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Part III

Multi-way metrics
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Dissimilarities are functions that are used with various multivariate data analysis
techniques. Well-known examples are multidimensional scaling and cluster analy-
sis. A function is called a dissimilarity if it satisfies certain axioms, that is, it is
nonnegative and symmetric, and it satisfies the axiom of minimality. In addition,
a dissimilarity may satisfy axioms like the triangle inequality or the ultrametric in-
equality. Dependencies between certain axioms have been noted by various authors
(see, for example, Gower and Legendre (1986), Van Cutsem (1994) or Batagelj and
Bren (1995) for the two-way case, and Joly and Le Calvé (1995), Bennani-Dosse
(1993) and Heiser and Bennani (1997) for the three-way case).

Although many authors (including the above-mentioned) point out that the used
set of axioms do not form a system with a minimum number of axioms (due to de-
pendencies between axioms), it remains (sometimes) unclear what this minimum
set looks like. An axiom system can be a minimum set of axioms if it forms an
independent system of axioms. Within an axiom system an axiom is called indepen-
dent if it cannot be derived from the other axioms in the system. Another (perhaps
more) important property of an axiom system is consistency. An axiom system is
consistent if it lacks contradiction, that is, the ability to derive both a statement
and its negation from a set of axioms.
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120 Axiom systems

In this chapter the axiom systems for two-way and three-way dissimilarities are
studied. Some axioms for two-way dissimilarities were briefly considered in Section
1.2 and Section 10.1. To obtain axiom systems with a minimum number of axioms,
the (known) dependencies between various axioms are reviewed. Next, consistency
and independence of several axiom systems are established by means of simple mod-
els. The remainder of the chapter is used to explore how basic axioms for multi-way
dissimilarities, like nonnegativity, minimality and symmetry, may be defined. Gen-
eralizations of the two-way metric and the three-way metrics are further studied in
Chapter 12. Multi-way extensions of the three-way ultrametric inequalities are in-
vestigated in Chapter 13. Using the tools for the axioms for three-way dissimilarities,
independence and consistency may be established for the multi-way case.

11.1 Two-way dissimilarities

Let the function d(x1, x2) : E × E → R assign a real number to each pair (x1, x2),
elements of the nonempty set E. The function d(x1, x2) is called a two-way dissim-
ilarity between objects x1 and x2 if it satisfies the axioms

(A1) d(x1, x2) ≥ 0 (nonnegativity)

(A2) d(x1, x1) = 0 (minimality)

(A3) d(x1, x2) = d(x2, x1) (symmetry).

In the French literature, a dissimilarity d(x1, x2) is called respectively semi-proper
and proper if it satisfies

(A4) d(x1, x2) = 0 ⇒ d(x1, x3) = d(x2, x3) (evenness)

(A5) d(x1, x2) = 0 ⇒ x1 = x2 (definiteness).

Let

p111
123 = P

(

1
x1,

1
x2,

1
x3

)

denote the proportion of 1s shared by variables x1, x2 and x3 in the same positions,
let

p110
123 = P

(

1
x1,

1
x2,

0
x3

)

denote the proportion of 1s shared by variables x1 and x2, and 0s by variable x3 in
the same positions, and let

p1
1 = P

(

1
x1

)

denote the proportion of 1s in variable x1. For example, it holds that

p1
1 = p10

12 + p11
12 and p10

12 = p100
123 + p101

123.
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Proposition 11.1. (A1), (A2), (A3) and (A4) form a consistent and independent
system of axioms. (A1), (A2), (A3) and (A5) form a consistent and independent
system of axioms.
Proof: First, note that (A5) ⇒ (A4). Consistency of the two axiom systems is
established by the first example of d(x1, x2) in the table below. The independence
of (A1), (A2) and (A3) with respect to the remaining four axioms is established
with the bottom three examples of d(x1, x2) in the table below.

Is the axiom valid?
d(x1, x2) (A1) (A2) (A3) (A4) (A5)
p1

1 + p1
2 − 2p11

12 Yes Yes Yes Yes Yes
2p11

12 − p1
1 − p1

2 No Yes Yes Yes Yes
p1

1 + p1
2 − p11

12 Yes No Yes Yes Yes
2p1

1 + p1
2 − 3p11

12 Yes Yes No Yes Yes

Next, consider the function d(x1, x2) = min(p1
1, p

1
2) − p11

12. It is readily verified that
d(x1, x2) satisfies (A1), (A2) and (A3). However, (A4) and (A5) are not valid if
there is a pair (x1, x2) for which p11

12 = min(p1
1, p

1
2). �

A two-way dissimilarity d(x1, x2) is called a distance if it satisfies definiteness and

(A6) d(x1, x2) ≤ d(x1, x3) + d(x2, x3) (triangle inequality).

A dissimilarity may also satisfy one of two axioms that define properties of trees,
that is, an inequality by Buneman (1974)

(A7) d(x1, x2) + d(x3, x4) ≤ max[d(x1, x3) + d(x2, x4), d(x1, x4) + d(x2, x3)]

(additive tree) or

(A8) d(x1, x2) ≤ max[d(x1, x3), d(x2, x3)] (ultrametric inequality).

Proposition 11.2.

(i) (A6) together with (A2) ⇒ (A1), (A3) and (A4)

(ii) (A7) together with (A2) ⇒ (A1), (A3), (A4) and (A6)

(iii) (A8) together with (A2) ⇒ (A1), (A3), (A4) and (A6).

Proof: The proof of (i) can be found in Gower and Legendre (1986, p. 6). For (ii)
setting x3 equal to x4 in (A7) and applying (A2), we obtain (A6). For (iii), for
triplet (x1, x1, x2) we obtain d(x1, x2) ≥ 0, that is (A1). Moreover, (A8) together
with (A1) ⇒ (A6). �
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Proposition 11.3. (A2), (A5) and (A6) (or (A7) or (A8)) form a consistent and
independent system of axioms.
Proof: Consider the assertion with respect to (A6) first. An example for consistency
is the function given by

d(x1, x2) = 1− p11
12 − p00

12.

Validity of (A2) and (A5) is readily verified. Using d(x1, x2) in (A6) we obtain

1 + p11
12 + p00

12 ≥ p11
13 + p00

13 + p11
23 + p00

23 if and only if 2p110
123 + 2p001

123 ≥ 0.

With respect to independence, consider the function d(x1, x2) = 1 − p11
12. Using

d(x1, x2) in (A6) we obtain

1 + p11
12 ≥ p11

13 + p11
23 if and only if p000

123 + p100
123 + p010

123 + p001
123 + 2p110

123 ≥ 0.

Hence, d(x1, x2) satisfies (A6). Moreover, axiom (A5) is not violated. However, as
long as p1

1 6= 1, d(x1, x2) does not satisfy (A2). Hence, (A2) is independent from
(A5) and (A6).

Second, consider the function d(x1, x2) = min(p1
1, p

1
2)− p11

12. Axiom (A2) is valid.
Assuming p1

1 ≥ p1
2 ≥ p1

3 and Using d(x1, x2) in (A6), we obtain

2p1
3 + p11

12 ≥ p1
1 + p11

13 + p11
23 if and only if 2p001

123 + p101
123 ≥ p010

123.

Furthermore, (A5) is not valid if p11
12 = min(p1

1, p
1
2) = p1

2 if and only if p01
12 equals 0.

Thus, (A2) and (A6) may be valid, while (A5) is not.
Third, consider the function d(x1, x2) = 2p11

12− p1
1− p1

2. It is readily verified that
for this function (A2) and (A5) are valid. However, (A6) is only valid if p110

123+p001
123 ≤ 0

if and only if p110
123 = p001

123 = 0, since p110
123 and p001

123 are nonnegative quantities.
The proofs of the assertion with respect to (A7) and (A8) are very similar to that

of (A6). Furthermore, suppose d(x1, x2) satisfies (A8). Then for the three two-way
dissimilarities defined on the same three objects, the largest two are equal. This
property is unrelated to the value of d(x1, x2). �

11.2 Three-way dissimilarities

Axioms for three-way dissimilarities and distances can be found in Bennani-Dosse
(1993), Heiser and Bennani (1997) and Chepoi and Fichet (2007). In addition,
three-way distances are considered in Joly and Le Calvé (1995). Let d3(x1, x2, x3) :
E×E×E → R be a function that assigns a real number to each triplet (x1, x2, x3).
Heiser and Bennani (1997, p. 191) call d3(x1, x2, x3) a three-way dissimilarity if it
satisfies the axioms

(B1a) d3(x1, x2, x3) ≥ 0 (nonnegativity)

(B2a) d3(x1, x1, x1) = 0 (minimality)

(B3) d3(x1, x2, x3) = d3(x1, x3, x2) = d3(x2, x1, x3) =

d3(x2, x3, x1) = d3(x3, x1, x2) = d3(x3, x2, x1) (symmetry),
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the three-way generalizations of (A1), (A2) and (A3), and in addition

d3(x1, x1, x2) = d3(x1, x2, x2). (11.1)

Equality (11.1) is referred to as the diagonal-plane equality by Heiser and Bennani
(1997), and is also proposed in Joly and Le Calvé (1995).

Equality (11.1) is an answer to a complication that arises with three-way dissim-
ilarities, not encountered with two-way dissimilarities, when one of three variables
or entities is identical to one of the others. For this reason, Chepoi and Fichet
(2007) studied explicitly the case of three-way dissimilarities for which all entities
are different. The lack of resemblance between the two nonidentical entities should,
according to Heiser and Bennani (1997), remain invariant regardless of which two
entities are the same:

d3(x1, x1, x2) = d3(x1, x2, x2) = d3(x1, x2, x1) =

d3(x2, x1, x1) = d3(x2, x1, x2) = d3(x2, x2, x1).

Equality (11.1) is referred to as the diagonal-plane equality in Heiser and Bennani
(1997), because it requires equality of the three matrices

{d3(x1, x1, x2)} , {d3(x1, x2, x2)} and {d3(x1, x2, x1)}

which are formed by cutting the three-way cube or block diagonally, starting at
one of the three edges joining at the node or corner d(1, 1, 1). This seems to be
a misnomer, since equality (11.1) only requires equality of the first two matrices.
Equality (11.1) together with three-way symmetry (B3) implies the stronger equality

(B4) d3(x1, x1, x2) = d3(x1, x2, x2) = d3(x1, x2, x1).

Proposition 11.4. (B1a), (B2a), (B3) and (B4) form a consistent and indepen-
dent system of axioms.
Proof: Consistency of the axiom system is shown with the first example of
d3(x1, x2, x3) in the table below.

Is the axiom valid?
d3(x1, x2, x3) (B1a) (B2a) (B3) (B4)
1− p111

123 − p000
123 Yes Yes Yes Yes

p111
123 + p000

123 − 1 No Yes Yes Yes
1− p111

123 Yes No Yes Yes
p1

1 − p111
123 Yes Yes No Yes

p1
1 + p1

2 + p1
3 − 3p111

123 Yes Yes Yes No

Independence is established with the bottom four examples of d3(x1, x2, x3) in the
table. Each function satisfies three out of four axioms. �
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At this point it should be noted that there exists mathematical literature on
multi-way concepts, including distances and metrics, that is older that the above
mentioned literature. Some of the references from this literature may be found in
Deza and Rosenberg (2000, 2005). Characteristic of this literature are the extensions
of axioms (A1) and (A2) given by

(B1b) x1 6= x2 ⇒ d3(x1, x2, x3) > 0 for some x3 ∈ E

(B2b) d3(x1, x1, x2) = 0

and axiom (B6c) presented below. Axiom (B2b) makes perfect sense in geometry
where d3(x1, x1, x2) is, for example, the area of the triangle with vertices x1, x2, and
x3. Deza and Rosenberg (2000, 2005) find axioms (B1b) and (B2b) too restrictive
and drop them. The two axioms are also ignored in this chapter.

A three-way dissimilarity d3(x1, x2, x3) is called a three-way distance in Heiser
and Bennani (1997, p. 191) if it satisfies

(B5) d3(x1, x2, x3) = 0 ⇒ x1 = x2 = x3 (definiteness)

and the so-called tetrahedral inequality

(B6a) 2d3(x1, x2, x3) ≤ d3(x2, x3, x4) + d3(x1, x3, x4) + d3(x1, x2, x4).

