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Part IV

Multivariate coefficients
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Fundamental entities in several domains of data analysis are resemblance measures
or similarity coefficients. In most domains similarity measures are defined or studied
for pairwise or bivariate (two-way) comparison. As an alternative to bivariate re-
semblance measures multivariate or multi-way coefficients may be considered. Mul-
tivariate coefficients can for example be used if one wants to determine the degree of
agreement of three or more raters in psychological assessment, if one wants to know
how similar the partitions obtained from three different cluster algorithms are, or
if one is interested in the degree of similarity of three or more areas where certain
types of species may or not may be encountered.

In this chapter multivariate formulations (for groups of objects of size k) of
various of bivariate similarity coefficients (for pairs of objects) for binary data are
presented. In this chapter the multivariate formulations are not functions of bivariate
similarity coefficients, for example

S12 + S13 + S23

3
(arithmetic mean).

Instead, an attempt is made in this chapter to present multi-way formulations that
reflect certain basic characteristics of, and have a similar interpretation as, their
two-way versions.
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172 Coefficients that generalize basic characteristics

Chapter 16 is organized as follows. First, a class of two-way similarity coefficients
for binary data is considered, that can be written as functions of two variables a
and d, for example

SJac =
a

a + b + c
=

a

1− d
.

This class of coefficients is generalized by reformulating the two-way quantities a and
d into multivariate variables a(k) and d(k). Similarity coefficients that can be defined
using only the variables a(k) and d(k) are named after Bennani-Dosse (1993) and
Heiser and Bennani (1997), who first presented these coefficients for the similarity
of three variables.

For the second class of coefficients the quantity pi (qi), that is, the proportion
of 1s (0s) in variable xi, is involved in the definition. Throughout the chapter it is
shown what properties from the two-way case are preserved with the multivariate
formulations of various similarity coefficients presented here.

16.1 Bennani-Heiser coefficients

Many bivariate coefficients are written as functions of four dependent variables a, b,
c and d. Although b and c are two separate variables, most coefficients are defined
to be symmetric in b and c. As noted by Heiser and Bennani (1997, p. 195),
a large number of two-way measures are characterized by the number of positive
matches (a), negative matches (d), and mismatches (b, c). This is especially the
case for similarity coefficients that are rational functions, linear in both numerator
and denominator, for example

SSM =
a + d

a + b + c + d
or SJac =

a

a + b + c
.

Suppose x1, x2, ..., xk are k binary variables. Instead of variables a, b, c and d (as used
and defined in Part I), we define for k binary variables and multivariate coefficients,
the two variables

a(k) = the proportions of 1s that x1, x2, ..., xk share in the same positions

d(k) = the proportions of 0s that x1, x2, ..., xk share in the same positions.

Similarity coefficients that can be defined using the variables a(k) and d(k) are named
after Bennani-Dosse (1993) and Heiser and Bennani (1997), who first presented these
coefficients for three variables. Although many Bennani-Heiser coefficients are linear
in both numerator and denominator, it is not a necessary property. In the following,
let S(k) denote a multivariate similarity coefficient for groups of size k.

Jaccard (1912) studied flora in several districts of the Alpine mountains. To
measure the degree of similarity of two districts, Jaccard used the ratio

S
(2)
Jac =

Number of species common to the two districts

Total number of species in the two districts
=

a(2)

1− d(2)
.
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A seemingly proper and straightforward 3-way formulation of Jaccard coefficient
would be

S
(3)
Jac =

Number of species common to the three districts

Total number of species in the three districts
=

a(3)

1− d(3)
.

The complement 1 − S
(3)
Jac was presented in Cox, Cox and Branco (1991, p. 200).

The multivariate formulation of SJac is then given by

S
(k)
Jac =

a(k)

1− d(k)
.

The two-way Jaccard coefficient SJac is a member of SGL1(θ), given by

SGL1(θ) =
a

a + θ(b + c)
=

a

(1− θ)a + θ(1− d)

which is one of the parameter families studied for metric properties in Gower and
Legendre (1986). A possible multivariate formulation of SGL1(θ) is given by

S
(k)
GL1(θ) =

a(k)

(1− θ)a(k) + θ(1− d(k))
.

Members of S
(k)
GL1(θ) are (see Section 3.1)

S
(k)
GL1(θ = 1) = S

(k)
Jac =

a(k)

1− d(k)

S
(k)
GL1(θ = 1/2) = S

(k)
Gleas =

2a(k)

1 + a(k) − d(k)

S
(k)
GL1(θ = 2) = S

(k)
SS1 =

a(k)

2− a(k) − 2d(k)
.

The formulations of SGL1(θ) and SGL2(θ) (and their multivariate formulations pre-
sented in this chapter) are related to the concept of global order equivalence (Sibson,
1972; Batagelj and Bren, 1995). We first present a generalization of global order
equivalence for multivariate coefficients that are Bennani-Heiser coefficients. Two
Bennani-Heiser coefficients, S(k) and S(k)∗, are said to be globally order equivalent
if

S(a
(k)
1 , d

(k)
1 ) > S(a

(k)
2 , d

(k)
2 )

if and only if S∗(a
(k)
1 , d

(k)
1 ) > S∗(a

(k)
2 , d

(k)
2 ).

If two coefficients are globally order equivalent, they are interchangeable with respect
to an analysis method that is invariant under ordinal transformations. Proposition
16.1 is a straightforward generalization of Theorem 3.1.
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Proposition 16.1. Two members of S
(k)
GL1(θ) are globally order equivalent.

Proof: For an arbitrary ordinal comparison with respect to S
(k)
GL1(θ), we have

a
(k)
1

(1− θ)a
(k)
1 + θ(1− d

(k)
1 )

>
a

(k)
2

(1− θ)a
(k)
2 + θ(1− d

(k)
2 )

a
(k)
1

1− d
(k)
1

>
a

(k)
2

1− d
(k)
2

.

Since an arbitrary ordinal comparison with respect to S
(k)
GL1(θ) does not depend on

the value of θ, any two members of S
(k)
GL1(θ) are globally order equivalent. �

Instead of positive matches only, one may also be interested in a similarity co-
efficient or resemblance measure that involves the negative matches. The simple
matching coefficient is given by

S
(2)
SM =

Number of attributes present and absent in two objects

Total number of attributes
=a(2) + d(2).

The multivariate formulation of SSM is then given by

S
(k)
SM = a(k) + d(k).

The simple matching coefficient (SSM) belongs to another parameter family studied
in Gower and Legendre (1986), which is given by

SGL2(θ) =
a + d

θ + (1− θ)(a + d)
.

The multivariate extension of family SGL2(θ) is given by

S
(k)
GL2(θ) =

a(k) + d(k)

θ + (1− θ)(a(k) + d(k))
.

Members of S
(k)
GL2(θ) are (see Section 3.1)

S
(k)
GL2(θ = 1) = S

(k)
SM = a(k) + d(k)

S
(k)
GL2(θ = 1/2) = S

(k)
SS2 =

2(a(k) + d(k)

1 + a(k) + d(k)

S
(k)
GL2(θ = 2) = S

(k)
RT =

a(k) + d(k)

2− a(k) − d(k)
.

Proposition 16.2 demonstrates the global order equivalence property for
S

(k)
GL2(θ). The assertion is a straightforward generalization of Theorem 3.2.
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Proposition 16.2. Two members of S
(k)
GL2(θ) are globally order equivalent.

Proof: For an arbitrary ordinal comparison with respect to S
(k)
GL2(θ), we have

a
(k)
1 + d

(k)
1

θ + (1− θ)(a
(k)
1 + d

(k)
1 )

>
a

(k)
2 + d

(k)
2

θ + (1− θ)(a
(k)
2 + d

(k)
2 )

a
(k)
1 + d

(k)
1 > a

(k)
2 + d

(k)
2

which does not depend on the value of θ. �

Other Bennani-Heiser coefficients are generalizations of bivariate coefficients by
Russel and Rao (1940) (SRR) and Baroni-Urabani and Buser (1976, p. 258). Possible
multivariate formulations of these coefficients are given by

S
(k)
RR = a(k)

S
(k)
BUB =

a(k) +
√

a(k)d(k)

1− d(k) +
√

a(k)d(k)

and S
(k)
BUB2 =

2a(k) + d(k) − 1 +
√

a(k)d(k)

1− d(k) +
√

a(k)d(k)
.

