxious mood for example, has a relatively high arousal level 

combined with a negative valence, whereas a calm mood has a positive value 

accompanied with a low activation level (Figure 2B). Similarly, emotions can also 

be characterized by these two dimensions (Figure 2C), as has been illustrated with 

ratings of affective states induced by emotional pictures from the IAPS set (Inter-

national Affective Picture System; Lang et al., 2008). 
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Introducing core affect as a fundamental description of affect imposes a refine-

ment of the framework introduced in the previous section. This need for a modifi-

cation can be illustrated with the influential hypothesis raised by Easterbrook 

(1959). According to Easterbrook, noxious stimulation or threat enhances percep-

tual focus. However, Easterbrook's hypothesis does not specify where this narrow-

ing of attention comes from. Given that the emotional state described involve both 

      A 
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Unpleasant Pleasant
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High arousal

Unpleasant Pleasant
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Figure 2. A. Core affect as defined by a Cartesian space that includes the dimensions 

valence and arousal. B. Core affect as reflected in possible mood states. C. Core affect as 

reflected in emotional states induced by pictures from the IAPS set 
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a negative valence and a high level of arousal, narrowing effects may be driven by 

the negative valence alone, the high arousal alone, or a combination of both.  

Interestingly, more recent theories on the role of affect on attentional focusing 

disagree on what factors are actually driving the narrowing effect. For example, 

Schwarz’s (1990) cognitive tuning theory assumes that affective valence regulates 

the breadth of attention, but it does not refer to a possible role of arousal. One 

reason for this might be that the tuning theory extends Schwarz’ former mood-as-

information theory which was primarily concerned with the question how mood 

valence informs people’s evaluative judgments: Whereas, positive affect may 

inform the person that everything is alright, negative affect may indicate that there 

are problems (Schwarz & Clore, 1983). Consequently, the tuning hypothesis 

proposed that negative mood not only induces systematic processing but that it 

also directly mobilizes effortful strategies. Similarly, positive mood is thought to 

induce heuristic processing and may directly mobilize effortless strategies. Thus, 

according to Schwarz (1990), mood is already associated with general motivational 

implications, irrespective of arousal effects. A similar perspective has been adopted 

by Fredickson, whose broaden-and-build theory suggests that positive emotional 

states broaden one’s perception and action repertoire (Fredrickson, 2001). In 

contrast to these valence-based models, Derryberry and Tucker (1994) have 

hypothesized that only states combining negative valence and high arousal will 

increase selective attention. Conversely, high-arousal positive states will do the 

opposite, that is, broaden selective attention. According to their theory, narrowing 

and broadening effects are thought to include not only perceptual focus but also 

conceptual attention (e.g., semantic scope, cf. Isen et al., 1987).  

However, alternative frameworks as proposed by Kuhl (Kuhl & Kazen, 1999; 

Kuhl, 2000) and Gable and Harmon-Jones (2008; 2010b) further qualify these 

theories. They suggest that some positive affective states, such as those associated 

with reward and approach motivation, increase rather than decrease selective 

attention. These motivational effects might be related to arousal increases (Gable 

& Harmon-Jones, 2010b). Furthermore, some theories have suggested that not all 

affective states have motivational implications. The Mood-Behavior-Model 

(Gendolla, 2000) states that moods usually are not related to an object and there-

fore lack the motivational function emotions have. According to this model, 

moods do not have direct effects on motivation, although they can have an indi-

rect impact via informational effects on demand-related judgments. As explained 

in the previous section, such mood-congruency effects on the appraisal of de-
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mands may modulate the subsequent mobilization of cognitive control thus 

producing indirect effects (Gendolla, 2000). 

It is also important to note that theorists have emphasized that emotion effects 

are subject to important boundary conditions. For example, Easterbrook (1959) 

already suggested that the increased perceptual focus driven by aversive situations 

will be beneficial to cognitive performance only up to the point that it shields 

irrelevant information; too high perceptual shrinking, however, may exclude 

relevant task information too, which impairs cognitive control performance. A 

parallel relation has been suggested between task demands and motivation. In-

creased task demands improve cognitive control, but only up to a certain point: 

When tasks become too difficult, people give up and effort decreases (Brehm & 

Self, 1989; Kahneman, 1973; Kukla, 1972). Two other important limitations have 

been suggested by Schwarz (1990). First, affect-inducing stimuli, though irrelevant 

to the task at hand, consume processing resources, and thus can effectively reduce 

task performance. Indeed, high-arousing emotional stimulation, such as fearful 

faces associated with an electrical shock, have been shown to impair executive 

functions (Pessoa, 2009). Secondly, the affective modulation of cognitive control 

may be reduced by the impact of other currently active goals. In line with this 

suggestion, numerous studies indeed show reduced emotional impact under 

conditions of increased control (Ochsner & Gross, 2005). Experimental work 

needs to consider these factors carefully when designing experiments and when 

interpreting the generalizablity of their results. 

To summarize, several theories suggest that, under some circumstances, affec-

tive valence and arousal may have motivational and informational functions. The 

motivational function of affect is evident for some negative and positive emotions 

that directly trigger increased or decreased cognitive control. Theories tend to 

converge on the prediction that negative emotions improve selective attention, 

although the role of arousal in this modulation is not clear. On the other hand, 

conjectures about the role of positive affect and arousal are contradictive. Fur-

thermore, theories do not agree whether the motivational function of affect is 

limited to emotions, or whether it can also be observed in mood states. That is, it 

has been argued that moods lack motivational implications for direct effects, 

although they still may have indirect effects on cognitive control through an 

informational effect on demand-related judgments. Which theoretical framework 

is best applicable to account for emotion effects on cognitive control is currently 

not known. This thesis aims to provide a substantial contribution in formulating 

an answer to this question. 
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Box 2: Affect induction methods 

 

Several methods can be used to induce emotional states in humans. One well-

known method to induce short-term emotional states is a feedback manipulation 

using reward and punishment (e.g., Gehring & Willoughby, 2002). Studies in 

animals and humans have suggested that unexpected reward triggers a phasic 

increase of dopamine levels in the midbrain, which may regulate motivated 

behavior and learning (Schultz, 2006). Experiments with human subjects typi-

cally use secondary rewards, such as winning or losing points or money. Like 

natural rewards in animals, these feedback stimuli modulate the dopamine 

system and ACC activity in humans (Schott et al., 2008). 

 Another way to induce transient emotional states is to present pictures. A 

well-known stimulus set used for emotion induction is the International Affec-

tive Picture System (IAPS).  This picture set includes photos of emotion-loaded 

daily-life scenes, people, and animals. Pictures induce emotional states that vary 

widely across valence and arousal dimensions (Lang, Bradley, & Cuthbert, 2008; 

cf. Figure 2C). Presenting funny cartoons is another example of how pictures can 

be used to induce emotions (e.g., Abel & Maxwell, 2002; Isen, Daubman, & 

Nowicki, 1987). 

 Sustained affect can be manipulated using mood induction procedures. 

These procedures usually include film fragments, imagination, emotional state-

ments, and music, either alone or in combination, to induce positive or negative 

moods. The induction appears to be most successful when combined with an 

explicit instruction to come in a particular mood (Westermann, Spies, Stahl, & 

Hesse, 1996). It remains a matter of debate to what extent manipulation checks 

(usually involving self-reported affect) may reflect socially desirable responding 

(a.k.a. demand characteristics). 

 Mood states can also indirectly be induced by pharmacological manipula-

tions that directly manipulate neurotransmission. For example, Acute Trypto-

phan Depletion (ATD) has been used to investigate the role of serotonin regula-

tion in depression. ATD temporarily lowers the availability of L-Tryptophan 

(Trp), the precursor of serotonin. This leads to a transient increase in depressed 

mood in individuals who are vulnerable to depression, such as former patients 

and first-degree relatives of patients (Ruhe, Mason, & Schene, 2007).  
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Neuropsychological models 

In addition to understanding the behavioral consequences of the modulation of 

cognitive control, the project described in this thesis also aims to investigate the 

neural mechanism supporting such regulation. Cognitive control regulation 

involves the prefrontal cortex (PFC). This brain region plays an important role 

when situations require cognitive control, that is when behavior must be guided by 

internal states or intentions (Miller & Cohen, 2001). Whereas the implementation 

of control may involve the lateral parts of the PFC, the need for the allocation of 

extra cognitive control is thought to be signaled by the more medial parts of the 

PFC, in particular the ACC (Botvinick et al., 2001), Although traditionally being 

envisaged as part of the affective ‘limbic system’ (Papez, 1937), neuroimaging 

studies have shown that the ACC is also involved in the processing of demanding 

situations (Botvinick, 2007; Bush et al., 2000; Shackman et al., 2011). According to 

Conflict Conflict monitoringmonitoring

and and evaluationevaluation

CognitiveCognitive controlcontrol

AffectAffect

LLLL----PFCPFCPFCPFC

midmidmidmid----
brainbrainbrainbrain

ACCACCACCACC

BGBGBGBG

Anterior Cingulate Cortex
Lateral Prefrontal Cortex
Basal Ganglia

ACC
L-PFC
BG

Anterior Cingulate Cortex
Lateral Prefrontal Cortex
Basal Ganglia

ACC
L-PFC
BG

Figure 3. Brain areas involved in the interactions between affect and cognitive control. 
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the conflict monitoring hypothesis, demanding situations induce conflict in 

information processing which acts as a signal that indicates the need for additional 

control. The ACC may drive control improvements by amplifying goal-related 

processing in the more lateral part of the PFC (Botvinick et al., 2001). The ACC 

has also been conceived of as an important region for affective modulation, given 

that the processing of affective valence and processing demands converges and 

becomes integrated in this area (Bush et al., 2000; Luu, Collins, & Tucker, 2000; cf. 

Pessoa, 2008). There is some evidence suggesting that negative affect amplifies 

conflict-related ACC activity (e.g., Luu et al., 2000) whereas positive affect inhibits 

this activity (van Wouwe, Band, & Ridderinkhof, 2011). This modulation may be 

central to indirect effects of emotion on cognitive control. 

Motivational effects on cognitive control may also modulate the lateral PFC 

directly. For example, according to the model by Tucker and Williamson (1984), 

affect may cause asymmetric involvement of the hemispheres via sub-cortical 

limbic processing. These authors have speculated that negative affect facilitates 

analytic processing via a bias of left hemispheric activity, whereas positive affect 

biases heuristic processing via the right hemisphere. In contrast, more recent 

theories have suggested that affect is lateralized in exactly the opposite order, that 

is, withdrawal- and avoidance-related emotions are related to right-hemisphere 

dominance, whereas approach-related emotions are represented by left-

hemisphere dominance (e.g., Davidson, 1993; Davidson, 2004; Gray, 2004). 

However, empirical evidence for a lateralization of emotions is mixed (e.g., Wager, 

Phan, Liberzon, & Taylor, 2003), and effects observed may reflect the direction of 

the action (approach versus avoid) rather than the actual valence of the emotional 

state (Berkman & Lieberman, 2010). 

Affective modulation of medial and lateral parts of the PFC may also be sup-

ported by projections from neuromodulator systems. Neurotransmitters such as 

dopamine (DA), norepinephrine, serotonin, and endogenous opioids may regulate 

attention by adjusting neural signal-to-noise ratios (Briand, Gritton, Howe, 

Young, & Sarter, 2007; Robbins & Arnsten, 2009; Leknes & Tracey, 2008). For 

example, DA projections from the midbrain to the prefrontal cortex have been 

thought to regulate working memory, cognitive control, and behavioral flexibility 

(Ashby, Isen, & Turken, 1999; Braver & Cohen, 2000; Dreisbach & Goschke, 

2004). Given that DA is involved in the neural representation of monetary reward 

and positive affect (Ashby et al., 1999; Phillips, 1984; Schultz, 2007), it has been 

proposed that effects of incentive motivation on cognitive control (e.g., Savine & 

Braver, 2010) and positive affect (Ashby et al., 1999) may be mediated by this 
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system. Conversely, projections from the prefrontal cortex (including the ACC) 

back to the midbrain via the basal ganglia, have been proposed to induce phasic 

inhibition of DA levels during aversive events. This feedback system may provide 

important learning signals needed for behavioral optimization (Frank, 2005). 

Reward and conflict processing may thus have opposing influences on DA levels, 

possibly reflecting positive and negative emotional valence (cf. Holroyd & Coles, 

2002; Jocham & Ullsperger, 2009). Evaluative feedback signals from the ACC may 

also drive the locus coeruleus-norepinephrine system. This arousal-mediated 

response may augment a phasic release of NE that enhances task-specific control 

representations in prefrontal cortex (Aston-Jones & Cohen, 2005; Aston-Jones, 

Rajkowski, Kubiak, Valentino, & Shipley, 1996; Verguts & Notebaert, 2009). 

Serotonin is another neurotransmitter that might be involved in the neuromodula-

tion of signals related to punishment and aversion, and which is also involved in 

negative and depressed mood (e.g., Cools, Roberts, & Robbins, 2008; Ruhe et al., 

2007). Finally, recent evidence suggests that opioid-driven modulation may 

underly the hedonic dimensions of affect (Kringelbach & Berridge, 2009; Leknes & 

Tracey, 2008). Unlike DA which is primarily associated with the motivational 

aspects of reward, the opioid system is thought to be involved in the hedonic liking 

aspects of reward (Barbano & Cador, 2007; Berridge, 2007). Increased opioid 

function has been linked to positive emotional states such as relief of pain and 

feelings of euphoria, wellbeing, and relaxation. Because opiates can reduce or 

eliminate the negative emotional state induced by painful stimuli, they may also 

mediate the modulating role affect has on evaluating and monitoring behavioral 

demands. Consistent with this possibility, opioid receptors have been found to be 

most densely distributed in the ACC (cf. Luu et al., 2000). This modulation may 

support the informational function affect has in producing indirect effects on 

cognitive control.  

In sum, direct and indirect emotional effects may modulate prefrontal cortex 

via subcortical regulation (see Figure 3). Whereas the medial part of the prefrontal 

cortex may be involved in the detection and evaluation of cognitive demands, the 

more lateral parts of the prefrontal cortex may actually implement the cognitive 

control needed. Subcortical reward systems including the dopamine and opioid 

systems may play an important neuromodulating function via which direct and 

indirect affective regulation of cognitive control may occur. The research 

described in this thesis aims to investigate the role of these neural circuitry in this 

regulation. 
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Box 3: Beyond behavior: psycho-physiological methods 

 

Emotion and cognitive control direct behavior via a biological substrate, that is, 

the brain and the body. One way to measure bodily responses to environmental 

changes is pupillometry. This method tracks the size of the pupil using an eye 

tracking device or a camera. Task-related pupil dilation has been used as an 

index of autonomic nervous system activation. The pupil contains two antago-

nistic smooth muscle groups, the sphincter and dilator muscles, that are differen-

tially influenced by activity in the sympathetic and parasympathetic branches of 

the nervous system. Sympathetic activity drives the dilator muscle evoking 

dilation, whereas inhibition of parasympathetic activity reduces constriction of 

the sphincter muscle, which also results in dilation (Beatty & Lucero-Wagoner, 

2000). There are many determinants of pupil dilation (cf. Kahneman, 1973). For 

example, high-arousal states such as anxiety, fear, and anger increase arousal 

and pupil dilation (Bradley, Miccoli, Escrig, & Lang, 2008). On the other hand, 

task difficulty manipulations also increase pupil dilation, an effect probably 

reflecting mental effort (e.g., Beatty, 1982). Recent studies have suggested that 

these effects origin from different sources: emotional arousal is most likely 

associated with sympathetic nervous system stimulation, whereas effort primar-

ily origins from parasympathic inhibition (Bradley et al., 2008; Steinhauer, 

Siegle, Condray, & Pless, 2004).  

Neural activity during task performance can be measured with neuroimaging 

techniques. Electroencophalography (EEG) provides a noninvasive, in-

expensive, and instantaneous measure of neural activity using recordings from 

the scalp. In contrast to its excellent temporal resolution, the spatial resolution of 

the EEG is low because of resistive properties of the scalp. Moreover, a particular 

distribution of scalp potentials can be generated by many different combinations 

of intra-cerebral sources. The inability to mathematically trace this compound 

EEG signal back to its neural sources has been referred to as the ‘inverse prob-

lem’. EEG recordings during task performance can be used to index different 

neural processes. For example the ERP (Event Related Potential) technique 

averages EEG activity across trials, which makes it possible to identify compo-

nents defined by specific characteristics such as scalp distribution and time 

range. ERP components measure neural oscillations that are phase-locked to the 

event of interest. Time-frequency decomposition analyses such as the Continuous 

Wavelet Transformation overcome this limitation. These methods allow to trace 

induced neural oscillatory activity which is not phase-locked to the event (cf. 

Cohen, 2011; Luck, 2005). 

 



 Chapter 1 

 

  
1

  
1

                     

  2
  2

                     

  
3

  
3

                     

  
4

  
4

                     

  
5

  
5

                     

  
6

  
6

                     

  7
  7

                     

  
8

  
8

                     

  9
  9

                    

  
10
  
10

 

23 

Outline of this thesis 

The research presented in this thesis focuses on the question how affect and 

motivation regulate cognitive control. The following eight chapters describe 

empirical studies that explore this link across different cognitive control para-

digms (see Box 1) and affect-inductions methods (see Box 2). Apart from behav-

ioral measures that index the efficiency of cognitive control, several physiological 

and neuroimaging methods are applied to investigate bodily and neural correlates 

(see Box 3). Table 1 provides an overview of the empirical chapters, the paradigm 

and measures used, and the main findings. Part I and II include chapters investi-

gating the effects of affective states with a short time course (emotions) and those 

with a longer time course (including mood), respectively. Part III describes em-

pirical evidence for the modulation of cognitive control by motivational factors. 

The General Discussion in Chapter 10 summarizes and integrates the findings. 

The central assumption that aversive states enhance cognitive control is tested 

in Part I (Chapters 2 – 4). The research presented in Chapter 2 shows that task-

irrelevant monetary reward can counteract the adaptations driven by conflict trials 

in a flanker task. These data are consistent with the assumption that cognitive 

demands evoke negative emotions, which may function to adapt cognitive control; 

stimuli with opposed valence may counteract such a state, thus indirectly regulat-

ing cognitive control. In Chapter 3, we show that this behavioral finding is repli-

cated in a setup that allows for measuring brain activity online using EEG. Behav-

ioral modulation is shown to be accompanied with neuromodulation in the ACC, 

implying that conflict and affective states may become integrated in this brain 

 Functional Magnetic Resonance Imaging (fMRI) is a neuroimaging tech-

nique that complements the limitations of EEG. Although this method lacks fine 

temporal resolution, it provides a better spatial resolution of neural activity. 

fMRI makes use of the magnetic properties of oxygenated blood in the brain 

using the BOLD (blood-oxygen-level dependence) response. This indirect meas-

ure of local neural activity can be obtained in a high magnetic field using an 

MRI scanner. Neural activation maps can be derived from analyses that model 

conditional differences in neural activity. Because fMRI can measure the activa-

tion and interactions of both cortical and subcortical neural structures, it is an 

important tool to identify the neural networks involved in the interaction be-

tween emotion and cognition (cf. e.g., Pessoa, 2008).  
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area. The effects of top-down control adaptations are also reflected in a narrowing 

of visual processing in posterior brain areas. Chapter 4 describes a study in which 

aversive states induced by negative IAPS pictures are shown to increase cognitive 

control directly. Positive pictures do not have this effect. Thus, only negative affect 

is shown to have a direct effect on cognitive control. Pupil dilation data indicate 

that the arousal state induced by these pictures seems not to mediate these effects. 

Part II (Chapters 5 – 7) provides evidence for an informational function of af-

fect, producing indirect effects, but not direct effects, on cognitive control adapta-

tions. Chapter 5 describes a standard mood induction procedure that simultane-

ously manipulated valence and arousal levels. Affective valence only was shown to 

modulate conflict adaptation in a flanker task: moods with a negative valence 

increase conflict adaptation in comparison to positive moods. Chapter 6 describes 

a similar effect of hedonic value on conflict adaptation after the presentation of 

funny cartoons. Moreover, the fMRI results obtained in this study reveal a neural 

mechanism that may be responsible for this effect. Humor is shown to activate the 

basal ganglia (ventral striatum and ventral pallidum), which inhibits ACC re-

sponses to conflict. Functional connectivity analyses suggest that the ACC and the 

basal ganglia may interact through reciprocal loops. The study in Chapter 7 

provide evidence for the idea that affective modulation of conflict adaptation is 

not limited to mood swings in healthy samples, but can also be observed in depres-

sion-vulnerable subjects who report increased depressed symptoms after a phar-

macological manipulation that lowers their central serotonin levels via tryptophan 

depletion. 

The final two empirical chapters in Part III illustrate that cognitive control can 

also be modulated by motivational factors not directly related to emotion. As 

described in Chapter 8, demanding situations enhance cognitive control, but only 

if overall task difficulty is not too high. Behavioral adaptation is found to drop if 

situational demands became too difficult, illustrating that the relationship between 

task difficulty and motivation is not linear. Finally, in Chapter 9 it is shown that 

passionate love, an affective state accompanied with strong motivational implica-

tions, does not necessarily improve cognitive control. Passionate lovers who have a 

nearly-obsessive attention for their beloved actually show decreased cognitive 

control, although their mood ratings are not related to this impairment. This 

finding illustrates a situation where motivation actually consumes resources 

needed to perform well on cognitive tasks. 
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"Pleasure drives out pain; and excessive pain leads 
men to seek excessive pleasure, and bodily pleasure 
generally, as a restorative. And these restorative pleas-
ures are intense, and therefore sought for, because 
they are seen in contrast with their opposite." 
 
Aristotle 

 

2 
 

Reward and  

Conflict Adaptation  

This chapter is based on:  

 

van Steenbergen, H., Band, G.P.H., & Hommel, B. (2009). Reward counteracts conflict 

adaptation: Evidence for a role of affect in executive control. Psychological Science, 20, 1473-

1477. 
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Abstract 

The conflict-adaptation effect has been observed in several executive-control tasks 

and is thought to reflect an increase in control, driven by experienced conflict. We 

hypothesized that if this adaptation originates from the aversive quality of conflict, 

it would be canceled out by a positive, rewarding event. Subjects performed an 

arrow flanker task with monetary gain or loss as arbitrary feedback between trials. 

As predicted, we found a reduction in conflict adaptation for trials in which 

conflict was followed by monetary gain. The strength of this gain-induced modu-

lation was found to depend on subjects' motivation to pursue reward, as measured 

by the Behavioral Activation System Drive scale. Our findings demonstrate for the 

first time that the conflict-adaptation effect can be strongly reduced by reward 

contexts, suggesting that reward and conflict can compensate for each other's 

effects, probably via changes in dopamine levels.  
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Introduction 

In decision making, the heart is the adversary of the mind—at least according to 

folk wisdom. Emotions are commonly believed to create irrational behavior and to 

lead to wrong judgments. However, there is increasing evidence that emotion and 

cognition often cooperate in shaping adaptive behavior and that a dysfunction of 

emotional processing impairs rational reasoning and action control (e.g., 

Damasio, 1994). Considerable research effort has focused on the impact of longer 

term emotional states (i.e., mood) on cognitive functioning, and there is evidence 

that, for instance, positive mood improves performance in various cognitive tasks 

(Ashby et al., 1999) and affects cognitive-control operations in systematic ways 

(Dreisbach & Goschke, 2004). However, recent observations suggest that even very 

brief affective states are associated with adaptations in cognitive control and may 

thus be involved in tailoring control strategies to the situation at hand. This seems 

particularly true for states induced by aversive and rewarding events, presumably 

because such events directly affect the current level of dopamine (Schultz, 2007), a 

neurotransmitter that plays an important role in regulating the (frontal) brain 

areas underlying cognitive control (Miller & Cohen, 2001).  

One important function of cognitive control is to adapt control parameters to 

current task requirements. It is assumed that the adaptation of such parameters is, 

or at least can be, driven by the registration of conflict (e.g., between competing 

responses; Botvinick et al., 2001). Evidence supporting this view comes from tasks 

in which participants need to focus on a relevant target while ignoring distracting 

information (cf. Egner, 2007, for a review). For example, in the flanker task 

(Eriksen & Eriksen, 1974), congruent (C) flankers are known to facilitate, and 

incongruent (I) flankers to interfere with, speeded responses to the central target. 

This congruency effect is modulated by the amount of conflict perceived on the 

preceding trial. Gratton et al. (1992), who reported this effect originally, argued 

that participants focus their attention more on the target after an incongruent trial 

(i), which reduces the congruency effect (I − C) in the next trial (iI − iC), as com-

pared with trials following a congruent trial (cI − cC). This effect has been called 

the “conflict-adaptation effect” because it is believed to reflect adjustments in 

cognitive control that are driven by conflict information (Botvinick et al., 2001). 

Although episodic memory retrieval of stimulus and response associations may 

account for some of the published findings (Hommel et al., 2004), more recent 

studies suggest that control-related portions of the effect remain, even if episodic 

effects are controlled for (Egner, 2007).  
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Botvinick (2007) has recently suggested that conflict may be experienced as an 

aversive, or negatively reinforcing, event. It may thus be the aversive quality of a 

conflict that signals the need for adjustment to cognitive-control systems, which 

then respond by refreshing or strengthening the representation of the current 

intention or goal. If the need for control is indeed signaled by an aversive (nega-

tive) event—so we reasoned in the present study—it should be possible to coun-

teract control operations by presenting a rewarding, positive event at about the 

same time. This is what we tried to do by signaling an unexpected monetary gain. 

The idea was that this reward cue might outweigh the conflict-induced control 

signal and prevent behavioral adaptation.  

Applying this reasoning to the conflict-adaptation effect, we predicted that the 

presentation of a rewarding stimulus immediately after an incongruent trial would 

reduce conflict-driven adaptation in the next trial. This was tested in an otherwise 

standard flanker task by providing unpredictable monetary gains or losses during 

the response-stimulus interval. According to our prediction, the conflict-

adaptation effect would be diminished in the gain condition as compared with the 

loss condition. We also included neutral trials, without gain or loss, to demon-

strate normal conflict-adaptation effects in a standard, emotionally neutral con-

text.* 

Our second prediction considered that the effect of the gain manipulation may 

depend on individual sensitivity to reward. Gray (1989) suggested that a Behav-

ioral Activation System (BAS) may guide behavior in response to reward signals 

via the dopamine system. Based on his work, self-report BAS scales have been 

developed to describe BAS activation as a personality dimension (Carver & White, 

1994). Previous research has shown that the BAS Drive and BAS Reward Respon-

siveness scales predict hedonic responses and behavioral regulation in response to 

reward and can be used as a reliable index of trait reward sensitivity (e.g., Carver & 

White, 1994; Franken & Muris, 2006). If our gain condition reduces conflict 

adaptation in general, individuals who score high on these scales would thus be 

                                                                 
* One may speculate that loss might increase the conflict-adaptation effect beyond what can be 

observed with neutral trials: Loss may increase the aversiveness of the situation and therefore 

support or strengthen the conflict signal. However, it is not clear whether aversiveness can be 

further increased by our manipulation or whether conflict in the neutral condition leads to some 

maximum aversion limit already—so we hesitated to predict differences between the loss and the 

neutral condition. 
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more likely than individuals who scored low to show particularly strong reduc-

tions.  

Methods 

Participants 

Thirty-three university students participated (18–30 years of age; 8 men and 25 

women). They were informed about the duration of the experiment (15 min) and 

that they would earn €2.00, plus a bonus that could increase to a few euros if they 

were lucky. One subject was excluded from analyses because of response omis-

sions on more than 10% of the trials.  

Procedure 

Instructions were given on a computer screen. Subjects were informed about the 

task and that smiley, sad, and neutral faces would appear between trials independ-

ently of their responses. The computer would add €0.20 to their bonus if a smiley 

face appeared and would subtract €0.20 if a sad face appeared. Neutral faces were 

not associated with any gain or loss. Subjects were encouraged to make quick and 

accurate responses with their index fingers on the keyboard, to the central target of 

an arrow flanker stimulus. After giving consent, participants performed 24 prac-

tice trials and were given accuracy feedback for 600 ms at the end of each trial. 

Then they were given the opportunity to read the instructions again, and they 

were informed about the three test blocks in which they would earn money, each 

lasting about 4 min. Self-paced break screens with a maximum duration of 40 s 

were shown in between. We did not tell the subjects that the last test block an-

nexed a filler block of 24 trials, where gain trials were overrepresented. This 

resulted in a random bonus payoff of between €0.40 and €2.00 for each person.  

The stimuli were presented on a white background on a 15-in. monitor, and 

participants viewed the monitor from a distance of about 60 cm. Each of the 612 

test trials started with a fixation cross (for varying intervals of 200, 300, and 400 

ms), followed by the flanker stimulus. Immediately after a response to the flanker 

stimulus or, in the case of omission, after 1,000 ms, a line-drawn face was pre-

sented for 500 ms, after which the next trial started. Flanker stimuli comprised a 

row of five black arrows pointing either left or right. We used the same number of 

congruent (flankers in the same direction as the target) and incongruent (flankers 
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opposite to the target) trials. Smiley, sad, and neutral faces were distributed uni-

formly and served as cues for monetary gain or loss.  

Scales 

A subset of 22 participants had filled out questionnaires in an earlier unrelated 

experiment. To explore associations with reward-related traits (measured with the 

BAS scales) and reward-unrelated traits (measured with other scales), individual 

scale scores were correlated with conflict-adaptation latency effects for the gain 

condition. We used the following trait scales translated into Dutch: the Behavioral 

Inhibition System/Behavioral Activation System (BIS/BAS) Scales (Franken, 

Muris, & Rassin, 2005), the Positive and Negative Affect Schedule (Hill, van 

Boxtel, Ponds, Houx, & Jolles, 2005), the Eysenck Personality Questionnaire 

(Sanderman, Arrindell, Ranchor, Eysenck, & Eysenck, 1995), and the Action 

Control Scale (Koole & Jostmann, 2004). To provide a safeguard against multiple 

testing, we used a conservative criterion (α = .01) for significant correlations. 