Alternatively, Joly and Le Calvé (1995) call d(x1, x2, x3) a three-way distance if it
satisfies

(B6b) d3(x1, x2, x3) ≤ d3(x2, x3, x4) + d3(x1, x3, x4)

(B7) d3(x1, x2, x3) ≥ d3(x1, x1, x3)

and a proper three-way distance if it, in addition, satisfies (B5). Axioms (B6a)
and (B6b) are called respectively strong and weak metrics in Chepoi and Fichet
(2007). Deza and Rosenberg (2000, 2005) present yet another extension of the
triangle inequality. The so-called tetrahedron inequality is given by

(B6c) d3(x1, x2, x3) ≤ d3(x2, x3, x4) + d3(x1, x3, x4) + d3(x1, x2, x4).

Axiom (B6c) is not studied further in this chapter (but see Chapter 12).

Three-way generalizations of two-way ultrametric inequality (A8) are considered
in Joly and Le Calvé (1995, p. 195) and Bennani-Dosse (1993, p. 99-110):

(B8a) d3(x1, x2, x3) ≤ max [d3(x2, x3, x4), d3(x1, x3, x4)]

(B8b) d3(x1, x2, x3) ≤ max [d3(x2, x3, x4), d3(x1, x3, x4), d3(x1, x2, x4)] .

Axioms (B8a) and (B8a) are called respectively strong and weak ultrametrics in
Chepoi and Fichet (2007).
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As noted in Bennani-Dosse (1993, p. 20), the dependencies between (B1) to
(B8) are not as straightforward as the dependencies between (A1) to (A8) given in
Proposition 11.2.

Proposition 11.5.

(B6b) together with (B7) and (B2a) ⇒ (B1a)

(i) (B6b) together with (B3) ⇒ (B1a)

(B6a) together with (B3) ⇒ (B1a) and (B6b)

(B7) together with (B3) ⇒ (B4)

(ii) (B8a) ⇒ (B6a), (B7) and (B8b).

The proofs for (i) and (ii) are presented below. The proofs of the other assertions
can be found in Joly and Le Calvé (1995, p. 193) and Heiser and Bennani (1997, p.
192).
Proof: For (i), adding the two variants of (B6b)

d3(x1, x2, x3) ≤ d3(x2, x3, x4) + d3(x1, x3, x4)

and d3(x2, x3, x4) ≤ d3(x1, x2, x3) + d3(x1, x3, x4)

we obtain 2d3(x1, x3, x4) ≥ 0. With respect to (ii), note that, if d(x1, x2, x3) satisfies
(B8a), then for any four three-way dissimilarities the largest three are equal. �

The dependencies in Proposition 11.5 suggest the independence of various axiom
systems. First, we consider a system of structural, that is, non-metric axioms.

Proposition 11.6. (B1a), (B2a), (B3), (B5) and (B7) form a consistent and
independent system of axioms.
Proof: An example of consistency of the axiom system is the function
d3(x1, x2, x3) = 1 − p111

123 − p000
123. It is readily verified that (B1a), (B2a), (B3) and

(B5) are valid. Using d3(x1, x2, x3) in (B7) we obtain

p11
13 + p00

13 ≥ p111
123 + p000

123 if and only if p101
123 + p010

123 ≥ 0.

With respect to independence, consider the function d3(x1, x2, x3) = 3p111
123−p1

1−p1
2−

p1
3. Axioms (B2a), (B3) and (B5) are valid, but (B1a) is not. Using the function

in (B7) we obtain

3p111
123 + p1

1 ≥ 3p11
13 + p1

3

p100
123 + p110

123 ≥ 3p101
123 + p001

123 + p011
123

p10
13 ≥ 3p101

123 + p01
13.

Thus, (B1a) is independent from (B2a), (B3), (B5) and (B7).
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Second, consider the function d3(x1, x2, x3) = p1
1 +p1

2 +p1
3−2p111

123. Axioms (B1a),
(B3) and (B5) are valid, but (B2a) is not. The function satisfies (B7) if and only
if p01

12 + 2p101
123 ≥ p10

12. Thus, axiom (B2a) is independent from (B1a), (B3), (B5) and
(B7).

Third, consider the function d3(x1, x2, x3) = 2p1
1 +p1

2 +p1
3−4p111

123. Axioms (B1a),
(B2a) and (B5) are valid, but (B3) is not. The function satisfies (B7) if and only
if p01

12 + 4p101
123 ≥ p10

12, which shows that (B3) is independent from the remaining four
axioms.

Next, consider the function

d3(x1, x2, x3) = min(p11
12, p

11
13, p

11
23)− p111

123.

It is readily verified that (B1a), (B2a), (B3) and (B7) are valid. However, if there
is a triple (x1, x2, x3) for which p111

123 = min(p11
12, p

11
13, p

11
23), then (B5) does not hold.

Finally, consider the function d3(x1, x2, x3) = p1
1 + p1

2 + p1
3 − 3p111

123. It is read-
ily verified that (B1a), (B2a), (B3) and (B5) are valid. Furthermore, we have
d3(x1, x2, x3) ≤ d3(x1, x1, x2) if and only if p01

12 + 3p101
123 ≤ p10

12, which show the inde-
pendence of (B7) with respect to the remaining four axioms. �

Finally, we consider an axiom system with a minimum number of axioms.

Proposition 11.7. (B2a), (B3), (B5), (B6a) and (B7) form a consistent and
independent system of axioms.
Proof: An example for the consistency of the axiom system is the function
d3(x1, x2, x3) = 1 − p111

123 − p000
123. It is readily verified that (B2a), (B3), (B5) and

(B7) are valid. Using d3(x1, x2, x3) in (B6a) we obtain

1− (p111
234 + p111

134 + p111
124 + p000

234 + p000
134 + p000

124) + 2p111
123 + 2p000

123 ≥ 0. (11.2)

Since the quantity in between brackets in (11.2) is smaller than unity, (B6a) is valid.
With respect to independence, consider the function d3(x1, x2, x3) = p1

1 + p1
2 +

p1
3 − 2p111

123. Axioms (B3) and (B5) are valid, and (B2a) is not. Using the function
in (B6a) we obtain

3p1
4 + 4p111

123 ≥ p111
234 + p111

134 + p111
124

which holds if and only if

3p0001
1234 + 3p1001

1234 + 3p0101
1234 + 3p0011

1234 + p1101
1234 + p1011

1234 + p0111
1234 + p1111

1234 + 4p1110
1234 ≥ 0.

Furthermore, axiom (B7) is valid if and only if

p1
2 + 2p11

12 ≥ p1
1 + 2p111

123 if and only if p01
12 + 2p110

123 ≥ p10
12.

Thus, (B2a) is independent from the remaining four axioms.
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Second, consider the function d3(x1, x2, x3) = 2p1
1 + p1

2 + p1
3 − 4p111

123. Axioms
(B2a), (B5) and (B7) are valid, but (B3) is not. Using the function in (B6a), we
obtain the inequality

p1
2 + 3p1

4 + 8p111
123 ≥ 4p111

234 + 4p111
134 + 4p111

124

which holds if and only

p0100
1234 + p1100

1234 + p0110
1234 + 4p0101

1234 + 8p1110
1234 + 3p0001

1234 + 3p1001
1234 + 3p0011

1234 ≥ p1011
1234

which shows that (B3) is independent from the remaining four axioms.
Third, consider the function

d(x1, x2, x3) = min(p11
12, p

11
13, p

11
23)− p111

123

Axioms (B2a), (B3) and (B7) are valid. Assuming p11
12 ≥ p11

13 ≥ p11
14 ≥ p11

23 ≥ p11
24 ≥ p11

34

and Using d(x1, x2, x3) in (B6a), we obtain

2p11
34 + p11

24 + 2p111
123 ≥ 2p11

23 + p111
234 + p111

134 + p111
124

if and only if
2p0011

1234 + p1011
1234 + p0101

1234 ≥ 2p0110
1234.

Note that axiom (B5) is not valid if p111
123 = min(p11

12, p
11
13, p

11
23) = p11

23 if and only if
p011

123 = 0. The latter implies that p0110
1234 = 0, from which it follows that (B6a) holds.

Thus, (B5) is independent from the remaining four axioms.
Next, consider the function d3(x1, x2, x3) = 3p111

123 − p1
1 − p1

2 − p1
3. Axioms (B2a),

(B3) and (B5) are valid for both d3(x1, x2, x3) and −d3(x1, x2, x3). Axiom (B6a) is
valid for −d3(x1, x2, x3), since filling in −d3(x1, x2, x3) in (B6a) gives

p1
4 + 2p111

123 ≥ p111
234 + p111

134 + p111
124

if and only if
2p1110

1234 + p0001
1234 + p1001

1234 + p0101
1234 + p0011

1234 ≥ 0.

Using similar arguments it is clear that (B6a) is not valid for d3(x1, x2, x3). Finally,
(A7) is valid for d3(x1, x2, x3) not valid for −d3(x1, x2, x3) if and only if p01

12 +2p101
123 ≤

p100
123. Hence, (B6a) and (B7) are independent from the remaining four axioms. �

11.3 Multi-way dissimilarities

In this final section it is explored how basic axioms for multi-way dissimilarities,
like nonnegativity, minimality and symmetry, may be defined. However, axioms
for the four-way and five-way case are considered first. Generalizations of the two-
way metric and the three-way metrics to k-way metrics are further studied in the
next chapter (Chapter 12). Multi-way formulations of the three-way ultrametrics
are explored in Chapter 13. Independence and consistency of axioms for multi-way
dissimilarities may be established using the tools from the previous section.
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As it turns out, definitions of some axioms are considerably more complicated in
the four-way case compared to the three-way case. Let

d4(x1, x2, x3, x4) : E4 → R or d1234 : E4 → R

be a function that assigns a real number to each quadruplet (x1, x2, x3, x4). Formu-
lations of nonnegativity and minimality are straightforward:

(C1) d4(x1, x2, x3, x4) ≥ 0 (nonnegativity)

(C2) d4(x1, x1, x1, x1) = 0 (minimality).

The definition of four-way symmetry is somewhat more involved. Four-way symme-
try is given by

d1234 = d1243 = d1324 = d1342 = d1423 = d1432 =

d2134 = d2143 = d2314 = d2341 = d2413 = d2431 =

d3124 = d3142 = d3214 = d3241 = d3412 = d3421 =

d4123 = d4132 = d4213 = d4231 = d4312 = d4321.

If d4(x1, x2, x3, x4) is four-way symmetric, then for all x1, x2, x3, x4 ∈ E and every
permutation π of {1, 2, 3, 4}

(C3) d4(xπ(1), xπ(2), xπ(3), xπ(4)) = d4(x1, x2, x3, x4).

Similar to the three-way case, the four-way function can be defined on a quadruplet
or four-tuple of which some entities are identical. Following the reasoning in Heiser
and Bennani (1997), it seems reasonable to require that when one of four variables
or entities is identical to one of the others, then the lack of resemblance between the
three nonidentical entities should remain invariant regardless of which two entities
are the same. A generalization of equality (11.1) is given by

d4(x1, x1, x2, x3) = d4(x1, x2, x2, x3) = d4(x1, x2, x3, x3) (11.3)

or d1123 = d1223 = d1233. Equality (11.3) together with four-way symmetry, implies

d1123 = d1132 = d1213 = d1312 = d1231 = d1321 =

d2113 = d3112 = d2131 = d3121 = d2311 = d3211 =

d2213 = d2231 = d2123 = d2321 = d2132 = d2312 =

d1223 = d3221 = d1232 = d3212 = d1322 = d3122 =

d3312 = d3321 = d3132 = d3231 = d3123 = d3213 =

d1332 = d2331 = d1323 = d2313 = d1233 = d2133.