16.2 Dice’s association indices

Let pi and qi denote the proportion of 1s, respectively 0s, in variable xi. For the
multivariate formulations presented in this section it is useful to work with a different
generalization of the concept of globally order equivalent (Sibson, 1972). Let x1,k =
{x1, x2, ..., xk} and y1,k = {y1, y2, ..., yk} denote two k-tuples. Two multivariate
coefficients, S and S∗, are said to be globally order equivalent if

S(x1,k) > S(y1,k) if and only if S∗(x1,k) > S∗(y1,k).

Dice (1945, p. 298) proposed two-way association indices that consist of the amount
of similarity between any two species x1 and x2, relative to the occurrence of either
x1 or x2. Hence, for every pair of variables there are two measures, namely

SDice1 =
a(2)

p1

and SDice2 =
a(2)

p2

.

What became know as the Dice coefficient is Dice’s coincidence index, which is the
harmonic mean of the two association measures, given by

S
(2)
Gleas =

2a(2)

p1 + p2

.

Dice (1945, p. 300) already noted that the coefficients he proposed could be easily
expanded to measure the amount of association between three or more species. Thus,
for every triple of variables there are three coefficients, namely
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a(3)

p1

,
a(3)

p2

and
a(3)

p3

.

The three-way extension of SGleas is then the harmonic mean of the three association
indices, which is given by

S
(3)∗
Gleas =

3a(3)

p1 + p2 + p3

where the asterisk (∗) is used to denote that this formulation is different from the
Bennani-Heiser multivariate generalization presented in the previous section. The
corresponding multivariate formulation of SGleas is given by

S
(k)∗
Gleas =

k a(k)

∑k
i=1 pi

.

Instead of the harmonic mean, we may apply other special cases of the power mean
(Section 3.2) to Dice’s association indices, to obtain multivariate generalizations of
various other two-way similarity coefficients. Hence, we obtain

S
(k)
BB =

a(k)

max(p1, p2, ..., pk)
(minimum)

S
(k)
Kul =

1

k

k
∑

i=1

a(k)

pi

(arithmetic mean)

S
(k)
DK =

a(k)

∏k
i=1 p

1/k
i

(geometric mean)

S
(k)
Sim =

a(k)

min(p1, p2, ..., pk)
(maximum).

In addition, the product of the two association indices defines a coefficient by Sor-
genfrei (1958). Its multivariate extension is given by

S
(k)
Sorg =

[

a(k)
]k

∏k
i=1 pi

.

An alternative two-way formulation of SKul is given by

S
(2)
Kul =

1

2

[

a(2)

p1

+
a(2)

p2

]

=
a(2)(p1 + p2)

2p1p2

.

From this formulation we may present the alternative multivariate extension of S
(2)
Kul

given by

S
(k)∗
Kul =

[

a(k)
]k−1∑k

i=1 pi

k
∏k

i=1 pi

where the asterisk (∗) is used to denote that this formulation is different from S
(k)
Kul.
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A two-way coefficient by McConnaughey (1964) is given by

S
(2)
McC =

a(2)(p1 + p2)− p1p2

p1p2

.

A possible multivariate generalization of S
(2)
McC is given by

S
(k)
McC =

2
k

[

a(k)
]k−1∑k

i=1 pi −
∏k

i=1 pi
∏k

i=1 pi

.

As it turns out, multivariate formulation S
(k)∗
Kul preserves an order equivalence prop-

erty with respect to S
(k)
McC, which is not preserved by power mean multivariate for-

mulation S
(k)
Kul. Some additional notation is required: let p(xi) denote the proportion

of 1s in variable xi.

Proposition 16.3. Coefficients S
(k)
McC and S

(k)∗
Kul are globally order equivalent.

Proof: For an arbitrary ordinal comparison with respect to S
(k)
McC, we have

2
k

[

a
(k)
1

]k−1
∑k

i=1 p(xi)−
∏k

i=1 p(xi)
∏k

i=1 p(xi)
>

2
k

[

a
(k)
2

]k−1
∑k

i=1 p(yi)−
∏k

i=1 p(yi)
∏k

i=1 p(yi)

if and only if
[

a
(k)
1

]k−1
∑k

i=1 p(xi)
∏k

i=1 p(xi)
>

[

a
(k)
2

]k−1
∑k

i=1 p(yi)
∏k

i=1 p(yi)
.

The same inequality is obtained for an arbitrary ordinal comparison with respect to
S

(k)∗
Kul . �

We end this section with two multivariate formulations of two measures presented
in Sokal and Sneath (1963). These authors considered two coefficients (SSS3 and
SSS4) that can be defined as the arithmetic mean, respectively the square root of
the geometric mean, of the quantities

a(2)

p1

,
a(2)

p2

,
d(2)

q1

and
d(2)

q2

.

The arithmetic mean is given by

S
(2)
SS3 =

1

4

[

a(2)

p1

+
a(2)

p2

+
d(2)

q1

+
d(2)

q2

]

.

A straightforward generalization of SSS3 is

S
(k)
SS3 =

1

2k

k
∑

i=1

a(k)

pi

+
1

2k

k
∑

i=1

d(k)

qi

.
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The square root of the geometric mean and a possible multivariate generalization
are given by

S
(2)
SS4 =

a(2)d(2)

[p1p2q1q2]
1/2

and

S
(k)
SS4 =

a(k)d(k)

∏k
i=1[piqi]1/k

.

16.3 Bounds

In this section it is shown that some multivariate coefficients are bounds with respect
to each other. Proposition 16.4 is a straightforward generalization of Proposition
3.3.

Proposition 16.4. It holds that S
(k)
GL2(θ) ≥ S

(k)
GL1(θ).

Proof: S
(k)
GL2(θ) ≥ S

(k)
GL1(θ) if and only if 1 ≥ a(k) + d(k).

Proposition 16.5 is a straightforward generalization of Proposition 3.6. Only the
proof of inequality (i) is slightly more involved.

Proposition 16.5. It holds that

0 ≤ S
(k)
Sorg

(i)

≤ S
(k)
Jac

(ii)

≤ S
(k)
BB

(iii)

≤ S
(k)∗
Gleas

(iv)

≤ S
(k)
DK

(v)

≤ S
(k)
Kul

(vi)

≤ S
(k)
Sim ≤ 1.

Proof: Inequality (i) holds if and only if

k
∏

i=1

pi ≥
[

a(k)
]k−1 [

1− d(k)
]

.

First, it holds that

k
∏

i=1

pi ≥
k
∑

i=1

[

a(k)
]k−1 [

pi − a(k)
]

+
[

a(k)
]k

=
[

a(k)
]k−1

[

k
∑

i=1

pi − (k − 1)a(k)

]

.

Because
∑k

i=1 pi − (k− 1)a(k) ≥ 1− d(k), inequality (i) is true. Inequality (ii) holds
if and only if d(k) + max(p1, p2, ..., pk) ≤ 1. Inequality (iii) holds if and only if

max(p1, p2, ..., pk) ≥
1

k

k
∑

i=1

pi.

Inequalities (iv) and (v) are true because the harmonic mean of k numbers is equal
or smaller than the geometric mean of the k numbers, which in turn is equal or
smaller to the arithmetic mean of the numbers. Inequality (vi) holds if and only if

1

k

k
∑

i=1

pi ≥ min(p1, p2, ..., pk). �
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16.4 Epilogue

In this chapter multivariate formulations of various two-way similarity coefficients
for binary data were presented. Cox, Cox and Branco (1991) pointed out that
multivariate resemblance measures, for example, three-way or four-way similarity
coefficients instead of two-way similarity coefficients, may be used to detect possible
higher-order relations between the objects. Consider the following data matrix for
five binary strings on fourteen attributes.

objects attributes
1 1 1 1 1 1 1 0 0 0 0 0 0 0 1
2 1 1 1 0 0 0 1 1 1 1 0 0 0 0
3 1 0 0 1 1 0 1 1 0 0 1 1 0 0
4 0 1 0 0 1 1 1 0 1 0 1 0 1 0
5 0 0 1 1 0 1 1 0 0 1 0 1 1 0

The multivariate Jaccard (1912) coefficient was defined as

S
(k)
Jac =

a(k)

1− d(k)
.

It can be verified for these data, that the ten two-way Jaccard coefficients between
the five objects are all equal (SJac = 3

11
). In addition the ten three-way Jaccard

coefficients are also all equal (S
(3)
Jac = 1

13
). Thus, no discriminative information about

the five objects is obtained from either two-way or three-way Jaccard coefficient.
However, the four-way Jaccard similarity coefficient between objects two, three, four
and five (S

(4)
Jac = 1

13
) differs from the other four four-way Jaccard similarity coefficient

(S
(4)
Jac = 0). The artificial example shows that higher-order information can put

objects two, three, four and five in a group separated from object 1. Of course,
one may also argue that the wrong two-way and three-way similarity coefficient has
been specified.