Because only one subscale from the BIS/BAS Scales was significantly correlated 

with performance, scores from the other reward-unrelated scales are not further 

considered here.  

Data Analysis 

We used repeated measures analyses of variance and t tests to analyze correct 

reaction time (RT) and error rates for test trials, as a function of the congruency of 

the current trial (I vs. C); the congruency of the previous trial (i vs. c); and the 

reward signal (gain, neutral, or loss), shown as feedback in the previous trial. The 

first trial of each block (0.5%), trials following an error (5.9%), and trials with RTs 

not fitting the outlier criterion (2.5 SD; 2.6%) were excluded from analysis.  
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Results 

As usually found, performance on the flanker task was faster (415 ms vs. 458 ms), 

F(1, 31) = 316.23, prep = .99, d = 4.52, and more accurate (2.3% vs. 8.2% errors), 

F(1, 31) = 84.54, prep = .99, d = 2.34, on congruent than on incongruent trials. 

Moreover, as predicted, normal conflict-adaptation latency effects were found for 

the neutral and loss conditions, respectively, F(1, 31) = 7.83, p < .01, prep = .95, d 

= 0.71; F(1, 31) = 13.96, p < .001, prep = .99, d = 0.95, whereas no evidence for this 

effect was found for the gain condition, F(1, 31) = 0.03, p > .05, prep = .21, d = 0.04 

(see Table 1). A direct comparison of conflict-adaptation effects, (RTcI − RTcC) − 

(RTiI − RTiC), for the gain and the loss conditions confirmed the predicted effect, 

t(31) = 1.844, p < .05, prep = .85, d = 0.49. Analyses on high-conflict (iI) versus 

low-conflict (cI) trials also illustrate this influence of gain context, F(2, 62) = 3.59, 

p < .05, prep = .90, d = 0.48 (see Table 1 for details): Normal conflict-driven 

speedup was found for the loss (6 ms) and neutral (5 ms) conditions, whereas in 

the gain condition, this effect disappeared (−3 ms). Explanations suggesting an 

influence of gain that is independent of previous-trial conflict could be ruled out, 

given that gain on the previous trial was not associated with overall response 

slowing, F(2, 62) = 0.72, p > .05, prep = .51, d = 0.22, or increases in congruency 

effects on the next trial, F(2, 62) = 0.57, p > .05, prep = .45, d = 0.19. Comparable 

results were obtained for the error-rate data (see Table 1).  

To test our second prediction, BIS/BAS subscale scores were correlated with the 

conflict-adaptation latency effect in the gain condition. Individual BAS Drive 

Table 1. Congruency and conflict-adaptation effects as a function of condition 

 
  Latency  Errors 

Condition 
 

Trial type 
 RT (ms) CE (ms) CAE (ms)  Error rate (%) CE (%) CAE (%) 

           

Gain  cC  413 44** 1  2.3 6.6** 0.3 

  iC  457    9.1   

  cI  416    1.9   

  iI  460    8.3   

Neutral  cC  413 43** 9 **  2.1 5.6** 2.2* 

  iC  461    8.8   

  cI  418    2.9   

  iI  456    7.4   

Loss  cC  412 42** 10**  2.1 5.6** 2.0† 

  iC  459    8.7   

  cI  417    2.5   

  iI  453    7.1   

 
Note: CE = Congruency effect (= I–C), CAE = Conflict-adaptation effect (= (cI-cC) – (iI-iC)),  
t-tested against zero: †p < .10; * p < .05; ** p < .01 



Reward and conflict adaptation 

 

 34 

scores (possible range from 4 to 16) strongly predicted a gain-induced increase in 

conflict adaptation (r = −.576, p < .005, prep = .97). The other subscales (BIS, BAS 

Reward Responsiveness, and BAS Fun Seeking) were not associated with this 

measure (ps > .05), nor were any correlations found for the neutral and loss 

conditions (ps > .10).  

Discussion 

Our results demonstrate for the first time that unexpected monetary gain leads to 

a strong reduction of conflict-driven adaptation. This observation is in keeping 

with the assumption that (a) response conflict may be experienced as an aversive 

event that signals the need for adaptive control (Botvinick, 2007); (b) unexpected 

monetary gain represents a positive, rewarding event; and (c) the effects of these 

two events can cancel each other out. The observation that the effects of rewarding 

and aversive events can compensate for each other suggests some common cur-

rency, some shared dimension on which positivity and negativity can be directly 

compared. We suggest that the dopamine system may provide this common 

currency, which is consistent with earlier findings showing that rewarding events 

involve phasic increases in dopamine level (Schott et al., 2008; Schultz, 2007), 

whereas decreases are associated with aversive events, including conflicts (Jocham 

& Ullsperger, 2009; Schultz, 2007). A dopaminergic modulation is also suggested 

by our observation that individual differences in reward sensitivity predict the 

influence of gain on conflict-driven adaptation. Interestingly, only the individual 

goal-directed drive to pursue reward (as measured by BAS Drive) was involved in 

this modulation, whereas differences in hedonic responsiveness to reward (as 

measured by BAS Reward Responsiveness) were not. A similar pattern has been 

observed for dopamine responses to rewarding stimuli (Beaver et al., 2006). These 

findings suggest a dominant modulating role for the motivational rather than the 

hedonic aspect of reward, which presumably involves dopamine (Berridge & 

Robinson, 2003). However, because the direction of this motivation modulation 

was opposite to the main compensatory effect of reward on conflict-driven con-

trol, the presumed role of dopamine in this modulation needs further study 

Future work, including brain imaging, may reveal the underlying mechanisms 

of conflict adaptation, reward processing, and their interactions. It would be 

interesting to study the performance of clinical samples as well. People with 

depression, for instance, may show smaller reductions in the gain condition 
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because of their lower responsiveness to reward (Nestler & Carlezon, 2006), an 

effect that may interact with general changes in conflict adaptation as well (cf. 

Mansouri, Tanaka, & Buckley, 2009; Holmes & Pizzagalli, 2007).  

Taken all together, our observations support the idea that emotion and cogni-

tion need to cooperate to generate adaptive behavior. That is, the affective quality 

of an event provides important information about the amount and type of execu-

tive control needed to make sure that goals are reached as planned. Conflict-

adaptation studies from the past have shown that increased control is a natural 

response to conflicts. However, people have a desire for rewards and—as demon-

strated in this article—once they get them, their control system relaxes immedi-

ately.  
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"The gyrus cinguli is the seat of dynamic vigilance by 
which environmental experiences are endowed with 
an emotional consciousness." 
 
James W. Papez 

 

3 
 

Electrophysiology of Reward  

and Conflict Adaptation  

This chapter is based on:  

 

van Steenbergen, H., Band, G.P.H., & Hommel, B. (submitted for publication). Reward 

counteracts conflict-driven attentional adaptation: Electrophysiological evidence. 



Electrophysiology of reward and conflict adaptation 

 

 38 

Abstract 

Recent findings suggest that positive feedback counteracts the attentional adapta-

tion to conflict triggered by incompatible distracting information. Here we hy-

pothesize that these compensatory effects of reward on conflict processing may 

regulate subsequent behavioral optimization and perceptual focusing via the 

Anterior Cingulate Cortex (ACC). We recorded EEG while participants performed 

an arrow flanker task with monetary gain or loss as arbitrary feedback between 

trials. As predicted, we found a reduction in conflict adaptation for trials in which 

conflict was followed by monetary gain, a behavioral effect accompanied by a 

modulation in early visual processing related to the processing of the distracters. 

Moreover, time-frequency analyses showed that reward inhibits ongoing fronto-

central theta oscillations induced by previous conflict, an interaction presumably 

reflecting ACC modulation. These data provide a first important step towards 

understanding the neural mechanism underlying the affective regulation of con-

flict-driven behavior. 
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Introduction 

When people face adverse events, they typically adapt their attentional resources 

to deal with this demand. This adaptation of cognitive effort and attentional 

control has been reported for numerous changes in situational demands varying 

from increases in task difficulty (Botvinick et al., 2001; Dreisbach & Fischer, 2011; 

Gratton et al., 1992; Hillgruber, 1912), the experience of stressful and aversive 

stimulation (Easterbrook, 1959; Finkelmeyer et al., 2010) to the registration of 

performance errors (Ridderinkhof, Ullsperger, Crone, & Nieuwenhuis, 2004). 

More recent work shows that positive affective states may undo or neutralize the 

impact of these adverse events, as measured by self-report, behavioral, physiologi-

cal, and neural measures (Cabanac, 1971; Fredrickson et al., 2000; Leknes & 

Tracey, 2008; van Steenbergen, Band, & Hommel, 2009). Thus, aversive and 

rewarding events may compensate for each other’s effects, possibly via a common 

mechanism that aims at behavioral optimization (Cabanac, 1992; Botvinick, 2007).  

The anterior cingulate cortex (ACC) is thought to play an important role in this 

optimization process (Botvinick et al., 2001; Gehring & Willoughby, 2002; Hol-

royd, Pakzad-Vaezi, & Krigolson, 2008). Event-related brain potential (ERP) 

studies have shown that the ACC generates a mediofrontal negativity wave, called 

the N2 component, which can be elicited by conflict, as triggered by competing 

responses in tasks where participants need to focus on a relevant target while 

ignoring distracting information (Forster, Carter, Cohen, & Cho, 2011; Yeung, 

Botvinick, & Cohen, 2004). It has been suggested that feedback stimuli signaling 

positive events and reward may inhibit this neural conflict signal, as evidenced by 

an opposite, positive-going, deflection in the ERP with a similar temporal and 

spatial distribution as the N2 component (Holroyd et al., 2008; Holroyd & Coles, 

2002). These and other data suggest that unexpected monetary rewards may have a 

neutralizing effect on conflict monitoring activity in the ACC, presumably via 

phasic dopamine signaling from the midbrain (Jocham & Ullsperger, 2009; Munte 

et al., 2008; Schultz, 2007).  

The present study was designed to investigate whether these neutralizing effects 

of reward on neural conflict monitoring may account for the recent observation 

that unexpected reward prevents the adaptive upregulation of attentional control 

in conflict-inducing flanker tasks (van Steenbergen et al., 2009). In flanker tasks, 

participants respond to centrally presented visual targets while ignoring surround-

ing non-targets that may signal the same or a different response as the target 

(Eriksen & Eriksen, 1974). The degree to which performance is worse in response-
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incompatible as compared to response-compatible trials can be taken to reflect the 

participant’s ability to focus on relevant information in the face of distraction. 

Interestingly, the size of this compatibility effect is typically reduced in trials 

following incompatible trials (the so-called conflict-adaptation effect; Gratton et 

al., 1992), which has been taken to reflect a conflict-induced sharpening of the 

attentional focus (e.g., Botvinick et al., 2001; Egner, 2007). However, we have 

recently shown that unexpected positive feedback presented immediately after a 

response in an incompatible trial (cf. Figure 1A) eliminates the conflict-adaptation 

effect, presumably by counteracting attentional adaptation to conflict (van Steen-

bergen et al., 2009). Given the well-known role of the ACC in producing adaptive 

behavior, this effect of reward on subsequent adaptation might be driven by a 

modulation of ongoing oscillatory neural activity produced by previous response 

conflict (Botvinick et al., 2001; Cohen, Ridderinkhof, Haupt, Elger, & Fell, 2008; 

Kerns et al., 2004).  

Traditional ERP techniques are not suitable to address this hypothesis because 

averaging single-trial EEG traces will reveal only neural activity that is phase-

locked to the onset of the stimulus (cf. Luu, Tucker, & Makeig, 2004; Yeung et al., 

2004). In contrast, time-frequency decomposition analyses such as complex 

wavelet convolutions can assess sustained conflict-related processing in flanker, 

Stroop, and Simon tasks (Cavanagh, Cohen, & Allen, 2009; Cohen et al., 2008; 

Hanslmayr et al., 2008). Wavelet analyses are sensitive to oscillatory activity that 

varies in phase from trial to trial and can provide measures of instantaneous power 

(i.e., energy at different frequencies, a.k.a. induced activity) and inter-trial phase 

coherence (i.e., consistency of oscillation onset across trials, a.k.a. evoked activity). 

Cumulating evidence suggest that ongoing fronto-central midline theta (4-8 Hz) 

power measured at the scalp can be modulated by conflict (Cohen et al., 2008; 

Hanslmayr et al., 2008) and feedback processing (Cohen, Elger, & Ranganath, 

2007; Cohen, Elger, & Fell, 2009). As implied by intracranial recordings, this theta 

effect may originate from the ACC and the surrounding medial frontal wall 

(Cohen et al., 2008). Based on these observations, we hypothesized that oscillations 

in the theta band may reflect the actual conflict parameter and the compensatory 

effects of reward on the conflict state, and thus show a conflict-induced increase 

that is attenuated by subsequent unexpected positive feedback. 

A second aim of the present study was to test the idea that conflict and reward 

do not only co-modulate subsequent selective attention and the resulting behav-

ioral adaptation (cf. van Steenbergen et al., 2009), but also alter early distracter 

processing in the visual cortex. Thus, if conflict on a previous trial intensifies the 
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attentional focus on the target on the subsequent trial, this should lead to a shal-

lower processing of the surrounding flankers (cf. Treue, 2001). Reward may 

counteract this effect. Evidence for distracter-related modulation in the visual 

cortex in humans has mainly been provided by fMRI studies on the effect of 

perceptual and working memory load on attentional focus (for a review, see Lavie, 

2005). Reduced distracter activation in visual cortex has also been reported during 

post-error adaptation (Danielmeier, Eichele, Forstmann, Tittgemeyer, & Ullsper-

ger, 2011). However, there is no evidence yet that conflict in correct responses 

triggers a similar adaptation (Egner & Hirsch, 2005). In order to test this possibil-

ity, our task used vertically moving flankers that elicit a motion-sensitive ERP 

component in the visual cortex known as the motion visual evoked potential 

(motion VEP;  for a review, see Heinrich, 2007). Using the motion VEP as an 

index of distracter-related processing, we hypothesized it to be sensitive to the 

modulation of attentional focus triggered by the interaction between reward and 

conflict on the preceding trial. 

To summarize, we predicted that 1) conflict induced by incompatible flankers 

increases fronto-central midline theta oscillations and sharpens the attentional 

focus, thus decreasing distracter-related visual processing and behavioral com-

patibility effects in the subsequent trial; and 2) the presentation of a rewarding 

stimulus immediately after an incompatible trial counteracts these neural and 

behavioral effects. This was tested in a flanker task by providing unpredictable 

monetary gains or losses during the response-stimulus interval (see Figure 1A). 

Neutral trials, without gain or loss, were also included to provide a baseline condi-

tion.  

Methods 

Participants 

Thirty-three right-handed university students participated (18–27 years of age; 6 

men and 27 women). They were informed about the duration of the experiment (2 

hours, including EEG preparation) and that they would earn € 13 (or course 

credits), plus a bonus that could increase to a few euros if they were lucky. Three 

participants were excluded from analyses because of technical problems during the 

acquisition of the physiological data. The experiment was conducted in accor-

dance with relevant regulations and institutional guidelines and was approved by 
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the local ethics committee from the Faculty of Social and Behavioral Sciences. All 

students read and signed informed consent. 

Experiment 

Subjects were informed about the task and that positive, negative, and neutral 

cartoon faces (smilies, grumpies, and neutral faces) would appear between trials 

independent of their responses. The computer would add € 0.20 to their bonus if a 

smiley appeared and would subtract € 0.20 if a grumpy appeared. Neutral cartoon 

faces were not associated with any gain or loss. Subjects were encouraged to make 

quick and accurate responses with their index fingers, to the central target of an 

arrow stimulus array. After informed consent, EEG preparation and a 6-min 

resting state EEG measurement, participants performed 24 practice trials in which 

they were given accuracy feedback for 600 ms at the end of each trial. Following 

this practice block, subjects performed a motion localizer block with 168 flanker 

trials using moving and still flankers (not followed by any faces or feedback). 

These trials started with a fixation cross (800 – 1000 ms, jittered), after which the 

stimulus array was presented until a response was given (maximum duration of 

1,000 ms). 

Task instructions were repeated before the test trials started. Participants were 

informed about the seven blocks in which they would earn money, each lasting 

about 5 min. Self-paced break screens were shown in between. We did not tell the 

subjects that the last test block annexed a filler block of 36 trials, where gain trials 

were overrepresented. This resulted in a random bonus payoff of between € 1.60 

and € 4.00 for each person. The stimuli were presented on a white background on 

a 17-in. CRT monitor (1025 x 768 pix), and participants viewed the monitor from 

a distance of about 60 cm. Each of the 840 test trials started with a fixation cross 

(900 - 1100 ms, jittered), followed by the stimulus array (99 x 7 pix) that always 

comprised a target without motion and four vertically moving flankers (using a 

triangle wave function, amplitude = 10 pixels, period = 200 ms). Targets and 

flankers were black arrows pointing either left or right. We used the same number 

of compatible (flankers in the same direction as the target) and incompatible 

(flankers opposite to the target) trials. Almost immediately (30 ms) after a re-

sponse to the stimulus array or, in the case of omission, after 1,000 ms, a yellow 

line-drawn face (200 x 200 pix) was presented for 750 ms, after which the next trial 

started. The three types of cartoon faces appeared with equal probability and 

served to indicate monetary gain or loss. 



 Chapter 3 

 

                     

  
1

  
1

                     

  2
  2

  
3

  
3

                     

  
4

  
4

                     

  
5

  
5

                     

  
6

  
6

                     

  7
  7

                     

  
8

  
8

                     

  9
  9

                    

  
10
  
10

 

43 

EEG recording 

Electroencephalographic (EEG) activity was recorded over positions AFz, F5, Fz, 

F6, FC3, FCz, FC4, C5, C3, C1, Cz, C2, C4, C6, TP7, CP3, CPz, CP4, TP8, P7, P3, 

Pz, P4, P8, PO7, POz, PO8, O1, Oz, and O2 of the 10/10 standard. Horizontal eye 

movements were calculated by bipolar derivations of electro-oculogram (EOG) 

signals over the left and right outer canthus. Vertical eye movements were calcu-

lated by bipolar derivations of signals above and below the left eye. Monopolar 

recordings were referenced to the common mode sensor (CMS) and drift was 

corrected with a driven right leg (DRL) electrode (for details see 

http://www.biosemi.com/faq/cms&drl.htm). In order to re-reference the data off-

line, two electrodes were placed at the left and right mastoid. Signals were DC 

amplified and digitized with a BioSemi ActiveTwo system at a sampling rate of 512 

Hz. 

Data analysis 

Behavioral data 

Repeated measures analysis of variance (ANOVA) and t-tests were used to analyze 

correct reaction time (RT) and error rates for test trials at Trial N+1, as a function 

of the compatibility of Trial N+1 (I vs. C); the compatibility of Trial N (incom-

patible / conflict vs. compatible / no conflict); and the reward signal (gain, neutral, 

or loss), shown as arbitrary feedback after Trial N, see Figure 1A. To provide a 

stable baseline for conflict and reward at the trial N, we only included those trial 

sequences that followed correct responses and neutral feedback. In addition, the 

first two trials of each block, trials following an error, and trials with RTs not 

fitting the outlier criterion (2 SDs from the individual condition-specific mean) 

were excluded from the analysis. 

EEG analyses 

Off-line analyses were performed with Brain Vision Analyzer. After rereferencing 

the channels to the average mastoid, data were high-pass filtered 0.01 Hz (24 

dB/oct), and ocular artifacts were corrected using the standard Gratton, Coles, & 

Donchin (1983) method. EEG artifacts were automatically identified using four 

criteria: 1) bad gradient (> 50 µV / sample), 2) bad max-min difference (> 200 µV / 

200 ms), 3) bad amplitude (absolute value > 1000 µV), 4) low activity (< 0.50 µV / 

100 ms). Before this procedure was applied, artifacts caused by high scalp imped-

ance of a particular electrode were corrected on an individual basis (2 partici-

pants), using a linear derivation of surrounding electrodes. Artifacts elicited by 

power line noise were also corrected on an individual basis (15 participants) using 
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a low-pass 50 Hz filter (24 dB/oct). Stimulus-locked artifact-free segments were 

created for EEG activity during the motion localizer block and during the test 

trials. For the test trials we used exactly the same trials as those used for behavioral 

RT analyses, provided they were artifact free (see above). 

Fronto-central theta oscillations as a function of compatibility and reward at 

Trial N segments were analyzed using a Continuous Wavelet Transformation as 

implemented in Brain Vision Analyzer (Morlet Complex waveform, frequency 

range from 2.5 to 50 Hz in 30 logarithmic steps, Morlet parameter c = 4.5). In-

duced power was calculated by averaging across trials after a percent change 

baseline correction from -300 to -100 ms. The amount of phase coherence was 

estimated using the Phase Locking Factor solution (version 1.1; 103), and was 

baselined from -300 to -100 ms for statistical analyses. After visual inspection, 

statistical analyses were conducted by entering average theta band (4-8 Hz) power 

and phase coherence values from 200 to 500, 500 to 800, and 600 to 700 ms win-

dows for each condition into repeated measures ANOVAs and paired t-tests. For 

these analyses, we focused on data from electrode Cz because it showed the maxi-

mum modulation of reward on conflict-induced theta oscillation. One subject was 

excluded from these analyses because of an insufficient number of trials available 

(20 trials per condition on average) to perform reliable wavelet analysis.  

Motion VEPs were identified in the motion localizer block by comparing ERPs 

elicited by moving flankers and still flankers. The Motion VEP was measured as 

the average ERP values from a window of 160 to 220 ms in occipital and occipito-

temporal electrodes, using a 200-ms pre-stimulus baseline (cf. Heinrich, 2007). 

Statistical analyses (repeated-measures ANOVAs) of motion-related ERPs in the 

test trials at Trial N+1 segments were focused on electrode sites that showed a 

motion VEP maximum in the localizer block. Similar to earlier described methods 

(Heinrich, Schilling, & Bach, 2006), subjects with motion VEP amplitudes not 

exceeding a 2 uV threshold in both hemispheres during the motion localizer block 

were excluded from analyses in order to keep a sufficient signal-to-noise ratio (16 

participants). Greenhouse-Geisser correction was applied whenever appropriate. 

For illustrative purposes, a 50-Hz low-pass filter was applied to all grand averages 

shown in Figure 3. 
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Results 

Behavioral data 

As shown in Table 1, the flanker task produced standard RT compatibility effects 

indicating faster performance on compatible than on incompatible trials. More-

over, as Figure 1B shows, a standard conflict-adaptation effect (i.e., reduction of 

the flanker-compatibility effect after incompatible as compared to compatible 

flankers in the previous trial) was obtained in the loss condition, t(29) = 1.88, p1-

sided < .05, although not in the neutral condition, t(29) = 0.12, p = .90). Replicating 

our earlier observation (van Steenbergen et al., 2009), a direct comparison of the 

gain and the loss conditions confirmed the predicted effect of reduced conflict 

adaptation in the gain versus the loss condition for RT, as shown by a significant 
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Figure 1. A. Illustration of the experimental design. It was hypothesized that conflict 

induced by incompatible trials at Trial N is counteracted by subsequent gain feedback; 

this would reduce conflict-driven attentional focusing at Trial N+1. B-D. Summary of 

the main findings: In comparison to the loss condition, gain reduced conflict-induced 

fronto-central theta power measured at the 600 – 700 ms interval at Trial N (C), and 

reduced conflict-driven focusing at Trial N+1 both as measured in behavioral compati-

bility effects (B) and distracter-related visual processing as indexed by the Motion VEP 

in a 160 – 220 ms interval (D). 
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CompatibilityN (2) x Reward (2) x CompatibilityN+1 (2) interaction, F(1,29) = 

6.04, p = .02, MSE = 333.73 (see Table 1 for details). The Reward (2) x Compatibil-

ityN+1 (2) interaction was also significant, F(1,29) = 5.46, p = .03, MSE = 345.21.  

An ANOVA including all three levels of reward suggested a trend for a 3-way 

interaction effect, F(1,58) = 2.54, p = .087, MSE = 396.48. Subordinate ANOVAs 

showed that the effect of reward on conflict-adaptation modulated the compatibil-

ity effect adjustment following conflict (incompatible) trials, F(2,58) = 6.60, p = 

.003, MSE = 594.49, but did not affect the compatibility effect adjustments after 

Table 1. Behavioral data for each condition 

 

Condition RT (ms)  Error rate (%) 

    

Loss feedback    

 Compatible trial following a compatible trial (cC) 387  1.0% 

 Compatible trial following an incompatible trial (iC) 391  0.4% 

 Incompatible trial following a compatible trial (cI) 433  6.4% 

 Incompatible trial following an incompatible trial (iI) 426  2.5% 

  Compatibility effect 41  3.8% 

  Conflict-adaptation effect 12  3.3% 

      

Neutral feedback    

 Compatible trial following a compatible trial (cC) 385  1.6% 

 Compatible trial following an incompatible trial (iC) 388  0.4% 

 Incompatible trial following a compatible trial (cI) 430  6.7% 

 Incompatible trial following an incompatible trial (iI) 432  4.2% 

  Compatibility effect 45  4.4% 

  Conflict-adaptation effect 1  1.2% 

      

Gain feedback    

 Compatible trial following a compatible trial (cC) 388  1.0% 

 Compatible trial following an incompatible trial (iC) 383  0.0% 

 Incompatible trial following a compatible trial (cI) 434  6.8% 

 Incompatible trial following an incompatible trial (iI) 441  2.6% 

  Compatibility effect 52  4.1% 

  Conflict-adaptation effect -11  3.2% 

Note. The compatibility effect was calculated from reaction times or error rates according to the 
following formula: (cI + iI)/2 - (cC + iC) / 2. The conflict-adaptation effect was calculated as 

follows: (cI - cC) - (iI - iC). 



 Chapter 3 

 

                     

  
1

  
1

                     

  2
  2

  
3

  
3

                     

  
4

  
4

                     

  
5

  
5

                     

  
6

  
6

                     

  7
  7

                     

  
8

  
8

                     

  9
  9

                    

  
10
  
10

 

47 

no-conflict (compatible) trials, F(2,59) = 0.02, p = .98, MSE = 843.52. A planned t-

test focusing on trials following incompatible trials indicated a smaller compatibil-

ity effect for gain in comparison to the neutral, t(29) = 2.09, p = .045, and the loss 

condition, t(29) = 3.81, p = .001, which resulted in a reversed conflict-adaptation 

effect for the gain condition, t(29) = 2.04, p = .05. Error rate data showed signifi-

cant main effects for CompatibilyN+1 (indicating more errors for incompatible 

trials) and CompatibilyN (indicating less errors after incompatible trials), but no 

(higher-order) interactions (see Table 1 for details). Thus, the modulation of 

conflict-adaptation in RT was not accompanied by a speed-accuracy trade off. 

Theta frequency dynamics 

Figure 2 shows the power and phase coherence measures of theta oscillations as 

induced by flanker compatibility at trial N and subsequently modulated by the 

feedback immediately following a key press to the stimulus array. An initial phase-

locked theta response to the stimulus array was observed to be greater for incom-

patible than compatible trials, F(1,28) = 4.67, p = .039, MSE = .029, as was also 

visible in the power measure, F(1,28) = 15.66, p < .001, MSE = 46952.06. More-

over, as predicted, induced theta power sustained longer for incompatible versus 

compatible flankers during a subsequent 500 – 800 ms interval after loss feedback, 

t(18) = 3.02, p = .005 but not after gain feedback, t(18) = 1.15, p = .59, or neutral 

feedback, t(18) = .37, p = .71. As shown in Figure 2 (see also summary in Figure 

1C), this modulation of reward on ongoing theta activity was maximal at the 600 – 

700 ms interval, yielding a CompatibilityN (2) x Reward (3) interaction effect, 

F(2,56) = 3.26, p = .046, MSE = 10013.82. No interaction was observed in phase 

coherence (F < .5).  

Distracter-related visual processing 

As Figure 3A shows, moving flankers in comparison to still flankers elicited a 

standard motion VEP dominated by an occipito-temporal negativity that peaked 

around 200 ms and reached its maximum value in both hemispheres at electrode-

pair P3/4. A direct comparison of the loss and gain conditions revealed a Com-

patibilityN (2) x Reward (2) interaction in the motion VEP elicited by the Trial 

N+1 for electrode P4, F(1,13) = 5.29, p = .039, MSE = 1.41, but not for electrode 

P3, F(1,13) = 1.62, p = .226, MSE = 1.48. Figure 3B and Figure 1D illustrate this 

interaction. A planned t-test indicated increased distracter-related motion activa-

tion following incompatible trials after gain in comparison to loss, t(13) = -2.54, p 

= .024, which mirrors the behavioral effect. However, when ANOVAs included the  
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A 

 

B  

Figure 2. Effect of conflict and reward at Trial N on frequency power (A) and phase 

coherence as indicated by Phase Locking Value (B) at electrode Cz. In comparison to 

gain feedback, induced theta (8-12 Hz) power sustained longer for incompatible versus 

compatible flankers after loss feedback. 
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Motion VEP after Loss Motion VEP after Neutral Motion VEP after Gain 

Figure 3. A. In the motion localizer block, moving flankers in comparison to still 

flankers elicited a standard motion VEP with an occipito-temporal scalp distribution.  

B. During test trials, conflict and reward at Trial N modulated the motion VEP elicited 

at Trial N+1. All data are taken from electrode P4. 

 

neutral condition, no significant interactions emerged (p > .15), probably because 

the increased noise observed in the neutral condition reduced statistical power.  

Discussion 

The goal of the present study was to investigate the impact of interactions between 

conflict and reward processing on behavioral and neural adaptation. The behav-

ioral effects replicated our earlier study (van Steenbergen et al., 2009) in showing 

reduced conflict-driven attentional adaptation in the gain condition. However, 

while in the previous study conflict adaptation was present in the neutral condi-
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tion, this was not the case in the current study. This general reduction of adapta-

tion might have been due to the fact that our study took about 2 hours to finish. As 

compared to the 15 minutes of our earlier study, this was likely to influence 

motivation and deplete attentional resources—conditions that are known to work 

against conflict adaptation (Fischer, Dreisbach, & Goschke, 2008).  