The latter equality is the mathematical formulation of the requirement that, when
one of four vectors or entities is identical to one of the others, then the lack of
similarity between the three nonidentical entities should remain invariant regardless
of which two entities are the same.
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Apart from the possibility that two entities are identical, up to two additional
possibilities may be encountered in the four-way case. First of all, the four-way func-
tion may be defined on a quadruplet of which three entities are identical. Secondly,
the four-way function may be defined on two pairs of identical entities. Following
the above reasoning, we require that if the resemblance between two groups of iden-
tical entities is measured, then the lack of resemblance between the two nonidentical
groups should remain invariant regardless of the group sizes. The requirement may
be formalized with the definition of equality

d4(x1, x1, x1, x2) = d4(x1, x1, x2, x2) = d4(x1, x2, x2, x2) (11.4)

or d1112 = d1122 = d1222. Equality (11.4), together with four-way symmetry, implies

d1112 = d1121 = d1211 = d2111

=d1122 = d1212 = d1221 = d2112 = d2121 = d2211

=d1222 = d2122 = d2212 = d2221.

The definitions of axioms for five-way dissimilarities are now straightforward. Let

d5(x1, x2, x3, x4, x5) : E5 → R or d12345 : E5 → R

be a function that assigns a real number to each tuple (x1, x2, x3, x4, x5). The basic
axioms for the five-way case are

(D1) d5(x1, x2, x3, x4, x5) ≥ 0 (nonnegativity)

(D2) d5(x1, x1, x1, x1, x1) = 0 (minimality)

(D3) d5(xπ(1), xπ(2), ..., xπ(5)) = d5(x1, x2, ..., x5) (symmetry).

In the case that two out of five entities are identical, the first additional requirement
is given by

d11234 = d12234 = d12334 = d12344.

If there are three sets of identical entities (size of the set unspecified), the second
additional requirement is given by

d11123 = d12223 = d12333 = d11223 = d11233 = d11233.

When there are two sets of identical entities (size of the set unspecified), the third
additional requirement is given by

d11112 = d11122 = d11222 = d12222.

Thus, for the k-way case up to (k− 2) additional requirements must be specified to
cover all the cases of identical entities or objects.
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For the definition of the axioms for general multi-way dissimilarities the following
notation is used. Let x1,k = {x1, x2, ..., xk} be a k-tuple and let

dk(x1,k) : Ek → R

denote the multi-way dissimilarity for k objects or variables. The basic axioms for
the measure dk(x1,k) are given by

(K1) dk(x1,k) ≥ 0 (nonnegativity)

(K2) dk(x1) = 0 (minimality)

(K3) dk(x1,k) = dk(xπ(1), xπ(2), ..., xπ(k)) (symmetry)

where x1 is a k-tuple with elements x1.

11.4 Epilogue

The topic of this chapter was axioms, like nonnegativity, minimality and symmetry,
for two-way, three-way and general multi-way dissimilarities. Generalizations of the
triangle inequality are studied in the next chapter, Chapter 12. For the axioms
of two-way and three-way dissimilarities several axiom systems were studied. Us-
ing simple models, the consistency and independence of these axiom systems were
established.

In the final section of the chapter axioms of multi-way dissimilarities were consid-
ered. Multi-way axioms are already quite complicated for the four-way and five-way
case. Multi-way definitions of nonnegativity, minimality and symmetry are straight-
forward. If x1,k is a k-tuple, then d(x1,k) = 0 if all elements in x1,k are identical.
However, for k ≥ 3 it may occur that not all but some elements in x1,k are iden-
tical. Additional axioms are required to deal with these new possibilities. For the
three-way case Heiser and Bennani (1997) required that when one of three variables
is identical to one of the others, then the lack of resemblance between the two non-
identical entities should remain invariant regardless of which two entities are the
same. Following this line of reasoning, additional axioms may be formulated for the
four-way case, the five-way case, and the general multi-way case.
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Measures of resemblance play an important role in many domains of data analysis.
However, similarity coefficients often only allow pairwise or two-way comparison of
objects or entities. An alternative to two-way resemblance measures is to formulate
multi-way coefficients (see, for example, Diatta, 2006, 2007). Several authors have
studied three-way dissimilarities and generalized various concepts defined for the
two-way case to the three-way case (see, for example, Bennani-Dosse, 1993; Joly
and Le Calvé, 1995; Heiser and Bennani, 1997). Axioms for two-way and three-
way dissimilarities were reviewed in the previous chapter. Chapter 11 was also
used to investigate and formulate basic axioms, like nonnegativity, minimality and
symmetry for multi-way dissimilarities. In the present chapter extensions of the two-
way metric and the three-way metric axioms are explored. Chapter 13 is concerned
with extensions of the two three-way ultrametric axioms.

In mathematics, a metric space is a set where a notion of distance between
elements of the set is defined. A two-way dissimilarity is called a metric if it is
nonnegative, symmetric, satisfies minimality, and (most importantly) if it satisfies
the triangle inequality. Both Joly and Le Calvé (1995) and Heiser and Bennani
(1997) have considered three-way generalizations of the triangle inequality, defined
for the two-way case. The two different metrics are called weak and strong in Chepoi
and Fichet (2007). In this chapter the ideas on three-way metrics presented in Joly
and Le Calvé (1995) and Heiser and Bennani (1997) are adopted and extended to
multi-way metrics.
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The inspiration for this chapter on multi-way metricity comes from the paper
by Heiser and Bennani (1997). Various ideas on, and properties of, the three-way
tetrahedral inequality presented in their paper, are extended in this chapter for a
broad class of inequalities that generalize the triangle inequality. An important topic
is how the k-way inequalities are related to the (k − 1)-way inequalities.

12.1 Definitions

In this chapter we study a family of k-way metrics that generalize the two-way
metric. Let x1,k denote the k-tuple (x1, x2, ..., xk) and let x−i

1,k denote the (k − 1)-

tuple (x1, ..., xi−1, xi+1, ..., xk) where the minus in the superscript of x−i
1,k is used to

indicate that element xi drops out. In the following the elements of tuple x1,k will
be referred to as objects.

A dissimilarity dk : Ek → R+ is totally symmetric if for all x1, x2, ..., xk ∈ E and
every permutation π of {1, 2, ..., k}

dk(xπ(1), ..., xπ(k)) = dk(x1, ..., xk).

As a generalization of minimality we define dk(x1, ..., x1) = 0. It is assumed through-
out the chapter that the equations hold for all objects in E that are involved in a
definition.

Both Joly and Le Calvé (1995) and Heiser and Bennani (1997) introduced three-
way generalizations of the triangle inequality. The two inequalities are given by
respectively

d3(x1,3) ≤ d3(x2,4) + d3(x
−2
1,4) (12.1)

2d3(x1,3) ≤ d3(x2,4) + d3(x
−2
1,4) + d3(x

−3
1,4). (12.2)

Inequalities (12.1) and (12.2) are called respectively weak and strong metrics in
Chepoi and Fichet (2007). Deza and Rosenberg (2000, 2005) generalize (12.1) to

dk(x1,k) ≤
k

∑

i=1

dk(x
−i
1,k+1). (12.3)

De Rooij (2001, p. 128) noted that inequality (12.2) can be generalized to

(k − 1)× dk(x1,k) ≤
k

∑

i=1

dk(x
−i
1,k+1) (the polyhedral inequality). (12.4)
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We may generalize (12.3) and (12.4) to

u× dk(x1,k) ≤
k

∑

i=1

dk(x
−i
1,k+1) (12.5)

where u is a positive real number. We can further generalize (12.5) to

u× dk(x1,k) ≤
v

∑

i=1

dk(x
−i
1,n+1) (12.6)

where v is a positive integer bounded by 2 ≤ v ≤ k. Note that the number of linear
terms on the right-hand side of (12.5) is determined by k, whereas the number of
linear terms on the right-hand side of (12.6) is determined by v.

If u∗ is a positive integer and u ≥ u∗, then (12.6) implies

u∗ × dk(x1,k) ≤
v

∑

i=1

dk(x
−i
1,k+1).

Furthermore, if v ≤ v∗, then (12.6) implies

u× dk(x1,k) ≤
v∗

∑

i=1

dk(x
−i
1,k+1).

Moreover, for u = 1 and k = 1, adding the two inequalities

dk(x1,k) ≤ dk(x2,k+1) + dk(x
−2
1,k+1)

and dk(x2,k+1) ≤ dk(x1,k) + dk(x
−2
1,k+1)

shows that dissimilarity dk(x1,k) ≥ 0. In addition, we have the following property.

Proposition 12.1. For u > 1, (12.6) implies

(u− 1)× dk(x1,k) ≤
v

∑

i=2

dk(x
−i
1,k+1). (12.7)

Proof: Interchanging the roles of x1 and xk+1 in (12.6) and dividing the result by u,
we obtain

dk(x2,k+1) ≤
1

u
dk(x1,k) +

1

u

v
∑

i=2

dk(x
−i
1,k+1). (12.8)

Adding (12.8) to (12.6) we obtain

u2 − 1

u
× dk(x1,k) ≤

u + 1

u

v
∑

i=2

dk(x
−i
1,k+1). (12.9)

Using u2− 1 = (u + 1)(u− 1), multiplication of (12.9) by u/(u + 1) yields (12.7). �
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12.2 Two identical objects

In the remainder of the chapter we are interested in how dissimilarity dk is related
to dk−1. In Section 12.3 we consider lower and upper bounds of dk in terms of
dk−1. Furthermore, in Section 12.4 we study what (k − 1)-way metrics are implied
by (12.6). Apart from minimality, symmetry and (12.6), we discuss below several
additional requirements that specify how dk and dk−1 are related when two objects
of dk are identical.

A first requirement is the following condition. Following Heiser and Bennani
(1997) for the three-way case and Deza and Rosenberg (2000, 2005) for the k-way
case, we require that, if two objects are identical then dk should remain invariant
regardless which two objects are the same, that is,

dk(x1, x1,k−1) = dk(x1,2, x2,k−1) = ... = dk(x1,k−1, xk−1). (12.10)

In view of the total symmetry, (12.10) implies that dk(x1, ..., xk) only depends on
the h-element set {xi1 , ..., xih} such that {x1, ..., xk} = {xi1 , ..., xih} where 1 ≤ i1 ≤
ih ≤ k. We consider the following example that satisfies (12.10).

Deza and Rosenberg (2000, p. 803) introduced the k-way extension of the three-
way star distance discussed in Joly and Le Calvé (1995). Let | {x1, ..., xn} | denote
the cardinality of set {x1, ..., xk}. Let α : E → R+ and k ≥ 3. The star k-distance
dα

k : Ek → R+ is defined as follows. Let x1, ..., xk ∈ E and let 0 ≤ i1 ≤ ... ≤ ih ≤ k
be such that | {x1, ..., xk} | = | {xi1 , ..., xih} | = h. Set

dα
k (x1,k) =

{

∑h

j=1 α(xij) if h > 1,

0 if h = 1.

Deza and Rosenberg (2000, p. 803) showed that the star k-distance dα
k satisfies

(12.10).
Condition (12.10) is perhaps not an intuitive requirement, since it may not hold

for certain functions. For example, the perimeter distance gives a geometrical inter-
pretation of the concept “average distance” between objects. Heiser and Bennani
(1997) and De Rooij and Gower (2003) study the three-way perimeter distance
function

dp
3(x1,3) = d(x1, x2) + d(x1, x3) + d(x2, x3). (12.11)

A possible k-way extension of (12.11) is

dp

k(x1,k) =
k−1
∑

i=1

k
∑

j=i+1

d(xi, xj).

Perimeter distance dp

k is the sum of all pairwise distances between the objects in-
volved. It may be verified that dp

k does not satisfy (12.10) for k ≥ 4.
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In the remainder of this chapter it is assumed that dk(x1,k) satisfies (12.10). To
relate a k-way dissimilarity dk to a (k − 1)-way dissimilarity dk−1, we study two
additional restrictions. Let p be a real positive value. Suppose that, if two objects
of the k-way dissimilarity are identical, dk and dk−1 are equal up to multiplication
by a factor p, that is,

dk−1(x1,k−1) =
1

p
dk(x1, x1,k−1). (12.12)

The value of p in (12.12) may depend on the particular distance model or function
that is used. For example, Joly and Le Calvé (1995) introduce the three-way semi-
perimeter distance

dsp
3 (x1,3) =

d(x1, x2) + d(x1, x3) + d(x2, x3)

2
. (12.13)

Applying (12.11) with tuple (x1, x1, x2) we obtain dp
3(x1, x1, x2) = 2d(x1, x2). How-

ever, applying (12.13) with tuple (x1, x1, x2) we obtain dsp
3 (x1, x1, x2) = d(x1, x2).