Two major classes of multivariate formulations were distinguished. The first class
is referred to as Bennani-Heiser similarity coefficients, which contains all measures
that can be defined using only two dependent variables. Many of these Bennani-
Heiser similarity coefficients are fractions, linear in both numerator and denomina-
tor. As it turned out, a second class was formed by coefficients that could be formu-
lated as functions of association indices first presented in Dice (1945). These func-
tions include the Pythagorean means (harmonic, arithmetic and geometric means).

Two multivariate formulations of SGleas were presented. The two multivariate
formulations are given by

S
(k)
Gleas =

2a(k)

1 + a(k) − d(k)
and S

(k)∗
Gleas =

k a(k)

∑k
i=1 pi

where S
(k)
Gleas is the Bennani-Heiser similarity coefficient.
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The reader may have noted that we have failed to present multivariate versions
of similarity coefficients that involve the covariance (ad− bc) between two variables,
for example

SPhi =
ad− bc

√

(a + b)(a + c)(b + d)(c + d)

SCohen =
2(ad− bc)

p1q2 + p2q1

SLoe =
ad− bc

min(p1q2, p2q1)

SYule1 =
ad− bc

ad + bc
.

The definition of covariance between triples of objects is already quite complex and
the topic is outside the scope of the present study. However, in the next chapter
an alternative way of formulating k-way generalizations of bivariate coefficients is
discussed. The approach in Chapter 17 may be used to generalize coefficients that
involve the covariance.
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Similar to the Chapter 16, Chapter 17 is devoted to multivariate formulations of
various similarity coefficients. In Chapter 16 an attempt was made to present mul-
tivariate formulations that reflect certain basic characteristics of, and have a similar
interpretation as, their two-way versions. In this chapter multivariate formulations
of resemblance measures are presented that preserve the properties presented in
Chapter 4 on correction for similarity due to chance.

Suppose the two binary variables are the ratings of two judges, rating various
people on the presence or absence of a certain trait. In this field, Scott (1955),
Cohen (1960), Fleiss (1975), Krippendorff (1987), among others, have proposed
measures that are corrected for chance. The best-known example is perhaps the
kappa-statistic (Cohen, 1960; SCohen). A vast amount of literature exists on exten-
sions of SCohen, including multivariate versions of the kappa-statistic (Fleiss, 1971;
Light, 1971; Schouten, 1980; Popping, 1983a; Heuvelmans and Sanders, 1993). In
a different domain of data analysis, a multivariate or multi-way coefficient was pro-
posed by Mokken (1971). Mokken’s multivariate index, referred to as coefficient
H, is a measure of the degree of homogeneity among k test items (Sijtsma and
Molenaar, 2002). Coefficient H can be used is the same context as coefficient alpha
popularized by Cronbach (1951), which is the best-known measure from classical
test theory (De Gruijter and Van der Kamp, 2008).

181
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In this chapter the L family of bivariate coefficients of the form λ+µx is extended
to a family of multivariate coefficients. For reasons of notational convenience, only
coefficients of the form λ+µa (coefficients for binary data) are considered, although
the extensions do apply to all coefficients in the L family. The new family of multi-
variate coefficients preserve various properties derived for the L family in Chapter
4. For various members the complete multivariate formulations are presented. In
addition, it is shown how the multivariate coefficients presented in this chapter are
related to the multivariate coefficients discussed in Chapter 16.

17.1 Multivariate formulations

In Section 3.3 a family L was introduced that consists of coefficients of the form
λ + µa. Let aij denote the proportion of 1s that variables xi and xj share in the
same positions. Furthermore, let pi denote the proportion of 1s in variable xi.
Coefficients of the form λ + µa can be extended to a k-way family of coefficients
that are linear in the quantity

k−1
∑

i=1

k
∑

j=i+1

aij. (17.1)

Quantity (17.1) is equal to the sum of all aij, the proportion of 1s that variables xi

and xj share in the same positions, obtained from all k(k − 1)/2 pairwise fourfold
tables. Coefficients in family L(k) have a form

λ(k) + µ(k)

k−1
∑

i=1

k
∑

j=i+1

aij

where λ(k) and µ(k) are functions of the pi only. For k = 2, we have λ(2) = λ,
µ(2) = µ and L(2) = L. Before considering any properties of L(k) family, we discuss
some members of the family.

Coefficient SSM can be written as

SSM = a12 + d12.

The three-way formulation of SSM, such that the coefficient is linear in (a12 + a13 +
a23), is given by

S
(3)∗
SM =

a12 + d12

3
+

a13 + d13

3
+

a23 + d23

3
where the asterisks (∗) is used to denote that this generalization of SSM is different
from the multivariate formulation presented in Chapter 16. The general multivariate
formulation of SSM is given by

S
(k)∗
SM =

2

k(k − 1)

k−1
∑

i=1

k
∑

j=i+1

(aij + dij) (17.2)

= 1 +
4

k(k − 1)

k−1
∑

i=1

k
∑

j=i+1

aij −
2

k

k
∑

i=1

pi.
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The quantity 2/[k(k − 1)] in (17.2) is used to ensure 0 ≤ S
(k)∗
SM ≤ 1.

Coefficient SGleas can be written as

SGleas =
2a12

p1 + p2

.

The three-way formulation of SGleas, such that the coefficient is linear in (a12 +a13 +
a23), is given by

S
(3)∗∗
Gleas =

a12 + a13 + a23

p1 + p2 + p3

where the double asterisks (∗∗) are used to denote that this generalization of SGleas

is different from the two multivariate formulations of SGleas presented in Chapter 16.
The general multivariate formulation of SGleas is given by

S
(k)∗∗
Gleas =

2
∑k−1

i=1

∑k
j=i+1 aij

(k − 1)
∑k

i=1 pi

.

The quantity 2/(k − 1) ensures that the value S
(k)∗∗
Gleas is between 0 and 1.

Coefficient SCohen for two binary variables is given by

SCohen =
2(ad− bc)

p1q2 + p2q1

=
2(a12 − p1p2)

p1 + p2 − 2p1p2

.

The three-way formulation of SCohen such that S
(3)
Cohen is linear in (a12 + a13 + a23),

is given by
(a12 + a13 + a23)− (p1p2 + p1p3 + p2p3)

(p1 + p2 + p3)− (p1p2 + p1p3 + p2p3)
.

The general multivariate generalization of SCohen is given by

∑k−1
i=1

∑k
j=i+1(aij − pipj)

2−1(k − 1)
∑k

i=1 pi −
∑k−1

i=1

∑k
j=i+1 pipj

.

This multivariate formulation of Cohen’s kappa can be found in Popping (1983a)
and Heuvelmans and Sanders (1993).
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17.2 Main results

In this section it is shown that L(k) family is a natural generalization of L family with
respect to correction for similarity due to chance. The main results from Chapter
4 are here generalized and formulated for multivariate coefficients. Proposition 17.1
is a generalization of Theorem 4.1, the powerful result by Albatineh et al. (2006).

Proposition 17.1. Two members in L(k) family become identical after correction

(4.1) if they have the same ratio

1− λ(k)

µ(k)
. (17.3)

Proof:

E
[

S(k)
]

= λ(k) + µ(k)E

(

k−1
∑

i=1

k
∑

j=i+1

aij

)

and consequently the corrected coefficient CS(k) becomes

CS(k) =
S(k) − E(S(k))

1− E(S(k))

=

[

1− λ(k)

µ(k)
− E

(

k−1
∑

i=1

k
∑

j=i+1

aij

)]

−1 [k−1
∑

i=1

k
∑

j=i+1

aij − E

(

k−1
∑

i=1

k
∑

j=i+1

aij

)]

.

�

Corollary 17.1. Coefficients S
(k)∗
SM , S

(k)∗∗
Gleas, and S

(k)
Cohen become equivalent after cor-

rection (4.1).
Proof: Using the formulas of λ(k) and µ(k) corresponding to each coefficient, ratio
(17.3)

1− λ(k)

µ(k)
=

k − 1

2

k
∑

i=1

pi (17.4)

for all three coefficients. �

Note that ratio (17.4) is a natural generalization of ratio (4.5). If it is assumed
that expectation E(a) = p1p2 is appropriate for all [k(k − 1)]/2 bivariate fourfold
tables, we obtain the multivariate formulation

E

(

k−1
∑

i=1

k
∑

j=i+1

aij

)

Cohen

=
k−1
∑

i=1

k
∑

j=i+1

pipj. (17.5)

The basic building block in (17.5) is the two-way expectation E(a) = p1p2.
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Proposition 17.2. Let S(k) be a member in L(k) family for which ratio (17.4)
is characteristic. If E(a) = p1p2 is the appropriate expectation for all bivariate

fourfold tables, then S(k) becomes S
(k)
Cohen after correction (4.1).