Our study yielded two novel findings. First, as predicted, fronto-central theta 

power appears to reflect the compensatory effects of reward on conflict-related 

neural activity, as was shown by a sustained theta response during monetary loss, 

which was absent in the gain condition. This theta oscillation response may 

originate from the ACC and may represent a signal that indicates the need for 

more cognitive control, thus driving the sharpening of the attentional focus 

observed on the subsequent trial (Cohen et al., 2008). Such modulation may 

involve dopamine signaling from the midbrain. According to the theory by Hol-

royd and co-workers (Holroyd et al., 2008; Holroyd & Coles, 2002), negative and 

positive events interact via dopamine modulation, which drives ACC activity. 

More recent evidence suggests that the ACC may also provide feedback signals 

conveyed down to the midbrain, where it can inhibit dopamine neurons (Frank, 

2005). It has been hypothesized that such fronto-striatial interactions may lower 

prefrontal dopamine concentrations, which shifts the balance of receptor activa-

tion towards D1 receptors, thus reducing distraction and improving attentional 

focusing (Jocham & Ullsperger, 2009). Our data suggest that theta oscillations may 

play an important role in this modulation. However, note that we can not claim 

that theta oscillations provide a unique neural signature of conflict- and reward-

related processing, given that fronto-central oscillations have also been observed 

for other processes, such as attention and memory (e.g., Basar-Eroglu & Demiralp, 

2001; Onton, Delorme, & Makeig, 2005; Wang, Ulbert, Schomer, Marinkovic, & 

Halgren, 2005). Altogether, our data leave open the possibility that theta oscilla-

tions that originate from the same ACC region serve different functions in differ-

ent tasks and circumstances. Further research is needed to understand the func-

tional role of theta oscillations in the presumed interactions with dopamine 

neurons and other brain areas involved in the regulation of cognitive control. 

The second novel finding concerns the modulation of distracter-related motion 

activation in the visual cortex as assessed by means of the motion VEP in the right 

hemisphere. Behavioral adaptation in the subsequent trial was accompanied by a 

corresponding adaptation in attentional focus as measured by an early modulation 

in distracter activation in the visual cortex (cf. Figure 1B and D). Note that an 

earlier study by Egner and Hirsch (2005) using fMRI did not find a distracter-
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related attenuation after conflict in a Stroop task. Our study points to the interest-

ing possibility that ERP studies may actually be more sensitive to this modulation 

than BOLD responses are. Alternatively, it is possible that Stroop performance 

relies on different strategies than flanker task performance (cf. Lavie, 2005). 

Two limitations of the present study need to be mentioned. First, as in the pre-

vious report, the reward manipulation affected behavioral and neural adaptation 

rather mildly, even though our sample was relatively large (N = 30). Second, when 

the neutral condition was included in the comparisons, statistical power to detect 

reward-related differences dropped, especially for the motion VEP analyses. One 

possible explanation of the larger inter-individual differences in the neutral condi-

tion might be that participants showed more variation in their appraisal of the 

situation of neither losing, nor winning any money. In other words, participants 

may have experienced the neutral condition as either a positive or negative situa-

tion, depending on subjective expectancies and affective state context (cf. e.g., 

Larsen & Norris, 2009).  

To conclude, this study demonstrates that conflict triggered by incompatible 

trials in a flanker task increases fronto-central midline theta oscillations and 

sharpens the attentional focus, thus decreasing distracter-related visual processing 

and behavioral interference in the subsequent trial. We showed that adaptation 

effects in behavior and visual cortex are counteracted by unexpected monetary 

reward, which also involved the inhibition of ongoing theta oscillations. These 

data provide a first important step towards understanding the neural mechanism 

underlying the affective regulation of conflict-driven behavior. 
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4. Emotion, arousal, and focused 

attention 

Chapter 

4  

Emotion, arousal, and focused at-

tention 

This chapter is based on:  

 

van Steenbergen, H., Band, G.P.H., & Hommel, B. (2011). Threat but not 

arousal narrows attention: evidence from pupil dilation and saccade 

control. Frontiers in Psychology, 2: 281. 
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12121 

 

"To desire something and to recognize what must be 
done to attain it, as well as to recognize when its at-
tainment has succeeded or failed, is to be inevitably 
emotional. In this way, emotions and reason are inex-
tricably linked in an inescapable logic." 
 
Richard S. Lazarus (1991) 

 

4 
 

Emotion, Arousal,  

and Focused Attention  

This chapter is based on:  

 

van Steenbergen, H., Band, G.P.H., & Hommel, B. (2011). Threat but not arousal narrows 

attention: evidence from pupil dilation and saccade control. Frontiers in Psychology, 2: 281. 



Emotion, arousal, and focused attention 

 

 54 

Abstract 

It has been shown that negative affect causes attentional narrowing. According to 

Easterbrook’s (1959) influential hypothesis this effect is driven by the withdrawal 

motivation inherent to negative emotions and might be related to increases in 

arousal. We investigated whether valence-unspecific increases in physiological 

arousal, as measured by pupil dilation, could account for attentional narrowing 

effects in a cognitive control task. Following the presentation of a negative, posi-

tive, or neutral picture, participants performed a saccade task with a prosaccade 

versus an antisaccade instruction. The reaction time difference between pro- and 

antisaccades was used to index attentional selectivity, and while pupil diameter 

was used as an index of physiological arousal. Pupil dilation was observed for both 

negative and positive pictures, which indicates increased physiological arousal. 

However, increased attentional selectivity was only observed following negative 

pictures. Our data show that motivational intensity effects on attentional narrow-

ing can occur independently of physiological arousal effects. 
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Introduction 

In order to cope with threatening events, organisms often recruit extra resources. 

Regarding cognitive resources, there is evidence that affectively negative stimuli 

immediately prioritize the perceptual processing (Öhman, Flykt, & Esteves, 2001) 

and recall (Christianson, 1992) of related information at the cost of other proc-

esses (Bocanegra & Zeelenberg, 2009; Pessoa, 2009), and it has been argued that 

these effects are mediated by the organism’s current state of arousal (Schimmack, 

2005). According to Easterbrook’s (1959) influential hypothesis, increased arousal 

may lead to the narrowing and focusing of attention, thus facilitating appropriate 

subsequent responding and coping behavior.  

Although threatening events and stress have been demonstrated to narrow at-

tention (Cohen, 1980; Chajut & Algom, 2003; Gable & Harmon-Jones, 2010a; for a 

discussion of opposite effects in trait anxiety, see Pacheco-Unguetti, Acosta, 

Callejas, & Lupianez, 2010), it is not clear whether these observations are due to 

nonspecific arousal or the activation of affect-specific emotional/motivational 

systems (Bradley, 2000). Even though Easterbrook’s original hypothesis relates to 

unpleasant situations only, several authors have suggested that any increase of 

arousal—e.g., whether induced by caffeine ingestion or impulsivity traits—may 

modulate attentional selectivity (e.g., Anderson, 1990). Along similar lines, in-

creasing motivational intensity has been reported to increase focused attention 

irrespective of the motivational system (approach versus avoidance) involved 

(Gable & Harmon-Jones Gable & Harmon-Jones, 2008; 2010a; Gable & Harmon-

Jones, 2010b; Harmon-Jones & Gable, 2009). However, whether arousal can be 

conceived of as a unitary construct has been questioned (Lacey, 1967; Neiss, 1988; 

1990) and it is not entirely clear how motivational intensity and arousal are con-

ceptually related (cf. Gable & Harmon-Jones, 2010b). Accordingly, it remains to be 

shown whether the emotional modulation of the selective attention reflects non-

specific arousal that can vary orthogonally to the valence of the present affective 

state or whether it is specific to negative, potentially threatening events. 

To index a possible narrowing of the attentional focus we used a visual antisac-

cade task (for a review, see Hutton & Ettinger, 2006). This task is typically used as 

a measure of cognitive control, which is closely related to attentional selectivity. 

That is, the amount of information that is entering the focus of attention may be 

limited by cognitive control exerted at a perceptual or more central processing 

level (Desimone & Duncan, 1995; Pessoa, Kastner, & Ungerleider, 2003; Miller & 

Cohen, 2001). Moreover, given that the neural mechanisms underlying the an-
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tisaccade task are well known and can easily be studied in monkeys as well (cf. 

Munoz & Everling, 2004), we considered this task to be particularly well suited for 

studying the neuro-cognitive effects of emotion on attentional selectivity. As a first 

step, our study aimed at disentangling the relative contributions of arousal and 

affective valence on attentional control using physiological and behavioral meas-

ures of arousal and focused attention, respectively. 

In the antisaccade task, participants are presented with a peripheral, emotion-

ally neutral target stimulus that appears with an abrupt onset on the left or right of 

the central fixation. Depending on the instruction, they are to move their eyes 

either to this target (prosaccade condition) or to the opposite side of the display 

(antisaccade condition). The common finding is that saccades are initiated more 

slowly and less reliably in the antisaccade than in the prosaccade condition. This 

cost is commonly attributed to the automatic tendency to look at novel events, 

which requires active inhibition in the antisaccade condition (Olk & Kingstone, 

2003). Because improved attentional control decreases automatic capture by the 

target stimulus (Yantis & Jonides, 1990), reflexive saccades toward the stimulus 

become suppressed. Thus, we expected that manipulations improving focused 

attention reduce the size of the latency costs, with antisaccades becoming faster 

and prosaccades becoming slower (cf., Kristjansson, 2007).  

Affective states were induced prior to each saccade-task trial using positive, 

negative, or neutral pictures from the International Affective Pictures System 

(IAPS). Valence and arousal ratings of these pictures show a quadratic relation-

ship, such that positive and negative stimuli are typically highly arousing and 

neutral stimuli low arousing (Lang et al., 2008). To ascertain that the pictures 

induced a physiological response we used pupillometry. Recent work by Bradley, 

Lang, and co-workers has validated this approach (Bradley et al., 2008). In that 

study, both negative and positive IAPS pictures were shown to produce pupil 

dilation, a response reflecting emotional arousal which is associated with increased 

sympathetic nervous activation. By means of this setup we were able to contrast 

two competing hypotheses. If more attentional selectivity in affectively laden 

circumstances would be driven by nonspecific arousal, the difference in saccadic 

reaction time (RT) between anti- and prosaccades should be reduced following 

negative as well as positive arousing pictures as compared to the non-arousing 

neutral pictures. Alternatively, if more attentional selectivity is specific to threaten-

ing situations, this latency cost should be reduced following negative stimuli but 

comparable for positive and neutral stimuli. 
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Methods 

Participants 

Eleven students from Leiden University (18-22 years old; 2 males; 1 left-handed) 

participated for either payment (5 Euros) or course credits. 

Materials 

Thirty-two highly arousing negative, 32 neutral, and 32 highly arousing positive 

pictures were selected from the IAPS set (Lang et al., 2008)*. The stimulus set was 

almost identical to the one used by Bradley et al. (2008). Like that study, negative 

and positive stimuli could be differentiated on the basis of valence IAPS ratings, 

whereas they were matched for arousal IAPS ratings (Lang et al., 2008, see Table 

1). Neutral pictures had low arousal ratings and intermediate valence ratings. In 

order to avoid light reflex confounds we used gray-scaled pictures (cf. Bradley et 

al., 2008); brightness and contrast were adjusted to ensure identical mean lumi-

nosity values for all pictures. 

Task 

Each trial started as soon as participants had successfully looked at the central 

fixation cross for at least 1 second. Then an IAPS stimulus appeared for 500 ms, 

which was replaced by the fixation cross for a jittered interval ranging from 1500 

to 2500 ms. Following a 200-ms blank gap (cf. Everling & Fischer, 1998), the target 

stimulus (also a cross) appeared for 500 ms 8° to the left or right to the screen 

center. Then the central fixation cross appeared for another interval (ranging from 

1000 to 2500 ms) before the next trial started. At the beginning of each block an 8-

s verbal cue (approximately 5.7° x 1.4°; width x height) indicated whether a pro- 

(target position) or an antisaccade (mirror position of the target) was to be made 

to the next target stimulus. The picture (16° x 12°) and the black fixation cross 

(0.8° x 0.8°) were shown on a gray background with luminosity equal to the mean 

                                                                 
* The library numbers for the IAPS stimuli used in the present study are: Negative: 2120, 2205, 

2520, 2590, 2691, 2730, 2750, 2800, 3015, 3030, 3053, 3100, 3170, 3180, 3181, 3400, 3500, 3530, 

3550, 6210, 6211, 6212, 6821, 6834, 6838, 9041, 9250, 9300, 9341, 9405, 9800, 9921. Neutral: 2020, 

2190, 2200, 2210, 2214, 2215, 2220, 2221, 2235, 2240, 2270, 2272, 2278, 2383, 2393, 2410, 2441, 

2491, 2493, 2514, 2579, 2620, 2749, 2752, 2810, 2850, 2870, 2890, 3210, 5455, 7550, 9210. Positive: 

2208, 2250, 2260, 2501, 2560, 2650, 4611, 4617, 4640, 4650, 4653, 4658, 4659, 4689, 5621, 8041, 

8080, 8090, 8116, 8120, 8161, 8180, 8200, 8280, 8300, 8320, 8330, 8370, 8380, 8400, 8420, 8465. 
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of the pictures. In rare cases (0.2% of the time), eye tracker recording problems 

delayed the trial presentation (inter-trial intervals > 9 seconds). Because the 

interruption of the ongoing presentation sequence by either delayed presentation 

or by the onset of a new block is likely to compromise the experimental manipula-

tion of the arousal and valence, the first five trials after such events were excluded. 

Procedure 

Participants were instructed to attend to the emotional pictures and to make pro- 

and antisaccades to the target as fast and accurate as possible. They were also asked 

to avoid eye blinks during picture and target presentation. After informed consent 

and eye tracker calibration, subjects practiced with 6 prosaccade and 6 antisaccade 

trials preceded by neutral IAPS pictures and followed by accuracy feedback for 1 

second. Calibration and/or practice were repeated in case of eye tracking problems 

or when the subject did not follow the instructions. The task consisted of 6 alter-

nating prosaccade and antisaccade blocks (counterbalanced order), with two self-

paced breaks in between. Each block consisted of 48 trials, and every chosen IAPS 

picture appeared three times in randomly chosen trials. Participants were de-

briefed after the experiment. 

Data acquisition and analysis 

Saccadic behavior and pupil diameter were recorded at 120 Hz using a Tobii T120 

eye tracker, which was integrated into a 17-inch TFT monitor. Participants were 

seated at a distance of approximately 60 cm from the monitor while their head was 

stabilized by using a chin rest. Artifacts and blinks as detected by the eye tracker 

were corrected by using a linear interpolation algorithm. A saccade was considered 

to begin as soon as the horizontal angle exceeded 2° and speed passed a 30°/sec 

threshold. For all analyses, we excluded the following trials: trials including and 

following recording-related delays (see above), trials following performance errors, 

trials with saccadic reaction time outliers (< 80 ms or > 500 ms), and trials where 

no saccades could be detected. Repeated-measures ANOVAs with the factors 

picture content (negative, neutral, positive) and task (pro versus anti) were run on 

pupil dilation and saccadic behavior measures. Paired t-tests were used for post-

hoc tests. 
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Results 

Pupil dilation 

Following Bradley et al. (2008), pupil dilation to the picture content was measured 

after the initial light reflex. Dilation was defined as the mean pupil diameter in a 

window from 2 to 2.5 seconds after picture onset, using a 200 ms pre-picture 

baseline. As Table 1 shows, both negative and positive pictures caused dilation in 

comparison to neutral pictures. Analyses revealed a main effect of picture content 

(F(2,20) = 4.74, p < .05, MSE = .005), independent of task (F(2,20) = 1.02, n.s., 

MSE = .003). Replicating Bradley et al. (2008), planned t-tests confirmed that 

arousing pictures increased pupil diameter (t(10) = 2.49, p < .05). As in that study, 

there was also a trend for negative pictures to induce more dilation than positive 

pictures (t(10) = 1.822, p = .09). 

Saccadic behavior 

See Table 1 for details. As usually found, correct saccadic reaction times were 

slower during anti blocks than during pro blocks (F(1,10) = 77.08, p < .001, MSE = 

1073.76). More importantly, this task effect interacted with picture content (F(2,20 

= 3.82, p < .05, MSE = 112.48). Planned t-test showed that the latency cost (anti-

Table 1. Emotion and performance measures as a function of picture content 

 

Measure Picture content 

    Negative  Neutral  Positive 

         

Self report         

 Valence rating 2.4 (.11)  5.0 (.11)  7.0 (.11) 

 Arousal rating 5.9 (.16)  3.6 (.16)  5.5 (.16) 

          

Physiology         

 Pupil diameter (mm) 4.25 (.040)  4.19 (.026)  4.23 (.033) 

          

Behavior         

 Pro-saccadic RT (ms) 196 (8.3)  185 (7.5)  189 (7.4) 

 Anti-saccadic RT (ms) 257 (12.7)  260 (10.8)  265 (9.8) 

 Note: Table shows means with standard errors between brackets. 
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RT minus pro-RT) was reduced following negative pictures (t(10) = 2.84, p < .02) 

in comparison to neutral pictures, but not for positive pictures (t(10) = .21, n.s.). 

As Figure 1 illustrates, relative to the neutral baseline, negative pictures slowed 

down prosaccadic reaction time (11 ms; t(10) = 3.34, p < .01) but did not signifi-

cantly speed up antisaccadic reaction times (3 ms; t(10) = .71, n.s.), whereas 

positive pictures did not make any reliable difference (4 ms and 5 ms, respectively, 

all n.s.).  

Task also affected the error rates (F(1,10) = 17.90, p < .01, MSE = .025): subjects 

committed 18% erroneous saccades in antisaccade blocks but only 1.5% in prosac-

cade blocks. This effect did not interact with picture content (F(2,20) = .97, n.s., 

MSE = .006).  

To further test whether arousal might mediate any of these negative emotion 

effects we re-ran the analyses of correct saccadic reaction times with strong vs. 

weak pupil dilation as an additional factor. For this purpose, we categorized the 

trials following emotional pictures by means of a median split of the correspond-

ing dilation measures. However, even though we replicated the task effect and its 

 
Figure 1. Correct saccadic RT as a function of picture content and task context. 
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interaction with picture content, the dilation factor was not involved in any main 

effect or interaction (Fs < 1).  

Discussion 

The aim of our study was to test whether attentional narrowing is due to general 

arousal or is selectively triggered by negative affective events. Although pupil 

dilation data confirmed that both negative and positive pictures increased the 

arousal level – a finding replicating Bradley et al. (2008) – attentional narrowing 

was observed following negative pictures only. This indicates that attentional 

narrowing is not caused by emotional arousal per se, at least as it can be measured 

by pupil dilation following the presentation of high-arousing pictures. In other 

words, increased emotional arousal may be a necessary condition, but it is not a 

sufficient condition for increased attentional selectivity. The same conclusion is 

suggested by the lack of impact of pupil dilation in the combined analysis. Hence, 

our observations do not provide any evidence for a role of arousal in driving 

attentional narrowing. Instead, the attentional focus seems to narrow whenever 

individuals are encountering events of negative affective valence. 

How may negative affect regulate attentional narrowing? According to one ac-

count, dangerous situations may mobilize executive functions that protect against 

interference from disruption by irrelevant, distracting information (Norman & 

Shallice, 1986). Neuroimaging studies have suggested that these adjustments in 

cognitive control are implemented in the prefrontal cortex (Miller & Cohen, 

2001), probably via signaling from the anterior cingulate cortex, a brain region 

involved in the detection of demanding and aversive situations (Botvinick et al., 

2001; Shackman et al., 2011). Frontal cortex modulation, in turn, may modulate 

saccadic eye movements via the basal ganglia (Munoz & Everling, 2004). Thus, the 

reduced latency costs triggered by the negative pictures may originate from affect-

driven modulation of cognitive control. This interpretation also fits earlier work 

that has used the antisaccade task to assess inhibitory control (cf. Munoz & Ever-

ling, 2004). A similar explanation may also apply to earlier published studies such 

as effects on Stroop tasks usually attributed to attentional narrowing (e.g., Agnew 

& Agnew, 1963; Callaway, 1959; cf. Wachtel, 1967).  

However, it is important to emphasize that the reduced latency cost with nega-

tive pictures was driven by a slowing of RT during the prosaccade block rather 

than a speeding of RT during the antisaccade blocks. This indicates that processes 
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other than improved control may also play a role in the affective modulation of 

behavior. For example, although it is likely that negative emotions increased 

control and attentional selectivity, which inhibits the visuo-motor grasp reflex 

resulting in delayed prosaccadic RTs (Kristjansson, 2007), this effect may have 

become attenuated during the antisaccade blocks. Because a state of high cognitive 

control is known to attenuate the effects of negative emotions (Ochsner & Gross, 

2005), it might be that the effects of emotions on cognitive control were less 

pronounced in situations of higher task demands. Alternatively, it could be that 

the possible speeding of antisaccades is masked by an overall slowing effect in-

duced by the negative pictures. Indeed, several studies suggest that the processing 

of negative events may compete for perceptual and/or executive resources, which 

may slow down performance on a subsequent task (e.g., Cohen, Henik, & Mor, 

2011; Gehring, Goss, Coles, Meyer, & Donchin, 1993; Notebaert et al., 2009; 

Pessoa, 2009). It remains an important aim for future studies to disentangle the 

role of these bidirectional interactions between emotions, perception, and execu-

tive function (cf. Vuilleumier, Armony, & Dolan, 2003). 

Our study demonstrates for the first time that increased emotional arousal is 

not a sufficient condition to produce focused attention: prosaccadic slowing 

presumably reflecting attentional narrowing was observed for negative affect, but 

not for positive affect. Consistent with this finding, and in contrast to a common 

misinterpretation, Easterbrook’s (1959) original hypothesis attributed attentional 

narrowing not to general arousal but to a drive or motivation to withdraw. Given 

that positive emotions with approach-motivation have been shown to increase 

attentional focus (e.g., Gable & Harmon-Jones, 2008; for a review, see Gable & 

Harmon-Jones, 2010b), it is an important challenge for future research to deter-

mine which affective dimension, other than arousal accurately predicts attentional 

narrowing induced by positive emotions. In line with very recent discussions (cf. 

Friedman & Forster, 2011; Harmon-Jones, Gable, & Price, 2011), our results imply 

that it is now time to start research programs that search for emotional dimensions 

beyond valence and arousal that are responsible for tuning one’s attentional scope.  
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"A mood is a way, not merely a form or a mode, but 
rather a manner, like a melody, which does not float 
above the so-called actual being occurrent of a person, 
but rather sets the key of this being, that is, it attunes 
and determines the manner of his being." 
 
Martin Heidegger 

 

5 
 

Mood and Conflict Adaptation  
 

This chapter is based on:  

 

van Steenbergen, H., Band, G.P.H., & Hommel,  B. (2010). In the mood for adaptation: How 

affect regulates conflict-driven control. Psychological Science, 21, 1629-1634. 
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Abstract 

Cognitive conflict plays an important role in tuning cognitive control to the 

situation at hand. On the basis of earlier findings demonstrating emotional modu-

lations of conflict processing, we predicted that affective states may adaptively 

regulate goal-directed behavior that is driven by conflict. We tested this hypothesis 

by measuring conflict-driven control adaptations following experimental induc-

tion of four different mood states that could be differentiated along the dimen-

sions of arousal and pleasure. After mood states were induced, 91 subjects per-

formed a flanker task, which provided a measure of conflict adaptation. As pre-

dicted, pleasure level affected conflict adaptation: Less pleasure was associated 

with more conflict-driven control. Arousal level did not influence conflict adapta-

tion. This study suggests that affect adaptively regulates cognitive control. Implica-

tions for future research and psychopathology are discussed.  
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Introduction 

Emotions seem to have evolved to guide organisms and their conspecifics in their 

struggle for survival, and affective states are assumed to facilitate behavior that is 

adaptive to the current situational context (Morris, 1992). In particular, it has been 

suggested that negative mood stimulates the processing of stimuli that have a 

negative valence and, therefore, deserve priority. Indeed, low pleasure levels seem 

to induce negative-information biases in attention and memory. Although it has 

been suggested that these biases systematically change the way people cope with 

negative events (cf. Gendolla, 2000), it has yet to be demonstrated how affect may 

play this regulating role in cognitive-control adaptations.  

The main function of cognitive control is to adapt the cognitive system to situ-

ational demands. It has been proposed that this adaptation is driven by the detec-

tion of cognitive conflict (Botvinick et al., 2001). Evidence supporting this view 

comes from conflict tasks, such as the flanker task. Subjects respond more slowly 

to target information if distracting flanker information suggests a different re-

sponse. On trials following this conflict, however, flanker interference is reduced 

(Egner, 2007; Gratton et al., 1992), which indicates that facing conflict enhances 

control (Botvinick et al., 2001).  

Numerous studies have shown that low-pleasure affect facilitates neural conflict 

monitoring (e.g., Luu et al., 2000). They illustrate that moods that are congruent 

with the negative valence inherent to conflict (Botvinick, 2007) facilitate conflict 

registration (cf. Rusting, 1998). Given that conflict registration is important for 

tuning goal-directed behavior (cf. Kerns et al., 2004), affective states that prioritize 

conflict processing should also strengthen behavioral adaptations to cognitive 

conflict. We therefore predicted that people in a low-pleasure mood would adapt 

more strongly to cognitive conflict, and thus would be more likely to recruit 

control, than people in a high-pleasure mood. Some authors have postulated that, 

independently of pleasure, changes in arousal level may also influence conflict 

adaptation by altering the signal-to-noise ratio of conflict information (Verguts & 

Notebaert, 2009). If so, conflict-driven cognitive control may be influenced by the 

arousal level of the current affective state.* 

                                                                 
* Recent work has suggested a relationship between pleasure increases and shifts toward more 

flexible behavior at the cost of goal maintenance (Dreisbach & Goschke, 2004). The hypothesis 

that higher pleasure levels reduce conflict adaptation is in line with such a framework because 
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Given that pleasure and arousal are the two fundamental dimensions on which 

mood is assumed to vary (Yik et al., 1999), we investigated four groups of partici-

pants who underwent a standard mood-induction manipulation before perform-

ing a conflict-evoking flanker task. Each mood group occupied one of the four 

quadrants derived by crossing the dimensions of pleasure and arousal (see Fig. 1; 

cf. Jefferies, Smilek, Eich, & Enns, 2008). The four derived moods that were in-

duced were anxiety (low pleasure, high arousal), sadness (low pleasure, low 

arousal), calmness (high pleasure, low arousal), and happiness (high pleasure, high 

arousal). We predicted stronger conflict-driven adaptation effects (i.e., reductions 

of flanker-induced interference after conflict trials) for participants with low 

pleasure levels (anxious and sad participants) than for participants with high 

pleasure levels (calm and happy participants).  

Method 

Participants and design 

Ninety-eight students participated either for payment or for course credits (age 

range: 18–30 years; 24 males, 74 females; 11 left-handed). They were randomly 

assigned to one of the four mood-induction groups: anxious, sad, calm, and happy. 

Data from 7 subjects were excluded from analyses because of response omissions 

on more than 20% of the trials (n = 2), chance-level task performance (n = 3), or 

noncompliance with instructions (n = 2). All subjects completed a mood induc-

tion, the flanker task, and a manual color-word Stroop task.  

Mood induction and assessment 

We used a standard mood-induction procedure that combines music with imagi-

nation and is known to induce reliable mood changes (Eich, Ng, Macaulay, Percy, 

& Grebneva, 2007). Subjects used headphones to listen to specific classical music 

                                                                                                                                                   
conflict adaptation facilitates task maintenance at the cost of flexible switching (e.g., Notebaert & 

Verguts, 2008). Cumulating evidence suggests a role for neurotransmitter modulation in these 

effects. For example, pharmacological studies suggest that raised tonic dopamine levels reduce 

phasic dopamine responses to conflict (for a review, see Jocham & Ullsperger, 2009). However, 

other neurotransmitter systems involved in mood changes (e.g., serotonin and norepinephrine) 

may also play a role (Posner, Russell, & Peterson, 2005). The mutual interactions and causal role 

of these systems is complex and remains a hot topic for future investigation. 
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samples whose efficacy in inducing the intended moods was validated by previous 

research (Jefferies et al., 2008). They were instructed to develop a particular mood 

by imagining and writing about a mood-appropriate event in detail; they were free 

to either focus on a written vignette they were given or to recall a similar event 

from their past. Music continued to play throughout the remainder of the experi-

ment. To check the induction manipulation, we asked subjects to rate their mood 

on a 9 × 9 Pleasure × Arousal grid (Russell, Weis, & Mendelsohn, 1989) with 

values ranging from –4 to 4. Subjects were instructed to rate their mood whenever 

the grid appeared on the computer monitor during the experiment.  

Flanker task 

We used a computerized version of the classic flanker task (Eriksen & Eriksen, 

1974) in which, on each trial, a central target stimulus is vertically flanked by four 

response-compatible or four response-incompatible stimuli, two on either side. 

Dutch color words were used as targets and flankers, and were randomly drawn 

from one of two sets of words (“brown,” “gray,” “yellow,” and “red” or “purple,” 

“green,” “orange,” and “blue”); the other set of words was used for the Stroop task, 

with assignment of word set to task counterbalanced within mood groups. Sub-

jects were instructed to respond using their index fingers, pressing a key with their 

left index finger when the central target was either of two specific words and 

pressing a different key with their right index finger when the target was either of 

the other two words (stimulus-response mapping was counterbalanced within 

mood groups). A reminder of the stimulus-response mapping was shown for 15 s 

before the start of each of the two blocks of 72 trials.  