For generality we let p in (12.12) be a positive real number. Of course, it may be
argued that p ≥ 1. The bounds studied in the Section 12.3 depend on the value of
p. The bounds of dk in terms of the dk−1 therefore depend on the distance function
that is used to relate the k-way dissimilarity and (k − 1)-way dissimilarity. The
results in Section 12.4 however, do not depend on the value of p.

The final requirement we discuss in this section is given by

dk(x1, x1,k−1) ≤ dk(x1,k). (12.14)

In (12.14), the k-way dissimilarity without identical objects is equal to or greater
than the k-way dissimilarity with two identical objects. Condition (12.14) seems
to be a natural requirement for a multi-way dissimilarity. Combining (12.12) and
(12.14) we obtain

p dk−1(x1,k−1) ≤ dk(x1,k). (12.15)
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12.3 Bounds

In this section we study the lower and upper bounds of dissimilarity dk in terms
of the dk−1. We first turn our attention to the lower bound of k-way dissimilarity
dk(x1,k) that satisfies minimality, total symmetry, and (12.10).

Proposition 12.2. If (12.12) and (12.14) hold, then for k-way dissimilarity
dk(x1,k) we have

p

k

k
∑

i=1

dk−1(x
−i
1,k) ≤ dk(x1,k). (12.16)

Proof: For given k, there are k variants of dk−1(x1,k−1), which are given by dk−1(x
−i
1,k)

for i = 1, 2, ..., k. We obtain k variants of (12.15) by substituting dk−1(x1,k−1) on the
left-hand side of (12.15) by one of its variants. Adding up all k variants of (12.15),
that is, adding inequalities

p dk−1(x
−k
1,k) ≤ dk(x1,k)

p dk−1(x
−(k−1)
1,k ) ≤ dk(x1,k)

...

p dk−1(x
−3
1,k) ≤ dk(x1,k)

p dk−1(x
−2
1,k) ≤ dk(x1,k)

p dk−1(x2,k) ≤ dk(x1,k)

followed by division by k, we obtain (12.16). �

For p = 1, lower bound (12.16) is equivalent to the arithmetic mean of the (k−1)-
way dissimilarities dk−1(x

−i
1,k).

For the case (u − v + 2) > 0, we have the following lower bound for a k-way
distance (that is, dk(x1,n) satisfies minimality, total symmetry, (12.6) and (12.10)).
In contrast to Proposition 12.2, we only require validity of (12.12), not (12.14), for
this lower bound.
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Proposition 12.3. Suppose (12.12) holds and (u − v + 2) > 0. Then for k-way
distance dk(x1,k) we have

p(u− v + 2)

2k

k
∑

i=1

dk−1(x
−i
1,k) ≤ dk(x1,k). (12.17)

Proof: Applying (12.6) with (k + 1)-tuple (x1, x1, x3, ..., xk+1), and replacing xk+1

by x2 in the result, we obtain

p u× dk−1(x
−2
1,k) ≤ 2dk(x1,k) + p

v
∑

i=3

dk−1(x1, x2, x
−i
3,k) for v ≥ 3 (12.18)

p u× dk−1(x
−2
1,k) ≤ 2dk(x1,k) for v = 2. (12.19)

We have k variants of dk−1 for given k, for example dk−1(x
−2
1,k) in left-hand side of

(12.19). We may obtain k variants of (12.19) by replacing dk−1(x
−2
1,k) by one of the

other (k − 1) variants. Adding up all k variants of (12.19), followed by division by
2k, we obtain

p u

2k

k
∑

i=1

dk−1(x
−i
1,k) ≤ dk(x1,k)

which is the inequality that is obtained by using v = 2 in (12.17).
We may obtain k variants of (12.18) by replacing dk−1(x

−2
1,k) in the left-hand side

of (12.18) by one of the other (k− 1) variants. Considering all k variants of (12.18),
the k variants of dk−1 on the right-hand side each occur a total of (v − 2) times.
Adding up all k variants of (12.18), followed by division by 2k, we obtain (12.17).
�

If (12.12) and (12.4) hold, then dk(x1,k) has a lower bound

p

2k

k
∑

i=1

dk−1(x
−i
1,k) ≤ dk(x1,k). (12.20)

We obtain (12.20) by using u = k − 1 and v = k in (12.17). For p = 2 the
lower bound of dk(x1,k) is equivalent to the arithmetic mean of the (k − 1)-way
dissimilarities dk−1(x

−i
1,k). If not only (12.12) but also (12.14) is valid, then (12.16)

is the lower bound of dk(x1,k). Note that (12.16) is sharper than (12.20).

Next, we focus on the upper bound of k-way distance dk(x1,k).
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Proposition 12.4. If (12.12) holds, then for k-way distance dk(x1,k) we have

dk(x1,k) ≤
vp

ku

k
∑

i=1

dk−1(x
−i
1,k) for 2 ≤ v ≤ k − 1 (12.21)

dk(x1,k) ≤
(k − 1)p

k(u− 1)

k
∑

i=1

dk−1(x
−i
1,k) for v = k. (12.22)

Proof: Applying (12.6) with (k + 1)-tuple (x1, ..., xk, xk) we obtain

u× dk(x1,k) ≤ p
v

∑

i=1

dk−1(x
−i
1,k) for 2 ≤ v ≤ k − 1 (12.23)

(u− 1)× dk(x1,k) ≤ p

k−1
∑

i=1

dk−1(x
−i
1,k) for v = k. (12.24)

We have k variants of dk−1(x
−i
1,k) in (12.23) and (12.24). Considering all k variants

of (12.23) and (12.24), each dk−1(x
−i
1,k) occurs a total of v times. Adding up all k

variants of (12.23) and (12.24), followed by division by ku, respectively k(u− 1), we
obtain (12.21) and (12.22). �

Using u = k and v = k in (12.6) yields

k × dk(x1,k) ≤
k

∑

i=1

dk(x
−i
1,k+1). (12.25)

If (12.12) and (12.25) hold, then the k-way distance dk(x1,k) is bounded from above
by

dk(x1,k) ≤
p

k

k
∑

i=1

dk(x
−i
1,k). (12.26)

We obtain (12.26) by using u = k in (12.22). For p = 1 the upper bound of dk(x1,k)
is equivalent to the arithmetic mean of the (k − 1)-way distances dk−1(x

−i
1,k).
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12.4 (k−1)-Way metrics implied by k-way metrics

In this section we study what (k − 1)-way metrics are implied by the family of k-
way metrics defined in (12.6). Again k-way dissimilarity dk(x1,k) satisfies minimality,
total symmetry, and (12.10). It is interesting to note that, although we use condition
(12.12) throughout this section, the results do not depend on the value of p in (12.12).
Unless stated otherwise we assume k ≥ 3 throughout this section.

Proposition 12.5. If (12.12) and (12.14) hold, then (12.6) implies

u× dk−1(x1,k−1) ≤
v

∑

i=1

dk−1(x
−i
1,k) for 2 ≤ v ≤ k − 1 (12.27)

(u− 1)× dk−1(x1,k−1) ≤
k−1
∑

i=1

dk−1(x
−i
1,k) for v = k, k > 1. (12.28)

Proof: Inequalities (12.27) and (12.28) are obtained from combining (12.15) with
(12.23), respectively (12.24). �

As it turns out, condition (12.14) is not required to obtain (12.27). We first show
that if (12.12) holds, then (12.6) implies (12.27) for k ≥ 4 and 2 ≤ v ≤ k − 2.

Proposition 12.6. If (12.12) holds, then (12.6) implies (12.27) for k ≥ 4 and
2 ≤ v ≤ k − 2.
Proof: Applying (12.6) with (k+1)-tuple (x1, ..., xk−1, xk−1, xk+1) and replacing xk+1

by xk in the result, we obtain (12.27). �

Using v = k − 1 in (12.6) we obtain

u× dk(x1,k) ≤
k−1
∑

i=1

dk(x
−i
1,k+1). (12.29)

Using v = k − 1 in (12.27) we obtain

u× dk−1(x1,k−1) ≤
k−1
∑

i=1

dk−1(x
−i
1,k). (12.30)

Next, we show that if (12.12) holds, then (12.29) implies (12.30) for u ≥ 1.

Proposition 12.7. If (12.12) holds, then for u ≥ 1, (12.29) implies (12.30).
Proof: Applying (12.29) with (k + 1)-tuple (x1, ..., xk−1, xk−1, xk+1) and replacing
xk+1 by xk in the result, we obtain

p u× dk−1(x1,k−1) ≤ p
k−2
∑

i=1

dk−1(x
−i
1,k) + dk(x1,k). (12.31)



140 Multi-way metrics

Using v = k − 1 in (12.23) we obtain

u× dk(x1,k) ≤ p

k−1
∑

i=1

dk−1(x
−i
1,k). (12.32)

Adding (12.33) to u× (12.31) yields

u2 × dk−1(x1,k−1) ≤ u
k−2
∑

i=1

dk−1(x
−i
1,k) + dk−1(x

−(k−1)
1,k ). (12.33)

Apart from variant dk−1(x1,k−1) on the left-hand side of (12.33), there are (k − 1)

variants of dk−1, for example, variant dk−1(x
−(k−1)
1,k ), on the right-hand side of (12.33).

We have (k − 1) variants of (12.33) by varying all (k − 1) variants of dk−1 on the
right-hand side of (12.33). Adding up all (k − 1) variants of (12.33), followed by
division by (k − 1)u, yields

u× dk−1(x1,k−1) ≤

[

(k − 2)u + 1

(k − 1)u

] k−1
∑

i=1

dk−1(x
−i
1,k). (12.34)

To complete the proof, it must be shown that parametrized inequality (12.34) is
stronger than (12.30). We have

(k − 2)u + 1

(k − 1)u
≤ 1

if and only if u ≥ 1. The latter requirement is true under the conditions of the
theorem. This completes the proof. �

Using v = k in (12.6) we obtain (12.5). From Proposition 12.5 we know that if
both (12.12) and (12.14) hold, then (12.5) implies (12.28). If only (12.12) is valid,
(12.5) implies the parametrized inequality

(u− 1)× dk−1(x1,k−1) ≤

[

1 +
k − u

(k − 1)u

] k−1
∑

i=1

dk−1(x
−i
1,k). (12.35)

Proposition 12.8. If (12.12) holds, then for u > 1, (12.5) implies (12.35).
Proof: Applying (12.5) with (k+1)-tuple (x1, ..., xk−1, xk−1, xk+1) and replacing xk+1

by xk in the result, we obtain

p u× dk−1(x1,k−1) ≤ p

k−2
∑

i=1

dk−1(x
−i
1,k) + 2dk(x1,k). (12.36)

Adding 2× (12.24) to (u− 1)× (12.36) we obtain

u(u− 1)× dk−1(x1,k−1) ≤ (u + 1)
k−2
∑

i=1

dk−1(x
−i
1,k) + 2dk−1(x

−(k−1)
1,k ). (12.37)
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Apart from variant dk−1(x1,k−1) on the left-hand side of (12.37), there are (k − 1)
variants of dk−1 on the right-hand side of (12.37). We have (k−1) variants of (12.37)
by varying all (k − 1) variants of dk−1 on the right-hand side of (12.37). Adding up
these (k− 1) variants of (12.37), followed by division by (k− 1)u, yields (12.35). �

The parametrized inequality (12.35) is weaker than (12.28) for k > u, and stronger
than (12.28) for 3 ≤ k < u. With respect to quantity

1 +
k − u

(k − 1)u
(12.38)

in (12.35) we have limits

lim
k→∞

[

1 +
k − u

(k − 1)u

]

= 1 +
1

u
, lim

u→∞

[

1 +
k − u

(k − 1)u

]

= 1−
1

k

and

lim
k,u→∞

[

1 +
k − u

(k − 1)u

]

= 1.

Because of these limits it may be argued that (12.38) and (12.35) are only interesting
for small k and u. Furthermore, if k = u, then (12.39) = 1, and (12.35) is equivalent
to (12.28).