17.3 Gower-Legendre families

The heuristics used for multivariate coefficients S
(k)∗
SM , S

(k)∗∗
Gleas and S

(k)
Cohen, can also be

applied to other coefficients. For this form of multivariate formulation to work, a
multivariate coefficient need not necessarily belong to the L(k) family, that is, be
linear in (17.1). For instance, the corresponding multivariate formulation of SGL1(θ)
is given by

S
(k)∗
GL1(θ) =

[

(1− 2θ)
k−1
∑

i=1

k
∑

j=i+1

aij + θ(k − 1)
k
∑

i=1

pi

]

−1 k−1
∑

i=1

k
∑

j=i+1

aij.

Members of family S
(k)∗
GL1(θ) are

S
(k)∗
GL1

(

θ =
1

2

)

= S
(k)∗∗
Gleas =

2
∑k−1

i=1

∑k
j=i+1 aij

(k − 1)
∑k

i=1 pi

and S
(k)∗
GL1(θ = 1) = S

(k)∗
Jac =

∑k−1
i=1

∑k
j=i+1 aij

(k − 1)
∑k

i=1 pi −
∑k−1

i=1

∑k
j=i+1 aij

.

Multivariate generalizations of other similarity coefficients may be formulated ac-
cordingly. Coefficient S

(k)∗∗
Gleas is in the L(k) family, whereas S

(k)∗
Jac is not.

If two coefficients are globally order equivalent, they are interchangeable with re-
spect to an analysis method that is invariant under ordinal transformations. Proposi-
tion 17.3 is, similar as Proposition 16.1, a straightforward generalization of Theorem
3.1.

Proposition 17.3. Two members of S
(k)∗
GL1(θ) are globally order equivalent.

Proof: Let x1 and x2 denote two different versions of (17.1), and let y1 and y2

denote two different versions of the quantity (k−1)
∑k

i=1 pi. For an arbitrary ordinal

comparison with respect to S
(k)∗
GL1(θ), we have

x1

(1− 2θ)x1 + θy1

>
x2

(1− 2θ)x2 + θy2

if and only if
x1

y1

>
x2

y2

.

Since an arbitrary ordinal comparison with respect to S
(k)∗
GL1(θ) does not depend on

the value of θ, any two members of S
(k)∗
GL1(θ) are globally order equivalent. �

A multivariate generalization of parameter family SGL2(θ) is given by

S
(k)∗
GL2(θ) =

2−1k(k − 1) + 2
∑k−1

i=1

∑k
j=i+1 aij − (k − 1)

∑k
i=1 pi

2−1k(k − 1) + 2(1− θ)
∑k−1

i=1

∑k
j=i+1 aij + (θ − 1)(k − 1)

∑k
i=1 pi

.
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Note that S
(k)∗
GL2(θ = 1) = S

(k)∗
SM . Proposition 17.4 demonstrates the global order

equivalence property for S
(k)∗
GL2(θ). The assertion is, similar as Proposition 16.2, a

straightforward generalization of Theorem 3.2.

Proposition 17.4. Two members of S
(k)∗
GL2(θ) are globally order equivalent.

Proof: The proof is similar to the proof of Proposition 17.3. In addition to the quan-
tities used in that proof, let z = 2−1k(k − 1). For an arbitrary ordinal comparison

with respect to S
(k)∗
GL2(θ), we have

z + 2x1 − y1

z + 2(1− θ)x1 + (θ − 1)y1

>
z + 2x2 − y2

z + 2(1− θ)x2 + (θ − 1)y2

2x1 − y1 > 2x2 − y2.

Since an arbitrary ordinal comparison with respect to S
(k)∗
GL2(θ) does not depend on

the value of θ, any two members of S
(k)∗
GL2(θ) are globally order equivalent. �

Some multivariate coefficients are bounds with respect to each other. Proposition
17.5 is, similar to Proposition 16.4, a generalization of Proposition 3.3.

Proposition 17.5. It holds that S
(k)∗
GL2(θ) ≥ S

(k)∗
GL1(θ).

Proof: S
(k)∗
GL2(θ) ≥ S

(k)∗
GL1(θ) if and only if

[

k(k − 1)

2
+ 2

k−1
∑

i=1

k
∑

j=i+1

aij − (k − 1)
k
∑

i=1

pi

][

(k − 1)
k
∑

i=1

pi −
k−1
∑

i=1

k
∑

j=i+1

aij

]

≥ 0.

The left part between brackets of the above inequality equals

k−1
∑

i=1

k
∑

j=i+1

aij +
k−1
∑

i=1

k
∑

j=i+1

dij

whereas the right part between brackets is always positive. This completes the proof.
�
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17.4 Bounds

At this point it seems appropriate to compare some of the multivariate formulations
presented in this chapter with the corresponding multivariate generalizations from
the previous chapter. As it turns out, the different formulations are bounds of each
other. In Proposition 17.6 the multivariate formulation S

(k)
GL2(θ) of parameter family

SGL2(θ) from Chapter 16, is compared to multivariate extension S
(k)∗
GL2(θ) presented

in this chapter.

Proposition 17.6. It holds that S
(k)
GL2(θ) ≤ S

(k)∗
GL2(θ).

Proof: S
(k)
GL2(θ) ≤ S

(k)∗
GL2(θ) if and only if

k(k − 1)

2

[

1− a(k) − d(k)
]

≥ (k − 1)
k
∑

i=1

pi − 2
k−1
∑

i=1

k
∑

j=i+1

aij. (17.6)

Note that

k(k − 1)

2
a(k) ≤

k−1
∑

i=1

k
∑

j=i+1

aij (17.7)

is true, because any aij ≥ a(k) (in words: the proportion of 1s that two variables
share in the same positions is always equal or greater than the proportion of 1s that
the two variables and k−2 other variables share in the same position). Using similar
arguments it holds that

k(k − 1)

2

[

1− d(k)
]

≥
k−1
∑

i=1

k
∑

j=i+1

(1− dij). (17.8)

Since

(k − 1)
k
∑

i=1

pi −
k−1
∑

i=1

k
∑

j=i+1

aij =
k−1
∑

i=1

k
∑

j=i+1

(1− dij) (17.9)

it follows that, adding −1 × (17.7) and (17.8) gives (17.6). Since both (17.7) and
(17.8) hold, (17.6) is true. This completes the proof. �

In Proposition 17.7 the multivariate formulation S
(k)
GL1(θ) of parameter family

SGL1(θ) from Chapter 16, is compared to multivariate extension S
(k)∗
GL1(θ) presented

in this chapter. Some properties derived in the proof of Proposition 17.6 are used
in the proof of Proposition 17.7.

Proposition 17.7. It holds that S
(k)
GL1(θ) ≤ S

(k)∗
GL1(θ).

Proof: Using some algebra, we obtain S
(k)
GL1(θ) ≤ S

(k)∗
GL1(θ) if and only if

[

1− d(k)
]

k−1
∑

i=1

k
∑

j=i+1

aij ≤ a(k)

[

(k − 1)
k
∑

i=1

pi −
k−1
∑

i=1

k
∑

j=i+1

aij

]

. (17.10)
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Using (17.9), (17.10) can be written as

1− d(k)

a(k)
≥
∑k−1

i=1

∑k
j=i+1(1− dij)

∑k−1
i=1

∑k
j=i+1 aij

. (17.11)

Equation (17.11) holds if (17.7) and (17.8) are true. This completes the proof. �

Proposition 17.6 and Proposition 17.7 consider two families of coefficients that
are linear in both numerator and denominator. It follows from both assertions that
for these rational functions the multivariate formulation from Chapter 16 is equal or
smaller compared to the multivariate formulation of the same coefficient presented
in this chapter.

Three different multivariate generalizations of SGleas may be found in Chapter
16 and 17. From Proposition 17.7 it follows that S

(k)∗∗
Gleas ≥ S

(k)
Gleas. Proposition 17.8

is used to show that multivariate formulation S
(k)∗∗
Gleas is also equal to or greater than

S
(k)∗
Gleas. Which is the largest of S

(k)
Gleas or S

(k)∗
Gleas depends on the data.

Proposition 17.8. It holds that S
(k)∗∗
Gleas ≥ S

(k)∗
Gleas.