All trials started with a fixation cross (randomly varying duration of 800, 1,000, 

or 1,100 ms), followed by the stimulus, which was presented until response regis-

tration, or for a maximum of 1,500 ms. In half of the trials, the target and flanker 

stimuli called for different responses (response-incompatible condition: I), 

whereas in the other half, physically identical target and flanker stimuli called for 

the same response (response-compatible condition: C). All trials were presented in 

an unconstrained random sequence. Stimuli appeared in black, lowercase Arial 

bold font and were presented on a gray background. The stimulus array was 3.5 

cm wide and 5.4 cm high. Participants viewed the stimuli on a 17-in. monitor from 

a distance of approximately 60 cm.  
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Procedure 

After giving informed consent, subjects were instructed about the mood ratings 

and told how to perform the flanker and Stroop tasks.* Instructions for both tasks 

emphasized both speed and accuracy. Following 16 practice trials and a 10-min 

mood induction, subjects performed a block of 72 trials for each task. After a 

short, 3-min mood booster, another block of each task was presented. The order of 

tasks was counterbalanced within mood conditions. Following completion of a 

questionnaire in which subjects were asked to rate how genuinely they had experi-

enced their mood (9-point scale), subjects were instructed to return to baseline 

mood levels. Negative-mood subjects received a candy to facilitate return to their 

baseline mood. During the experiment, nine mood ratings were obtained at the 

following time points: at the beginning of the experiment (baseline), following the 

practice trials, halfway through and at the end of the mood-induction procedure, 

after the first half of the tasks, following the mood booster, after the second half of 

the tasks, following the questionnaire, and at the end of the experiment.  

Data analysis 

Analyses of variance were used to test our hypotheses. Arousal and pleasure grid 

ratings served as a mood-manipulation check. We analyzed absolute reaction 

times (RTs) and error rates, as well as interference effects (I minus C), on correct 

trials as a function of mood condition. Standard conflict-adaptation effects, for 

both RTs and error rates, were calculated by subtracting the interference effect 

following a correct conflict, or incompatible, trial (i) from the interference effect 

following a correct no-conflict, or compatible, trial (c) (i.e., (cI – cC) – (iI – iC)). 

The first trial of each block (1.4%) and outlier trials (RT > 2 SD from the condi-

tion-specific mean, calculated for each subject separately; 4.7%) were excluded 

from all analyses.  

                                                                 
* We could not use reaction time data from the Stroop task to test our hypothesis, given that no 

overall conflict-adaptation effect was observed in Stroop reaction times, F(1, 87) = 1.37. As 

expected, mood effects on this measure were not observed, F(1, 87)s < 2.31. In line with the 

flanker task, this task did produce a reliable interference effect, F(1, 87) = 70.60, p < .001, which 

was not modulated by mood, F(1, 87)s < 1.  

 Task-specific characteristics, such as task difficulty, may account for differences in the size of 

conflict-adaptation effects (e.g., Fischer et al., 2008). In a new series of experiments including 

Stroop and flanker tasks similar to those used in the current study, we indeed demonstrated that 

high task demands eliminate conflict-adaptation effects (see Chapter 8). 
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Results 

Mood-induction manipulation check 

Table 1 presents subjects’ mean affect ratings at all nine assessment points. Par-

ticipants began the experiment in a slightly positive (M = 0.59, SE = 0.14) and 

slightly aroused (M = 0.15, SE = 0.16) mood. Baseline ratings did not differ across 

the mood-induction groups, F(1, 87)s < 1.70. Participants reported the expected 

changes in arousal and pleasure following the mood induction. Average self-

reported affect during task performance (ratings given at the beginning and end of 

the task blocks; i.e., at Times 3−6 in Table 1) indicated that the sad (M = –1.8, SE = 

0.25) and anxious (M = –1.5, SE = 0.23) groups reported lower pleasure scores 

than the calm (M = 1.5, SE = 0.24) and happy (M = 1.7, SE = 0.25) groups, F(1, 87) 

= 181.14, p < .001, MSE = 1.33. Similarly, arousal scores were higher for the 

anxious (M = 1.7, SE = 0.31) and happy (M = 0.9, SE = 0.34) groups than for the 

sad (M = –0.5, SE = 0.34) and calm (M = –1.0, SE = 0.32) groups, F(1, 87) = 40.05, 

p < .001, MSE = 2.42, although the unpleasant-mood subjects reported slightly 

higher arousal than the pleasant-mood subjects, F(1, 87) = 4.30, p = .041. As in 

earlier studies (e.g., Eich et al., 2007), subjects judged their reported moods as 

genuine at the end of the task (M = 7.0, SE = 0.14), and this rating did not depend 

on mood condition, F(3, 87) = 2.69. Across mood conditions, comparisons be-

tween ratings given at baseline and at the end of the tasks suggest that the tasks 

themselves induced some reduction in pleasure, F(1, 90) = 7.78, p < .01, MSE = 

2.30, but no change in arousal, F(1, 90) < 1.  

Table 1. Mean self-report mood scores per mood induction group 

 
  Time point 

Dimension Induction group 
  Baseline 1 2 3 4 5 6 7 8 

               

Pleasure Anxious   0.42 0.54 -1.69 -1.69 -1.27 -1.96 -1.19 -0.04 0.77 

  Sad   0.57 0.57 -2.05 -2.38 -1.57 -2.10 -1.14 0.14 0.71 

  Calm   0.57 0.61 1.96 2.04 1.13 1.74 1.04 1.09 1.09 

  Happy   0.81 0.33 2.62 2.33 1.62 1.62 1.29 1.24 1.14 

               

Arousal Anxious   0.12 0.92 1.58 1.46 1.85 2.00 1.65 0.73 0.65 

  Sad   0.14 1.29 -0.52 -0.91 -0.14 -0.76 -0.19 -0.14 0.43 

  Calm   -0.22 1.00 -0.61 -1.48 -0.57 -1.26 -0.74 -0.74 -0.22 

  Happy   0.57 1.29 1.38 1.19 1.48 0.67 0.24 0.05 0.33 
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Mood and conflict-adaptation effects 

Reliable overall RT conflict-adaptation effects, F(1, 87) = 16.83, p < .001, MSE = 

2,303.02, were observed for the flanker task, and, as Figure 1 shows, this effect was 

modulated by pleasure level, F(1, 87) = 4.241, p < .05, MSE = 2,303.02. This pre-

dicted effect of pleasure was not accompanied by an effect of arousal or by a 

Pleasure × Arousal interaction, F(1, 87)s < 1. Overall, interference effects were 

smaller if conflict was experienced on the previous trial (21 ms vs. 42 ms), and, as 

predicted, these conflict-driven interference reductions were larger for subjects in 

a low-pleasure mood (anxious and sad groups: M = 29, SE = 9.4, and M = 33, SE = 

10.5) than for subjects in a high-pleasure mood (happy and calm groups: M = 8, 

SE = 10.5, and M = 13, SE = 10.0). This effect could not be accounted for by mood-

induced differences in overall RT or interference effects, F(1, 87)s < 2.23 (see Table 

2 for details on RTs, interference effects in RTs, and conflict-adaptation effects in 

RTs). Correlations between self-reported affect during task performance and 

individual conflict-adaptation effects across mood groups were not significant 

(pleasure: r = –.161, p = .13; arousal: r = –.134, p = .21).  

Table 2. Behavioral data per mood induction group 

 

Mood induction group 
Trial type / Effect 

Anxious (N = 26) Sad (N = 21) Calm (N = 23) Happy (N = 21) 

          

Overall 593 (9.3%) 619 (5.6%) 596 (2.9%) 604 (4.8%) 

          

Compatible (C)  580 (8.6%) 600 (4.4%) 577 (1.9%) 587 (4.7%) 

Incompatible (I) 607 (10.1%) 638 (6.8%) 616 (3.8%) 620 (5.0%) 

 Interference effect 27 (1.6%) 37 (2.3%) 39 (1.8%) 33 (.3%) 

          

cC  572 (3.7%) 578 (3.0%) 568 (1.2%) 580 (2.8%) 

cI  611 (8.8%) 631 (6.9%) 612 (4.0%) 613 (4.4%) 

iC  587 (7.4%) 617 (3.5%) 582 (1.2%) 595 (3.1%) 

iI  597 (8.1%) 637 (6.8%) 613 (2.3%) 619 (4.1%) 

 Conflict-adaptation effect 29 (4.5%) 33 (.5%) 13 (1.7%) 8 (.6%) 

 
Note: Latency data in ms for all conditions with error rate between brackets.  
Interference effect = I–C, Conflict-adaptation effect = (cI – cC) – (iI – iC) 
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Overall, conflict-adaptation effects for error rates were not reliable, F(1, 87) = 

3.13 (see Table 2 for details on error rates, interference effects in error rates, and 

conflict-adaptation effects in error rates). Overall interference effects in error rates, 

F(1, 87) = 10.03, p < .01, MSE = 0.002, were not modulated by mood condition, 

F(1, 87)s < 1.57, though subjects with low pleasure levels, F(1, 87) = 6.741, p < .05, 

MSE = 0.004, and subjects with high arousal levels, F(1, 87) = 4.267, p < .05, MSE 

= 0.004, made slightly more errors in general than their high-pleasure and low-

arousal counterparts.  

 

 
Figure 1. Conflict-adaptation effects as a function of mood induction group. Groups 

were defined by a crossing of the pleasure (horizontal) and arousal (vertical) dimension. 

Subjects in a low-pleasure mood show stronger conflict-adaptation effects (interference 

reduction after conflict) in comparison to subjects in a high-pleasure mood. Arousal 

does not modulate conflict-adaptation effects. Graph shows means and standard errors. 
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Discussion 

This study provides substantial evidence for the hypothesis that conflict adapta-

tion is sensitive to modulations in pleasure level. After a successful mood manipu-

lation, both sad and anxious people showed stronger adaptation following conflict 

trials than did people in a happy or calm mood (see Fig. 1). This effect was not 

accompanied or modulated by effects of arousal level; subjects with high-

activation moods (anxious and happy groups) did not show differences in conflict-

adaptation effects in comparison with subjects in low-activation moods (sad and 

calm groups). These findings thus suggest that affect helps to regulate goal-

directed behavior in response to cognitive conflict. 

Our observations show an interesting parallel to the seminal work of Festinger 

(1957) on cognitive dissonance. Cognitive dissonance is thought to be triggered by 

conflicting cognitions and to be reduced by either avoiding the inducing percep-

tual events or changing one’s attitude. Dissonance reduction and conflict adapta-

tion may thus both reflect adaptive avoidance responses to situations of incom-

patibility and rely on the same neural mechanism (Harmon-Jones, Amodio, & 

Harmon-Jones, 2009; van Veen, Krug, Schooler, & Carter, 2009). In line with our 

findings, dissonance reduction through attitude change increases when people are 

in a negative mood (e.g., Rhodewalt & Comer, 1979). Low pleasure levels thus 

increase cognitive control after conflict situations only, rather than improving 

control in general (cf. van Steenbergen et al., 2009). Thus, we observed only 

context-sensitive, dynamic effects, probably because moods—unlike short-term 

affect manipulations used in other studies (e.g., Kuhl & Kazen, 1999)—are thought 

not to have stable, motivational consequences leading to improved sustained 

control (Gendolla, 2000; for a recent motivational account of emotions influencing 

cognitive control, see Gable & Harmon-Jones, 2010b).  

We believe that our findings may also provide insight into the way cognitive-

control processes are impaired in psychopathological individuals. Mood disorders 

such as depression and anxiety have been associated with increased negativity 

biases (Leppanen, 2006). Indeed, sensitized conflict-monitoring processes have 

been observed in people with internalizing mood disorders (Olvet & Hajcak, 

2008). Whether conflict-driven adaptations are also changed in these people has 

yet to be investigated, because mood-disorder studies using cognitive-control 

measures usually overlook conflict-adaptation effects, reporting main interference 

effects only (but cf. Holmes & Pizzagalli, 2007).  
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Altogether, our findings suggest that conflict-driven control adaptations are 

highly dependent on one’s emotional state, with pleasure level being more impor-

tant than arousal level. Our results demonstrate that the influence of affect is not 

limited to conflict processing per se, but modulates subsequent behavioral adapta-

tion as well. This suggests that affect is highly important not only in biasing 

perception and signaling environmental conflict, but also in adaptively regulating 

goal-directed behavior.  
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Hier het plaatje 

 

 
"One happiness scatters a thousand sorrows." 
 
Chinese proverb 
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This chapter is based on:  

 

van Steenbergen, H., Band, G.P.H., Hommel, B., Rombouts, S.A.R.B., & Nieuwenhuis, S. 

(submitted for publication). Keep smiling! Humor reduces neurocognitive adjustments to 

conflict. 



Humor and conflict adaptation: a neural mechanism 

 

 78 

Abstract 

Positive emotional states are known to reduce the impact of cognitive demands 

and information-processing conflict on human behavior, but the underlying 

neural mechanism of this modulation is unknown. We used functional magnetic 

resonance imaging to examine how pleasure induced by funny cartoons regulates 

behavioral control and neural adaptations to cognitive conflict. Humor activated 

hedonic hotspots in the basal ganglia, which attenuated the rostral anterior cingu-

late cortex (ACC) response to conflict. This reduced subsequent conflict adapta-

tion as observed in behavior and monitoring-related dorsal ACC activation. Our 

observations reveal the neural mechanism by which positive emotions regulate 

adaptive goal-directed behavior. 
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Introduction 

Positive emotions do not only feel good, they may also help to counter the impact 

of stressful events on our behavior and health (Garland et al., 2010). The claim that 

pleasure reduces the impact of events evoking information-processing conflict and 

negative performance outcomes (Gendolla, 2000; Botvinick, 2007) is supported by 

physiological measures, subjective evaluations, and behavioral adjustments to such 

events (de Burgo & Gendolla, 2009; Mayer, Gaschke, Braverman, & Evans, 1992; 

van Steenbergen, Band, & Hommel, 2010). An important aim of neuroscience is to 

understand how pleasure-related neuromodulation produce adaptive behavior 

(Kringelbach & Berridge, 2009). Neuroimaging studies suggest that hedonic tone 

attenuates demand-related conflict signaling in the anterior cingulate cortex 

(ACC; Luu et al., 2000; van Wouwe et al., 2011), a brain region in which cognitive 

and affective information converge (Botvinick et al., 2001; Paus, 2001; Bush et al., 

2000). Here we provide evidence that pleasure-induced ACC attenuation regulates 

behavioral adjustment to conflict, and that this modulation is driven by subcorti-

cal reward systems. 

Pleasant emotions may regulate cognitive-control optimization to behavioral 

demands via neural interactions between ACC and the basal ganglia. According to 

an influential neurobiological theory, the ACC supports adaptive behavior to the 

situational value at hand via dopaminergic teaching signals from the basal ganglia 

(Holroyd & Coles, 2002). Several observations in humans confirm the involve-

ment of such interactions between cortex and basal ganglia: nucleus accumbens 

recordings have revealed a negative functional coupling with monitoring-related 

ACC activity (Munte et al., 2008), pharmacological studies have found that ele-

vated baseline dopamine levels reduce conflict-related ACC activity (Jocham & 

Ullsperger, 2009), and lesion studies have demonstrated that ACC activity depends 

on intact basal ganglia (Ullsperger & von Cramon, 2006). Neuromodulatory 

projections to the ventral striatum (VS) and the ventral pallidum (VP) – the 

central components of the neural reward circuit (Haber & Knutson, 2010) – may 

allow hedonic states to modulate this network. Earlier studies have shown that 

stimulation of the VS and VP can generate hedonic ‘liking’ reactions in the rat. 

fMRI studies in humans have also strongly implicated these regions in the process-

ing of reward and positive emotions (Kringelbach & Berridge, 2009). 
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To investigate the impact of pleasant emotional states on conflict processing, we 

used fMRI to record brain activation while measuring participants’ behavioral 

adjustments to a demanding conflict task. Pleasure was induced by funny car-

toons; stimuli that are known to increase hedonic tone (Abel & Maxwell, 2002) 

and to activate the reward system (Mobbs, Greicius, bdel-Azim, Menon, & Reiss, 

2003). Following cartoon presentation, participants performed the arrow-flanker 

task, an established paradigm for inducing and measuring reactive cognitive 

control adjustments to conflict (Gratton et al., 1992; Egner, 2007; Botvinick, 

Nystrom, Fissell, Carter, & Cohen, 1999; see Figure 1A and 1B). In each flanker 

trial, a central target indicates whether the left or right-hand response is required, 

and flanking distracters introduce either no conflict (compatible information) or 

conflict (incompatible information). Because conflict trials are more demanding 

than no-conflict trials, responses in these trials are commonly slower; this com-

patibility effect can be taken as an index of attentional interference. The critical 
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Figure 1. A. Example of a trial. Neutral and funny cartoons were presented in random 

order. Each cartoon was followed by a block of five randomly selected flanker trials 

being either compatible (C) or incompatible (I). Sequential-effect analyses compared 

Trial N compatibility (as indicated by upper-case letters C and I) as a function of the 

compatibility of the preceding trial (Trial N-1; indicated by lower-case letters c and i). 

B. Example of a funny cartoon (right) and the same cartoon with funny cues omitted 

presented as neutral cartoon (left). © 2010 René Leisink, reprinted with permission.  

C. Standard conflict-driven behavioral adjustment was observed following neutral 

cartoons (left). This effect was cancelled out by humor (right). 
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moment of adaptation in this task occurs on trials that follow conflict trials, in 

which the compatibility effect is reduced (Figure 1C, left panel). This indicates that 

conflict detection leads to reactive increases in cognitive control in the subsequent 

trial (Egner, 2007; Gratton et al., 1992). Previous studies have suggested that this 

often-replicated behavioral post-conflict adjustment is driven by ACC activation 

(Botvinick et al., 1999; Kerns et al., 2004) and is reduced when hedonic tone 

increases (van Steenbergen et al., 2010). We tested whether such affective regula-

tion of conflict adaptation depends on modulation of ACC, driven by pleasure-

related activation of VS and VP. 

Methods 

Participants 

Twenty-two healthy right-handed volunteers (age 18 - 29) with normal or cor-

rected-to-normal vision participated in the study. In order to optimize the detec-

tion of humor-induced reward circuit activation, we tested only females. Earlier 

studies have shown stronger mesolimbic reward responses to funny cartoons in 

females than in males (Azim, Mobbs, Jo, Menon, & Reiss, 2005). The volunteers 

gave written informed consent for participation in the study, and they received a 

monetary incentive. The experiment was approved by the medical ethics commit-

tee of the Leiden University Medical Center.  

Stimuli 

Thirty-two funny cartoons were selected from a set of approximately 130 cartoons, 

on the basis of funniness ratings and simplicity ratings (i.e., how easy the jokes 

were to comprehend) provided by participants matched to the age and back-

ground of the experimental subjects. Adopting the same approach as earlier 

studies (Azim et al., 2005; Mobbs et al., 2003), a closely matched set of 32 non-

funny, neutral cartoons was created by omitting funny cues of humor cartoons 

through visual and/or textual changes. Both gray-scaled sets were matched on 

visual clarity, geometrical complexity and mean luminosity. All cartoons were 

presented once during the experiment. 

Task and procedure 

Before entering the MRI scanner, participants were informed about the task to 

perform. They were encouraged to enjoy the content of the funny cartoons even 
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during subsequent flanker trials and to avoid head movements. Instructions 

emphasized fast and accurate responses to the direction of the central target arrow 

of the flanker task. Optical response-button boxes (positioned on the upper leg) 

recorded index finger responses of the left and right hand. Participants performed 

two practice trials with performance feedback before the experiment started. 

Experimental data were then acquired in two consecutive runs of 32 trials. 

Stimuli were presented against a black background (1024 x 768 pix). Funny and 

neutral cartoons (500 x 500 pix) were presented in a quasi-random order for 6 

seconds each. Following each cartoon, a fixation cross (jittered duration between 

2-6 seconds), a block of five flanker trials and another fixation cross (1 second) 

were presented. Each trial in the block consisted of an imperative flanker stimulus 

(a row of five black arrows pointing either left or right; 100 x 7 pix), presented for 

1 second, followed by a fixation cross (jittered, 3 – 5 seconds). In order to provide 

an index of neural distracter-related activation measurable in the visual motion 

area of the brain, the flankers were always moving vertically (using a triangle 

function with T = 200 ms and A = 10 pix). We used the same number of compati-

ble (flankers in same direction as the central target) and incompatible (flankers 

opposite to central target) trials. A quasi-random trial sequence was created, 

ensuring that all possible sequential combinations occurred equally often during 

the experiment. Data were collected in one test session including two consecutive 

runs, each lasting about 20 min. In a final functional scan a motion localizer task 

was presented. Participants passively viewed moving flanker trials and still flanker 

trials in 12 alternating runs of 15 seconds, separated by 10-seconds fixation peri-

ods. In each of these localizer runs, 15 random flanker stimuli were presented for 

800 ms, separated by an inter-stimulus interval of 200 ms. 

After the scan session, participants rated the funniness of each cartoon they saw 

in the scanner (9-points scale). Participants were fully debriefed at the end of the 

experiment. 

Behavioral data analysis 

Inspection of the post-experimental ratings revealed that a few cartoons were 

given funniness ratings that did not match the intended funny/nonfunny category. 

Cartoons with such extreme outlier ratings (more than 3 interquartile ranges 

below/above the 25/75th percentile; on average 1.8 cartoons per participants) and 

its subsequent block of flanker trials were marked as rating outliers and were 

excluded from all analyses. On initial inspection of the behavioral flanker task 
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data, two participants turned out to have made more than 5% response omissions. 

These participants were excluded from further analyses. 

Correct reaction time (RT) and error rate were analyzed with repeated meas-

ures ANOVAs that included the factors current-trial compatibility (Compatible 

vs. Incompatible; abbreviation: C vs. I), previous-trial compatibility (compatible 

vs. incompatible; abbreviation: c vs. i), and humor context (funny vs. neutral 

cartoon). Standard sequential compatibility effects (i.e., the conflict-adaptation 

effect), for both RTs and error rates and separately for both humor contexts, were 

calculated by subtracting the compatibility effect following a correct incompatible 

(conflict) trial (i) from the compatibility effect following a correct compatible (no-

conflict) trial (c) (i.e., (cI – cC) – (iI – iC)). The first trial of each block, trials 

following errors, trials following cartoons with outlying ratings, and behavioral 

outlier trials (RT > 2 SD from the condition-specific means, calculated for each 

participant separately) were excluded from all analyses. 

fMRI data acquisition  

Scanning was performed with a standard whole-head coil on a 3-T Philips Achieva 

MRI system (Best, The Netherlands) in the Leiden University Medical Center. For 

both task runs 532 T2*-weighted whole-brain EPIs were acquired, including two 

dummy scans preceding each scan to allow for equilibration of T1 saturation 

effects (TR = 2.2 sec; TE = 30 msec, flip angle = 80°, 38 transverse slices, 

2.75×2.75×2.75 mm(+10% interslice gap)). During the motion localizer task, 141 

of these EPIs were acquired. Visual stimuli were projected onto a screen that was 

viewed through a mirror at the head end of the magnet. After the functional runs, 

a high-resolution EPI scan and a T1-weighted anatomical scan were obtained for 

registration purposes (EPI scan: TR = 2.2 msec; TE = 30 msec, flip angle = 80°, 84 

transverse slices, 1.964×1.964×2 mm; 3D T1-weighted scan: TR = 9.717 msec; TE 

= 4.59 msec, flip angle = 8°, 140 slices, .875×.875×1.2 mm, FOV = 

224.000×168.000×177.333).  

fMRI data analysis 

Data analysis was carried out using FEAT (FMRI Expert Analysis Tool) Version 

5.98, part of FSL (FMRIB's Software Library, www.FMRIb.ox.ac.uk/fsl (Smith et 

al., 2004). The following pre-statistics processing was applied: motion correction 

(Jenkinson, Bannister, Brady, & Smith, 2002), non-brain removal (Smith, 2002), 

spatial smoothing using a Gaussian kernel of FWHM 8.0 mm, grand-mean inten-

sity normalization of the entire 4D data set by a single multiplicative factor, high-
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pass temporal filtering (Gaussian-weighted least-squares straight line fitting, with 

sigma = 100.0 seconds). Functional scans were registered to high-resolution EPI 

images, which were registered to T1 images, which were registered to standard 

MNI space (Jenkinson et al., 2002; Jenkinson & Smith, 2001).  

In native space, the fMRI time series were analyzed using an event-related ap-

proach in the context of the general linear model with local autocorrelation cor-

rection (Woolrich, Ripley, Brady, & Smith, 2001). Models were high-pass-filtered 

(Gaussian-weighted least-squares straight-line fitting, with sigma=100.0 seconds). 

All regressors used square-wave functions to represent stimulus duration and were 

convolved with a canonical HRF and its temporal derivative. 

Exactly equivalent to the trials included for RT analysis, a first model analyzed 

trial-to-trial adaptation in conflict-related ACC activation by comparing iI and cI 

trials following neutral and funny cartoons. This model included all eight possible 

combinations of current-trial compatibility (Compatible vs. Incompatible), previ-

ous-trial compatibility (compatible vs. incompatible), and humor context (trials 

following neutral cartoons vs. following funny cartoons) as separate regressors. 

Additional confound regressors included funny cartoon and neutral cartoon 

presentation, as well as events representing the first flanker trial of each block, 

errors, trials following errors, and outliers. 

In order to reveal modulating effects of pleasure on the conflict trials preceding 

adaptation, we ran a second model that included regressors for incompatible 

(conflict) trials and compatible (no-conflict) trials (i.e., irrespective of subsequent-

trial compatibility) as well as for cartoon presentations. These events were mod-

eled separately for both humor contexts. Separate confound regressors included 

events of the last flanker trial of each block, errors, trials before errors, and trials 

before outliers. 

Two additional variants of the previous model were also analyzed. One analysis 

examined whether ACC activity during conflict trials predicted trial-to-trial 

adjustments in the subsequent conflict trial. This model included all eight possible 

combinations of current-trial compatibility (Compatible vs. Incompatible), subse-

quent-trial compatibility (compatible vs. incompatible), and humor context 

(neutral vs. funny cartoons). These events were added as two series of eight regres-

sors. The first series used standard fixed weights to account for invariant BOLD 

responses to stimulus presentation. The second series of regressors used a weight-

ing vector determined by condition-specific standardized RT values of the subse-

quent trial. This allowed us to reveal any conflict-related BOLD responses in the 
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ACC that predicted subsequent adaptation in iI trials. All remaining events were 

modeled as confound regressors. 

The second variant modeled interactions in functional connectivity between 

subcortical reward areas and ACC during conflict trials. Two psychophysiological 

interaction (PPI) analyses Friston et al., 1997 were run separately for the ventral 

striatum (VS) seed and the ventral pallidum (VP) seed. Physiological regressors 

used the extracted time-course information from the VS (2, 20, -4) and the VP (14, 

-10, -8), based on a sphere of radius 4 mm around the peak-activation voxel in the 

respective region using the funny vs. neutral cartoon contrast. The convolved 

psychological regressor represented the contrast incompatible trials after funny 

cartoons (FI) – incompatible trials after neutral cartoons (NI). In order to mop out 

shared variance, a FI + NI regressor was also added. Compatible trials following 

funny and neutral cartoons were modeled separately. The PPI regressor was 

computed as the product of the demeaned physiological timecourse and the 

centred psychological regressor. Again, all remaining events were modeled as 

confound regressors. 

For all analyses, the relevant contrasts were combined across the two runs on a 

subject-by-subject basis using fixed-effects analyses (Beckmann, Jenkinson, & 

Smith, 2003; Woolrich, Behrens, Beckmann, Jenkinson, & Smith, 2004). Second-

level contrast images were submitted to third-level mixed-effects group analyses. 

All resulting statistical parametric images were thresholded using clusters deter-

mined by Z > 2.3 and a cluster-corrected significance threshold of p < 0.05 

(Worsley, 2001). Given the a priori hypotheses about conflict-related ACC activa-

tion triggered by incompatible flanker stimuli, analyses for these contrasts were 

constrained to an anatomical mask defining the anterior cingulate cortex proper 

(using the anterior division of the cingulate cortex as defined by the Harvard-

Oxford structural atlas, 70%-likelihood threshold). ROI analyses used individual 

mean z-scores from second-level analyses extracted with Featquery. 
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Results 

Behavioral results 

The flanker task produced robust current-trial compatibility effects in reaction 

time (F(1,19) = 116.7, p < .001, MSE = 455.7), indicating that it successfully in-

duced performance conflict. An interaction between current-trial and previous-

trial compatibility, indicating standard conflict adaptation, was observed in the 

neutral condition (F(1,19) = 7.0, p < .02, MSE = 182.6), but not in the humor 

condition (F(1,19) = 0.5, p = .50, MSE = 173.0) (Figure 1C). Thus, in line with 

predictions and replicating earlier findings (van Steenbergen et al., 2010; van 

Steenbergen et al., 2009), participants adjusted their behavior in response to 

conflict only in the neutral, low-pleasure condition: incompatible trials preceded 

by incompatible trials (iI) were faster than incompatible trials preceded by com-

patible trials (cI), presumably because the preceding conflict trial evokes increased 

cognitive control (effect = 11 ms, t(19) = 2.2, p < .05). (Similarly, compatible trials 

preceded by incompatible trials (iC) were numerically slower than compatible 

trials preceded by compatible trials (cC) (effect = 5 ms, t(19) = 1.3, N.S.), probably 

because increased control decrease flanker facilitation). A planned comparison 

confirmed that humor reduced the conflict-adaptation effect (t(19) = 1.9, p < .05). 