Using u = k − 1 in (12.5) we obtain the polyhedral inequality (12.4). If (12.12)
holds, then for k ≥ 3 the polyhedral inequality (12.4) implies

(u− 2)× dk−1(x1,k−1) ≤

[

1 +
1

(k − 1)2

] k−1
∑

i=1

dk−1(x
−i
1,k). (12.39)

We obtain (12.39) by using u = k − 1 in (12.35) and noting that k2 − 2k + 2 =
(k − 1)2 + 1. The quantity

1 +
1

(k − 1)2
in (12.39) with limit lim

k→∞

[

1 +
1

(k − 1)2

]

= 1

approximates 1 rapidly as k increases. As shown in Heiser and Bennani (1997,
p. 192), if (12.12) holds then the tetrahedral inequality (12.2) does not imply the
triangle inequality, but the weaker parametrized triangle inequality

d(x1, x2) ≤
5

4
[d(x2, x3) + d(x1, x3)] .

Furthermore, if (12.12) holds, then

3d4(x1,4) ≤ d4(x2,5) + d4(x
−2
1,5) + d4(x

−3
1,5) + d4(x

−4
1,5)

does not imply the tetrahedral inequality (12.2), but the weaker parametrized in-
equality

2d3(x1,3) ≤
10

9

[

d3(x2,4) + d3(x
−2
1,4) + d3(x

−3
1,4)

]

.



142 Multi-way metrics

12.5 Epilogue

In this chapter a family of k-way metrics that extend the usual two-way metric
was studied. The three-way metrics introduced by Joly and Le Calvé (1995) and
Heiser and Bennani (1997) and the k-way metrics studied in Deza and Rosenberg
(2000) are in the family. The family gives an indication of the many possible exten-
sions for introducing k-way metricity. It was shown how k-way metrics and k-way
dissimilarities are related to their (k − 1)-way counterparts under different set of
axioms.

Validity of a metric axiom for k ≥ 3 appears not to be important for methods
used in applied multi-way data analysis, such as multi-way principal component
and factor analysis (Kroonenberg, 2008), or multi-way dimensional scaling (Gower
and De Rooij, 2003; Heiser and Bennani, 1997). For example, the three-way mul-
tidimensional scaling done in Gower and De Rooij (2003) merely required that the
underlying two-way coefficients satisfied the triangle inequality, since the three-way
dissimilarities are linear transformations of the two-way information. The multi-way
procedure based on the gradient method used in Cox, Cox and Branco (1991) and
the three-way least squares procedure used in Heiser and Bennani (1997) do not
require that the dissimilarities satisfy stronger conditions. At this point the formu-
lations and properties presented in this chapter appear to be of theoretical interest
only. From a theoretical point of view it is unfortunate that no well-established
basic multi-way metric structure emerged from the study.
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Multi-way dissimilarities are natural generalizations of pairwise dissimilarities, that
allow global comparison of more than two objects or variables. Various authors
have studied three-way dissimilarities and generalized various concepts defined for
the two-way case to the three-way case (see, for example, Bennani-Dosse, 1993; Joly
and Le Calvé, 1995; Heiser and Bennani, 1997). One of these topics is ultrametric
dissimilarities (Diatta and Fichet, 1998; Murtagh, 2004; Diatta, 2007). A two-way
dissimilarity d(x1, x2) is called a two-way ultrametric if it satisfies the ultrametric
inequality, which is given by

d(x1, x2) ≤ max[d(x1, x3), d(x2, x3)].

The two-way ultrametric inequality implies that the triangle formed by the three
points x1, x2 and x3 is isosceles, that is, at least the largest two sides are of equal
length. A recent review on where ultrametricity may be encountered is given by
Murtagh (2004). Diatta and Fichet (1998) and Diatta (2006, 2007) consider a class of
multi-way quasi-ultrametrics that extend the fundamental bijection in classification
between ultrametric dissimilarities and indexed hierarchies.
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Joly and Le Calvé (1995) and Bennani-Dosse (1993) describe three-way general-
izations of the ultrametric inequality, defined for the two-way case. The two different
ultrametrics are called weak and strong in Chepoi and Fichet (2007). In this chap-
ter the ideas on three-way ultrametrics presented in Joly and Le Calvé (1995) and
Bennani-Dosse (1993) are adopted and extended to multi-way ultrametrics. For the
two-way case we have the ultrametric inequality; for the three-way case two equali-
ties have been proposed; for the four-way case three inequalities are presented; and
for the multi-way case (k − 1) inequalities may be defined. The inspiration for this
chapter comes from the thesis by Bennani-Dosse (1993). Some ideas on the three-
way ultrametrics presented in that thesis, are explored in this chapter for multi-way
dissimilarities.

13.1 Definitions

Let x1,k = {x1, x2, ..., xk} be a k-tuple and let x−i
1,k be a (k − 1)-tuple with elements

x1 to xk where the minus in x−i
1,k is used to indicate that element xi drops out. Both

Bennani-Dosse (1993) and Chepoi and Fichet (2007, p. 5) consider two three-way
generalizations of the ultrametric inequality, namely

d(x1,3) ≤ max
[

d(x2,4), d(x−2
1,4), d(x−3

1,4)
]

d(x1,3) ≤ max
[

d(x2,4), d(x−2
1,4)

]

.

These inequalities are called respectively weak and strong ultrametrics in Chepoi and
Fichet (2007). For groups of size k = 4 it is possible to formulate three ultrametric
inequalities. From weak to strong, the three ultrametrics are given by

d(x1,4) ≤ max
[

d(x2,5), d(x−2
1,5), d(x−3

1,5), d(x−4
1,5)

]

d(x1,4) ≤ max
[

d(x2,5), d(x−2
1,5), d(x−3

1,5)
]

d(x1,4) ≤ max
[

d(x2,5), d(x−2
1,5)

]

.

We may thus formulate (k − 1) ultrametrics for a group of k objects.
For the properties in this chapter it is more convenient to define an ultrametric on

the number of dissimilarities involved. For example, the inequality d3 ≤ max(d1, d2)
represents all metrics of which the definition involves three multi-way dissimilarities,
that is,

d(x1,2) ≤ max
[

d(x2,3), d(x−2
1,3)

]

d(x1,3) ≤ max
[

d(x2,4), d(x−2
1,4)

]

d(x1,4) ≤ max
[

d(x2,5), d(x−2
1,5)

]

d(x1,5) ≤ max
[

d(x2,6), d(x−2
1,6)

]

d(x1,6) ≤ max
[

d(x2,7), d(x−2
1,7)

]

etc. ...
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The inequality

d3 ≤ max(d1, d2) (13.1)

defines the strongest class of ultrametrics, whereas

d4 ≤ max(d1, d2, d3) (13.2)

defines the second strongest class. To see that inequality (13.1) defines a stronger
ultrametric compared to inequality (13.2), suppose the multi-way dissimilarities are
given by

d1 = d2 = 5 d3 = 3 and d4 = 2.

These multi-way dissimilarities satisfy (13.2), since 5 ≤ max(2, 3, 5), but not (13.1),
because 5 6= max(2, 3). As a second example, the multi-way dissimilarities given by

d1 = d2 = 5 d3 = 3 d4 = 4 and d5 = 2

do not satisfy either (13.1) or (13.2). However, these multi-way dissimilarities do
satisfy the weaker ultrametric inequality

d5 ≤ max(d1, d2, d3, d4) (for example, 5 ≤ max(2, 3, 4, 5)).

Following this line of reasoning we may conclude that a multi-way ultrametric implies
all (possible) weaker ultrametrics.

Proposition 13.1. Let d1, d2, ..., dn be n multi-way dissimilarities. Then

dn−1 ≤ max(d1, d2, ..., dn−2) ⇒ dn ≤ max(d1, d2, ..., dn−1).

Let d1,k = {d1, d2, ..., dk} be a k-tuple. Then

dk+1 ≤ max(d1,k)

defines the weakest class of ultrametrics.

13.2 Strong ultrametrics

The strongest class of ultrametrics is characterized by inequality (13.1). It turns
out that, if n multi-way dissimilarities satisfy inequality (13.1), then the (n − 1)
largest dissimilarities are equal. The sufficiency of this statement is clear from the
definition of the class of ultrametrics in inequality (13.1). The proof of necessity
goes as follows. We first consider the proof for n = 3, 4, 5. The proof for n = 4 was
already presented in Bennani-Dosse (1993). Furthermore, for n = 4, 5 alternative
proofs are presented, where the fact is used that the assertion is true for n − 1.
Finally, the proof is completed by means of induction.
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Proposition 13.2. Let d1, d2, ..., dn be n multi-way dissimilarities. If the n dis-
similarities satisfy inequality (13.1), then the largest n− 1 dissimilarities are equal.
Proof for n = 3: Assume d2 ≤ d1. From d3 ≤ max(d1, d2) we obtain d3 ≤ d1. Then

d3 ≤ d2 and d1 ≤ max(d2, d3) ⇒ d1 ≤ d2 ⇒ d3 ≤ d1 = d2

d2 ≤ d3 and d1 ≤ max(d2, d3) ⇒ d1 ≤ d3 ⇒ d2 ≤ d1 = d3.

Proof for n = 4: Assume d2 ≤ d1. From d3 ≤ max(d1, d2) we obtain d3 ≤ d1.
First, if d3 ≤ d2

then d1 ≤ max(d2, d3) ⇒ d1 ≤ d2 ⇒ d3 ≤ d1 = d2

and d4 ≤ max(d2, d3) ⇒ d4 ≤ d2.

Then

d4 ≤ d3 and d2 ≤ max(d3, d4) ⇒ d2 ≤ d3 ⇒ d4 ≤ d1 = d2 = d3

d3 ≤ d4 and d2 ≤ max(d3, d4) ⇒ d2 ≤ d4 ⇒ d3 ≤ d1 = d2 = d4.

Alternatively, if d2 ≤ d3

then d1 ≤ max(d2, d3) ⇒ d1 ≤ d3 ⇒ d2 ≤ d1 = d3

and d4 ≤ max(d2, d3) ⇒ d4 ≤ d3.

Then

d4 ≤ d2 and d3 ≤ max(d2, d4) ⇒ d3 ≤ d2 ⇒ d4 ≤ d1 = d2 = d3

d2 ≤ d4 and d3 ≤ max(d2, d4) ⇒ d3 ≤ d4 ⇒ d2 ≤ d1 = d3 = d4.

This completes the proof for n = 4.
Alternative proof for n = 4: Assume that the assertion is true for n = 3. If
d3 ≤ d2 ≤ d1, then d3 ≤ d1 = d2 and d4 ≤ d2. Then

d4 ≤ d3 and d2 ≤ max(d3, d4) ⇒ d2 ≤ d3 ⇒ d4 ≤ d1 = d2 = d3

d3 ≤ d4 and d2 ≤ max(d3, d4) ⇒ d2 ≤ d4 ⇒ d3 ≤ d1 = d3 = d4.

This completes the alternative proof for n = 4.
Proof for n = 5: Assume d2 ≤ d1. From d3 ≤ max(d1, d2) we obtain d3 ≤ d1.

First, if d3 ≤ d2

then d1 ≤ max(d2, d3) ⇒ d1 ≤ d2 ⇒ d3 ≤ d1 = d2

and d4 ≤ max(d2, d3) ⇒ d4 ≤ d2.

Furthermore, if d4 ≤ d3

then d2 ≤ max(d3, d4) ⇒ d2 ≤ d3 ⇒ d4 ≤ d1 = d2 = d3

and d5 ≤ max(d3, d4) ⇒ d5 ≤ d3.
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Then

d5 ≤ d4 and d3 ≤ max(d4, d5) ⇒ d3 ≤ d4 ⇒ d5 ≤ d1 = d2 = d3 = d4

d4 ≤ d5 and d3 ≤ max(d4, d5) ⇒ d3 ≤ d5 ⇒ d4 ≤ d1 = d2 = d3 = d5.

Alternatively, if d3 ≤ d4

then d2 ≤ max(d3, d4) ⇒ d2 ≤ d4 ⇒ d3 ≤ d1 = d2 = d4

and d5 ≤ max(d3, d4) ⇒ d5 ≤ d4.