Proof: S
(k)∗∗
Gleas ≥ S

(k)∗
Dice if and only if (17.7) holds. �

17.5 Epilogue

In Chapter 4 it was shown that various coefficients become equivalent after correc-
tion for similarity due to chance. Similar to Chapter 16, this chapter was used to
present multivariate formulations of various similarity coefficients. First, family L
of coefficients that are of the form λ+µa, was extended to a family L(k) of multivari-
ate coefficients. The new family of multivariate coefficients preserves the properties
derived for the L family in Chapter 4. For example, multivariate formulation for
SSM presented in this chapter is given by

S
(k)∗
SM = 1 +

4

k(k − 1)

k−1
∑

i=1

k
∑

j=i+1

aij −
2

k

k
∑

i=1

pi.

Coefficient S
(k)∗∗
Gleas and S

(k)∗
SM become S

(k)
Cohen after correction for chance agreement.

The heuristic used for coefficients in the L(k) family can also be used for coeffi-
cients not in the L(k) family. For example, the multivariate extension of SJac is given
by

S
(k)∗
Jac =

∑k−1
i=1

∑k
j=i+1 aij

(k − 1)
∑k

i=1 pi −
∑k−1

i=1

∑k
j=i+1 aij

.
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A multivariate coefficient that can be found in Loevinger (1947, 1948), Mokken
(1971) and Sijtsma and Molenaar (2002), which is also based on this heuristic, is
given by

S
(k)
Loe =

∑k−1
i=1

∑k
j=i+1(aij − pipj)

∑k−1
i=1

∑k
j=i+1 min(pjqk, pkqj)

.

Coefficient S
(k)
Loe is a multivariate version of the two-way coefficient SLoe. The mul-

tivariate coefficient S
(k)
Loe uses the same heuristic as the other coefficients in this

chapter, and the coefficient may be used to measure the homogeneity of k test
items. Note that the generalization of Proposition 5.4 to S

(k)
Loe is straightforward.

In Section 17.4 we showed how the multivariate coefficients presented in this
chapter are related to the multivariate coefficients discussed in Chapter 16. Propo-
sition 17.6 and Proposition 17.7 consider two parameter families of coefficients that
are linear in both numerator and denominator. It follows from both assertions that
for these rational functions the multivariate formulation from Chapter 16 is equal
to or smaller than the multivariate formulation of the same coefficient presented in
this chapter.

In Section 17.2 a multivariate formulation of Cohen’s kappa (SCohen) was pre-

sented. The multivariate kappa (S
(k)
Cohen) was formulated for the case of two cate-

gories. The extension to the case of two or more categories is straightforward. As
it turns out, the formulation of S

(k)
Cohen for two or more categories is also proposed

in both Popping (1983a) and Heuvelmans and Sanders (1993). Both authors have
some form of motivation for why this multivariate kappa should be preferred over
other multivariate generalizations of Cohen’s kappa. However, it appears that the
properties of S

(k)
Cohen presented here are the first to provide a convincing argument.

In Section 2.2 the equivalence between Cohen’s kappa SCohen and the Hubert-
Arabie adjusted Rand index SHA was established. Note that S

(k)
Cohen would be an

appropriate multivariate formulation of the the adjusted Rand index. Then, when
comparing partitions of three (k = 3) cluster algorithms we do not require the
three-way matching table. Instead we need to obtain the three two-way matching
tables and then summarize these matching tables in three fourfold tables. Each
2×2 contingency table contains the four different types of pairs from two clustering
methods.
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In Chapter 10 metric properties were studied of two-way dissimilarity coefficients
corresponding to various similarity coefficients. The dissimilarity coefficients were
obtained from the transformation D = 1 − S, D is the complement of S. In the
present chapter metric properties of the multivariate formulations of the two-way
coefficients from Chapter 10 are considered. Each dissimilarity coefficient of Chapter
10 satisfies the triangle inequality. In this chapter metric properties with respect to
the polyhedral generalization of the triangle inequality noted by De Rooij (2001, p.
128) are studied. The polyhedral inequality is given by

(k − 1)×D(x1,k) ≤
k
∑

i=1

D(x−i
1,k+1) (18.1)

for k ≥ 3. Inequality (18.1) is also presented in (12.4), (14.13) and (15.2). In
Chapter 14 several functions were studied that satisfy polyhedral inequality (18.1).

191
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In Chapter 10 only a few dissimilarities obtained from the transformations D =
1− S turned out to be metric, that is, satisfied the triangle inequality. The present
chapter is limited to multivariate generalizations of two-way coefficients that sat-
isfy the triangle inequality. Before considering any metric properties, the following
notation is defined. Let P

(

x1
1,k

)

denote the proportion of 1s in variables x1 to xk.

Furthermore, let P
(

x1,0,1
1,i,k

)

denote the proportion of 1s in variables x1 to xk and 0 in

variable xi. Moreover, denote by P
(

x1,−,1
1,i,k

)

the proportion of 1s in variables x1 to
xk where xi drops out. An important property of the proportions in this notation
is that

P
(

x1,−,1
1,i,k

)

= P
(

x1
1,k

)

+ P
(

x1,0,1
1,i,k

)

. (18.2)

18.1 Russel-Rao coefficient

In this section the metric properties of two multivariate formulations of SRR are
studied. In Chapter 16 we encountered the Bennani-Heiser multivariate coefficient

S
(k)
RR = a(k) = P

(

x1
1,k

)

.

The second multivariate formulation of SRR can be obtained from the heuristics
considered in Chapter 17. This multivariate coefficient is given by

S
(k)∗
RR =

2

k(k − 1)

k−1
∑

i=1

k
∑

j=i+1

aij.

The quantity 2/k(k−1) in the definition of S
(k)∗
RR is used to ensure that 0 ≤ S

(k)∗
RR ≤ 1.

Both Proposition 18.1 and 18.2 are generalizations of the first part of Theorem 10.1.
In Proposition 18.1 the metric property of 1 − S

(k)
RR is considered. The proof is a

generalization of the tool presented in Heiser and Bennani (1997, p. 197) for k = 3.

Proposition 18.1. The function

1− S
(k)
RR = 1− P

(

x1
1,k

)

satisfies (18.1).

Proof: Using 1− S
(k)
RR in (18.1) we obtain

(k − 1)− (k − 1)P
(

x1
1,k

)

≤ k −
k
∑

i=1

P
(

x1,−,1
1,i,k+1

)

which equals

1 + (k − 1)P
(

x1
1,k

)

≥
k
∑

i=1

P
(

x1,−,1
1,i,k+1

)

. (18.3)
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Using the property in (18.2), (18.3) becomes

1 + (k − 1)P
(

x1
1,k, x

1
k+1

)

+ (k − 1)P
(

x1
1,k, x

0
k+1

)

≥ kP
(

x1
1,k

)

+
k
∑

i=1

P
(

x1,0,1
1,i,k+1

)

which equals

1 + (k − 1)P
(

x1
1,k, x

0
k+1

)

≥ P
(

x1
1,k+1

)

+
k
∑

i=1

P
(

x1,0,1
1,i,k

)

. (18.4)

The fact that 1 is equal or larger than the right part of inequality (18.4) completes
the proof. �

In Proposition 18.2 the metric property of 1− S
(k)∗
RR is considered. The first proof

of the assertion is an application of Proposition 14.4 together with the first part of
Theorem 10.1. The second proof is a direct proof of the assertion.

Proposition 18.2. The function

1− S
(k)∗
RR = 1−

2
∑k−1

i=1

∑k
j=i+1 aij

k(k − 1)

satisfies (18.1).
Proof 1: By Proposition 14.4, the sum of k(k − 1)/2 quantities (1 − aij) satisfies
(18.1), if each quantity (1 − aij) satisfies the triangle inequality. The first part of
Theorem 10.1 shows that this is the case.
Proof 2: Using 1− S

(k)∗
RR in (18.1) we obtain the inequality

k(k − 1)

2
+

k−1
∑

i=1

k
∑

j=i+1

aij ≥ (k − 1)
k
∑

i=1

aik+1. (18.5)

It holds that

k(k − 1)

2
≥ (k − 1)

k
∑

i=1

aik+1

−
[

k(k − 1)

2

]

P
(

x1
1,k+1

)

−
[

(k − 1)(k − 2)

2

]

P
(

x0
1, x

1
2,k+1

)

.

Furthermore, it holds that

k−1
∑

i=1

k
∑

j=i+1

aij ≥
[

k(k − 1)

2

]

P
(

x1
1,k+1

)

+

[

(k − 1)(k − 2)

2

]

P
(

x0
1, x

1
2,k+1

)

.