Table 1. Behavioral data 

 
 After neutral cartoon  After funny cartoon 

 RT (ms)  Error rate  RT (ms)  Error rate 

Trial Type Mean SD  Mean SD  Mean SD  Mean SD 

            

cC 527 67  0.2% 0.7%  528 68  0.5% 1.2% 

cI 576 72  2.2% 3.5%  563 75  2.9% 3.8% 

iC 532 69  0.8% 2.1%  527 67  0.5% 1.3% 

iI 565 65  1.3% 2.1%  558 66  1.2% 1.7% 

Compatibility effect =            

    ((cI + iI) - (cC + iC)) / 2 40 18  1.3% 2.4%  33 18  1.5% 1.7% 

Conflict-adaptation effect =            

    (cI - cC) - (iI - iC) 16 27  1.5% 2.6%  4 26  1.7% 4.5% 

  
Note: The table reports mean response times (RTs), error rates, and the corresponding flanker 

compatibility effects and conflict-adaptation effects. cC = compatible trials following compatible 
trials; cI = incompatible trials following compatible trials; iC = compatible trials following incompati-

ble trials; iI = incompatible trials following incompatible trials. 
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Note that humor did not modulate overall flanker interference (t(19) = 1.6, N.S.), 

suggesting that it did not change general motivation (Gable & Harmon-Jones, 

2010b). Furthermore, there were no modulating effects of humor on error rate, 

indicating that the effects on reaction time cannot be attributed to speed-accuracy 

tradeoff (Fs(1,19) < 1; see Table 1). Post-experimental cartoon ratings (9-points 

scale) outside the scanner confirmed that funny cartoons were funnier than their 

neutral counterparts (M = 6.1 versus M = 2.3, t(19) = 13.0, p < .001). 

fMRI results 

In keeping with conflict monitoring theory (Botvinick et al., 2001) and previous 

observations (Kerns et al., 2004; Botvinick et al., 1999), we predicted that behav-

ioral adjustment to conflict on a given trial should concur with reduced cognitive 

A C

B

D

E

-.16

-.12

-.08

-.04

.00

Neutral Humor

Functional connectivityFunctional connectivityFunctional connectivityFunctional connectivity

VP - rACCVP - rACCVP - rACCVP - rACC

-.28

-.24

-.20

-.16

-.12

-.08

-.04

.00

Neutral Humor

Functional connectivityFunctional connectivityFunctional connectivityFunctional connectivity

VS - dACCVS - dACCVS - dACCVS - dACC

 Figure 2. A. Trial-to-trial adaptation in dorsal ACC (peak voxel in MNI coordinates: 

2, 22, 20) for the cI > iI contrast of flanker trials following neutral cartoons. Confirming 

behavioral findings, there was no evidence for conflict adaptation in the ACC following 

funny cartoons, even when lowering the threshold to z = 1 (p = .15, uncorrected).  

B. Deactivation in the rostral ACC (2, 42, 12) for conflict trials following funny cartoons 

(versus neutral cartoons).C. In comparison to neutral cartoons, funny cartoons in-

creased reward system activation in the ventral striatum (top slice, 2, 20, -4) and right 

posterior ventral pallidum (bottom slice, 14, -10, -8). Images are in radiological conven-

tion (left hemisphere to viewer's right). Activations in other regions are reported in 

Table 2. D. Psychophysiological interaction between ventral striatum and dorsal ACC 

(4, 24, 26) during conflict trials. This region overlaps with the activation cluster dis-

played in A. E. Psychophysiological interaction between ventral pallidum and rostral 

ACC (0, 40, 8) during conflict trials. This region overlaps with the activation cluster 

displayed in B. 
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conflict registered in the ACC on the subsequent trial. This trial-to-trial adaptation 

effect should not be observed in the funny condition, in which behavioral conflict 

adaptation was cancelled out. Confirming predictions, activity in the dorsal ACC 

(dACC) decreased during iI as compared to cI trials following neutral cartoons, 

but not following funny cartoons (Figure 2A). This demonstrates that pleasure 

eliminates not only the behavioral adjustment to conflict but also the resulting 

adaptations of conflict monitoring activity in dACC.  

To test the hypothesis that this reduction of conflict adaptation originates from 

general pleasure-driven ACC attenuation during conflict, we compared ACC 

activity elicited by conflict trials following neutral and following funny cartoons. 

Pleasure-related deactivation to conflict was observed in the affective, rostral part 

of the ACC (rACC; Figure 2B), presumably reflecting reduced negative appraisal 

of conflict when participants are in a hedonic state (Bush et al., 2000; Taylor et al., 

2006). To test the hypothesis that rACC under neutral conditions plays a pivotal 

role in subsequent behavioral adjustment, we used intra-individual fluctuations in 

behavior adaptation during iI trials as a regressor to model predictive brain activ-

ity in the preceding conflict trial. Using an ROI analysis focusing on the dACC 

and rACC activation clusters, we found that neural conflict-related increases in the 

rACC were a successful predictor of subsequent behavioral adaptations following 

neutral cartoons (t(19) = 2.7, p < .02), but not following funny cartoons (t(19) = -

1.0, p = .30). This suggests that the pleasure-driven reduction of activation in the 

rACC eliminated the implementation of conflict-driven cognitive control in-

creases observed under normal, emotionally neutral conditions. No predictive 

brain activation was observed for the dACC (|t|s < 0.5). 

We compared brain activation related to funny and neutral cartoons to deter-

mine the neural antecedents of conflict-related ACC attenuation. Replicating 

earlier findings (Mobbs et al., 2003), funny cartoons recruited a large network of 

brain areas involved in the representation of language, semantic, and motor 

aspects of humor (see Table 2). More importantly, we also replicated the involve-

ment of mesolimbic reward circuitry. As predicted, funny cartoons elicited more 

activation than neutral cartoons in the VS and VP (Figure 2C) – the only two 

regions currently known to play a direct causal role in hedonic liking reactions 

(Kringelbach & Berridge, 2009). To investigate the modulatory role of activity in 

these regions during conflict processing, we carried out a psycho-physiological 

interaction (PPI) analysis, which provides a measure of condition-specific func-

tional connectivity between two brain regions. This allowed us to test whether the 

negative coupling between ventral basal ganglia and ACC, as should be observed 
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during conflict processing under affectively neutral conditions (Holroyd & Coles, 

2002; Munte et al., 2008), is attenuated by pleasure. Confirming predictions, a PPI 

analysis using the VS as seed region revealed the dACC (Figure 2D), overlapping 

with the region earlier identified as cognitive conflict area (cf. Figure 2A). This 

network showed reduced conflict-related negative coupling in the funny condi-

tion. A similar interaction was observed between the VP and the rACC (Figure 

2E), which overlaps with the rACC region identified earlier as being involved in 

the subjective emotional evaluation of conflict (cf. Figure 2B).  

Additional fMRI analysis: breadth of attention 

Earlier studies have suggested that conflict-driven behavioral adaptation reflects 

the neural enhancement of task-relevant information, whereas the behavioral 

compatibility effect may reflect susceptibility to task-irrelevant information related 

to increases in attentional breadth (Egner & Hirsch, 2005). Replicating earlier 

findings (van Steenbergen et al., 2009; van Steenbergen et al., 2010), our data 

suggest that pleasure can reduce conflict adaptation independently of modulations 

in the compatibility effect. However, it might still be argued that the small, though 

non-significant, decrease in the behavioral flanker compatibility effect following 

funny cartoons indicates that humor tends to reduce the susceptibility to task-

irrelevant information. This effect might be driven by changes in motivation that 

are known to change attentional breadth (Rowe, Hirsh, & Anderson, 2007; Gable 

Table 2. Brain areas activated by funny versus neutral cartoons 

 
MNI coordinates 

Regions 
Left/ 
Right 

Brodmann area 
Cluster 
size  

(voxels) 

Z-
score 

X Y Z 

        

Temporal pole*, fusiform gyrus, ITG, MTG, 
STG, MTL, IFG, cerebellum, insula, amygdala, 

midbrain, thalamus, ventral pallidum 

L/R 
20, 21, 28, 36, 

38, 44, 45, 48 
15,238 6.27 -52 8 -20 

Supplementary motor area* L/R 6 462 3.98 -10 4 56 

Sensorimotor cortex* L 3 148 4.46 -48 -16 42 

Sensorimotor cortex* R 3 68 3.63 44 -16 36 

Lateral occipital cortex*, angular gyrus, 
temporo-occipital junction 

L 39, 21, 37 5,187 5.53 -42 -72 38 

Lateral occipital cortex*, angular gyrus R 39, 21 1,106 5.10 46 -68 40 

Anterior cingulate gyrus*, medial frontal 
cortex 

L/R 10, 24, 32 4,118 5.20 -2 18 24 

Posterior cingulate gyrus*, precuneus L/R 23, 31 2,105 4.47 -12 -52 22 

Ventral striatum* L/R _ 126 3.83 2 20 -4 

  
* Denotes peak activation . Table shows activation clusters for the Funny cartoon > Neutral cartoon 

contrast, thresholded at z > 3.1; p < 0.001; > 50 contiguous voxels. Abbreviations: ITG, inferior 

temporal gyrus; MTG, middle temporal gyrus; STG, superior temporal gyrus; MTL, medial temporal 

lobe; IFG, inferior frontal gyrus. 
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& Harmon-Jones, 2010b; Schmitz, De Rosa, & Anderson, 2009). To investigate 

this possibility we analyzed neural activation in the visual cortex representing 

distracter-related information. Because the distracters in our flanker task were 

moving, we could use motion-related brain activity as a neural index of distracter 

activation. 

In order to analyze individual distracter-related brain activation, a motion lo-

calizer task was used to identify each subject’s MT+ complex, an area in the dorsal 

visual cortex that has consistently been implicated in human motion processing 

(Tootell et al., 1995). Epochs of moving flankers and still flankers were compared 

to identity motion-specific activation. Using this contrast, subject-specific MT 

ROIs were defined by spheres of radius 6 mm around the peak-activation voxel in 

the left and the right motion-related MT+ complex. Average activation in these 

two spheres was then used for individual ROI analyses. 

MT ROI analyses were carried out in the trial-to-trial adaptation model earlier 

used to identify behavior-related conflict adaptation in the ACC. The moving 

flanker stimuli presented during the experiment were shown to reliably activate 

MT (F(1,19) = 99.6, p < .001, MSE = 16.3). However, paralleling the unreliable 

effect of humor on the behavioral compatibility effect, there was no effect of 

humor on distracter activation as measured in MT (F(1,19) = 0.002). This cor-

roborates our conclusion that the breadth of attention is not reliably modulated by 

humor. The effects of current-trial compatibility, previous-trial compatibility or 

(higher-order) interactions were not significant (Fs(1,19) < 1.7). This is consistent 

with earlier findings showing that conflict-adaptation does not involve neural 

adaptation to task-irrelevant information (Egner & Hirsch, 2005).  

Discussion 

Altogether, our data demonstrate how pleasure induced by funny cartoons affects 

conflict processing: pleasure attenuates the rACC response to conflict and cancels 

out the resulting standard conflict adaptation as observed in behavior and moni-

toring-related dACC activation under neutral conditions. ACC was found to be 

functionally connected with hedonic hotspots in the VP and VS. Pleasure-related 

activation in the VP may have inhibited rACC activation, a region which in the 

neutral condition predicts subsequent behavioral adaptation. This finding implies 

that the rACC, presumably involved in the negative emotional evaluation of 

conflict (Bush et al., 2000; Taylor et al., 2006), drives subsequent cognitive control. 
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This suggestion is corroborated by recent observations from lesion studies show-

ing that conflict-driven activation and behavioral adjustment crucially depends on 

intact VP and rACC (di Pellegrino, Ciaramelli, & Ladavas, 2007; Ullsperger & von 

Cramon, 2006). Subsequent adaptations in control were shown to be registered by 

the dACC, a region well-known for its role in the cognitive monitoring of conflict 

(Botvinick et al., 2001). Feedback signals for future behavioral optimization 

processed in the dACC appeared to be conveyed through the VS to become 

integrated with hedonic state information. 

The functional network identified in this study converges with well-known cor-

tico-basal ganglia anatomical connections, looping between ACC and VS through 

the VP and thalamus (Alexander, Delong, & Strick, 1986). This ‘limbic’ loop may 

have played an important role in the affective regulation of conflict-driven behav-

ior observed. Modulation of functional coupling between the basal ganglia (BG) 

and ACC is probably driven by neuromodulatory input via dopamine and opioid 

receptors (Holroyd & Coles, 2002; Kringelbach & Berridge, 2009). Conflict-driven 

motivation and behavioral adjustment may depend on phasic dopamine fluctua-

tions (Holroyd & Coles, 2002; Jocham & Ullsperger, 2009; van Steenbergen et al., 

2009). Hedonic liking modulation is probably mediated by tonic opioid input 

(Barbano & Cador, 2007; Kringelbach & Berridge, 2009). Future research is 

needed to further understand the neurochemical basis of this BG-ACC network 

modulation. 

This study provides an initial answer to the question why humor and jokes are 

so central to humanity: they appear to be adaptive means to transiently reduce the 

impact of cognitive demands on our behavior through activation of the neural 

reward system. One important goal for future research is to investigate how 

positive emotions can also promote beneficial neural effects in the long term. Such 

advances in the cognitive neuroscience of pleasure are necessary to further extend 

our understanding of how positive emotions can protect and improve our mental 

and physical health (Garland et al., 2010). 
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7. Depression and conflict 

adaptation 

Chapter 

7 

Depression and conflict adapta-

tion 

This chapter is based on:  

 

van Steenbergen, H., Booij, L., Band, G.P.H., Hommel, B., van der Does, 

A.J.W. (submitted for publication). Affective regulation of conflict-

driven control in remitted depressive patients after tryptophan 

depletion. 
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Hier het plaatje 

 

 
 
"A depressed man lives in a depressed world." 
 
Ludwig Wittgenstein 

 

7 
 

Depression and  

Conflict Adaptation 

This chapter is based on:  

 

van Steenbergen, H., Booij, L., Band, G.P.H., Hommel, B., & van der Does, A.J.W. (in press). 

Affective regulation of conflict-driven control in remitted depressive patients after acute 

tryptophan depletion. Cognitive, Affective, & Behavioral Neuroscience. 
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Abstract 

Negative affect in healthy populations regulates the appraisal of demanding 

situations, which tunes subsequent effort mobilization and adjustments in cogni-

tive control. We hypothesized that dysphoria in depressed individuals similarly 

modulates this adaptation, possibly through a neural mechanism involving sero-

tonergic regulation. We tested the effect of dysphoria induced by Acute Trypto-

phan Depletion (ATD) in remitted depressed patients on conflict adaptation in a 

Simon task. ATD temporarily lowers the availability of the serotonin precursor L-

Tryptophan and is known to increase depressive symptoms in approximately half 

of remitted depressed participants. We found that depressive symptoms induced 

by ATD were associated with increased conflict adaptation. Our finding extends 

recent observations implying an important role of affect in regulating conflict-

driven cognitive control. 
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Introduction 

One of the defining symptoms of depression is a depressed mood. Although a 

depression is certainly undesirable and maladaptive, normal and pathological 

mood states of sadness lie on a continuum and may actually play an important role 

in adaptive behavior (e.g., Andrews & Thomson, 2009; Mayberg et al., 1999). The 

Mood-Behavior-Model (MBM; Gendolla, 2000) proposes that negative affect helps 

to regulate resource mobilization and behavior via a biased appraisal of situational 

demands (cf. Ach, 1935; Hillgruber, 1912). Indeed, several studies using mood 

induction procedures in healthy populations have shown that negative affect 

increases demand appraisals of difficult situations, which improves subsequent 

effort mobilization as measured by cardiovascular adjustments (for a review, see 

Gendolla & Brinkmann, 2005). Recent evidence suggests that behavioral adapta-

tion to fluctuating task difficulty is also subject to this affective regulation. We 

have recently shown that dynamic behavioral adjustments after demanding, 

conflict trials in a flanker task are stronger following the induction of a sad or 

anxious mood than following a happy or calm mood (van Steenbergen et al., 

2010). These data suggest that negative affect may facilitate conflict-driven re-

cruitment of cognitive control, as can be measured by trial-to-trial adaptations in 

conflict tasks that use randomized presentation of compatible and incompatible 

trials (Gratton et al., 1992; for a review, see Egner, 2007). 

Here, we hypothesize that – analogous to these negative mood effects in healthy 

samples – dysphoria in remitted depressed individuals also improves demand-

driven behavioral adaptation. Recent work has demonstrated enhanced demand-

driven effort recruitment in depression using cardiovascular measures 

(Brinkmann & Gendolla, 2007), but no study has yet demonstrated such effects of 

depressed mood on behavioral adjustments in cognitive control tasks. It is impor-

tant to note that the majority of past research on the link between depression and 

cognitive control has compared attentional interference effects only (i.e., calculat-

ing main compatibility effects, such as the Stroop effect), and did not address the 

modulation of trial-to-trial adaptations in control (i.e., a sequential modulation of 

interference effects). Although this literature has yielded some evidence for de-

pression-related general deficits in cognitive control (for reviews, see Levin, Heller, 

Mohanty, Herrington, & Miller, 2007; Rogers et al., 2004), it has been proposed 

that such deficits are mainly driven by factors other than mood state, e.g., in-

creased rumination (e.g., Nolen-Hoeksema, Wisco, & Lyubomirsky, 2008; Philip-

pot & Brutoux, 2008). Mood induction studies in healthy populations actually 
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support this suggestion, showing that sad mood in itself does not modulate effort 

mobilization or interference effects (Chepenik, Cornew, & Farah, 2007; van 

Steenbergen et al., 2010). These findings are also consistent with the notion that a 

negative mood in itself does not have general motivational implications, but can 

regulate effort adaptation via modulated demand appraisals, thus producing 

context-sensitive effects in tasks using fluctuating task demands (Gendolla, 2000). 

Thus, in contrast to the analysis of main attentional interference effects, sequential 

effect analysis may provide a measure that is much more sensitive to depressed-

mood modulation. 

Increased demand-driven behavioral adaptation in depression may arise from 

the negativity bias and its associated amplified neural reactivity to adverse and 

demanding events typically observed in this disorder (Beck, 1976; Olvet & Hajcak, 

2008; Pizzagalli, Peccoralo, Davidson, & Cohen, 2006). It has been proposed that 

these neural effects are driven by central serotonin (5-hydroxytryptamine; 5-HT) 

regulation (Jocham & Ullsperger, 2009; Cools et al., 2008). The impact of central 

5-HT on mood and cognition has been investigated with Acute Tryptophan 

Depletion (ATD), a manipulation that temporarily lowers the availability of L-

Tryptophan (Trp), the precursor of serotonin. ATD leads to a transient increase in 

depressed mood in individuals who are vulnerable to depression (e.g., former 

patients and first-degree relatives), but not in healthy non-vulnerable individuals 

(cf. Booij, van der Does, & Riedel, 2003; Ruhe et al., 2007; van der Does, 2001). 

Some studies have shown that ATD can lower attentional interference independ-

ent of mood changes, that is, in both non-vulnerable and depression-vulnerable 

individuals (Booij et al., 2005; Schmitt et al., 2000; for a review, see Mendelsohn, 

Riedel, & Sambeth, 2009). However, it is still an open question whether ATD-

induced mood changes may modulate conflict adaptation. Recent neuroimaging 

studies provide some initial support for this hypothesis (for reviews, see 

Alexander, Hillier, Smith, Tivarus, & Beversdorf, 2007; Fusar-Poli et al., 2006). For 

example, ATD-induced depressed mood correlates with activity in the Anterior 

Cingulate Cortex (ACC; Evers, van der Veen, Jolles, Deutz, & Schmitt, 2009), a 

region playing a prominent role in the generation of adaptive control to demand-

ing situations (Botvinick, Braver, Barch, Carter, & Cohen, 2001). Serotonin poly-

morphisms have also been linked to changes in post-conflict behavioral adjust-

ments (Holmes, Bogdan, & Pizzagalli, 2010; Osinsky et al., 2009). However, the 

role of 5-HT accounting for the link between negative mood and conflict adapta-

tion is not known yet. 
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This study investigates the putative link between conflict adaptation, 5-HT 

function, and depressed mood. Focusing on trial-to-trial adjustments in perform-

ance, we reanalyzed data from an earlier published ATD study (Booij et al., 2005) 

that only reported overall response-conflict effects, as measured with a Simon task 

(Simon & Rudell, 1967), in a group of remitted depressed patients after they 

received ATD. In that study, ATD increased depressive symptoms in about half of 

the investigated sample and thus provides an excellent design to investigate the 

associations between depressive symptoms, 5-HT, and conflict adaptation. Similar 

to the better-known Stroop and flanker tasks, the Simon paradigm is a conflict-

inducing task that requires speeded responses to targets that randomly appear in 

locations that correspond (compatible trial) or do not correspond (incompatible 

trial) to the location of the correct response key. Incompatible, demanding trials 

evoke response conflict, which is thought to generate increased cognitive control 

on subsequent trials (Botvinick et al., 2001). This adaptation to conflict is mani-

fested by reduced compatibility effects in trials following conflict (incompatible) 

trials as compared to trials following nonconflict (compatible) trials (Gratton et al., 

1992; for a review, see Egner, 2007). Given previous theory and evidence for 

enhanced demand-driven effort mobilization in dysphoria (Gendolla, 2000; 

Brinkmann & Gendolla, 2007) and after negative mood inductions (Gendolla, 

2000; van Steenbergen et al., 2010), and neural evidence suggesting potentiated 

conflict responses in individuals who show a depressed mood response to ATD 

(Evers et al., 2009), we hypothesized that ATD may increase conflict adaptation, 

especially in individuals in whom ATD transiently induced depressive symptoms.  

Methods 

Twenty-three patients were administered a high-dose and low-dose ATD mixture 

(100 vs. 25 g amino acids) in a double-blind randomized crossover design with 

two sessions, separated by at least four days (Booij et al., 2005; Booij, van der Does, 

Spinhoven, & McNally, 2005). The 100 g and 25 g ATD mixture have previously 

been shown to lower plasma Trp levels by approximately 90% and 50%, respec-

tively, in this sample (Booij et al., 2005) as well as in other samples (e.g., Booij, van 

der Does, Haffmans, & Riedel, 2005). The study was approved by an independent 

medical ethics committee (METIGG, Utrecht), and performed according to their 

guidelines and regulations. All patients were informed about the study by their 
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clinician and in detail by one of the investigators (LB), and provided written 

informed consent. 

Participants 

The sample has been described in detail previously (Booij et al., 2005). Eligible 

patients were selected outpatients of a mood disorders clinic. Inclusion criteria 

were: age between 18 and 65 years; ongoing treatment with an SSRI or a serotonin 

noradrenaline reuptake inhibitor for at least 4 weeks, meeting DSM-IV criteria for 

depression in full or partial remission, Hamilton Depression rating Scale (HRSD, 

17-items) (Hamilton, 1960) lower than 15 (Frank et al., 1991). Exclusion criteria 

were: substance abuse within the past 3 months, psychosis (lifetime), major physi-

cal illness, lactation, pregnancy. After excluding two drop-outs and two statistical 

outliers, 19 participants remained for statistical analyses (cf. Booij et al., 2005). 

Diagnoses and symptoms  

As described in the original paper (Booij et al., 2005), depressive symptoms were 

assessed with the 10-item Montgomery Asberg Depression Rating Scale (MADRS) 

(Montgomery & Asberg, 1979). The sleep items were omitted, as this could not 

change within an ATD session. Diagnoses, demographic and clinical background 

variables were verified with the Structured Clinical Interview for DSM-IV (SCID-

I) (First, Spitzer, Gibbon, & Williams, 2005). 

Conflict adaptation 

The Simon task consisted of 64 trials presented in two consecutive blocks in which 

the stimulus interval differed (2250 ms fixed versus 2250–5500 ms variable). The 

word ‘left’ or ‘right’ was presented in randomized order either at the left or the 

right side of the screen. Participants were instructed to respond to the meaning of 

the word (target) and to ignore its location (distracter), as fast as possible. The 

same number of compatible (distracter location matches the target word) and 

incompatible (distracter location conflicts with the target word) stimuli was used. 

Procedure 

Venous blood (10 ml) was taken in the morning, 6 h after ATD and the next day 

(t+24) and analyzed for total plasma Trp and the other large neutral amino acids 

(Fekkes, Vandalen, Edelman, & Voskuilen, 1995). Mood was assessed 1 h before 

ATD (t−1), 6.5 h later (t+6.5), and the next morning (t+24). The Simon task 

(“left/right task”) was administered (Booij et al., 2005) approximately 5.5 h after 
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administration of the ATD mixture. Cognitive performance was also assessed at a 

separate intake and a post-intervention session. The average of these two assess-

ments was taken as baseline measurement (cf. Booij et al., 2005). 

Data analysis 

Repeated measures ANOVAs were used for sequential analysis of Simon perform-

ance, separately for correct reaction time (RT) and percent accuracy. In order to 

measure sequential adjustments in Simon task performance, we not only included 

the factor compatibility of the current trial as is usually done, but we also added 

the factor “compatibility of the previous trial”. Standard conflict-adaptation, i.e., 

the modulation of the compatibility effect as a function of previous-trial compati-

bility (cf. Figure 1A), should yield an interaction effect between current and 

previous trial compatibility (Gratton et al., 1992; Egner, 2007).  

To analyze direct effects of the ATD manipulation on conflict adaptation, inter-

vention (baseline versus low-dose versus high-dose ATD) was added as a within-

subject factor. The effect of mood state on conflict adaptation, for the low-dose 

ATD and high-dose ATD sessions separately, was analyzed by using mood scores 

(measured at +6.5 h) as a covariate. To visualize the hypothesized association 

between mood and conflict adaptation, we calculated standard individual conflict-

adaptation scores by subtracting the interference effect following a correct conflict 

(incompatible) trial from the interference effect following a correct nonconflict 

(compatible) trial (cf. Figure 1A). Before averaging sequential conditions for each 

individual, the first trial of each block, trials following an error, and trials with RTs 

not fitting the outlier criterion (deviating more than 2.5 SD from the individual 

condition-specific mean) were excluded from analyses.  

Results 

As described in detail elsewhere (Booij et al., 2005), high-dose ATD but not low-

dose ATD led to a both statistically and clinically significant induction of depres-

sive symptoms as measured by MADRS scores 6.5 h after depletion (7.9 ± 7.8 vs. 

3.7 ± 3.8, mean ± standard deviation; t(18) = 3.34, p < .005). The Simon task 

produced a standard interference effect: incompatible trials produced longer RTs 

than compatible trials (F(1,18) = 23.47, p < .001, MSE = 1933.65). The analysis also 

revealed a robust conflict-adaptation effect as indicated by an interaction between 

current- and previous-trial compatibility (F(1,36) = 38.27, p < .001, MSE = 
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Figure 1. A. Conflict adaptation in the Simon task as evidenced by a reduced compati-

bility effect after conflict trials vs. non-conflict trials. Graphs show mean RT (ms) and 

standard errors. B. More depressive symptoms (MADRS score) after the high-dose ATD 

intervention are associated with increased conflict adaptation. 

1143.45). As Figure 1A shows, the interference effect was eliminated after conflict 

(incompatible) trials but not after non-conflict (compatible) trials, indicating 

standard conflict adaptation, that is, reduced interference after conflict trials. This 

reduction in interference was driven by both post-conflict speeding of incompati-

ble trials (illustrating that increased conflict-driven control reduces interference; 

t(18) = -4.2, p < .001) and by post-conflict slowing of compatible trials (illustrating 

that increased conflict-driven control reduces facilitation; t(18) = 4.5, p < .001). 

Analyses of error rates also showed standard interference (F(1,18) = 5.38, p < .05, 

MSE = 0.001) and conflict adaptation (F(1,36) = 6.30, p < .05, MSE = 0.001) 

effects. In addition, it revealed a main effect of previous compatibility (F(1,18) = 

4.46, p < .05, MSE = .002) indicating improved accuracy after conflict. Notably, no 

main effects or interactions with congruency or conflict-adaptation in RT or 

accuracy were observed for ATD intervention. Thus, ATD did not have an effect 

on interference (as reported earlier by Booij et al., 2005) and it also did not directly 

modulate conflict adaptation. 

An ANCOVA using mood score as covariate confirmed our hypothesis: de-

pressed-mood scores during the high-dose ATD condition predicted increased 

conflict adaptation in RT as indicated by a significant three-way interaction 
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between mood, current-trial compatibility, and previous-trial compatibility 

(F(1,18) = 5.30, p < .05, MSE = 396.75). As Figure 1 shows, individuals with more 

depressive symptoms after the ATD intervention showed more conflict adaptation 

in the Simon task. As is typically observed (Chepenik et al., 2007; van Steenbergen 

et al., 2010), mood did not have effects on interference or overall reaction time. 

Moreover, no mood effects were found for accuracy, thus showing that the effect 

on conflict adaptation could not be attributed to a speed-accuracy tradeoff. Be-

cause the low-dose ATD session did not lead to any mood changes (Booij et al., 

2005), data from this session were used for a control analysis: no association 

between mood and performance emerged. 

Discussion 

We report the first evidence for a link between low tryptophan concentrations, 

depressed mood and conflict adaptation in remitted depressed patients: Individu-

als with higher levels of depressive symptoms following high-dose ATD showed 

increased conflict adaptation. The ATD manipulation in itself exerted no direct 

effect on conflict adaptation. This finding is in line with predictions derived from 

MBM theory (Gendolla, 2000), with earlier behavioral and physiological observa-

tions from mood-induction studies in healthy populations (e.g., Gendolla, Abele, 

& Krusken, 2001; Gendolla & Krusken, 2002; van Steenbergen et al., 2010), and 

with neural evidence (e.g., Evers et al., 2009). Our study demonstrates for the first 

time that extra demand-driven recruitment of cognitive control is not limited to 

conditions of sad mood as induced in healthy volunteers (van Steenbergen et al., 

2010), but can also be observed in people with depressive symptoms. 

Our observation has important implications for understanding how depressive 

affect regulates cognitive control. In line with MBM theory (Gendolla, 2000), our 

data illustrate that depressed mood per se does not have motivational implications 

(as would be indicated by a modulation in attentional interference effects), but 

may facilitate increased cognitive control after a behavioral challenge. Interest-

ingly, this effect was observed in a relatively low-demanding Simon task where 

people were merely instructed to do their best (see also Brinkmann & Gendolla, 

2007) and in the context of depression scores that were mainly below the cut-off 

value for a depression diagnosis, but that were still clinically relevant and much 

larger than the effect of mood inductions in healthy participants. 
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However, it is important to note that MBM theory also predicts situations 

where a negative mood may actually lead to demand-driven disengagement, 

namely in cases where a demand is perceived as too high to actively cope with (cf. 

Brehm & Self, 1989). Evidence for this effect has been reported in mood-induction 

studies and can also be shown in dysphoric participants when they perform tasks 

with extremely high fixed demands (Brinkmann & Gendolla, 2008). We think that 

these findings may also provide an interesting account for the recent observation 

of decreased conflict adaptation when participants received negative feedback 

concerning their task performance, an effect especially strong in subclinically 

depressed participants (Holmes & Pizzagalli, 2007). Interestingly, a very recent 

study by Meiran and colleagues (Meiran, Diamond, Todor, & Nemets, 2011) has 

reported a reversal of the conflict-adaptation effect in currently depressed patients, 

which suggests that conflict-driven control may actually break down when people 

become clinically depressed. In other words, there might be an inverted-U rela-

tionship between depressive symptoms and conflict adaptation (cf. Brehm & Self, 

1989). It is an important aim for future studies to understand the generalizablilty 

of these findings and to disentangle the effects of increased negative affect and 

putative reduced availability of resources (e.g., due to rumination) in depression. 