Then

d5 ≤ d3 and d4 ≤ max(d3, d5) ⇒ d4 ≤ d3 ⇒ d5 ≤ d1 = d2 = d3 = d4

d3 ≤ d5 and d4 ≤ max(d3, d5) ⇒ d4 ≤ d5 ⇒ d3 ≤ d1 = d2 = d4 = d5.

Second, if d2 ≤ d3

then d1 ≤ max(d2, d3) ⇒ d1 ≤ d3 ⇒ d2 ≤ d1 = d3

and d4 ≤ max(d2, d3) ⇒ d4 ≤ d3.

Furthermore, if d4 ≤ d2

then d3 ≤ max(d2, d4) ⇒ d3 ≤ d2 ⇒ d4 ≤ d1 = d2 = d3

and d5 ≤ max(d2, d4) ⇒ d5 ≤ d2.

Then

d5 ≤ d4 and d2 ≤ max(d4, d5) ⇒ d2 ≤ d4 ⇒ d5 ≤ d1 = d2 = d3 = d4

d4 ≤ d5 and d2 ≤ max(d4, d5) ⇒ d2 ≤ d5 ⇒ d4 ≤ d1 = d2 = d3 = d5.

Alternatively, if d2 ≤ d4

then d3 ≤ max(d2, d4) ⇒ d3 ≤ d4 ⇒ d2 ≤ d1 = d3 = d4

and d5 ≤ max(d2, d4) ⇒ d5 ≤ d4.

Then

d5 ≤ d2 and d4 ≤ max(d2, d5) ⇒ d4 ≤ d2 ⇒ d5 ≤ d1 = d2 = d3 = d4

d2 ≤ d5 and d4 ≤ max(d2, d5) ⇒ d4 ≤ d5 ⇒ d2 ≤ d1 = d3 = d4 = d5.

This completes the proof for n = 5.
Alternative proof for n = 5: Assume that the assertion is true for n = 4. If
d4 ≤ d3 ≤ d2 ≤ d1, then d4 ≤ d1 = d2 = d3 and d5 ≤ d3. Then

d5 ≤ d4 and d3 ≤ max(d4, d5) ⇒ d3 ≤ d4 ⇒ d5 ≤ d1 = d2 = d3 = d4

d4 ≤ d5 and d3 ≤ max(d4, d5) ⇒ d3 ≤ d5 ⇒ d4 ≤ d1 = d2 = d3 = d5.
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This completes the alternative proof for n = 5.
General proof: Assume that the assertion is true for n = m. If dm ≤ dm−1 ≤
... ≤ d2 ≤ d1, then dm ≤ d1 = d2 = ... = dm−2 = dm−1 and dm+1 ≤ dm−1. Then
dm+1 ≤ dm and dm−1 ≤ max(dm, dm+1) lead to

dm−1 ≤ dm ⇒ dm+1 ≤ d1 = d2 = ... = dm−1 = dm

and dm ≤ dm+1 and dm−1 ≤ max(dm, dm+1) lead to

dm−1 ≤ dm+1 ⇒ dm ≤ d1 = d2 = ... = dm−1 = dm+1.

Hence, the assertion is true for n = m + 1. �

13.3 More strong ultrametrics

The second strongest class of ultrametrics is characterized by inequality (13.2). As
it turns out, if n multi-way dissimilarities satisfy inequality (13.2), then the (n− 2)
largest dissimilarities are equal. Similar to Proposition 13.2, sufficiency follows from
the definition of ultrametric inequality (13.2). The proof of necessity is slightly more
involved compared to the proof of Proposition 13.2. We only consider the proof for
n = 4 of the assertion, and therefore refer to it as a conjecture.

Conjecture 13.1. Let d1, d2, ..., dn be n multi-way dissimilarities. If (13.2) holds,
then the largest n− 2 dissimilarities are equal.
Proof for n = 4: Assume d3 ≤ d4.
First, if d2 ≤ d3, then from d1 ≤ max(d2, d3, d4) we obtain d1 ≤ d4. Then

d1 ≤ d3 and d4 ≤ max(d1, d2, d3) ⇒ d4 ≤ d3 ⇒

{

d1 ≤ d3 = d4

d2 ≤ d3 = d4

d3 ≤ d1 and d4 ≤ max(d1, d2, d3) ⇒ d4 ≤ d1 ⇒ d2 ≤ d3 ≤ d1 = d4.

Second, assume d3 ≤ d2. If d2 ≤ d4, then from d1 ≤ max(d2, d3, d4) we obtain
d1 ≤ d4. Then

d1 ≤ d3 and d4 ≤ max(d1, d2, d3) ⇒ d4 ≤ d2 ⇒ d1 ≤ d3 ≤ d2 = d4.

Alternatively, if d3 ≤ d1, then

d1 ≤ d2 and d4 ≤ max(d1, d2, d3) ⇒ d4 ≤ d2 ⇒ d3 ≤ d1 ≤ d2 = d4

d2 ≤ d1 and d4 ≤ max(d1, d2, d3) ⇒ d4 ≤ d1 ⇒ d3 ≤ d2 ≤ d1 = d4.

Next, if d4 ≤ d2, then

d1 ≤ d3 and d2 ≤ max(d1, d3, d4) ⇒ d2 ≤ d4 ⇒ d1 ≤ d3 ≤ d2 = d4.

Alternatively, if d3 ≤ d1, then from d1 ≤ max(d2, d3, d4) we obtain d1 ≤ d2. Then

d1 ≤ d4 and d2 ≤ max(d1, d3, d4) ⇒ d2 ≤ d4 ⇒ d3 ≤ d1 ≤ d2 = d4

d4 ≤ d1 and d2 ≤ max(d1, d3, d4) ⇒ d2 ≤ d1 ⇒ d3 ≤ d4 ≤ d1 = d2.

This completes the proof for n = 4.
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13.4 Metrics implied by ultrametrics

In this section we apply the notation used in the first sections of this chapter to
multi-way metrics, which were studied in Chapter 12. We are only concerned with
the number of dissimilarities involved. For example, the inequality d3 ≤ d1 + d2

represents all metrics of which the definition involves three multi-way dissimilarities,
that is,

d(x1,2) ≤ d(x2,3) + d(x−2
1,3)

d(x1,3) ≤ d(x2,4) + d(x−2
1,4)

d(x1,4) ≤ d(x2,5) + d(x−2
1,5)

etc. ...

Three metric inequalities and two ultrametric inequalities for three-way dissimilar-
ities were considered in Chapter 11. The strong metric 2d1 ≤ d2 + d3 + d4 intro-
duced by Heiser and Bennani (1997) implies the metric d1 ≤ d2 + d3, introduced
in Joly and Le Calvé (1995). The latter inequality in turn implies the weak metric
d1 ≤ d2 + d3 + d4. This metric is not considered by the above authors, nor is it
considered a metric in Chepoi and Fichet (2007). Furthermore, the strong ultra-
metric d1 ≤ max(d2, d3) implies the weak ultrametric d1 ≤ max(d2, d3, d4). The five
inequalities are related as follows.

d1 ≤ max(d2, d3) ⇒ 2d1 ≤ d2 + d3 + d4

⇓
⇓ d1 ≤ d2 + d3

⇓
d1 ≤ max(d2, d3, d4) ⇒ d1 ≤ d2 + d3 + d4

For the four-way case we may formulate eight inequalities. The inequalities are
related as follows.

d1 ≤ max(d2, d3) ⇒ 3d1 ≤ d2 + d3 + d4 + d5

⇓
2d1 ≤ d2 + d3 + d4

⇓ ⇓
d1 ≤ d2 + d3

⇓
d1 ≤ max(d2, d3, d4) ⇒ d1 ≤ d2 + d3 + d4

⇓ ⇓
d1 ≤ max(d2, d3, d4, d5) ⇒ d1 ≤ d2 + d3 + d4 + d5
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A variety of properties can immediately be deduced from the above definitions of
multi-way ultrametrics and metrics. First of all, the strongest ultrametric inequality
for k-way dissimilarities implies the strongest metric inequality for k-way dissimilar-
ities. Remember that, if the strongest k-way ultrametric inequality holds, then the
k largest of the (k + 1) dissimilarities are equal. With respect to Proposition 13.3
and 13.4, let d1,k = {d1, d2, ..., dk} be a k-tuple.

Proposition 13.3. Let d1, d2, ..., dk, dk+1 be (k + 1) k-way dissimilarities. Then

d1 ≤ max(d2,k+1) ⇒ (k − 1)d1 ≤

k+1
∑

i=2

di.

Let d1, d2, ..., dn be n k-way dissimilarities (n ≤ k). All other multi-way ultramet-
ric inequalities, other than the strongest, imply a metric inequality of the form

d1 ≤

n
∑

i=2

di.

Proposition 13.4. Let d1, d2, ..., dn be n k-way dissimilarities (n ≤ k). Then

d1 ≤ max(d2,n) ⇒ d1 ≤
n

∑

i=2

di.

13.5 Epilogue

Multi-way ultrametrics and some of their properties were the topic of investigation
of this chapter. The tetrahedral inequality introduced in Heiser and Bennani (1997)
is implied by the strong ultrametric inequality. Suppose we define “interesting” in
the sense that a metric inequality is interesting if it is the strongest metric implied
by an ultrametric inequality. Then we may say that the tetrahedral inequality (and
its multi-way generalization) is more interesting compared to the three-way metric
inequality introduced in Joly and Le Calvé (1995).

Some of the ultrametrics and corresponding properties discussed here may find
their way into a procedure or algorithm. It is well known that a distance is an
ultrametric if and only if it can be represented by a hierarchical tree. Joly and Le
Calvé (1995) line out how a hierarchical algorithm may be adopted to the three-way
case. First the triple corresponding to the smallest distance is aggregated and the
new distances are computed involving this triple as defined in the specific algorithm.
The resulting dendrogram has approximately the same properties as in the ordinary
two-way case. The only difference is that there will be many levels with three
clusters instead of two in the hierarchical tree representation. Applications of three-
way ultrametrics and hierarchical trees can be found in Joly and Le Calvé (1995)
and Bennani-Dosse (1993).
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Dissimilarities are important tools in many domains of data analysis. Most dissimi-
larity analysis has however been limited to the two-way case. Multi-way dissimilar-
ities may be used to evaluate complex relationships between three or more objects
(see, for example, Diatta, 2006, 2007).

Perimeter models are linear functions that can be used to relate k-way dissim-
ilarities of different degrees k. Their linear form makes perimeter functions simple
models with a straightforward interpretation. For example, the three-way perimeter
distance is equivalent to the sum of the three two-way distances formed between
the three objects. This distance is equivalent to the sum of the three sides of the
triangle formed by the three objects. The perimeter distance gives a geometrical
interpretation of the concept “average distance” between objects.

The present chapter explores two extensions of the three-way perimeter model.
Decompositions and metric properties of both generalizations are investigated. As
an extra, the three-way maximum function, together with its multi-way extension
and a metric property of the generalization, is studied in the last section.
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14.1 Definitions

Let x1,k denote the k-tuple (x1, x2, ..., xk) and let x−i
1,k denote the (k − 1)-tuple

(x1, ..., xi−1, xi+1, ..., xk) where the minus in the superscript of x−i
1,k is used to indicate

that element xi drops out. Let E be a nonempty set of n objects. A dissimilarity
dk : Ek → R+ is totally symmetric if for all x1, x2, ..., xk ∈ E and every permutation
π of {1, 2, ..., k}

dk(xπ(1), ..., xπ(k)) = dk(x1, ..., xk).

Furthermore, as a generalization of minimality we define dk(x1, ..., x1) = 0.
We define two types of k-way perimeter models. For k ≥ 3 we define

dk(x1,k) =
1

p

k
∑

i=1

dk−1(x
−i
1,k) (14.1)

and

dk(x1,k) =
1

p

k−1
∑

i=1

k
∑

j=i+1

d(xi, xj) (14.2)

where p is a positive real number. Dissimilarity dk(x1,k) in (14.1) is equivalent to
the sum of the k dissimilarities dk−1(x

−i
1,k) divided by a factor p. Distance measure

dn(x1,n) in (14.2) may be interpreted as the sum of the sides of the polyhedron
formed by the k objects in {x1, x2, ..., xk}, rescaled by a factor p.