Thus, inequality (18.5) holds, which completes the proof. �



194 Metric properties of multivariate coefficients

18.2 Simple matching coefficient

In this section the metric properties of two multivariate formulations of SSM are
studied. In Chapter 16 we encountered the Bennani-Heiser multivariate formulation
of SSM which is given by

S
(k)
SM = a(k) + d(k) = P

(

x1
1,k

)

+ P
(

x0
1,k

)

.

The second multivariate formulation of SSM was presented in Chapter 17 and is
given by

S
(k)∗
SM =

2

k(k − 1)

k−1
∑

i=1

k
∑

j=i+1

(aij + dij).

Both Proposition 18.3 and 18.4 are generalizations of the second part of Theorem
10.1. In Proposition 18.3 the metric property of 1 − S

(k)
SM is considered. The proof

is a generalization of the tool presented in Heiser and Bennani (1997, p. 196) for
k = 3.

Proposition 18.3. The function

1− S
(k)
SM = 1− P

(

x1
1,k

)

− P
(

x0
1,k

)

satisfies (18.1).

Proof: Using 1− S
(k)
SM in (18.1) gives

(k − 1)− (k − 1)P
(

x1
1,k

)

− (k − 1)P
(

x0
1,k

)

≤

k −
k
∑

i=1

P
(

x1,−,1
1,i,k+1

)

−
k
∑

i=1

P
(

x0,−,0
1,i,k+1

)

which equals

1 + (k − 1)P
(

x1
1,k

)

+ (k − 1)P
(

x0
1,k

)

≥
k
∑

i=1

P
(

x1,−,1
1,i,k+1

)

+

k
∑

i=1

P
(

x0,−,0
1,i,k+1

)

. (18.6)

Using (18.2), (18.6) becomes

(k − 1)
[

P
(

x1
1,k, x

1
k+1

)

+ P
(

x1
1,k, x

0
k+1

)

+ P
(

x0
1,k, x

1
k+1

)

+ P
(

x0
1,k, x

0
k+1

)]

+

1 ≥ kP
(

x1
1,k+1

)

+ kP
(

x0
1,k+1

)

+
k
∑

i=1

P
(

x1,0,1
1,i,k+1

)

+
k
∑

i=1

P
(

x0,1,0
1,i,k+1

)
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which equals

1 + (k − 1)P
(

x1
1,k, x

0
k+1

)

+ (k − 1)P
(

x0
1,k, x

1
k+1

)

≥

P
(

x1
1,k+1

)

+ P
(

x0
1,k+1

)

+
k
∑

i=1

P
(

x1,0,1
1,i,k

)

+
k
∑

i=1

P
(

x0,1,0
1,i,k

)

. (18.7)

The fact that 1 is equal or larger than the right part of inequality (18.7) proves the
assertion. �

The metric property of 1− S
(k)∗
SM is presented in Proposition 18.4. The first proof

of the assertion is an application of Proposition 14.4 together with the second part
of Theorem 10.1. The second proof is a direct proof of the assertion.

Proposition 18.4. The function

1− S
(k)∗
SM = 1− 2

k(k − 1)

k−1
∑

i=1

k
∑

j=i+1

(aij + dij)

satisfies (18.1).
Proof 1: By Proposition 14.4, the sum of k(k−1)/2 quantities (1−aij−dij) satisfies
(18.1), if each quantity (1 − aij − dij) satisfies the triangle inequality. The second
part of Theorem 10.1 shows that this is the case.
Proof 2: Filling in 1− S

(k)∗
SM in (18.1) we obtain the inequality

k(k − 1)

2
+

k−1
∑

i=1

k
∑

j=i+1

(aij + dij) ≥ (k − 1)
k
∑

i=1

(aik+1 + dik+1). (18.8)

It holds that

k(k − 1)

2
≥ (k − 1)

k
∑

i=1

(aik+1 + dik+1)

−
[

k(k − 1)

2

]

[

P
(

x1
1,k+1

)

+ P
(

x0
1,k+1

)]

−
[

(k − 1)(k − 2)

2

]

[

P
(

x0
1, x

1
2,k+1

)

+ P
(

x1
1, x

0
2,k+1

)]

.

Furthermore, it holds that

k−1
∑

i=1

k
∑

j=i+1

(aij + dij) ≥
[

k(k − 1)

2

]

[

P
(

x1
1,k+1

)

+ P
(

x0
1,k+1

)]

+

[

(k − 1)(k − 2)

2

]

[

P
(

x0
1, x

1
2,k+1

)

+ P
(

x1
1, x

0
2,k+1

)]

.

Thus, inequality (18.8) holds, which completes the proof. �
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18.3 Jaccard coefficient

In this final section the metric properties of multivariate formulations of the Jaccard
(1912) coefficient SJac and the parameter family SGL1(θ) are studied. In Chapter 16
we encountered the Bennani-Heiser multivariate formulation of SJac given by

S
(k)
Jac =

a(k)

1− d(k)
=

P
(

x1
1,k

)

1− P
(

x0
1,k

) .

In Proposition 18.5 the metric property of 1 − S
(k)
Jac is considered. The proof is a

generalization of the proof used in the first part of Theorem 10.2. In the proof, the
relation between multivariate coefficients S

(k)
SM and S

(k)
Jac given by

1− S
(k)
SM =

[

1− P
(

x0
1,k

)]

[

1− S
(k)
Jac

]

(18.9)

is used.

Proposition 18.5. The function

1− S
(k)
Jac = 1−

P
(

x1
1,k

)

1− P
(

x0
1,k

)

satisfies (18.1).
Proof: It holds that

1 ≥ P
(

x1
1,k+1

)

+
k+1
∑

i=1

P
(

x1,0,1
1,i,k+1

)

+ P
(

x0
1,k+1

)

+
k+1
∑

i=1

P
(

x0,1,0
1,i,k+1

)

. (18.10)

Note that for k = 2, inequality (18.10) becomes an equality. Adding

(k − 1)
[

P
(

x1
1,k, x

0
k+1

)

+ P
(

x0
1,k, x

1
k+1

)]

to both sides of (18.10), the inequality can be written as

k
∑

i=1

[

1− S
(k)
SM

(

x−i
1,k+1

)

]

− (k − 1)
[

1− S
(k)
SM (x1,k)

]

(18.11)

≥ k
[

P
(

x1
1,k, x

0
k+1

)

+ P
(

x0
1,k, x

1
k+1

)]

.

Using (18.9) in (18.11) we obtain

[

1− P
(

x0
1,k+1

)]

×
(

k
∑

i=1

[

1− S
(k)
Jac

(

x−i
1,k+1

)

]

− (k − 1)
[

1− S
(k)
Jac (x1,k)

]

)

≥kP
(

x1
1,k, x

0
k+1

)

+
k
∑

i=1

[

1− S
(k)
Jac

(

x−i
1,k+1

)

]

P
(

x0,1,0
1,i,k+1

)

+P
(

x0
1,k, x

1
k+1

)

[

1 + (k − 1)S
(k)
Jac (x1,k)

]

.

With respect to the first term of the inequality P
(

x0
1,k+1

)

≤ 1. Hence, we conclude

that 1− S
(k)
Jac satisfies (18.1). �
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We end this chapter with a generalization of Theorem 10.4. From Chapter 16 we
obtain the multivariate formulation of parameter family SGL1(θ), which is given by

S
(k)
GL1(θ) =

P
(

x1
1,k

)

(1− θ)P
(

x1
1,k

)

+ θ
[

1− P
(

x0
1,k

)] .

In Proposition 18.6 the metric property of 1−S
(k)
GL1(θ) is considered. In order to proof

the assertion, the result in Proposition 18.5 on 1−S
(k)
Jac is used. With respect to the

proof of Proposition 18.6 it assumed that Conjecture 15.1, which is a generalization
of Theorem 10.3, is true. We have the following metric property with respect to
1− S

(k)
GL1(θ).

Proposition 18.6. The function

1− S
(k)
GL1(θ) = 1−

P
(

x1
1,k

)

(1− θ)P
(

x1
1,k

)

+ θ
[

1− P
(

x0
1,k

)] (18.12)

satisfies (18.1) for 0 < θ ≤ 1.