MBM theory assumes that the interaction between both factors determines the 

actual appraisal of the demand, which in turn modulates effort mobilization. This 

hypothesis now ripe for further testing in other studies using sequential analyses of 

conflict-task performance. 

At the neural level, the joint impact of depressed mood and demand evaluation 

on subsequent effort mobilization and cognitive control may be associated with 

(hyper)activation of the anterior cingulate cortex (ACC), a region important for 

signaling the need for more cognitive effort to the dorsolateral prefrontal cortex 

(DLPFC) (Botvinick et al., 2001; Davidson, Pizzagalli, Nitschke, & Putnam, 2002; 

Olvet & Hajcak, 2008; Pizzagalli et al., 2006). It has been suggested that dysfunc-

tion of this ACC-DLPFC circuit in unipolar depression also produces catastrophic 

reactions to errors (for a review, see Pizzagalli, 2011). Further study is needed to 

understand the exact neuromodulating role that 5-HT may play in this affective 

regulation (cf. Jocham & Ullsperger, 2009). Future studies that combine neuroi-

maging methods with effort-related physiological and behavioral measures will 

advance our understanding of the functional role of the ACC in the affective 

(dys)regulation of adaptive control to fluctuating task demands. 
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8. Task difficulty and conflict 

adaptation 

Chapter 

8 

Task difficulty and conflict adap-

tation 

This chapter is based on:  

 

van Steenbergen, H., Band, G.P.H., & Hommel, B. (in preparation). 

Dynamic control adaptations depend on task difficulty: Evidence from 

behavior and pupillometry. 
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Hier het plaatje 

 

"Face a mirror, look at your eyes and invent a mathe-
matical problem, such as 81 times 17. Try to solve the 
problem and watch your pupil at the same time (…) 
After a few attempts, almost everyone is able to ob-
serve the pupillary dilation that accompanies mental 
effort." 
 
Daniel Kahneman (1973) 

8 
 

Task Difficulty and  

Conflict Adaptation 

This chapter is based on:  

 

van Steenbergen, H., Band, G.P.H., & Hommel, B. (in preparation). Dynamic control 

adaptations depend on task difficulty: Evidence from behavior and pupillometry. 
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Abstract 

Sequential modulation of congruency effects in conflict tasks show that cognitive 

control and effort quickly adapt to changing task demands. We investigated how 

this behavioral congruency-sequence effect interacts with different levels of task 

difficulty in a flanker and a Stroop task. In addition, online measures of pupil 

diameter were used as a physiological index of effort mobilization. Consistent with 

the notion that task difficulty increases effort mobilization up to a certain limit, 

dynamic conflict-driven adjustment in behavior was observed only if task diffi-

culty was moderate, whereas congruency effects in behavior and pupil dilation 

were unaffected. Furthermore, high difficulty levels induced a conflict-driven 

reduction in pupil dilation, presumably reflecting a physiological marker of mental 

overload. 
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Introduction 

In a constantly changing environment, cognitive control helps to adaptively 

respond to task demands. Paradigms such as the flanker task (Eriksen & Eriksen, 

1974) and the Stroop task (Stroop, 1992) have been designed to probe cognitive 

control processes. In the flanker task, for example, people respond to a central 

target while ignoring flanking distracters. The reaction-time difference between 

trials with target-congruent and -incongruent flankers has been called congruency 

effect and been considered a measure of sustained cognitive control. On the other 

hand, dynamic adjustments in control are reflected in trial-to-trial adaptations. 

This sequential effect typically shows that the congruency effect on the current 

trial is reduced when it follows an incongruent as compared to a congruent trial 

(Gratton et al., 1992; Greenwald & Rosenberg, 1978).  

According to the conflict monitoring theory, the congruency-sequence effect 

occurs because incongruent trials evoke response conflict, which triggers control 

improvements and thus reduces interference on subsequent trials (Botvinick et al., 

2001). Indeed, numerous studies have found evidence for this so-called conflict-

adaptation effect, an adaptation that has been demonstrated across flanker, Stroop, 

and Simon tasks (for a review, cf. Egner, 2007). Accumulating neuroimaging data 

has demonstrated a possible neural mechanism involving the medial prefrontal 

cortex as a conflict monitoring system that helps to adapt control by enhancing 

task-goal representations in more lateral prefrontal areas (e.g., Egner & Hirsch, 

2005; Kerns et al., 2004).  

Although the congruency-sequence effect typically is investigated in the context 

of the conflict monitoring theory (Botvinick et al., 2001), it probably reflects a 

more general effect that Ach and colleagues have coined the ‘difficulty law of 

motivation’ (Ach, 1935; Hillgruber, 1912). According to this law, increasing the 

difficulty of a task automatically makes people to try harder. That is, the amount of 

mental effort –here defined as the mobilization of energy resources to carry out 

behavior (Gendolla & Richter, 2010) – invested in the task is thought to be propor-

tional to the level of perceived task difficulty (cf. Kahneman, 1973; Brehm & Self, 

1989). This increased mental effort, in turn, may also improve goal-directed 

behavior as measured in reaction times. Although the majority of the available 

studies have provided physiological and self-report evidence for effort mobiliza-

tion in difficult situations (for reviews, see Gendolla, Wright, & Richter, 2011; 

Wright & Kirby, 2001), a recent study by Dreisbach & Fischer (2011) has shown 

that adjustments in effort mobilization can also be observed in behavior. In that 
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study, sequence effects in reaction times were observed in a perceptual fluency task 

using different levels of task difficulty, demonstrating that sequential behavioral 

adaptation can occur even in the absence of conflict. 

The aim of the current study is to investigate how behavioral congruency-

sequence effects in conflict tasks interact with different levels of task difficulty. 

Although – as outlined above – conflict-driven improvement of control is likely to 

reflect a momentary increase in effort driven by the difficulty of the previous trial, 

it is important to understand what happens if difficulty further increases. Given 

the limited nature of processing resources, one would expect that task difficulty 

can increase effort mobilization only up to some upper limit, after which it reaches 

asymptote. Likewise, dynamic conflict-driven increases in effort can only occur if 

there is some room left for improvement. In other words, conflict adaptation may 

only occur in cases where overall task difficulty is not too high. The present study 

put this prediction to empirical test. 

A first indication that congruency-sequence effects indeed become smaller 

when resources come close to their limits has been provided by two recent studies. 

Comparing Simon-task performance under single and dual-task situations, Stür-

mer and colleagues (Sturmer, Seiss, & Leuthold, 2005) observed smaller congru-

ency-sequence effects in the dual-task context, indicating that the secondary task 

may have consumed resources needed for conflict-driven improvements in con-

trol. In another study by Fischer and coworkers (Fischer et al., 2008), processing 

demands and response conflict were manipulated within the same trial, using a 

numerical judgment task in the context of a Simon paradigm. Consistent with a 

limited resources account, difficult number judgments reduced the subsequent 

congruency-sequence effect in Simon performance.  

The present study aims to find evidence for task-difficulty effects on cognitive 

control adaptations in a series of three experiments. In Experiment 1 and 2, we 

compared how task-demand differences between a Stroop and a flanker task may 

account for the size of conflict-adaptation effects observed. In Experiment 3 an 

explicit manipulation of task difficulty was used to further investigate the possibil-

ity of a difficulty-driven reduction in the congruency-sequence effect.  

Experiment 1: Re-analysis of Van Steenbergen et al. (2010) 

In a first attempt to test whether demand differences between tasks can account 

for differences in conflict-adaptation effects, we re-analyzed an earlier published 
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data set (van Steenbergen et al., 2010) by comparing congruency-sequence effects 

as a function of the level of task demands participants reported. Given that in-

creased task difficulty may increase effort mobilization up to its limits, we ex-

pected that no further improvements in cognitive control by previous-trial conflict 

will be observed under conditions of high task difficulty. That is, we predicted that 

a task that is associated with high task demands may show smaller congruency-

sequence effects.  

Methods 

For detailed methods, see van Steenbergen et al. (2010). 

Participants 

Ninety-eight students participated either for payment or course credits (18-30 

years old; 24 males; 11 left-handed). Data from seven participants were excluded 

from analyses because of response omissions on more than 20% of the trials (2), 

chance level task performance (3), or incompliance with instructions (2). Data 

were pooled across four different mood induction groups, as the mood conditions 

were irrelevant for the purpose of the current study.  

Tasks 

Two variants of a classic cognitive-control paradigm were used to measure conflict 

adaptation. An adapted version of the flanker task (Eriksen & Eriksen, 1974) 

consisted of centrally presented target stimuli which were vertically flanked on 

either side by two identical response-congruent or response-incongruent stimuli. 

An adapted version of the Stroop task (Stroop, 1992) consisted of a column of five 

identical stimuli presented in response-congruent or response-incongruent ink 

colors. Flanker and Stroop stimuli were carefully matched by using sets of Dutch 

color words. Each task used a counterbalanced unique set of four words. Two of 

these stimuli were mapped to a left hand response, and the other two stimuli were 

mapped to a right hand response. 

E-prime software was used for stimulus presentation and response recording. 

All trials started with a fixation cross (randomly varying intervals of 800, 1000, or 

1100 ms), followed by the stimulus, which was presented until response registra-

tion or, in the case of omission, for 1500 ms. In half of the trials the stimuli would 

call for different responses (Incongruent [I] condition; e.g., the word “green” 

surrounded by the words “yellow” in the flanker task and the word “blue” printed 

in red in the Stroop task) whereas in the other half identical target and distracter 

dimensions would call for the same response (Congruent [C] condition; e.g., the 

word “green” surrounded by the words “green” in the flanker task and the word 
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“blue” printed in blue in the Stroop task). All trials were presented in an uncon-

strained random sequence. Stimuli appeared in lower-case in Arial bold font (3.5 

cm wide and 5.4 cm high) and were presented on a grey background. Flanker 

stimuli used black ink color. Participants viewed the stimuli on a 17” monitor 

from about 60 cm. 

Procedure 

Instructions emphasized both speed and accuracy. Following 16 practice trials, 

and a 10-minute mood induction, participants performed a flanker and a Stroop 

task block (in counterbalanced order), which were repeated after a short 3-minute 

mood booster. A textual reminder of the stimulus-response mapping was shown 

for 15 seconds before the start of each of the four blocks of 72 trials. At the end of 

the experiment, participants evaluated the flanker and Stroop task in terms of 

weariness, unpleasantness and difficulty on a 6-points scale. 

Results 

Subjective ratings 

Task difficulty ratings showed that the Stroop task was associated with higher 

demands than the flanker task (4.1 versus 3.7; t(90) = 2.6, p < .05). Weariness and 

unpleasantness scores were not different for the tasks (t(90)s < 1.6, ps > .12). 

Behavioral results 

The first trial of each block (1.4%) and trials not complying with the outlier crite-

rion (2 SDs; 4.7%) were excluded from all analyses. ANOVAs on correct Reaction 

Time (RT) data revealed significant basic congruency effects for both the flanker 

task (31 ms; F(1,90) = 137.9, p < .001) and the Stroop task (35 ms; F(1,90) = 71.9, p 

< .001) confirming that both paradigms can reliably measure cognitive control. 

However, as Figure 1A shows, a congruency-sequence effect, i.e., a reduction of 

the congruency effect following conflict, was only found for the flanker task (21 

ms; F(1,90) = 17.2, p < .001) but not for the (more difficult) Stroop task (7 ms; 

F(1,90) = 1.4, p > .2). Accuracy data confirmed the basic congruency effects for the 

flanker task (2.5%; F(1,90) = 22.3, p < .001) and the Stroop task (2.5%; F(1,90) = 

18.5, p < .001). There was a trend for a congruency- sequence effect in the flanker 

task (2.0%; F(1,90) = 3.68, p = .058). In addition to the congruency-sequence effect 

in the flanker task, participants showed a tendency to slow their response follow-

ing conflict (F(1,90) = 11.4, p < .005) (cf. Ullsperger, Bylsma, & Botvinick, 2005). 
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Discussion 

Experiment 1 provides initial support for the hypothesis that task difficulty may be 

an import factor that accounts for reduced congruency-sequence effects: a Stroop 

task that was reported to be more demanding yields less conflict adaptation than a 

matched version of the flanker task. That is, while a reliable congruency-sequence 

effect was observed in the flanker task, the much smaller effect observed in the 

Stroop task was not statistically significant, despite the large sample (N = 91).  

Experiment 2 

Even though Experiment 1 provided initial evidence for task-difficulty effects on 

conflict adaptation, these data were pooled over several mood induction groups 

which produced different adaptation effects in the earlier published study (see van 

Steenbergen et al., 2010). It might thus be argued that the absolute size of conflict-

adaptation effects cannot be generalized to emotionally neutral situations. This 

motivated us to design a replication study.  

In addition, the follow-up study recorded pupillary dilation to provide a meas-

ure of effort mobilization (cf. Kahneman, Hess & Polt 1964). Although pupil size is 

also determined by other variables, it has been repeatedly shown that task-related 

pupil dilation systematically increases as a function of task difficulty or processing 

load and thus “provides a powerful analytic tool for the experimental study of 

processing load and the structure of processing resources” (Beatty, p 291 1982; 

Beatty & Lucero-Wagoner, 2000). Interestingly, when task demands overload the 

resources, no further dilation occurs and dilation may either reach asymptotic 

value or decline (Cabestrero, Crespo, & Quiros, 2009; Granholm & Steinhauer, 

2004; Peavler, 1974; Poock, 1973). The decline in pupil diameter under conditions 

of mental overload exclusively occurs when people keep trying to work on the task 

(Granholm, Asarnow, Sarkin, & Dykes, 1996).  

In the context of cognitive control tasks, numerous pupillometry studies have 

already shown that incongruent Stroop trials increase pupil dilation (Brown et al., 

1999; Siegle, Steinhauer, & Thase, 2004; Laeng, Orbo, Holmlund, & Miozzo, 2011), 

which is consistent with the central assumption that incongruent trials, like other 

difficult situations, automatically recruit effort. Given that behavioral congruency 

effects are observed across different paradigms, flanker tasks may produce similar 

congruency effects on dilation as has been observed in Stroop tasks. However, it is 

not clear yet how trial-to-trial adaptations are related to effort recruitment on a 
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temporal scale (cf. Scherbaum, Fischer, Dshemuchadse, & Goschke, 2011). 

Whereas the original computational conflict-monitoring model suggests that 

conflict from a previous trial starts to recruit effort in the subsequent trial (across-

trial adaptation; Botvinick et al., 2001), other models suggest that the adaptation of 

control may already start to develop within the previous conflict trial itself 

(within-trial adaptation; e.g., Brown, Reynolds, & Braver, 2007). According to this 

within-trial adaptation account, conflict adaptation in the current trial is mainly 

due to a carryover of the adjusted control state from the previous trial. Although 

recent findings from frequency-tagged EEG responses (Scherbaum et al., 2011; cf. 

Goschke & Dreisbach, 2008) indeed support this within-trial adaptation account, 

the pupil dilation signal probably is too slow to accurately index such subtle effort-

related adaptation within the previous trial. On the other hand, if conflict adapta-

tion mainly stems from across-trial adaptation (Botvinick et al., 2001), pupil 

dilation may shown an overall increased dilation in the current trial after conflict 

in the previous trial. Task difficulty manipulations that reduce adaptation may 

then decrease this conflict-driven dilation increase in the subsequent trial. 

In order to test the effects of task difficulty on sequence effects in cognitive con-

trol and effort mobilization, we conducted two new experiments that included a 

flanker and a Stroop task while pupil data were acquired during task performance. 

Experiment 2 included a flanker and a Stroop task similar to those used in Ex-

periment 1. We expected to replicate the behavioral finding that, in comparison to 

the Flanker task, increased task demands in the Stroop task lead to smaller or 

absent conflict-adaptation effects. Pupil dilation data were acquired to explore 

sequential effects in effort mobilization. 

Methods 

Participants 

Twenty-eight healthy right-handed Dutch students participated either for pay-

ment or course credits (18-30 years old; 7 males). All participants indicated not to 

use medication (other than anti-conception pills) and were not color blind. Four 

participants were excluded from analysis because of technical problems during the 

data acquisition. After initial data screening, two other participants were excluded 

because of random performance in one or more of the task blocks.  

Tasks 

The flanker and Stroop tasks were identical to those used in the pilot study with a 

few exceptions. First, the Stroop task only included one stimulus rather than a 

column of five identical stimuli in order to prevent potential dilution-effect con-
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founds (cf. Kahneman & Chajczyk, 1983). Second, both tasks used a fixed set of 

color words in order to match Stroop ink color luminance levels. To specify, the 

flanker task always used the words “brown”, “gray”, “yellow”, and “red” whereas 

the Stroop taks always used the words “purple”, “green”, “orange”, and “blue” (all 

words were presented in Dutch translations). Isoluminant ink colors from the 

Teufel colors set were used for the Stroop task (Teufel & Wehrhahn, 2000) 

whereas the flanker task stimuli were printed in black. Finally, in order to avoid 

pupil light reflexes produced by stimulus presentation (cf. Beatty & Lucero-

Wagoner, 2000) a scrambled picture of the average stimulus was used as a baseline 

fixation stimulus (for both tasks separately).  

Procedure 

After informed consent was given, participants were seated in a dimly lit room 

where the eye tracker was calibrated. Following a data quality check, participants 

performed 28 practice trials for both tasks which were repeated until they suffi-

ciently learned the task to start the experiment proper. Flanker and Stroop trials 

were presented in 12 alternating blocks (in counterbalanced order). Before each 

block started, a self-paced textual reminder of the stimulus-response mapping was 

shown for a maximum of 15 seconds. Each block consisted of 36 consecutive fast 

test trials (see under Tasks) and 18 consecutive filler trials with a constant inter-

trial interval of 4 seconds (test and filler sequence in random order). For both the 

flanker and Stroop task, 216 test trials were available for sequential analyses of 

reaction time and pupil dilation. The 108 filler trials were used to validate the 

timing of the pupil dilation response in the short test trials.  

Following each block, participants received accuracy feedback about their per-

formance in a line graph showing their accuracy per block over time. Feedback 

was given for the flanker and Stroop task separately. Participants were required to 

make errors within a target range of 5-10%, and if the participant reached this 

target they received positive feedback which still encouraged both speed and 

accuracy. If the error rate dropped below 5%, participants received the following 

text feedback: “You are not doing your best. Please increase speed. You are allowed 

to make more errors.” If the error rate exceeded 10%, participants received the 

following text feedback: “You are not doing your best. You are making too many 

errors. Please improve accuracy but keep responding fast.” A reminder of the 

feedback given earlier was provided again at the start of the next task block. Visual 

feedback was verbally reinforced by the experimenter. Short self-paced breaks (for 

a maximum of 30 seconds) were provided following each pair of two blocks. 

Participants had a fixed 1-minute break halfway the experiment.  
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Pupil data acquisition and analysis 

Pupil diameter was recorded at 60 Hz using a Tobii T120 eye tracker, which is 

integrated into a 17-inch TFT monitor. Participants were seated at a distance of 

approximately 60 cm from the monitor. Pupil data were processed and analyzed 

using custom-made macros programmed in Brain Vision Analyzer. Artifacts and 

blinks as detected by the eye tracker were corrected using linear interpolation. 

Trials including extremely unreliable interpolated values (< 20% data points 

obtained in the intervals of interest) were excluded from analyses. After visual 

inspection (see below), pupil dilation was defined as the mean pupil diameter 

during a 700 to 1300 ms period following stimulus onset. A 200-ms pre-stimulus 

interval was used as baseline. 

Results 

All analyses reported for Experiment 2 and Experiment 3 were performed after the 

following trials were excluded: the first trial of each block, trials following an error, 

trials with RTs not fitting the outlier criterion (2.5 SDs deviating form the individ-

ual condition-specific mean), and trials including unreliable pupil-data interpola-

tions. 

Behavioral results 

Correct reaction time data are shown in Figure 1B. Replicating our pilot study, 

both the flanker and the Stroop task yielded a congruency effect (F(1,21) = 67.7, p 

< .001, MSE = 184.9 and F(1,21) = 17.1, p < .001, MSE = 1538.0), which was 

modulated by previous trial conflict in the flanker task (F(1,21) = 9.7, p < .01, MSE 

= 213.6), but not in the Stroop task (F(1,21) = 0.4, p = .52, MSE = 456.0). Error 

rate data revealed congruency-effects for the flanker (F(1,21) = 6.1, p < .03, MSE = 

.003) and the Stroop task (F(1,21) = 4.4, p < .05, MSE = .001) but no indications of 

conflict adaptation for both tasks (Fs < 1). These behavioral results replicate the 

finding in Experiment 1: the Stroop task produced smaller congruency-sequence 

effects than the flanker task. 

Pupil data validation 

In order to explore whether effort mobilization as measured by pupil dilation is 

different between the flanker and the Stroop task, we measured pupil dilation in 

response to stimulus onset. As is shown in Figure 2A (upper panels), the long-

interval filler trials showed a pupil dilation for both the flanker and the Stroop 

task, which reached its peak value around 1 second after stimulus onset. More 

importantly, in the same time interval dilations were found for the test trials with 

the short inter-trial intervals, which validates the analytic approach to define 



 Chapter 8 

 

                     

  
1

  
1

                     

  2
  2

                     

  
3

  
3

                     

  
4

  
4

                     

  
5

  
5

                     

  
6

  
6

                     

  7
  7

  
8

  
8

                     

  9
  9

                    

  
10
  
10

 

115 

maximum pupil dilation as the mean pupil diameter during a 700 to 1300 ms 

period following stimulus onset (Figure 2A, lower panels). 

The pupil dilation data yielded congruency effects in dilation for both the 

flanker task (F(1,21) = 14.5, p < .001, MSE = .001) and the Stroop task (F(1,21) = 

4.3, p = .052, MSE = .001), irrespectively of the inter-trial interval used (Fs < 1). 

Thus, pupil diameter could reliably be used as an index of effort mobilization 

during the test trials with their short inter-trial intervals.  

Pupil results 

In order to test differential effort mobilization effects on the Stroop versus the 

flanker task, we analyzed pupil dilation during test trials as a function of congru-

ency of the current trial and congruency of the previous trial, using task (flanker 

versus Stroop) as an additional within-subject factor. As shown in Figure 1C, both 

tasks showed more dilation during incongruent trials in comparison to congruent 

trials (F(1,21) = 10.1, p < .005, MSE = .001). Independent of this, a trend for a 

main effect of previous-trial congruency was observed: decreases in current-trial 

dilations were observed when the previous trial was incongruent (F(1,21) = 3.4, p 

= .08, MSE = .001). This effect was moderated by a significant Task x Previous-

Trial Congruency interaction (F(1,21) = 4.7, p < .05, MSE =.0004) showing that 

the decrease in overall dilation following conflict was only significant in the Stroop 

task (F(1,21) = 4.9, p < .05, MSE = .001) but not in the flanker task (F(1,21) = .30, p 

= .60, MSE = .0004). Task did not significantly interact with other (combinations 

of) factors. Because the Task x Previous-trial Congruency effect was not observed 

in the preceding baseline interval (F(1,21) = .55, p = .47, MSE = .002), the effect in 

dilation cannot be attributed to a carry-over effect from a dilation starting in the 

preceding trial. 

Discussion 

Experiment 2 replicated the behavioral effect in Experiment 1: conflict adaptation 

was reduced in the – presumably more demanding – Stroop task in comparison to 

the flanker task. Pupil data across the flanker and Stroop task showed that incon-

gruent trials produced more dilation than congruent trials. Thus, replicating and 

extending earlier studies on the Stroop task, both Stroop and flanker conflict 

induced pupil dilation, which probably reflects conflict-driven effort mobilization. 
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Figure 1. Flanker task (left column) and Stroop task (right column) performance (A, B, 

and D) and pupil dilation (C and E) across Experiment 1, 2, and 3, as a function of 

current-trial congruency and previous-trial congruency.  
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Figure 2. Pupillary response (mm) as a function of time (ms) and current-trial congru-

ency for Experiment 2 (A) and Experiment 3 (B). Both graphs depict baseline-corrected 

pupil dilation in the Flanker (left column) and Stroop (right column) task for filler trials 

(upper row) and test trials (lower row). 
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Even more importantly, sequential analyses of pupil dilation indicated a main 

effect of previous trial congruency in the Stroop task, but not in the flanker task. 

The absence of increased dilation in Trial N after conflict in Trial N-1 for the 

flanker task, observed in combination with the conflict-adaptation effect in behav-

ioral data, suggests that the behavioral adaptation effect might have been driven by 

within-trial rather than across-trial adaptation of mental effort. In other words, the 

conflict-adaptation effect observed at Trial N may reflect a carry-over effect of 

conflict-driven recruitment of effort that mainly took place within Trial N-1. 

Interestingly, a conflict-driven reduction in pupil dilation was observed for the 

Stroop task in the absence of behavioral adaptation. Demand-driven decline of 

pupil dilation has been reported earlier for overload conditions in other para-

digms, including a reaction time task using extreme presentation rates (Poock, 

1973) and a digital span recall task using excessive load (Granholm et al., 1996). In 

line with these findings, the effect observed on pupil dilation may thus represent a 

physiological marker of resource overload, which in our case is driven by in-

creased task difficulty in combination with the conflict in the previous trial. 

Although subjective reports from Experiment 1 support our claim that the 

Stroop task was experienced to be more difficult than the flanker task, we can only 

speculate about a possible cause. Importantly, both tasks were carefully matched in 

terms of stimulus material. That is, both paradigms required a similar manual 

response to similar verbal information (i.e., color words). Moreover, both the 

Stroop and the flanker task are thought to induce conflict between relevant and 

irrelevant stimulus dimensions (Egner, 2008; Kornblum, Hasbroucq, & Osman, 

1990), and pupillary responses and behavior confirmed different effects for incon-

gruent trials in comparison to congruent trials. However, the source of this con-

flict might be different. For example, according the Dimension-Action model 

(Magen & Cohen, 2007) the Stroop effect is driven by conflict between relevant 

and irrelevant verbal codes (following the translation from color to word), whereas 

conflict in the flanker task takes place between relevant and irrelevant stimulus 

elements in a visual dimension. In addition, Stroop interference stems from two 

features of the same visual object, whereas flanker interference stems from features 

of different visual objects (Magen & Cohen, 2002). This may differently impact 

task demands. Processing the relevant word color in a Stroop stimulus inevitably is 

accompanied by the processing of the irrelevant color word (Chen, 2003; Duncan, 

1984), which may induce task conflict even in congruent trials (Goldfarb & Henik, 

2007). In contrast, selective processing of central target relative to surrounding 

stimuli in the flanker task is simply possible through a spatial narrowing of atten-
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tion (Laberge, Brown, Carter, Bash, & Hartley, 1991). One or more of these factors 

might have produced an increase in task difficulty for the Stroop task.*  

Nevertheless, it is important to stress that conflict-adaptation effects have been 

demonstrated in numerous studies on Stroop and Stroop-like effects. To the best 

of our knowledge, however, the Stroop-like tasks usually reported were not as 

demanding as the task used in our experiment, which mapped four different 

stimulus features to two responses. Moreover, previous studies used simple cate-

gorization responses and/or a low ratio of incongruent trials (e.g., Kerns et al., 

2004), which may well have inflated adaptation effects (cf. Purmann, Badde, & 

Wendt, 2009). To our knowledge, the few publications that did use a standard 

color-word Stroop tasks and demonstrate conflict adaptation (Egner & Hirsch, 

2005; Naccache et al., 2005) exclusively used a low-demanding two-color version, 

where participants simply can base their response on the presence or absence of a 

color change rather than on color identity. Previous work is thus not inconsistent 

with our claim that increased task difficulty in the Stroop task may eliminate 

conflict-adaptation effects. 

However, given that Experiment 1 and 2 only provide correlational rather than 

causal evidence for a link between task difficulty and conflict-adaptation reduc-

tions, and because it is not the paradigm (Stroop versus flanker) itself thought to 

be responsible for this effect, Experiment 3 used an experimental manipulation of 

task difficulty to demonstrate that difficulty effects can occur independently of the 

particular paradigm. 

Experiment 3 

In order to increase overall effort, tasks difficulty in Experiment 3 was further 

increased using a time-pressure manipulation (cf. Kahneman, 1973). A new group 

of participants performed exactly the same tasks as used in Experiment 2 but with 

different instructions. Specifically, participants were forced to try improving their 

                                                                 
* The somewhat counterintuitive finding that responses were faster on the Stroop task may also 

have been driven by quicker processing in phases prior to response selection, e.g., perceptual 

processes. Moreover, because we used fixed response-stimulus intervals, this may have increased 

stimulus pacing, which in turn increased task difficulty. Note that faster responses have also been 

observed as a consequence of the participant’s adaptation to higher levels of task difficulty (cf. 

Washburn & Putney, 2001). 
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speed over time while maintaining accuracy. We hypothesized that this extra 

increase in task difficulty should further reduce congruency-sequence effects. That 

is, in comparison to Experiment 2, we expected to find an additional reduction of 

conflict adaptation irrespective of the particular task. We recorded pupil diameter 

in order to find converging evidence for the sequential previous-trial congruency 

effect observed for pupil dilation (i.e., during the Stroop task in Experiment 2) 

when behavioral conflict adaptation was absent. 

Methods 

Participants 

Twenty-seven healthy right-handed Dutch students participated either for pay-

ment or course credits (18-30 years old; 8 males). All participants indicated not to 

use medication (other than anti-conception pills) and were not color blind. After 

initial data screening, three participants were excluded because of random per-

formance in one or more of the task blocks.  

Tasks 

See Experiment 2. 

Procedure 

Procedures were identical to Experiment 2, except for the performance feedback 

and instructions that participants received. Like in Experiment 2, after each block, 

participants received both accuracy and correct reaction time feedback about their 

performance in a line graph showing their accuracy and speed per block over time. 