Using k = 3 in either (14.1) or (14.2) we obtain

d3(x1,3) =
d(x1, x2) + d(x1, x3) + d(x2, x3)

p
. (14.3)

Using p = 1 in (14.3) we obtain the three-way perimeter model considered in Heiser
and Bennani (1997), De Rooij and Gower (2003), and Chepoi and Fichet (2007).
Using p = 2 in (14.3) we obtain the three-way semi-perimeter model which is studied
in Bennani-Dosse (1993) and Joly and Le Calvé (1995).

Instead of the notation used in (14.3) we will use a shorter, more convenient
notation in the next section on decompositions of perimeter models. We write
(14.3) as

d
(3)
ijl =

dij + dil + djl

p
. (14.4)

Using k = 4 in (14.1) and (14.2) we obtain respectively

d
(4)
ijlh =

d
(3)
ijl + d

(3)
ijh + d

(3)
ilh + d

(3)
jlh

p
(14.5)

and

d
(4)
ijlh =

dij + dil + dih + djl + djh + dlh

p
. (14.6)

Note that we have expressed (14.4) and (14.5) in the same notation as (14.3).
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14.2 Decompositions

The following theorem generalizes a result in Joly and Le Calvé (1995, p. 196),
derived for the semi-perimeter model. As it turns out, their result holds for (14.4)
and does not depend on the value of p.

Proposition 14.1. Function d
(3)
ijl satisfies (14.4) if and only if

d
(3)
ijl =

[

d
(3)
ij. + d

(3)
i.l + d

(3)
.jl

]

−
[

d
(3)
i.. + d

(3)
.j. + d

(3)
..l

]

+ d(3)
... (14.7)

where

d
(3)
ij. = n−1

∑

l

d
(3)
ijl

d
(3)
i.. = n−1

∑

j

d
(3)
ij.

and d(3)
... = n−1

∑

i

d
(3)
i.. .

Proof: Averaging over l, j, and i in (14.4) we obtain

pd
(3)
ij. = dij + di. + dj.

pd
(3)
i.. = 2di. + d..

pd(3)
... = 3d...

Expressing dij in terms of d
(3)
ij. , d

(3)
i.. , and d(3)

... , we obtain

dij = pd
(3)
ij. −

p
[

d
(3)
i.. + d

(3)
.j.

]

2
−

pd(3)
...

3
. (14.8)

Using (14.8) in (14.4) we obtain (14.7), which does not depend on p. �

Condition (14.7) for d
(3)
ijl in (14.4) generalizes naturally to condition (14.9) for d

(4)
ijlh

in (14.5).

Proposition 14.2. Function d
(4)
ijlh satisfies (14.5) if and only if

d
(4)
ijlh =

[

d
(4)
ijl. + d

(4)
ij.h + d

(4)
i.lh + d

(4)
.jlh

]

−
[

d
(4)
ij.. + d

(4)
i.l. + d

(4)
i..h + d

(4)
.jl. + d

(4)
.j.h + d

(4)
..lh

]

+
[

d
(4)
i... + d

(4)
.j.. + d

(4)
..l. + d

(4)
...h

]

− d(4)
.... (14.9)
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where

d
(4)
ijl. = n−1

∑

l

d
(4)
ijlh

d
(4)
ij.. = n−1

∑

k

d
(4)
ijl.

d
(4)
i... = n−1

∑

j

d
(4)
ij..

and d(4)
.... = n−1

∑

i

d
(4)
i... .

Proof: Averaging over h, l, j, and i in (14.5) we obtain

pd
(4)
ijl. = d

(3)
ijl + d

(3)
ij. + d

(3)
il. + d

(3)
jl.

pd
(4)
ij.. = 2d

(3)
ij. + d

(3)
i.. + d

(3)
j..

pd
(4)
i... = 3d

(3)
i.. + d(3)

...

pd(4)
.... = 4d(3)

... .

Expressing d
(3)
ijl in terms of d

(4)
ijl., d

(4)
ij.., d

(4)
i... , and d(4)

.... , we obtain

d
(3)
ijl = pd

(4)
ijl. −

p
[

d
(4)
ij.. + d

(4)
i.l. + d

(4)
.jl.

]

2
+

p
[

d
(4)
i... + d

(4)
.j.. + d

(4)
..l.

]

3
−

pd(4)
....

4
. (14.10)

Using (14.10) in (14.5) we obtain (14.9). �

We obtain a different generalization of (14.7) if d
(4)
ijlh satisfies (14.6).

Proposition 14.3. Function d
(4)
ijlh satisfies (14.6) if and only if

d
(4)
ijlh =

[

d
(4)
ij.. + d

(4)
i.l. + d

(4)
i..h + d

(4)
.jl. + d

(4)
.j.h + d

(4)
..lh

]

− 2
[

d
(4)
i... + d

(4)
.j.. + d

(4)
..l. + d

(4)
...h

]

+ 3d(4)
.... .

(14.11)
Proof: Averaging over h, l, j, and i in (14.6) we obtain

pd
(4)
ijl. = dij + dil + djl + di. + dj. + dl.

pd
(4)
ij.. = dij + 2di. + 2dj. + d..

pd
(4)
i... = 3di. + 3d..

pd(4)
.... = 6d...

Expressing dij in terms of d
(4)
ij.., d

(4)
i... , and d(4)

.... , we obtain

dij = pd
(4)
ij.. −

2p
[

d
(4)
i... + d

(4)
.j..

]

3
+

pd(4)
....

2
. (14.12)

Using (14.12) in (14.6) yields (14.11). �
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14.3 Metric properties

In this section we study metric properties of perimeter models (14.1) and (14.2).
Consider metric inequalities

(k − 1)× dk(x1,k) ≤
k

∑

i=1

dk(x
−i
1,k+1). (14.13)

and

(k − 2)× dk(x1,k) ≤
k

∑

i=1

dk(x
−i
1,k+1). (14.14)

Inequality (14.13) implies inequality (14.14).

Proposition 14.4. (i) Dissimilarity dn(x1,n) in (14.2) satisfies (14.14). (ii) Dissim-
ilarity dn(x1,n) in (14.2) satisfies (14.13) if and only if d(xi, xj) satisfies the triangle
inequality.
Proof (i): Using (14.2) in (14.14) we obtain

0 ≤ (k − 1)
k

∑

i=1

d(xi, xk+1)

which is true.
Proof (ii): Using (14.2) in (14.13) we obtain

k−1
∑

i=1

k
∑

j=i+1

d(xi, xj) ≤ (k − 1)
k

∑

i=1

d(xi, xk+1). (14.15)

Applying (14.15) with the (k + 1)-tuple (x1, x2, x3, ..., x3) we obtain d(x1, x2) ≤
d(x2, x3) + d(x1, x3).

Conversely, inequality (14.15) follows from adding the k triangle inequalities
formed by all pairs in the set {x1, x2, ..., xk} and xk+1, for example, d(x1, x2) ≤
d(x2, xk+1) + d(x1, xk+1). �

Consider metric inequalities

dk(x1,k) ≤
k

∑

i=1

dk(x
−i
1,k+1) (14.16)

and

u× dk(x1,k) ≤
k

∑

i=1

dk(x
−i
1,k+1) (14.17)

where u is a positive real number. Note that inequality (14.16) is implied by (14.13),
(14.14) and (14.17).
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Proposition 14.5. (i) Dissimilarity dk(x1,k) in (14.1) satisfies (14.16). (ii) Dis-
similarity dk(x1,k) in (14.1) satisfies (14.17) for u > 1 if dk−1(x1,k−1) satisfies

(u− 1)× dk−1(x1,k−1) ≤
k−1
∑

i=1

dk−1(x
−i
1,k). (14.18)

Proof (i): Using (14.1) in (14.16) we obtain

0 ≤ (k − 1)
k

∑

i=1

d(xi, xk+1)

which is true.
Proof (ii): Using (14.1) in (14.17) we obtain

(u− 1)
k

∑

i=1

dk−1(x
−i
1,k) ≤ 2S (14.19)

where S is the sum of the dk−1 dissimilarities that can be formed by all (k − 2)-
tuples in the set {x1, x2, ..., xk} and xk+1. Inequality (14.19) follows from adding the
k variants of (14.18) that can be formed by using each (u − 1) × dk−1(x

−i
1,k) on the

left-hand side of (14.19), on the left-hand side of each polyhedral inequality, and by
summing the corresponding k dissimilarities from S on the right-hand side of the
polyhedral inequality. �

14.4 Maximum distance

In the final section of this chapter on perimeter models we explore the multi-way
extensions and properties of a somewhat different three-way function. For the three-
way case, the maximum distance function is defined as

d3(x1,3) = max [d(x1, x2), d(x1, x3), d(x2, x3)] (14.20)

by both Heiser and Bennani (1997) and De Rooij and Gower (2003). Function
(14.20) has two straightforward four-way generalizations, which are given by

d4(x1,4) = max [d(x1, x2), d(x1, x3), d(x1, x4), d(x2, x3), d(x2, x4), d(x3, x4)] (14.21)

and
d4(x1,4) = max

[

d3(x2,4), d3(x
−2
1,4), d3(x

−3
1,4), d3(x1,3)

]

where d3(x1,3) is defined as in (14.20). Fortunately, the two formulations are equiv-
alent.

The k-way formulation of (14.21) is given by

dk(x1,k) = max [d(x1, x2), d(x1, x3), ..., d(xk−2, xk), d(xk−1, xk)] . (14.22)

On the right-hand side of (14.22) we have the maximum dissimilarity that can be
constructed from all pairs in the set {x1, x2, ..., xk}. The multi-way function in
(14.22) satisfies inequality (14.13) due to the following result.
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Proposition 14.6. Let d(xi, xj) = 0 if and only if xi = xj. Then dk(x1,k) in
(14.22) satisfies (14.13) if d(xi, xj) satisfies the triangle inequality.
Proof for k = 3: It must be shown that

2 max [d(x1, x2), d(x1, x3), d(x2, x3)] ≤

max [d(x2, x3), d(x2, x4), d(x3, x4)] + max [d(x1, x3), d(x1, x4), d(x3, x4)] +

max [d(x1, x2), d(x1, x4), d(x2, x4)] (14.23)

holds. The proof is immediate if the maximum of the six dissimilarities is d(xi, x4)
for i = 1, 2, 3. For instance, if d(x1, x4) is the largest, then (14.23) becomes

2max [d(x1, x2), d(x1, x3), d(x2, x3)] ≤2d(x1, x4)+

max [d(x2, x3), d(x2, x4), d(x3, x4)]

which is true, since d(x1, x4) ≥ max [d(x1, x2), d(x1, x3), d(x2, x3)]. Furthermore,
suppose d(x1, x2) is the maximum of the six values. Then (14.23) can be written as

d(x1, x2) ≤max [d(x1, x3), d(x1, x4), d(x3, x4)] +

max [d(x2, x3), d(x2, x4), d(x3, x4)] . (14.24)

Inequality (14.24) is true if the triangle inequality holds, which completes the proof
for k = 3.
Proof for k = 4: It must be verified that

3 max [d(x1, x2), d(x1, x3), d(x1, x4), d(x2, x3), d(x2, x4), d(x3, x4)] ≤

max [d(x1, x2), d(x1, x3), d(x1, x5), d(x2, x3), d(x2, x5), d(x3, x5)] +

max [d(x1, x2), d(x1, x4), d(x1, x5), d(x2, x4), d(x2, x5), d(x4, x5)] +

max [d(x1, x3), d(x1, x4), d(x1, x5), d(x3, x4), d(x3, x5), d(x4, x5)] +

max [d(x2, x3), d(x2, x4), d(x2, x5), d(x3, x4), d(x3, x5), d(x4, x5)] . (14.25)

Again, the proof is immediate if the largest of the ten dissimilarities is d(xi, x5) for
i = 1, ..., 4. Suppose d(x1, x2) is the maximum of the ten values. Then (14.25) can
be written as

d(x1, x2) ≤

max [d(x1, x3), d(x1, x4), d(x1, x5), d(x3, x4), d(x3, x5), d(x4, x5)] +

max [d(x2, x3), d(x2, x4), d(x2, x5), d(x3, x4), d(x3, x5), d(x4, x5)] . (14.26)

Inequality (14.26) is true if the triangle inequality holds, which completes the proof
for k = 4.
General proof: From the proof for k = 3 and k = 4, the following pattern becomes
apparent. After filling in (14.22) in (14.13), there are k(k + 1)/2 different two-way
dissimilarities to consider. The proof is immediate if d(xi, xk+1) for i = 1, 2, ..., k
is the largest dissimilarity. This part of the proof does not require the triangle
inequality. If any of the other dissimilarities is the largest, then (14.22) satisfies
(14.13) if the triangle inequality holds. �
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14.5 Epilogue

In this chapter multi-way generalizations of two three-way functions, the perime-
ter distance and the maximum distance, were presented. The extended perimeter
distance is based on two-way dissimilarities or on (k−1)-way dissimilarities. The re-
sulting multi-way perimeter models are different and posses different properties. We
studied decompositions of the perimeter models for ordered tuples, not for tuples
with distinct elements. The decomposition of the three-way perimeter model for
triples with distinct elements can be found in Chepoi and Fichet (2007), Bennani-
Dosse (1993) and Gower and De Rooij (2003). The case has not been studied here,
but it may be noted that the decompositions of the two four-way perimeter models
defined on tuples with distinct elements, provide similar and interesting formulas.