Proof: By Proposition 18.5 1−S
(k)
GL1(θ = 1) = 1−S

(k)
Jac satisfies (18.1). For 0 < θ < 1,

let θ = (c + 1)/c where c is a strictly positive real number. Equation (18.12) equals

θ
[

1− S
(k)
SM

]

P
(

x1
1,k

)

+ θ
[

1− S
(k)
SM

] =
(c + 1)

[

1− S
(k)
SM

]

cP
(

x1
1,k

)

+ (c + 1)
[

1− S
(k)
SM

] . (18.13)

Dividing both numerator and denominator of (18.13) by 1− P
(

x0
1,k

)

we obtain

1− S
(k)
GL1(θ) =

(c + 1)
[

1− S
(k)
Jac

]

cS
(k)
Jac + (c + 1)

[

1− S
(k)
Jac

] =
(c + 1)

[

1− S
(k)
Jac

]

c + 1− S
(k)
Jac

. (18.14)

Because 1 − S
(k)
Jac satisfies (18.1) due to Proposition 18.5, the result follows if Con-

jecture 15.1 is valid.
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18.4 Epilogue

In this chapter metric properties of several multivariate coefficients were presented.
Each of the functions satisfies the strong polyhedral inequality (18.1), which is a gen-
eralization formulated by De Rooij (2001) of the tetrahedral inequality considered
in Heiser and Bennani (1997). Although no well-established multi-way metric struc-
ture emerged from the study in Chapter 12, we have gathered several interesting
properties of the polyhedral inequality in some of the chapters following Chapter 12.
In Chapter 13 it was shown that the polyhedral inequality was the strongest multi-
way metric implied by the an ultrametric. In Chapter 14 we formulated multi-way
extensions of two three-way functions that satisfy this polyhedral inequality. In this
particular chapter it was shown that several multivariate coefficients from Chapters
16 and 17 also satisfy the polyhedral inequality (18.1). So far, the preliminary re-
sults in these chapters suggest that the inequality is definitely the most interesting
multi-way generalization of the triangle inequality.



 !"#$%&  !

&'()*+'* ,-(.+

Robinson matrices were studied in Chapter 7. In this chapter the three-way gener-
alization of the Robinson matrix is studied, which will be referred to as a Robinson
cube. Whereas a matrix is characterized by rows and columns, a cube consists of
rows, columns and pillars. A cube has six faces. The twelve rows, columns and pil-
lars where two faces cross are called the edges. The eight entries where three edges
meet are called the vertices of the cube. Some aspects of a cube are demonstrated
in Figure 19.1.

First some definitions of a Robinson cube are presented. A similarity cube is
called a Robinson cube if the highest entries within each row, column and pillar
are on the main diagonal and moving away from this diagonal, the entries never
increase. Next, it is considered what three-way functions and similarity coefficients
satisfy these definitions.

0This chapter appeared in a slightly adapted version in Warrens, M.J. and Heiser, W.J. (2007),
Robinson Cubes, in P. Brito, P. Bertrand, G. Cucumel and F. de Caravalho (Eds.), Selected

Contributions in Data Analysis and Classification, 515–523, Berlin: Springer.
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Figure 19.1: Several aspects of a cube.

19.1 Definitions

Before defining a Robinson cube we turn our attention to two natural requirements
for cubes. Similar to a matrix, we may require that a similarity cube S(3) satisfies
three-way symmetry, that is,

S(x1, x2, x3) = S(x1, x3, x2) = S(x2, x1, x3)

=S(x2, x3, x1) = S(x3, x1, x2) = S(x3, x2, x1)

for all x1, x2 and x3. Another natural requirement for a similarity cube is the
restriction

S(x1, x2, x1) = S(x1, x2, x2) for all x1 and x2. (19.1)

This requirement together with three-way symmetry implies the so-called diagonal-
plane equality (Section 11.2; Heiser and Bennani, 1997, p. 191) which requires
equality of the three matrices defined by the elements S(x1, x1, x2), S(x1, x2, x1)
and S(x1, x2, x2), that are formed by cutting the cube diagonally, starting at one of
the three edges joining at the vertex S(1, 1, 1). A weak extension of the Robinson
matrix is the following definition.

A similarity cube S(3) is called a Robinson cube if the highest entries within each
row, column and tube are on the main diagonal (elements S(x1, x1, x1)) and moving
away from this diagonal, the entries never increase.
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Hence, S(3) of size m×m×m is a Robinson cube if

1 ≤ x1 < x2 ≤ m ⇒











S(x1, x2, x2) ≤ S(x1 + 1, x2, x2)

S(x2, x1, x2) ≤ S(x2, x1 + 1, x2)

S(x2, x2, x1) ≤ S(x2, x2, x1 + 1)

1 ≤ x2 < x1 ≤ m ⇒











S(x1, x2, x2) ≥ S(x1 + 1, x2, x2)

S(x2, x1, x2) ≥ S(x2, x1 + 1, x2)

S(x2, x2, x1) ≥ S(x2, x2, x1 + 1).

If the cube S(3) satisfies the requirement in (19.1), then S(3) is a Robinson matrix if
we have

1 ≤ x1 < x2 ≤ m ⇒
{

S(x1, x2, x2) ≤ S(x1 + 1, x2, x2)

S(x2, x1, x2) ≤ S(x2, x1 + 1, x2)

1 ≤ x2 < x1 ≤ m ⇒
{

S(x1, x2, x2) ≥ S(x1 + 1, x2, x2)

S(x2, x1, x2) ≥ S(x2, x1 + 1, x2).

Moreover, if the cube S(3) satisfies three-way symmetry, then S(3) is a Robinson cube
if we have

1 ≤ x1 < x2 ≤ m ⇒ S(x1, x2, x2) ≤ S(x1 + 1, x2, x2)

1 ≤ x2 < x1 ≤ m ⇒ S(x1, x2, x2) ≥ S(x1 + 1, x2, x2).

For the definition of a dissimilarity cube D(3) the roles of ≤ and ≥ in the compar-
isons involving cube elements must be interchanged. Note that, although this is
perhaps suggested in the above arguments, a Robinson cube that satisfies three-way
symmetry does not necessarily satisfy requirement (19.1). In the above definition of
a Robinson cube not all entries are involved. More precisely, only those entries that
are in a row, column or pillar with an entry of the main diagonal are involved. A
stronger definition of a Robinson cube is the following.

A cube S(3) is called a regular Robinson cube if

1. S(3) is a Robinson cube

2. all matrices, which are formed by cutting the cube perpendicularly, where for
each matrix S(2) entry S(2)(1, 1) is an element of one of the three edges joining
at the vertex S(3)(1, 1, 1) (with S(2)(1, 1) = S(3)(1, 1, 1) if S(2)(1, 1) is one of
the three faces joining at the vertex S(2)(1, 1, 1)), are Robinson matrices.

A regular Robinson cube has some interesting features. For example, if S(3) is a
regular Robinson cube then it satisfies both three-way symmetry and the diagonal-
plane equality. These properties become clear from the following result on the
composition of a regular Robinson cube.
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Proposition 19.1. Let x4 = min(x1, x2, x3) and x5 = max(x1, x2, x3). If S(3) is a

regular Robinson cube, then its entries S(3)(x1, x2, x3) equal

S(3)(x4, x6, x5) = S(3)(x6, x4, x5) = S(3)(x4, x5, x6) =

S(3)(x6, x5, x4) = S(3)(x5, x4, x6) = S(3)(x5, x6, x4) for x6 = x4, ..., x5.

Proof: First let S be the front face of the cube, where S(2)(1, 1) = S(3)(1, 1, 1). Since
S(3)(2, 2, 1) is a diagonal element of S, S is a Robinson matrix if
S(3)(1, 2, 1) ≤ S(3)(2, 2, 1). Next let S be the cutting perpendicular on the front
face of the cube, with S(2)(1, 1) = S(3)(1, 2, 1). Since S(3)(1, 2, 1) is a diagonal
element of S, the latter is a Robinson matrix if S(3)(1, 2, 1) ≥ S(3)(2, 2, 1). Thus,
if S(3) is a regular Robinson cube, then S(3)(1, 2, 1) = S(3)(2, 2, 1) (= S(3)(2, 1, 1) =
S(3)(2, 1, 2) = S(3)(1, 1, 2) = S(3)(1, 2, 2)). �

19.2 Functions

Let D(x1, x2, x3) denote a three-way dissimilarity. One of the more popular functions
for three-way dissimilarities used in classification literature are the symmetric Lp-
transforms defined as

D(x1, x2, x3) = ([D(x1, x2)]
p + [D(x1, x3)]

p + [D(x2, x3)]
p)1/p .

For instance, for p = 1 we have the perimeter function, for p = 2 the generalized
Euclidean function. For p = ∞ we obtain the generalized dominance function or
maximum distance (Section 14.4)

D(x1, x2, x3) = max[D(x1, x2), D(x1, x3), D(x2, x3)].