Feedback was given for the flanker and Stroop task separately. Participants were 

required to continuously improve speed over time, while keeping errors within a 

target range of 5-10%. If the participant attained the accuracy target they received 

positive feedback, which still instructed to further increase speed without reducing 

accuracy. If the error rate dropped below 5%, participants received the following 

text feedback: "You are not doing your best. Please increase speed. You are allowed 

to make more errors.” If the error rate exceeded 10%, participants received the 

following text feedback: "You are not doing your best (or you respond TOO fast). 

You are making to many errors. Please try as hard as you can and improve accu-

racy.” A reminder of the feedback given earlier was provided again at the start of 

the next task block. Visual feedback was verbally reinforced by the experimenter. 

Pupil data acquisition and analysis 

See Experiment 1. 
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Results 

Behavioral results 

Consistent with predictions, the increased task difficulty reduced conflict adapta-

tion across tasks (see Figure 1D), as no evidence for congruency-sequence effect 

was found for the flanker task (F(1,23) = .66, p = .43, MSE = 701.6), whereas the 

Stroop task even showed a reversal of the congruency-sequence effect (F(1,23) = 

7.7, p < .02, MSE = 187.1). Congruency effects (F(1,23) = 27.1, p < .001, MSE = 

385.8 and F(1,23) = 13.9, p < .001, MSE = 2166.2) were similar to those reported 

for Experiment 2. As in Experiment 2, error rate data revealed significant flanker 

and Stroop congruency-effects (F(1,23) = 6.5, p < .02, MSE = .002 and F(1,23) = 

9.6, p < .005) but no indications of conflict adaptation for both tasks (Fs < 2). In 

addition, the Stroop task produced a previous-trial congruency effect on accuracy 

(F(1,23) = 4.6, p < .05, MSE = .001), showing an increase in error rate after conflict 

in the previous trial. 

Pupil data validation 

As Figure 2B shows, the dilation patterns in Experiment 3 mirrored the effects 

observed in Experiment 2. Congruency effects were observed in the flanker task 

(F(1,23) = 26.5, p < .001, MSE = .001) and in the Stroop task (F(1,23) = 4.0, p = 

.059, MSE = .002), irrespectively of the inter-trial interval used (Fs < 1). 

Pupil results 

As shown in Figure 1E, both tasks caused more dilation to incongruent than to 

congruent test trials (F(1,23) = 16.3, p < .001, MSE = .001). Independent of this, 

previous-trial congruency also influenced current-trial dilations: decreases in 

dilation were observed when the previous trial was incongruent (F(1,23) = 8.8, p < 

.01, MSE = .0004), irrespectively of task type (F < 1).  

Discussion  

As expected, conflict-adaptation effects in Experiment 3 were eliminated for both 

tasks when performed under conditions of increased task difficulty using time 

pressure. Standard congruency effects in RT and pupil dilation confirmed that 

these tasks still induced conflict and effort mobilization. Moreover, as observed for 

the Stroop task in Experiment 2, the absence of behavioral adaptation in both tasks 

was accompanied by a conflict-driven reduction in pupil dilation in both tasks.  
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General Discussion 

We provided converging evidence for task-difficulty effects on dynamic control 

adaptations in three experiments. Experiment 1 and 2 showed that a more difficult 

Stroop task produced smaller congruency-sequence effects than a less demanding 

flanker task (see Figure 1A and 1B). Experiment 3 showed that, when task diffi-

culty was manipulated experimentally, these congruency-sequence effects were 

further reduced for both tasks (see Figure 1D). Altogether, our behavioral findings 

support our prediction that extreme task difficulty put effort mobilization at its 

limits, leaving no room for further improvements in cognitive control by previ-

ous-trial conflict. As a result, no conflict-adaptation effects were observed in 

conditions of high task difficulty across three experiments.  

In addition, Experiment 2 and 3 demonstrates that pupillary measures provide 

an interesting tool to index effort mobilization in cognitive control paradigms. 

Although a few studies already have shown pupil dilation increases to incongruent 

Stroop trials (Brown et al., 1999; Siegle et al., 2004), we demonstrated (see Figure 

2) that this congruency effect occurred independently of the specific paradigm 

used (i.e., both in the Stroop and the flanker task) and occurred even during fast 

trial pacing (inter-trial intervals around 1.5 seconds).  

Apart from this methodological contribution, pupil data also provided addi-

tional insight in how and when difficult situations may automatically trigger effort 

mobilization. Firstly, behavioral conflict adaptation was not reflected by a tempo-

rary increase in effort in the subsequent trial (Figure 1C, left figure), which sug-

gests that conflict-driven mobilization of effort mainly takes place earlier – pre-

sumably within the previous conflict trial itself (Scherbaum et al., 2011) rather 

than across trials (Botvinick et al., 2001). Secondly, during difficult task conditions 

in Experiment 2 (Figure 1C, right figure) and Experiment 3 (Figure 1E) where no 

conflict adaptation was observed, pupil dilation data showed a conflict-driven 

drop of dilation, most likely a physiological marker of mental overload (cf. 

Granholm et al., 1996). Taken together, behavioral and pupil data reinforced our 

interpretation why conflict adaptation did not occur during high levels of task 

difficulty: subjects spent maximum effort already. Rather than being adaptive, 

additional conflict thus may simply overload the cognitive system under these 

conditions. 

One important aim for future studies is to further test the impact of task diffi-

culty at the most extreme levels. As has been suggested by the motivation intensity 

theory (Brehm & Self, 1989; Brehm, Wright, Solomon, Silka, & Greenberg, 1983) 
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effort mobilization is proportional to task difficulty as long as success is viewed as 

possible and worthwhile. In cases where a demand is perceived as too high to 

actively cope with, effort mobilization may drop. In other words, there might exist 

an inverted-U relationship between task difficulty and effort mobilization 

(Gendolla et al., 2011). Thus far, evidence for the motivation intensity theory has 

mainly been provided by cardiovascular and subjective measures of effort, and it is 

an important aim for future studies to further investigate the link with behavioral 

measures of loosened control after extreme demands. However, it might actually 

be speculated that the small reversal of conflict adaptation of Stroop performance 

under time pressure in Experiment 3 illustrates this drop of effort mobilization 

driven by previous-trial conflict in a very demanding situation. If this is true, 

reduced conflict-driven pupil dilation in this situation may well indicate a reduced 

mobilization of effort in this situation, rather than a physiological signal of mental 

overload. However, given that the effect was small and not anticipated, future 

experiments are needed to further investigate this possibility. 

An important take-home message of this study is that too difficult conflict tasks 

may not produce the typical congruency-sequence effect. Our findings explain 

why some researchers using difficult tasks (e.g., using high incongruent-to-

congruent ratios) have failed to observe normal conflict-adaptation effects (e.g., 

Wendt, Heldmann, Munte, & Kluwe, 2007). Moreover, our work contributes to 

the cumulating evidence that various factors like trial pacing (e.g., Notebaert, 

Gevers, Verbruggen, & Liefooghe, 2006), time on task (Mayr & Awh, 2009), 

incongruent-congruent ratio (Purmann et al., 2009), “correction” for binding 

effects (e.g., Akcay & Hazeltine, 2007, but see Spape & Hommel, 2008), and type of 

conflict involved (Verbruggen, Notebaert, Liefooghe, & Vandierendonck, 2006) all 

may influence the size of congruency-sequence effects. Given that all these factors 

are likely to change task difficulty and motivation, it as an important future chal-

lenge to understand how these factors determine effort mobilization and cognitive 

control, and which emotional and motivational neural systems are responsible for 

this modulation. 
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Hier het plaatje 

 

 

"There is always some madness in love. But there is 
also always some reason in madness." 
 
Friedrich Nietzsche 
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Abstract 

Passionate love is associated with intense changes in emotion and attention which 

are thought to play an important role in the early stages of romantic relationship 

formation. Although passionate love usually involves improved, near-obsessive 

attention to the beloved, anecdotal evidence has suggested that the lover’s concen-

tration for daily tasks like study and work may actually be impaired. We system-

atically investigated a link between passionate love and cognitive control in a 

sample of students who had recently become involved in a romantic relationship. 

Intensity of passionate love as measured by the Passionate Love Scale was shown 

to predict decreased individual efficiency in cognitive control as measured in 

Stroop and flanker task performance. This study provides the first systematic 

empirical evidence that impaired cognitive control is an important characteristic 

of passionate love. 
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Introduction 

Falling in love is an experience that involves very intense emotional changes 

including euphoria and overwhelming joy, increased arousal and energy, emo-

tional dependency on the partner, craving for emotional union with the beloved, 

and obsessional thoughts about and focused attention on the special other (Fisher, 

1998). Passionate love has been recorded in all contemporary human cultures for 

which data are available and it can be traced back to ancient historical and literary 

sources (Jankowiak & Fischer, 1992). Systematic psychological investigation has 

shown that this attraction-related emotional state – also referred to as limerence 

(Tennov, 1979) or infatuation – can be distinguished from lust and attachment, 

aspects of romantic love that are driven by dissociable affective systems (Fisher, 

1998; Hatfield & Sprecher, 1986; Reis & Aron, 2008).  

Cumulating neuroscientific evidence has recently led to the formulation of bio-

logically and evolutionarily informed theories that aim to understand why love is 

so important in human behavior (Fisher, Aron, & Brown, 2006). According to one 

influential proposal, passionate love originates from an phylogenetically old 

mechanism that boosts courtship attraction via neurochemical modulation 

(Beach, 1976; Fisher et al., 2006). Extending earlier evidence from animal studies, 

neuroimaging studies in humans have shown that the euphoria and near-obsessive 

attention devoted to the beloved is associated with reward circuitry activation 

(Bartels & Zeki, 2000) which varies as a function of passionate love intensity (Aron 

et al., 2005). In line with evolutionary theory, infatuation and the associated, often 

demanding and wasteful behavior (Miller, 2000) rarely last much longer than until 

sexual reproduction has been achieved (Tallis, 2005a; Tallis, 2005b).  

In the light of these considerations, passionate love might be suspected to de-

plete cognitive resources needed for the control of goal-directed behavior in 

everyday life. Effects of that sort have indeed been reported for the processing of 

high arousing emotional stimuli, which impairs cognitive control by exhausting 

resources shared with executive functions (Pessoa, 2009). Anecdotal evidence 

suggests that something similar may hold for passionate love. People who are 

madly in love may find it more difficult to concentrate on daily tasks like study 

and work, a feature that passionate love is proposed to share with mental disorders 

(Tallis, 2005b). However, until now, systematic empirical evidence for a link 

between passionate love and diminished executive functioning is lacking. We 

aimed to provide such evidence, if possible, by testing whether the individual 

efficiency in a standard cognitive-control task can be predicted by the intensity of 
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passionate love exhibited by participants involved in the early stage of a romantic 

relationship.  

This prediction might be tested by comparing performance of infatuated people 

to a control group of individuals who are not involved in a romantic relationship. 

However, given that the majority of people in late adolescence have a romantic 

relationship (Collins, Welsh, & Furman, 2009), this approach would inevitably 

result in distorted comparisons, e.g., by biasing the control group towards indi-

viduals with uncommon traits and inappropriate social skills to engage in relation-

ships (which in itself may be related to altered executive functions; Beauchamp & 

Anderson, 2010). Moreover, this design would make insufficient use of the fact 

that individual differences in the intensity of passionate love is likely to account 

for a substantial part of the variance; indeed, people who are madly in love may 

show much stronger dysfunction in cognitive control than mildly loving people 

(cf. Tallis, 2005b).  

Given these considerations, we decided to adopt a correlational approach that 

relates individual differences in infatuation to individual differences in control 

efficiency. We used the standard Passionate Love Scale (PLS), a questionnaire 

developed by Hatfield and Sprecher (1986) to quantify passionate love. Cognitive 

control was measured by versions of two classical conflict-inducing tasks: the 

flanker task (Eriksen & Eriksen, 1974) and the Stroop task (Stroop, 1992). These 

two tasks assess the individual ability to attend to relevant information while 

filtering out distracting, irrelevant spatial and verbal information, respectively. 

This allowed us to test whether the possible link between passionate love and 

cognitive control generalizes across tasks or whether it is task-specific. A balanced 

number of male and female subjects were included to test for generalizability 

across gender.  

Method 

Participants 

Fifty-one healthy heterosexual students who had recently (at most 6 months ago) 

fallen in love participated either for payment or course credits. Based on initial 

screening of the behavioral data, eight participants were excluded from further 

analyses because of random performance during at least one of the experimental 

task blocks. The age range of the remaining 43 participants (23 females; 20 males) 

was 18 – 27 years (mean = 20.9 years), four participants were left-handed. All 
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participants had a relationship with their beloved (mean duration = 2.8 months). 

The reported duration of being in love ranged between 1 and 6 months (mean = 

3.4 months). All participants were Dutch native speakers, not color blind, and 

without a psychiatric history. 

Tasks 

Two variants of a classic cognitive control paradigm were used. The flanker task 

(Eriksen & Eriksen, 1974) consisted of centrally presented target stimuli which 

were vertically flanked on either side by two identical response-compatible or 

response-incompatible stimuli. The Stroop task (Stroop, 1992) consisted of a 

column of five identical stimuli presented in response-compatible or response-

incompatible ink colors. Flanker and Stroop stimuli were carefully matched by 

using two non-overlapping sets of Dutch color words (“brown”, “gray”, “yellow”, 

and “red” or “purple”, “green”, “orange”, and “blue”). Each task used a counterbal-

anced unique set of four words. Two targets were mapped to a left hand response, 

whereas the other two targets were mapped to a right hand response. 

E-prime™ software was used for stimulus presentation and response recording. 

All trials started with a fixation cross (randomly varying intervals of 800, 1000, or 

1100 ms), followed by the stimulus, which was presented until response registra-

tion or, in the case of omission, for 1500 ms. In half of the trials the stimuli would 

call for different responses (incompatible condition; e.g., the word “green” sur-

rounded by the words “yellow” in the flanker task and the word “blue” printed in 

red in the Stroop task) whereas in the other half identical target and distracter 

dimensions would call for the same response (compatible condition; e.g., the word 

“green” surrounded by the words “green” in the flanker task and the word “blue” 

printed in blue in the Stroop task). All trials were presented in an unconstrained 

random sequence. Stimuli appeared in lower-case in Arial bold font (3.5 cm wide 

and 5.4 cm high) and were presented on a grey background. Flanker-task stimuli 

used black ink color. Participants viewed the stimuli on a 17” monitor from about 

60 cm. 

Procedure 

After giving informed consent, subjects received task instructions that emphasized 

both speed and accuracy. Both the flanker and the Stroop task were practiced in 16 

trials that included performance feedback. Participants then filled out a Dutch 

translation of the PLS (a unidimensional scale that includes 30 items on a 9-points 

scale; Hatfield & Sprecher, 1986; Langeslag, Jansma, Franken, & Van Strien, 2007) 
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and were instructed to develop a romantic mood by imagining and writing about 

an appropriate romantic event from their past or to focus on a romantic vignette 

they were given. During this 10-min period, subjects listened via headphones to 

their own favorite love-related music which they had brought with them. This 

procedure is known to evoke intense feelings of romantic love (Mashek, Aron, & 

Fisher, 2000). Participants then performed a block of 72 trials for each task. After a 

short, 3-min romantic mood booster (again using imagination and music), an-

other block of each task was presented. The order of tasks was counterbalanced 

across participants. Participants rated their current mood state using a computer-

ized affect grid (measuring mood valence and arousal; Russell et al., 1989) occa-

sionally provided throughout the experiment. 

Results 

Correct reaction time (RT) and accuracy measures of interference were calculated 

for the Stroop and flanker tasks by subtracting average performance on compatible 

trials from average performance on incompatible trials. Both tasks produced 

robust RT interference scores (flanker task: 29 ms, t(42) = 8.17, p < .001; Stroop 

task: 38 ms, t(42) = 5.24, p < .001), indicating that they successfully induced 

decision conflict. These interference scores were submitted to a repeated-measures 

analysis of covariance (ANCOVA) using the factors Task (within subjects: flanker 

versus Stroop), Sex (between subjects: female versus male), and PLS-score (be-

tween-subjects covariate). As Figure 1 shows, higher PLS-scores were found to be 

a reliable predictor of interference effect increases (F(1,39) = 5.18, p = .028, MSE = 

974.54, partial eta squared = .117), a correlation that was independent of Task 

(F(1,39) = 1.252, p = .270, MSE = 1263.70, partial eta squared = .031) and Sex 

(F(1,39) = .147, p = .704, MSE = 974.54, partial eta squared = .004). Main effects of 

Task and Sex or higher-order interactions were not observed either (Fs < 1.44). A 

predictive effect for PLS-score was not found for interference effects measured in 

accuracy (F(1,39) = 0.26, p = .611, MSE = .004, partial eta squared = .007), indicat-

ing that the RT results could not be accounted for by a speed-accuracy trade off. A 

separate analysis on overall RT showed that the effect of PLS on attentional inter-

ference could not be accounted for by a scaling effect due to RT slowing (F(1,39) = 

1.25, p = .270). We re-ran analyses to ensure that the effects on interference were 

not exclusively driven by three particular PLS items that explicitly refer to obses-

sional thoughts and intrusive thinking (i.e., items 5, 19, and 21). A PLS sumscore 
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that did not include these items, was also shown to be a reliable predictor of 

interference effect increases (F(1,39) = 5.22, p = .028, MSE = 972.63, partial eta 

squared = .118). 

As control analyses, we also tested whether the effect of PLS on interference 

might have been mediated by mood effects. We analyzed average arousal and 

valence ratings (9-points scale) across ratings provided just before and after the 

task blocks. Arousal was positively associated with PLS scores (r = .326, p = .033), 

but not with the interference effect (r = .185, p = .235). Valence was not related to 

PLS (r = .019, p =.902) nor to interference (r = -.134, p = .393). This shows that 

arousal may share some variance with PLS scores, but that neither mood valence 

nor arousal played a reliable mediating role in the relation between romantic love 

and attentional interference. 

 
Figure 1. Positive correlation between Passionate Love Scale scores and distractibility as 

measured by a composite score of interference effects pooled across the Stroop and 

flanker tasks. 



Romantic love and focused attention 

 

 132 

Discussion 

This study provides the first evidence to suggest a systematic link between pas-

sionate love (as measured by the PLS) and impaired cognitive control (as meas-

ured by flanker and Stroop task performance). Passionate love was associated with 

increased distractibility in a sample of students involved in the early stage of a 

romantic relationship. This effect did not interact with the specific task employed, 

suggesting that intense passionate love is associated with a general loss of cognitive 

control. Furthermore, the link between passionate love and executive control was 

independent of gender, which implies that the underlying mechanism related to 

attraction probably does not interact with, or rely on sex-specific systems involved 

in attachment and sex drive (Fisher, 1998). 

This finding is consistent with the assumption that infatuation becomes costly 

when daily life demands goal-directed behavior and cognitive control (Tallis, 

2005b). It might be speculated that such effects are related to love-induced neuro-

chemical effects. Elevated neurotransmitter levels, such as dopamine, have consis-

tently been related to mating preference in animals (Fisher et al., 2006), and a 

recent study in humans has shown that PLS scores correlate positively with activity 

in the striatum (Aron et al., 2005). Increases in striatal dopamine are known to 

deplete prefrontal dopamine (Cools, 2008), which might have caused the impaired 

cognitive control observed. However, future research is required to corroborate 

such speculations. 

Our study shows that passionate love, notwithstanding the positive feelings it is 

usually associated with, has negative effects for the goal-directed control of one’s 

behavior. Such downsides of passionate love have long been suspected and anec-

dotal evidence traces back to ancient times (cf. Tallis, 2005b). We provided the 

first systematic empirical evidence suggesting that impaired cognitive control is an 

important characteristic of passionate love. The fact that love distracts people away 

from conventional civilized behavior motivated Plato even to depict love as a kind 

of madness, a possibility which psychologists should begin to take more seriously 

(cf. Tallis, 2005a). 
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plaatje 

"To every thing there is a season, and a time to every 
purpose under the heaven: A time to weep, and a time 
to laugh; a time to mourn, and a time to dance." 
 
Ecclesiastes 3: 1 and 4, King James translation 
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The studies described in this thesis aimed to investigate how affect and motivation 

impact cognitive control. As summarized in Table 1 of Chapter 1, six out of the 

eight empirical studies found support for indirect effects on cognitive control, as 

measured with sequential trial-to-trial adaptations in cognitive control tasks. Only 

two studies resulted in evidence for a direct modulation of cognitive control. The 

implications of these results are discussed below. This chapter begins with a 

discussion of the sparse evidence found in our experimental work for direct effects 

of emotion on cognitive control, and of the question how the effects observed 

relate to earlier theorizing and empirical work in the field. This is followed by a 

summary of the abundant evidence for indirect effects on cognitive control, and a 

discussion of their implications. Next, on the basis of the neuroimaging data 

obtained, a theory about the neural mechanism that might be responsible for the 

indirect effects on behavior is proposed. A comment on the adaptive value of 

emotions concludes this chapter. 

Direct effects of emotions 

One important aim of this thesis was to investigate how emotions, as manipulated 

by short-term affect inductions, may directly improve or impair cognitive control. 

In Chapters 2 and 3 we reported that we did not find any evidence for a direct 

effect of positive and negative feedback on cognitive control in a flanker task. That 

is, contrary to existing theories (Fredrickson, 2001; Schwarz, 1990), we did not 

observe valence effects on attentional scope. The role of arousal was further 

investigated in the study described in Chapter 4. Here, we showed that in compari-

son to neutral pictures, negative high-arousing pictures with threatening content 

led to improved subsequent anti-saccade task performance, whereas positive high-

arousing pictures did not produce this effect. Importantly, pupil dilation data 

confirmed that both positive and negative pictures successfully induced a state of 

increased sympathetic activation, so that the null-effect for positive pictures could 

not be attributed to an unsuccessful manipulation of emotional arousal.  

Taken together, these studies using short-term affect manipulations confirm 

Derryberry and Tucker’s (1994) interpretation of Easterbrook’s (1959) hypothesis 

that high-arousal negative emotional states improve selective attention (Chapter 

4). On the other hand, negative valence alone, as manipulated by feedback (Chap-

ters 2 and 3), appears insufficient to modulate cognitive control directly, and 

hence contradicts theories by Schwarz (1990) and Fredrickson (2001) predicting 
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valence-only effects. Interestingly, we did not observe that positive emotions led to 

reduced selective attention – even when these emotions induced physiological 

arousal – which supported neither valence-only theories (Fredrickson, 2001; 

Schwarz, 1990), nor the theory that positive arousal causes attentional broadening 

(Derryberry & Tucker, 1994). 

It is interesting to note that recent findings from other studies also have conse-

quences for earlier theorizing. Experimental work by Gable and Harmon-Jones 

(for a review, see Gable & Harmon-Jones, 2010b), has shown that positive emo-

tions broaden attention only when they are accompanied by a low approach 

motivation (e.g., contentment), but that they will narrow attention when accom-

panied by a high approach motivation (e.g., desire). Similar effects have been 

observed for negative emotions: sadness, a negative emotion with low withdrawal 

motivation, broadens attention, whereas disgust, a negative emotion with high 

withdrawal motivation, narrows attention. Taken collectively these findings 

indicate that it is the motivational intensity as such, i.e., the strength of the drive to 

approach or avoid an object or goal, that determines one’s attentional scope. 

Hence, as described by the motivational dimensional model (Gable & Harmon-

Jones, 2010b) the degree of motivational intensity can be orthogonal to the dimen-

sion of motivational direction or affective valence. However, as motivationally 

intense states have been associated with greater sympathetic nervous system 

activation, they may often be reflected in arousal effects. Nonetheless, as has been 

carefully pointed out in earlier work (e.g., Kahneman, 1973), arousal is determined 

by several factors and does not necessarily constitute an index of motivational 

intensity. For example, amusement is a positive high-activating emotion, but 

unlikely to urge one to approach something in the environment (Gable & 

Harmon-Jones, 2010b). Indeed, our findings do not support the notion either that 

high-arousal positive emotions by themselves narrow attention. 

If motivational intensity is indeed a better predictor of attentional narrowing 

than arousal or valence, the core affect model we used as a heuristic in our re-

search needs to be replaced. Future studies, then, should make use of new dimen-

sional frameworks that are better able to capture the fundamental affective proc-

esses driving focused attention, preferably those that have been shown to have a 

sound empirical basis. A recent study by Fontaine, Scherer, Roesch, & Ellsworth 

(2007) provides an excellent example of such an approach. These authors have 

shown that, besides the dimensions of valence and arousal, at least two other 

emotional dimensions can be identified, namely ‘unpredictability’ and ‘potency / 

control’. Together, these four dimensions were shown to provide a very adequate 
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description of emotional states across three different languages. The ‘potency / 

control’ factor may be of particular relevance for effects on attentional scope. This 

factor is characterized by action tendencies, such as wanting to take an initiative 

versus being apathetic. The description of this dimension actually comes close to 

the motivational intensity factor proposed by Harmon-Jones and Gable (2010b). 

Interestingly, this factor also captures parasympathetic forms of activation, and it 

might be argued that these effects are more important for motivation than the 

sympathetic activation usually associated with arousal (Fontaine et al., 2007).  

The use of stimulus sets such as those validated by Fontaine et al. (2007) may 

also overcome another major shortcoming of previous studies. Some of the studies 

by Harmon-Jones and Gable apparently involved an ad-hoc inclusion of stimulus 

material, and it might be argued that the level of motivational intensity induced by 

these stimuli depends more on the introspective qualities of the researcher than on 

objectively measurable standards (cf. Friedman & Forster, 2011). For example, 

Gable & Harmon-Jones (2008) attribute different attentional focus effects induced 

by film clips showing scrumptious desserts versus clips presenting cats in humor-

ous situations to differences in approach motivation. However, it has been argued 

that these obviously cute animals may induce a similar drive to approach them and 

hug, pet, or play with them, as the drive induced by the desserts to approach and 

eat them (as discussed by Friedman & Forster, 2011). For this reason, future 

studies should provide proper independent indices of motivational intensity. This 

is also important to ensure that the motivation intensity theory is falsifiable, and to 

prevent circular argumentation (e.g., observation: a stimulus narrows the atten-

tional scope; conclusion: it apparently had motivational intensity).  

Direct effects of mood? 

In contrast to theories predicting that emotions and moods do not differ in the 

way they impact behavior (Derryberry & Tucker, 1994; Fredrickson, 2001; 

Schwarz, 1990), the Mood-Behavior-Model (MBM; Gendolla, 2000) states that 

moods do not have direct effects on cognitive effort. According to the MBM, 

moods, unlike emotions, are usually not related to any particular goal or object. 

Because of this, moods may lack the specific action tendencies and stable motiva-

tional implications that emotions have. Accordingly, mood may not have a direct 

effect on cognitive control, but may affect behavior in a context-sensitive, indirect 

way only. That is, the recruitment of effort depends on how a particular situational 
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demand is evaluated, and affect regulates this appraisal. Our data are entirely 

consistent with this suggestion, as mood was found to have an indirect effect (see 

next section), but lacked a direct effect on cognitive control. This was repeatedly 

shown in our experiments. First, using a standard mood induction procedure that 

combined imagination with music, we found (Chapter 5) that neither mood 

valence nor arousal directly impacted cognitive control as measured in a flanker 

and Stroop task. In addition, we did not observe an interactive effect of valence 

and arousal, as would have been predicted by Derryberry and Tucker’s framework. 

Similarly, we found (Chapter 6) that sustained positive affect induced by funny 

cartoons did not directly reduce cognitive control. Finally, depressive symptoms 

after ATD, a pharmacological manipulation known to induce depressed mood in 

this population of remitted depressive patients, were not associated with cognitive 

control deficits or improvements either, as described in Chapter 7.  

Altogether, our null findings regarding direct mood effects suggest that the in-

fluence of mood on sustained effortful processing as measured in standard cogni-

tive control tasks is limited. Thus, although under certain conditions (cf. Forgas, 

1995) moods may have an effect on the way visual stimuli are judged on global 

versus local features, as measured in Navon tasks (e.g., Gasper & Clore, 2002; 

Gasper, 2004), this effect might be unrelated to effects on mental effort and cogni-

tive control. This conclusion is also supported by studies showing that moods do 

not have direct effects on effort-related cardiovascular measures. Moreover, 

cumulative findings from other labs also show the lack of impact of mood states 

on direct measures of cognitive control (e.g., Finucane, Whiteman, & Power, 2010; 

Martin & Kerns, 2011; but see Mitchell & Phillips, 2007; Rowe et al., 2007). 

It is important to note that affective states may still impair cognitive control via 

other, more cognitive, mechanisms. As has long been recognized, processing the 

emotion-inducing stimulus or problem and the elaborated task-irrelevant 

thoughts triggered by this stimulus, may deplete resources needed for cognitive 

control (Mitchell & Phillips, 2007; Schwarz, 1990). This effect may also explain the 

observation in Chapter 9 concerning passionate lovers who had only recently 

fallen in love. Participants reporting very high levels of passionate love showed 

worse performance on a Stroop and flanker task than participants reporting lower 

levels of infatuation. The extreme, almost obsessive, attention for the other charac-

teristic for these high levels of infatuation may simply have depleted resources 

needed for cognitive control. However, mood scores in this study were not related 

to control impairment, which reinforces our conclusion that mood in itself seems 

not to have direct effects on cognitive control. 
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Indirect effects: a matter of valence 

In contrast to the scant evidence for direct effects on cognitive control, our find-

ings provide a great deal of support for indirect effects of emotional states on 

cognitive control. These effects occurred on trial-to-trial adaptation in cognitive 

control tasks involving a random presentation of compatible and incompatible 

trials. We found that conflict adaptation, the transient improvement of behavioral 

control after incompatible in comparison to compatible trials (Botvinick et al., 

2001), was subject to affective regulation. We found that after incompatible trials, 

positive emotional states reduced and negative emotional states increased adapta-

tion. These effects occurred for both short-term (Chapters 2 and 3) and long-term 

affect manipulations (Chapters 5, 6, and 7). 