Somewhat lesser known is the variance function (De Rooij and Gower, 2003, p. 188)

[D(x1, x2, x3)]
2 =var[D(x1, x2), D(x1, x3), D(x2, x3)]

=([D(x1, x2)]
2 + [D(x1, x3)]

2 + [D(x2, x3)]
2)

−1

3
[D(x1, x2) + D(x1, x3) + D(x2, x3)]

2.

The variance function is symmetric in x1, x2 and x3.

Proposition 19.2. Suppose D(x1, x2, x3) is defined as a Lp-transform or equals

the variance function. Then the cube D(3) with elements D(x1, x2, x3) is a Robinson

cube if and only if the matrix D with elements D(x1, x2) is a Robinson matrix.
Proof: For 1 ≤ x1 < x2 ≤ m with respect to any Lp-transform, we have

D(x1, x2, x2) = (2[D(x1, x2]
p)1/p ≥ (2D[x1 + 1, x2]

p)1/p = D(x1 + 1, x2, x2)

if and only if D(x1, x2) ≥ D(x1 + 1, x2).
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For 1 ≤ x1 < x2 ≤ m with respect to the variance function, we have

[D(x1, x2, x2)]
2 = [2D(x1, x2)]

2 − 1

3
[2D(x1, x2)]

2

≥ [2D(x1 + 1, x2)]
2 − 1

3
[2D(x1 + 1, x2)]

2

= [D(x1 + 1, x2, x2)]
2

if and only if

2

3
[D(x1, x2)]

2 ≥ 2

3
[D(x1, x2)]

2 if and only if D(x1, x2) ≥ D(x1 + 1, x2).

A similar property holds for D(x1, x2, x2) ≤ D(x1 + 1, x2, x2) for 1 ≤ x2 ≤ x1 < m.
�

A stronger result holds for the dominance function

D(x1, x2, x3) = max[D(x1, x2), D(x1, x3), D(x2, x3)] for dissimilarities

or equivalently

S(x1, x2, x3) = min[S(x1, x2), S(x1, x3), S(x2, x3)] for similarities.

Proposition 19.3. Let S and S(3) be respectively a similarity matrix and cube.

If

S(x1, x2, x3) = min[S(x1, x2), S(x1, x3), S(x2, x3)]

then S(3) is a regular Robinson cube if and only if S is a Robinson matrix.
Proof: If S is a Robinson matrix then the minimum function satisfies

S(x1, x2, x3) = min [S(x1, x2), S(x1, x3), S(x2, x3)] = S(x1, x3)

for 1 ≤ x1 ≤ x2 ≤ x3 ≤ m, which demonstrates the second requirement of a regular
Robinson cube. Moreover, we have

S(x1, x2, x2) = S(x1, x2) ≤ S(x1 + 1, x2) = S(x1 + 1, x2, x2)

for 1 ≤ x1 < x2 ≤ m, and

S(x1, x2, x2) = S(x1, x2) ≥ S(x1 + 1, x2) = S(x1 + 1, x2, x2)

for 1 ≤ x2 ≤ x1 < m, which demonstrates the first requirement of a regular Robinson
cube. �
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19.3 Coefficient properties

In this section it is shown for several three-way Bennani-Heiser similarity coefficients
that the corresponding cube is a Robinson cube if and only if the matrix correspond-
ing to the two-way similarity coefficient is a Robinson matrix. Let x1, x2 and x3

be binary variables. Let P
(

1
x1,

1
x2,

1
x3

)

denote the proportion of 1s shared by x1,

x2 and x3 in the same positions. All matrices and cubes in this section are of the
similarity kind. Yet, for all results below there exist an equivalent formulation in
terms of dissimilarities.

Proposition 19.4 considers the Robinson property for the family SGL1(θ) given
by

SGL1(θ) =
P
(

1
x1,

1
x2

)

(1− θ)P
(

1
x1,

1
x2

)

+ θ
[

1− P
(

0
x1,

0
x2

)] .

The three-way generalization of SGL1(θ) from Chapter 16 is given by

S
(3)
GL1(θ) =

P
(

1
x1,

1
x2,

1
x3

)

(1− θ)P
(

1
x1,

1
x2,

1
x3

)

+ θ
[

1− P
(

0
x1,

0
x2,

0
x2

)] .

Proposition 19.4. The cube S
(3)
GL1 with elements S

(3)
GL1(θ) for some θ is a Robinson

cube if and only if the matrix SGL1 with elements S
(2)
GL1(θ) using the same θ is a

Robinson matrix.
Proof: Due to Proposition 16.1, the proof can be limited to a specific value of θ.
S

(2)
Jac(x1, x2) = S

(2)
GL1(θ = 1) and S

(3)
Jac(x1, x2, x3) = S

(3)
GL1(θ = 1). S

(3)
Jac(x1, x2, x3) can

be written as

S
(3)
Jac =

P
(

1
x1,

1
x2,

1
x3

)

1− P
(

0
x1,

0
x2,

0
x2

) .

The result then follows from the property

S
(2)
Jac(x1, x2) =

P
(

1
x1,

1
x2

)

1− P
(

0
x1,

0
x2

) = S
(3)
Jac(x1, x2, x2). �

Proposition 19.5 considers the Robinson property for the matrix SRR with ele-
ments

SRR(x1, x2) = P
(

1
x1,

1
x2

)

.

The three-way generalization of SRR from Chapter 15 is the cube S
(3)
RR with elements

S
(3)
RR(x1, x2, x3) = P

(

1
x1,

1
x2,

1
x3

)

.
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Proposition 19.5. The following statements are equivalent:

1. SRR is a Robinson matrix

2. S
(3)
RR is a regular Robinson cube

3. S
(3)
RR(x1, x2, x3) = min [SRR(x1, x2), SRR(x1, x3), SRR(x2, x3)].

Proof: The result follows from the fact that P
(

1
x1,

1
x2,

1
x2

)

= P
(

1
x1,

1
x2

)

and if SRR is

a Robinson matrix, then P
(

1
x1,

1
x2,

1
x3

)

has the property, for 1 ≤ x1 ≤ x2 ≤ x3 ≤ m,

we have

P
(

1
x1,

1
x2,

1
x3

)

= min
[

P
(

1
x1,

1
x2

)

, P
(

1
x1,

1
x3

)

, P
(

1
x2,

1
x3

)]

= P
(

1
x1,

1
x3

)

. �

A sufficient condition for SRR in Proposition 19.5 is given in Theorem 7.1. It
follows from Proposition 19.5 that this condition is then also sufficient for S

(3)
RR to

be a Robinson cube. Alternatively, it is also possible to generalize the second proof
of Theorem 7.1.

Proposition 19.6. If X is row Petrie then S
(3)
RR is a regular Robinson cube.

Proof: For the sake of an example let X be given by

X =

















1 0 0
1 1 0
0 1 0
1 1 1
0 1 1
0 0 1

















where x1, x2 and x3 identify the columns of X. The proof is further depicted in

Figure 19.2. The first six cubes are the similarity cubes with elements P
(

1
x1,

1
x2,

1
x3

)

corresponding to the six rows of X. If a column has consecutive 1s, the similarity
cube corresponding to this row, is a Robinson cube. The seventh and last cube

in Figure 19.2 is the cube with elements P
(

1
x1,

1
x2,

1
x3

)

for the complete table X.

Figure 19.2 visualizes an interesting property of regular Robinson cubes, that is, the
sum of regular Robinson cubes is again a regular Robinson cube. �

19.4 Epilogue

A data array arranged in a cube in which rows, columns and pillars refer to the same
objects has been called three-way one-mode, or triadic data. Such data have been
studied in attempts to identify higher order interactions among objects (Heiser and
Bennani, 1997). In this chapter, we have shown that we can recognize a simple order
among the objects in three-way data, by a generalization of the Robinson property
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for two-way data. We have discussed a general version of the Robinson cube, and
a more specific one. Studying several definitions of three-way (dis)similarities, we
found that in most cases, if a two-way (dis)similarity is Robinsonian, then the tri-
adic (dis)similarity is Robinsonian too. A regular Robinson cube occurs only with
the Russel and Rao (1940) coefficient calculated on an attribute matrix with the
consecutive 1s property, and with the dominance metric for dissimilarities.

This chapter was limited to Robinson cubes. For the three-way case, two defini-
tions of a Robinson cube may be adopted, one is a special case of the other. As it
turns out, similar to the multi-way ultrametrics in Chapter 13, for the four-way case
up to three definitions of a Robinson 4-cube or a Robinson tesseract can be given.
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Figure 19.2: The sum of the six regular Robinson cubes is a regular Robinson cube.