As shown in Chapter 2, short-term positive emotions were found to undo the 

adaptation triggered by previous conflict. This effect was observed in an arrow 

flanker task with monetary gain or loss as arbitrary feedback between trials. Unlike 

monetary loss, gain was shown to counteract conflict adaptation. This finding was 

replicated in the study described in Chapter 3. Consistent with the notion that 

effortful situations are aversive (Botvinick, 2007), our findings suggest that incom-

patible trials evoke a negative emotional state that, unless neutralized by a positive 

event such as a monetary reward, increases attentional focus. These data provide 

important initial evidence for the notion that affective valence may play a func-

tional role in the transient adaptation of cognitive control, as measured in sequen-

tial effects of reaction time (Cabanac, 1992). They are in line with earlier findings 

that positive emotions can undo the aftereffects of stressful events (Fredrickson et 

al., 2000). 

As described in the previous section, the MBM (Gendolla, 2000) expects that 

hedonic tone in sustained affective states predicts demand-driven adaptation. That 

is, conflict-driven adaptation of control may be improved by negative moods and 

reduced by positive moods. Several of our studies confirmed this prediction. In 

Chapter 5 this effect is illustrated in a study involving a flanker task, in which 

mood was induced using a standard induction procedure that manipulated not 

only affective valence but also arousal levels. We found that conflict-driven control 

was regulated only by affective valence. Using both funny and neutral cartoons, 

the study described in Chapter 6 replicated the effect that hedonic tone reduces 

conflict adaptation. Moreover, in the next study (Chapter 7) we demonstrated that 

depressive symptoms, induced by ATD in remitted depressive patients, were 

correlated with increased conflict adaptation. Taken together, these results 
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strongly imply that hedonic tone regulates conflict adaptation: unpleasant states 

result in stronger adaptation, and pleasant states result in weaker adaptation. 

According to the MBM, hedonic tone effects on demand-driven adaptation are 

impelled by the informational effect mood has on demand-related judgments. 

Thus, demands, as triggered by incompatible trials in our studies, are experienced 

as being more unpleasant and difficult when pleasure levels are low, and this 

evaluation may in turn drive improved effort mobilization. Although other studies 

have already found evidence for mood effects on subjective evaluation and effort-

related cardiovascular measures (e.g., Gendolla, 2000; de Burgo & Gendolla, 2009), 

it remains an important aim for future research to integrate such measures with 

sequential analyses of performance on cognitive control tasks. Such an integrative 

approach may also enhance our understanding of situations in which adaptation 

to cognitive demands fails, for example with extremely difficult tasks. As illus-

trated in Chapter 8, conflict-adaptation effects are eliminated or reversed when 

task demands are extremely high. Pupil dilation also declined under high task 

demands, suggesting that demand-driven effort mobilization may drop under 

conditions of mental overload. How the assumed non-linearity between task 

demands and the mobilization of effort (Brehm & Self, 1989; Kahneman, 1973; 

Kukla, 1972) is related to conflict adaptation remains an important issue for 

further research. Future research into the question how the evaluation of demands 

influences physiological and neural responses associated with emotions, conflict 

monitoring, and effort may provide important insights into how these concepts 

are related. 

Another topic for future research is the question how affective modulation of 

conflict adaptation is related to other measures of adaptation in cognitive psychol-

ogy paradigms. For example, the conflict monitoring theory suggests that adapta-

tion to demanding events has much in common with another type of adaptation, 

usually referred to as post-error adaptation (Botvinick et al., 2001): behavioral 

performance after an error is usually slower than after correct trials. Because post-

error slowing may reflect cautious processing in response to the error, it has been 

taken as an index of cognitive control. Given that both errors and demands are 

generally thought to be registered in the brain as aversive events, affective regula-

tion may involve a similar mechanism, probably involving the ACC (Botvinick, 

2007). Indeed, several studies have shown that negative affect amplifies the neural 

processing of errors, although this increased neural activation does not always 

modulate post-error slowing (e.g., Hajcak, McDonald, & Simons, 2004; Luu et al., 

2000). However, whether effects on post-error slowing reflect an adaptive increase 
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of cognitive control, as conflict adaptation does, has been the subject of serious 

debate. On the contrary, recent evidence suggests that it is more likely that post-

error slowing reflects attentional capture which hinders subsequent performance 

(Notebaert et al., 2009). Consistent with the suggestion that post-error adjust-

ments are maladaptive, post-error slowing is associated with steeper increases in 

negative affect and reduced task-focused coping in response to stressors in daily 

life (Compton et al., 2011).  

Recent findings suggest that demand-driven adaptation occurs at a local level. 

That is, conflict adaptation improves cognitive control in similar tasks, but impairs 

flexible switching to other task sets (e.g., Notebaert & Verguts, 2008). Since we 

found that increased pleasure levels left sustained cognitive control unaffected 

while at the same time reducing conflict adaptation, we might suppose that this 

effect is adaptive when people have to flexibly switch between other tasks. Al-

though future research will have to address this speculation, a link between posi-

tive affect and shifts toward more flexible behavior has indeed been documented 

earlier (Dreisbach & Goschke, 2004). Interestingly, the combination of the ability 

to sustain long-term goals with flexibility in the short-term implementation and 

adjustment of goals has been seen as characteristic of good self-management and 

self-regulation skills (Baumeister, Heatherton, & Tice, 1994). Thus, positive affect, 

reduced conflict adaptation, and self-regulation skills may be closely related. 

Future studies could investigate this possibility. Experience-sampling methods 

may for instance be used to understand the association between demand-driven 

adaptation as measured in the lab on the one hand, and the daily-life impact of 

stressors on motivation, negative emotions, and behavioral control on the other 

(cf. Compton et al., 2011). Investigating emotion effects on behavior in driving 

simulators is another way to further investigate the practical applications of our 

findings (cf. Pecher, Lemercier, & Cellier, 2009). 

Neural mechanisms 

Direct and indirect effects on cognitive control may reflect different modulatory 

mechanisms in the prefrontal cortex. On the one hand, direct improvement of 

cognitive control by emotional or motivational states may directly modulate the 

more lateral parts of prefrontal cortex, probably via subcortical regions that code 

the motivational intensity of such states. However, we did not study the neural 

mechanism of direct effects in this research project, so that this is left for future 
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researchers to investigate. On the other hand, indirect effects may involve not only 

the lateral but also the more medial parts of the PFC, including the ACC (cf. 

Figure 1). As summarized below, two of the studies in our project provided direct 

insight into this neural mechanism. 

In Chapter 3 we described evidence for a reward-related inhibition of conflict-

related fronto-central theta activity in a flanker task. This neural response ob-

served in the EEG accompanied the reward-driven reduction of conflict adapta-

tion observed in the behavioral data. Consistent with intracranial recordings, this 

effect in theta power is likely to originate from the ACC and the surrounding 

medial frontal wall (Cohen et al., 2008). As predicted by the conflict monitoring 

theory (Botvinick et al., 2001), these data suggest that the ACC represents a signal 

that indicates the need for more cognitive control. Inhibition of this signal by 

reward may have counteracted subsequent behavioral adaptation. It seems possi-

ble that the opposing influences of conflict and reward that we observed reflect 

Conflict Conflict monitoringmonitoring

and and evaluationevaluation

CognitiveCognitive controlcontrol

AffectAffect

LLLL----PFCPFCPFCPFC

dACCdACCdACCdACC

rACCrACCrACCrACC

VPVPVPVP

VSVSVSVS
SN /SN /SN /SN /
VTAVTAVTAVTA

dorsal Anterior Cingulate Cortex
rostral Anterior Cingulate Cortex
Lateral Prefrontal Cortex
Substantia Nigra
Ventral Striatum
Ventral Pallidum
Ventral Tegmental Area
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rACC
L-PFC
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VP
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Figure 1. Neural interactions involved in the indirect affective regulation of  

cognitive control 
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some compensatory effects between conflict and reward at a neurotransmitter 

level. Consistent with this possibility, Holroyd and colleagues (Holroyd et al., 

2008; Holroyd & Coles, 2002) have suggested that negative and positive events 

interact via dopamine modulation, which drives ACC activity. Conversely, there is 

also evidence suggesting that the ACC sends feedback signals down to the mid-

brain, via the striatum, to inhibits dopamine neurons (Frank, 2005). 

The role of affective modulation in fronto-striatal interactions was investigated 

in an fMRI experiment, described in Chapter 6. As summarized in Figure 1, we 

found that funny cartoons increased neural activity usually associated with the 

processing of rewards, particularly in the ventral striatum (VS) and ventral pal-

lidum (VP). Animal studies have shown that these basal ganglia (BG) regions 

include hedonic hotspots that may play a causal role in hedonic states. Reward-

related BG activation, in turn, appeared to inhibit the neural response to conflict 

in a rostral ACC (rACC) region. Because activation in this region proved predic-

tive of conflict-driven control improvement in the emotionally neutral context, it 

might play an important role in the affective appraisal of demands. Conflict 

monitoring activity in the dorsal ACC was co-modulated with this behavioral 

adaptation. Psycho-physiological interaction analyses confirmed functional 

interactions that were consistent with well-known anatomical connections looping 

between the VS and ACC through the VP (Alexander et al., 1986). On the basis of 

these findings we may hypothesize that the VP modulates rostral ACC activation, 

which in turn drives conflict-driven control. The resulting adaptation is subse-

quently registered in the dorsal ACC, which then sends feedback signals back to 

the VS. Within the striatum this feedback signal may become integrated with 

information concerning the current affective state. One might speculate that the 

reciprocal loops between the BG and ACC involve different neurotransmitter 

systems. More specifically, the feedback loop via the dACC and VS is likely to 

involve dopaminergic mediation, whereas the pleasure-related modulation in the 

VP and rACC may also involve endogenous opioid modulation (cf. Kringelbach & 

Berridge, 2009).  

An important challenge for future research is to understand the different time 

scales at which reciprocal interactions between regions identified in this BG-PFC 

network occur. For example, neural regions coding the hedonic state of an organ-

ism may involve tonic signaling, whereas the more short-lived evaluation of 

incoming events and the associated emotions require faster signaling. Moreover, 

to ensure constant optimization of the internal homeostatic balance, these signals 

need to become integrated. However, given the temporal and spatial limitations of 
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neuroimaging techniques a better understanding of these temporal dynamics 

requires other techniques. Studies using intracranial recordings may be an impor-

tant tool to gain a better understanding of the temporal dynamics of these net-

works (cf. for instance Pourtois et al., 2010). 

Because neither fMRI nor EEG are able to provide information about the par-

ticular neurotransmitters involved, the exact neurochemical basis of affective and 

motivational regulation requires further investigation. As indicated above, the 

neural circuitry indentified may involve dopamine and opioid modulation. None-

theless, the exact role these systems play is not clear. Results from animal studies, 

for example, have suggested that dopamine is primarily related to motivational 

aspects, whereas the opioid system is involved in the hedonic aspects of emotions 

(Barbano & Cador, 2007; Kringelbach & Berridge, 2009). On the basis of this 

distinction one might propose that direct effects on cognitive control – possibly 

reflecting motivation – primarily involve dopamine, whereas indirect effects – 

sensitive to hedonic value – may reflect opioid modulation. To be sure, this is an 

oversimplified picture. Even within the same neural region or system different 

neurons have been shown to play different roles. For example, some midbrain 

dopamine neurons encode motivational values, while others encode motivational 

salience. These different sets of neurons are assumed to be connected with distinct 

brain networks, each with its own role in motivational control (Bromberg-Martin, 

Matsumoto, & Hikosaka, 2010). Similarly, pain and pleasure hotspots have been 

found in closely adjacent regions in the VS and VP, and release of endogenous μ-

opioids is not limited to pleasant events, but can also be observed for painful 

stimuli. Moreover, the different time courses of neurotransmitter systems cannot 

be measured by the same technique, making it difficult to compare findings and 

pin down the actual mechanisms involved. Lastly, the opioid and dopamine 

systems do not work in isolation but interact with each other in complex, yet ill-

understood ways (Leknes & Tracey, 2008).  

Taken together, our neuroimaging findings are in line with predictions from 

the conflict-monitoring theory suggesting that the ACC plays an important role in 

the online evaluation of demands, which may subsequently drive extra cognitive 

control. Indirect effects of emotions on cognitive control probably involve the 

modulation of ACC activity via reward-related processing in the BG. However, the 

exact temporal dynamics and neurochemical basis of this neural circuitry needs 

further study. 
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Outlook: the adaptive role of emotions 

One of our main conclusions in this dissertation is that hedonic tone helps to 

counteract the impact of adverse events on the brain and on our behavior. Conse-

quently, positive emotions may help to reduce the impact of stressors and daily 

hassles, and play an adaptive role in our daily life. From this perspective we may 

say that our work contributes to the rapidly growing body of psychological litera-

ture stressing the beneficial effects of positive feelings. In line with predictions 

from the broaden-and-build theory (Fredrickson, 2001), numerous studies have 

shown that positive affect broadens people’s thought-action repertoires, and 

allows individuals to build vital social, physical, and cognitive resources. This line 

of research follows numerous self-help books, courses, and magazines reflecting 

the current Zeitgeist, which assumes happiness is essential to human flourishing 

(cf. Seligman & Csikszentmihalyi, 2000).  

However, it is important to note that one cannot say that positive affect is al-

ways a good thing, whereas negative affect is always a bad thing (Gruber, Mauss, & 

Tamir, 2011). On the contrary, emotions typically arise as an adaptive response to 

a particular situation, and as shown in this dissertation negative emotions may 

also play an important role in improving cognitive control. Thus, hedonic tone 

may become dysfunctional when a quick adaptation to a dangerous or difficult 

situation is needed, whereas it can be adaptive in safe situations in which such 

adaptation is useless. For example, a positive mood might actually impair driving 

behavior when a maneuver of a vehicle in front of you calls for enhanced control, 

whereas it may help you to stop being obsessed by a small but annoying computer 

error when you are on holiday. Likewise, a depressive episode may initially help to 

prioritize solving the problem that triggered it (Andrews & Thomson, 2009), but 

after the situation has taken a favorable turn sustained depression will become 

maladaptive. Thus, the adaptive value of emotions simply depends on their con-

text and their extent. When things are going well, positive emotions can help 

people to be flexible, increasing resources and form or strengthen social bonds. 

However, in problematic situations the experience of negative emotions may offer 

important benefits that positive emotions do not (Gruber et al., 2011).  

In conclusion, although the pursuit of happiness is an important component of 

the good life, there are times when it is better to accept our negative emotions or 

even let them help guide our behavior. Beneficial emotion effects are not limited to 

cognitive control, but may also facilitate more complex functions such as those 

needed in social situations. For example, it has been suggested that expressing 
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negative emotions, such as anger, can be instrumental in social situations involv-

ing negotiation (Gruber et al., 2011; Tamir, Mitchell, & Gross, 2008). Moreover, 

emotions are not “passions”, i.e., “most of our emotions, most of the time, are not 

entirely beyond our control” (Solomon, 2007, p. 190). On the contrary, people can 

actively regulate their emotions (Cornelius, 2006; Ochsner & Gross, 2005) and 

may even make strategic use of them (Tamir, Chiu, & Gross, 2007). Finally, as 

already indicated long ago by the Greek philosopher Aristotle (Aristotle, 2009), 

happiness is more than pleasure: life satisfaction and meaning, too, are important 

ingredients of the good life (Leknes & Tracey, 2008; Waterman, 1993). Notably, 

when experienced as meaningful, even the most painful events may become 

rewarding (Leknes & Tracey, 2008). How exactly people find meaning in the pain 

and pleasures of everyday life is an essential question that only recently has started 

to be investigated scientifically (Flanagan, 2007; Kesebir & Diener, 2008; Seligman 

& Csikszentmihalyi, 2000). Formulating answers to this question is crucial to 

gaining a rich and deep understanding of the intricate link between emotions, 

well-being, and goal-directed behavior. 
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De drijfveer tot beheersing:  

Hoe affect en motivatie cognitieve controle beïnvloeden 

Helpen emoties in een situatie die vraagt om mentale inspanning? Dat is de 

centrale vraag die dit proefschrift probeert te beantwoorden. In een moeilijke 

situatie is cognitieve controle nodig om de aandacht te richten op belangrijke 

informatie en om irrelevante informatie juist te onderdrukken. In een serie 

psychologische experimenten is onderzocht hoe affect en motivatie deze 

cognitieve controle beïnvloeden en welke psychologische processen en neurale 

mechanismen hieraan ten grondslag liggen. 

Om de mate van cognitieve controle te kunnen berekenen heeft het onderzoek 

beschreven in dit proefschrift gebruikt gemaakt van laboratoriumtaken, zoals de 

Stroop taak. Deelnemers die de Stroop taak uitvoeren moeten telkens reageren op 

de inktkleur van het woord terwijl ze het geschreven woord zelf moeten negeren. 

Het is bekend dat reacties op de Stroop taak vaker traag en fout zijn wanneer 

deelnemers bijvoorbeeld moeten reageren op de rode inktkleur van het woord 

"groen" (een zogenaamde incompatibele trial), dan wanneer deze kleur vergezeld 

gaat van hetzelfde woord "rood" (compatibele trial). Het verschil in reactietijden 

op incompatibele versus compatibele trials geeft de mate van interferentie 

(afleiding) van het woord aan. Door dit interferentie-effect te meten kan worden 

onderzocht hoe affect en motivatie de mate van afleiding door irrelevante 

informatie beïnvloeden.  

Omdat compatible en incompatibele trials normaal gesproken in een 

willekeurige volgorde worden gepresenteerd, maakt de Stroop taak het ook 

mogelijk om naar volgorde-effecten in taakprestaties te kijken. Het zogenaamde 

conflictadaptatie-effect laat zien dat mensen over het algemeen geneigd zijn beter 

te presteren als men zojuist nog goed op een moeilijke, incompatibele (conflict) 

trial heeft gereageerd. Over het algemeen zijn mensen dus geneigd zich mentaal 

sterker in te spannen nadat ze een moeilijke situatie hebben meegemaakt. Ook dit 

conflictadaptatie-effect kan door affect of motivatie worden beïnvloed. In dit 

proefschrift wordt onderscheid gemaakt tussen directe en indirecte beïnvloeding. 

Effecten op interferentie worden 'direct' genoemd omdat ze een aanpassing van 

algemene, volgehouden mentale inspanning betreffen. Effecten op 

conflictadaptatie worden 'indirect' genoemd, omdat de modulatie hier afhangt van 

de context, in dit geval de waargenomen moeilijkheid van de situatie.  

In het onderzoek dat is beschreven in dit proefschrift zijn interferentie en con-

flictadaptatie-effecten gemeten in de Stroop taak en vergelijkbare cognitieve-



Samenvatting 

 

 176 

controle taken. Deze taken zijn gecombineerd met een experimentele manipulatie 

van affect en motivatie bijvoorbeeld door gebruik te maken van geldbeloning of –

straf, stemmingsinductie met muziek, of emotioneel-geladen plaatjes.  

Tabel 1 geeft een overzicht van de acht empirische hoofdstukken en de daarbij 

gebruikte taken en manipulaties. Ook zijn de hoofdbevindingen beschreven die 

hieronder, na een theoretische inleiding, verder zullen worden uitgewerkt. 

Directe effecten 

Verschillende psychologische theorieën suggereren dat het interferentie-effect, 

gemeten in bijvoorbeeld de Stroop taak, door affect kan worden beïnvloed. Som-

mige theorieën voorspellen dat, in vergelijking met negatieve emoties, positieve 

emoties leiden tot meer interferentie van afleidende informatie en minder mentale 

inspanning. Andere theorieën suggereren dat niet alleen de emotionele valentie – 

bijv. of een emotie positief of negatief is – maar ook het activatie-niveau – de 

(fysiologische) opwinding op dat moment – een rol speelt. Bovendien zou de 

tijdsduur van de affectieve toestand een belangrijke factor kunnen zijn: terwijl 

kortdurende emoties meestal gepaard gaan met een bepaalde motivatie om een 

situatie te benaderen of juist te ontvluchten, hebben langer durende stemmingen 

een veel minder duidelijke motivationele component. Verder treedt de invloed van 

affect op cognitieve controle waarschijnlijk niet altijd op. Doordat emotionele 

stimuli zelf ook verwerkt moeten worden is het mogelijk dat dit de beschikbare 

cognitieve capaciteit beperkt, waardoor mensen gevoeliger worden voor afleiding 

op de taak. Welke factoren precies een rol spelen bij de directe emotionele beïn-

vloeding van cognitieve controle is nog niet voldoende onderzocht en het onder-

zoek beschreven in dit proefschrift probeert daarop een antwoord te formuleren. 

De empirische hoofdstukken in dit proefschrift geven slechts beperkt bewijs 

voor directe effecten van emotie op cognitieve controle. Zo wordt er in hoofdstuk 

2 en 3 aangetoond dat positieve en negatieve feedback in een flanker taak (een 

variant van de Stroop taak) niet een direct effect heeft op cognitieve controle. De 

resultaten in hoofdstuk 4 daarentegen, laten zien dat een negatieve emotie gekop-

peld aan een hoog activatie-niveau (zoals gemeten met pupil dilatatie) wel zorgt 

voor verbeterde cognitieve controle, terwijl een vergelijkbaar hoog-activerende 

positieve emotionele toestand niet dit effect heeft. Deze resultaten zijn  
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vooral consistent met het 'motivational dimension model' van Gable en Harmon-

Jones dat voorspelt dat emotionele toestanden met een hoge motivationele intensi-

teit zorgen voor een verbeterde aandachtsfocus. Onze bevindingen ondersteunen 

echter niet de theorieën die verbeteringen van aandachtsfocus toeschrijven aan 

alleen valentie of alleen activatie. Welke rol motivatie precies speelt bij de emotio-

nele modulatie van cognitieve controle is een belangrijke vraag voor vervolgonder-

zoek. 

In tegenstelling tot de emotie-effecten beschreven in hoofdstuk 4, laten de expe-

rimenten die gebruik maken van affect manipulaties met een langer durend effect 

(beschreven in hoofdstuk 5, 6 en 7) geen direct effect op cognitieve controle zien. 

Deze resultaten komen overeen met het 'Mood-Behavior-Model' van Gendolla dat 

indirecte maar geen directe effecten van stemming op mentale inspanning voor-

spelt. In hoofdstuk 9 wordt bovendien aangetoond dat andere factoren dan affect 

ook een effect kunnen hebben. In deze studie naar de invloed van verliefdheid op 

cognitieve controle werd een positief verband gevonden tussen het interferentie-

effect en de intensiteit van de verliefdheid die gerapporteerd werd. Aangezien er 

geen relatie was met de gerapporteerde stemming, wordt dit verband mogelijk het 

best verklaard door de invloed van niet-emotionele factoren. Zo zouden verliefde 

mensen hun cognitieve capaciteit mogelijk vooral gebruiken om te kunnen denken 

aan de geliefde in plaats van zich te concentreren op een lastige laboratoriumtaak. 

Indirecte effecten 

In tegenstelling tot de zogenaamde directe effecten zijn de effecten van emotie en 

motivatie op het zogenaamde conflictadaptie-effect in het verleden minder vaak 

onderzocht. Deze indirecte effecten zouden kunnen ontstaan doordat de 

aanpassing van cognitieve controle na een conflict trial gepaard gaat met negatieve 

emoties die worden opgeroepen door deze moeilijke situatie. Aangezien eerder 

onderzoek heeft laten zien dat het effect van stressvolle situaties teniet kan worden 

gedaan door positieve emoties, zou een dergelijk effect ook op conflictadaptatie 

van toepassing kunnen zijn. Zoals voorspeld door het 'Mood-Behavior-Model' 

kunnen op een vergelijkbare manier langetermijn-effecten optreden. Inderdaad 

laten experimenten vaak zien dat mentale inspanning na een moeilijke situatie 

wordt afgezwakt door een positieve stemming, een proces waardoor dus ook 

conflictadaptatie zou kunnen worden gereduceerd. Omgekeerd zou een negatieve 

stemming het conflictadaptatie-effect kunnen vergroten.  
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In dit proefschrift is inderdaad veel bewijs gevonden voor een affectieve invloed 

op het conflictadaptatie-effect. Zo zorgt een positieve feedback gekoppeld aan een 

geldbeloning (zie hoofdstuk 2 en 3) voor verminderde conflictadaptatie. Deze 

bevinding suggereert dat positieve emoties de negatieve gevolgen van conflict 

teniet kunnen doen waardoor een aanpassing in gedrag uitblijft.  

Overeenkomstig de voorspellingen van het ‘Mood-Behavior-Model’, wordt in 

hoofdstuk 5 en 6 aangetoond dat positief affect opgeroepen door middel van een 

stemmingsinductie (hoofdstuk 5) of grappige cartoons (hoofdstuk 6) leidt tot 

verminderde conflictadaptatie. Hoofdstuk 7 laat zien dat depressieve symptomen, 

geïnduceerd met Acute Tryptofaan Depletie in een groep deelnemers hersteld van 

een depressie, juist geassocieerd zijn met toegenomen conflictadaptatie. Conclude-

rend: deze bevindingen laten een valentie-effect zien; onplezierige stemmingen 

leiden tot toegenomen conflictadaptatie en plezierige stemmingen leiden juist tot 

verminderde conflictadaptatie. 

Een van de uitdagingen voor toekomstig onderzoek is om metingen van con-

flictadaptatie te integreren met cardiovasculaire maten van mentale inspanning. 

Nader onderzoek is ook nodig om de randvoorwaarden waaronder het conflict-

adaptatie-effect optreedt beter te begrijpen. Zo wordt in hoofdstuk 8 beschreven 

dat het conflictadaptatie-effect kan verdwijnen of zelfs omdraaien als een taak te 

moeilijk wordt. Dit effect is al eerder beschreven in de mentale-

inspanningsliteratuur die suggereert dat er een niet-lineair verband is tussen taak 

moeilijkheid en mentale inspanning gemeten met cardiovasculaire maten: mensen 

geven verdere inspanning op als een taak te moeilijk wordt. Het is interessant om 

nader te onderzoeken hoe deze effecten samenhangen met fysiologische en neurale 

reacties op emoties en cognitieve conflicten. Er is ook meer onderzoek nodig om 

het verband met controle aanpassingen in andere laboratoriumtaken en het 

dagelijks leven te onderzoeken.  

Neurale mechanismen 

Naast de effecten op gedragsaanpassingen, is ook onderzocht hoe affect en cogni-

tieve controle de verwerking in de hersenen beïnvloedt. Volgens de zogenaamde 

'conflict monitoring theory' van Botvinick en collega's speelt de 'cortex cingularis 

anterior' (meestal afgekort als ACC) een belangrijke rol bij het registreren van 

moeilijke situaties en het signaleren van de behoefte aan een toename van mentale 

inspanning. Vooral de laterale gedeelten van de prefrontale cortex gebruiken dit 

signaal om cognitieve controle te versterken. Terwijl controleprocessen zich vooral 

in de hersenschors afspelen, worden positieve emoties juist vooral verwerkt in de 
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meer subcorticale gebieden van het brein, met name in de basale kernen en de 

middenhersenen. Deze gebieden spelen mogelijk een belangrijke rol in het aanpas-

sen van controle processen doordat ze een regulerende werking hebben op de 

prefrontale cortex. Neurotransmitters zoals dopamine, serotonine en endogene 

opioïden spelen daarbij een belangrijke rol. 

Twee studies hebben de neurale mechanismen van de invloed van emotie op 

conflictadaptatie onderzocht. In hoofdstuk 3 is beschreven hoe, vergeleken met 

negatieve feedback, effecten van positieve feedback gemeten in het EEG samen-

hangen met de verminderde gedragsaanpassing na conflict. De waargenomen 

modulatie in oscillaties (binnen de zogenaamde 'theta-band') suggereert dat het 

conflictsignaal in de ACC inderdaad kan worden geremd door geldbeloning. 

Mogelijk is deze inhibitie verantwoordelijk voor de waargenomen aanpassing in 

gedrag op de volgende trial. 

Hoofdstuk 6 beschrijft een fMRI studie waarbij grappige cartoons het subcorti-

cale beloningssysteem van het brein activeren, dat vervolgens de reactie van de 

ACC op conflict doet verminderen. Aanvullende analyses suggereren neurale 

communicatie tussen de ACC en de beloninggebieden, die weer door de affectieve 

context wordt beïnvloed. Toekomstig onderzoek is nodig om de temporele dyna-

miek van deze neurale interacties beter te begrijpen. 

Een belangrijke, helaas onbeantwoord gebleven vraag is welke neurotransmit-

ters verantwoordelijk zijn voor de affectieve beïnvloeding van cognitieve controle. 

Er kan worden gespeculeerd dat het directe effect op cognitieve controle door 

motivatie vooral gerelateerd moet worden aan het dopamine systeem. Anderszijds 

worden indirecte effecten op cognitieve controle, die vooral door emotionele 

valentie worden gereguleerd, mogelijk beter verklaard door een modulatie via 

endogene opioïden. Het is een grote uitdaging voor toekomstig onderzoek om de 

rol van deze neurotransmitter systemen beter te begrijpen. 

Conclusie 

In een breder perspectief geplaatst, laat het onderzoek beschreven in deze disserta-

tie vooral zien dat een plezierige emotionele toestand de invloed van nare situaties 

tegengaat. Deze conclusie past bij onderzoek geïnspireerd door de recente 'positie-

ve psychologie' stroming in de psychologie. Volgens deze stroming zijn positieve 

emoties belangrijk voor een gezond en goed leven. Hoewel positieve emoties 

inderdaad vaak gewenst zijn en een functionele rol spelen is het echter onjuist te 

concluderen dat positieve emoties te allen tijde goed zijn en negatieve emoties te 

allen tijde slecht. Zoals dit proefschrift heeft laten zien, zijn emoties vaak adaptieve 
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reacties op een bepaalde omgeving. Daardoor kunnen negatieve emoties bijvoor-

beeld helpen bij mentale inspanning voor een belangrijke taak, terwijl een positie-

ve stemming in een gevaarlijke situatie wel eens disfunctioneel zou kunnen zijn. 

Of emoties functioneel zijn hangt dus uiteindelijk af van de specifieke situatie en 

de tijdsduur van de emotionele reactie. 
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