The maximum function may also be defined on two-way dissimilarities or on (k−
1)-way dissimilarities; the different definitions are equivalent. Both the generalized
perimeter distance and the maximum distance satisfy polyhedral inequality (12.4).

Validity of a multi-way metric inequality for k ≥ 3 appears not to be important
for methods used for multi-way dimensional scaling (Cox, Cox and Branco, 1991;
Heiser and Bennani, 1997; Gower and De Rooij, 2003). The results in Section 14.3
therefore appear to be of theoretical interest only. From a theoretical point of view
it is unfortunate that no well-established basic multi-way metric structure emerged
from the study.

Perimeter models are simple functions with a straightforward interpretation.
However, some empirical evidence suggests that using perimeter models is not the
best approach to evaluating complex relationships between three or more objects
at a time. Gower and De Rooij (2003) used the three-way perimeter model and
compared multidimensional scaling of three-way distances to the scaling of two-way
distances. These authors concluded that, when the three-way distances were linear
transformations of the two-way information, the three-way analysis gained little or
nothing over the conventional multidimensional scaling. De Rooij (2001, Chapter 5;
2002) noted that the problem seems to be that definitions of three-way distances in
terms of two-way distances do not model true three-way interactions.
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For the properties in this section we have a new use of the symbols a, b, c, and d
already used for the 2× 2 contingency table in Part I. With two-way dissimilarities,
a function is called metric if it satisfies, among other things, the triangle inequality.
Theorem 10.3 states that which states that if c is a positive constant and the two-way
dissimilarity d satisfies the triangle inequality, then the function d/(c+d) satisfies the
triangle inequality. In this chapter generalizations of Theorem 10.3 for the triangle
inequality are considered.

For the use in this chapter it suffices to define a multi-way metric on the number
of dissimilarities involved. Multi-way dissimilarities can be used to measure the
resemblance between two or more, say k, objects. Let di, i = 1, 2, ..., n, n + 1 denote
n + 1 multi-way dissimilarities. A generalization of Theorem 10.3 is presented for
the inequality

dn+1 ≤
n

∑

i=1

di. (15.1)

Furthermore, Conjecture 15.1 below is an attempt to generalize Theorem 10.3 to
polyhedral inequality

(n− 1)× dn+1 ≤

n
∑

i=1

di. (15.2)

Inequality (15.2) portraits inequality (12.4) and (14.13) in the present simpler no-
tation.

159
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15.1 A generalization of Theorem 10.3.

Proposition 15.1 below is a first attempt to generalize Theorem 10.3, which states
that if c is a positive constant and the two-way dissimilarity d satisfies the triangle
inequality, then the function d/(c + d) satisfies the triangle inequality. In Proposi-
tion 15.1 we consider the multi-way metrics that are characterized by (15.1). We
first consider the proofs for n = 2, 3, 4. A general proof for Proposition 15.1 is
straightforward after considering these proofs.

Proposition 15.1 If the dissimilarities di for i = 1, 2, ..., n, n + 1 satisfy n-way
symmetry, then

dn+1

c + dn+1

≤
n

∑

i=1

di

c + di

if dn+1 ≤
n

∑

i=1

di holds.

Proof for n = 2: It must be shown that the quantity a given by

a = (c + d1)(c + d2)(c + d3)

[

d1

c + d1

+
d2

c + d2

−
d3

c + d3

]

= d1(c + d2)(c + d3) + d2(c + d1)(c + d3)− d3(c + d1)(c + d2)

= c2(d1 + d2 − d3) + 2cd1d2 + d1d2d3.

is positive. Since d3 ≤ d1 + d2 under the conditions of the assertion, the quantity a
is positive, which completes the proof for n = 2.
Proof for n = 3: It must be shown that the quantity a given by

a =(c + d1)(c + d2)(c + d3)(c + d4)

[

d1

c + d1

+
d2

c + d2

+
d3

c + d3

−
d4

c + d4

]

=d1(c + d2)(c + d3)(c + d4)+

d2(c + d1)(c + d3)(c + d4)+

d3(c + d1)(c + d2)(c + d4)− d4(c + d1)(c + d2)(c + d3)

is positive. Expanding the equation in polynomial form we obtain

a =c3(d1 + d2 + d3 − d4) + 2c2(d1d2 + 2d1d3 + 2d2d3)+

c(3d1d2d3 + d1d2d4 + d1d3d4 + d2d3d4) + 2d1d2d3d4.

Only the coefficient of c3 needs to be checked since all other coefficients are positive.
The coefficient of c3 is positive if d4 ≤ d1 + d2 + d3 (the condition of the assertion).
This completes the proof for n = 3.



15.1. A generalization of Theorem 10.3. 161

Proof for n = 4: It must be shown that the quantity a given by

a =
5

∏

i=1

(c + di)

[

4
∑

i=1

di

c + di

−
d5

c + d5

]

=d1(c + d2)(c + d3)(c + d4)(c + d5)+

d2(c + d1)(c + d3)(c + d4)(c + d5)+

d3(c + d1)(c + d2)(c + d4)(c + d5)+

d4(c + d1)(c + d2)(c + d3)(c + d5)− d5(c + d1)(c + d2)(c + d3)(c + d4)

is positive. Expanding the equation in polynomial form we obtain

a = c4(d1 + d2 + d3 + d4 − d4)

+ 2c3(d1d2 + d1d3 + d1d4 + d2d3 + d2d4 + d3d4)

+ 3c2(d1d2d3 + d1d2d4 + d1d3d4 + d2d3d4)

+ 2c2d5(d1d2 + d1d3 + d1d4 + d2d3 + d2d4 + d3d4)

+ 4cd1d2d3d4 + 2d5(d1d2d3 + d1d2d4 + d1d3d4 + d2d3d4)

+ 3d1d2d3d4d5.

Only the coefficient of c4 needs to be checked since all other coefficients are positive.
The coefficient of c4 is positive under the conditions of the assertion. This completes
the proof for n = 4.
Outline general proof: It must be shown that the quantity

a =
n+1
∏

i=1

(c + di)×

[

n
∑

i=1

di

c + di

−
dn+1

c + dn+1

]

is positive. After expanding the equation in polynomial form only the coefficient
of cn needs to be checked. This coefficient is positive under the conditions of the
assertion. �

Conjecture 15.1 in Section 15.3 is a (potentially) stronger result compared to
Proposition 15.1. With Conjecture 15.1 we attempt to prove Proposition 15.1 not
for inequality (15.1), but for inequality (15.2). Before presenting this attempt, the
next section is first used to present some auxiliary results.
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15.2 Auxiliary results

We first repeat Proposition 12.1 in Proposition 15.2, using the more convenient
notation.

Proposition 15.2. If the dissimilarities di for i = 1, 2, ..., n, n + 1 satisfy n-way
symmetry, then (for n ≥ 3) (15.2) implies

(n− 2)dn ≤

n−1
∑

i=1

di.

Proof: Interchanging the roles of dn and dn+1 and dividing by n − 1 in (15.2), we
may obtain the inequalities

(n− 1)dn ≤ dn+1 +
n−1
∑

i=1

di

and

dn+1 ≤

[

1

n− 1

] n
∑

i=1

di.

Adding the two inequalities and multiplying by (n−1)/n gives the required inequal-
ity. �

The inequality in Proposition 15.4 below concerns one of the inequalities required
in Conjecture 15.1 below. First, we present a stronger result, which is then used in
the proof of Proposition 15.4.

Proposition 15.3. Dissimilarities di for i = 1, 2, ..., n, n + 1 satisfy

n
∑

i=1

n+1
∑

j=i+1

didj ≥

[

n2 − n− 1

2(n− 1)

] n+1
∑

i=1

d2
i

if (15.2) holds.
Proof: Inequality (15.2) can be written as

d1 ≥ (n− 1)dn+1 −
n

∑

i=2

di. (15.3)

Squaring both sides of (15.3) we obtain

d2
1 ≥ (n− 1)2d2

n+1 +
n

∑

i=2

d2
i − 2(n− 1)dn+1

n
∑

i=2

di + 2
n

∑

i=2

n+1
∑

j=i+1

didj (15.4)

(for n = 2 the last term of the inequality equals zero).
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There are (n + 1) variants of d2
i in (15.4) and n(n + 1)/2 variants of didj. The

number of variants of the inequality is given by the smallest common multiple of
(n + 1) and n(n + 1)/2. Instead, consider the multiple n(n + 1)2/2. Adding up all
n(n + 1)2/2 variants of (15.4) we obtain

n(n + 1)

2

n+1
∑

i=1

d2
i ≥

(n− 1)2n(n + 1)

2

n+1
∑

i=1

d2
i

+
(n− 1)n(n + 1)

2

n+1
∑

i=1

d2
i

− 2(n− 1)2(n + 1)
n

∑

i=1

n+1
∑

j=i+1

didj

+ (n− 1)(n− 2)(n + 1)
n

∑

i=1

n+1
∑

j=i+1

didj

which equals the required inequality. This completes the proof. �

The inequality in Proposition 15.4 is one of the inequalities required in Conjecture
15.1 in Section 15.3. The proof of this inequality makes use of the stronger result in
Proposition 15.3.

Proposition 15.4. Dissimilarities di for i = 1, 2, ..., n, n + 1 satisfy

n−1
∑

i=1

n
∑

j=i+1

didj ≥

[

n− 2

2

]

dn+1

n
∑

i=1

di

if (15.2) holds.
Proof: Using the equality

[

n
∑

i=1

di

]2

−

n
∑

i=1

d2
i = 2

n−1
∑

i=1

n
∑

j=i+1

didj

the quantity a given by

a = 2(n− 1)
n−1
∑

i=1

n
∑

j=i+1

didj − (n− 1)(n− 2)dn+1

n
∑

i=1

di

can be written as a = b1 + b2, where

b1 = (n− 2)

[

n
∑

i=1

di

] [

n
∑

i=1

di − (n− 1)dn+1

]
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and

b2 = 2
n−1
∑

i=1

n
∑

j=i+1

didj − (n− 2)
n

∑

i=1

d2
i .

The assertion follows if it can be shown that the quantity a is positive. Under the
condition of the proposition (the last term of) quantity b1 is positive. Furthermore,
in the light of Proposition 15.3, quantity b2 is positive since

n2 − n− 1

2(n− 1)
≥

n− 2

2
.

Hence quantity a is positive, which completes the proof. �

15.3 A stronger generalization of Theorem 10.3

Conjecture 15.1 below is an attempt to generalize Theorem 10.3, which states that if
c is a positive constant and the two-way dissimilarity d satisfies the triangle inequal-
ity, then the function d/(c + d) satisfies the triangle inequality. Below, proofs for
small n are presented, but no proof is offered for any n. With respect to Conjecture
15.1, it is assumed that the multi-way dissimilarities satisfy n-way symmetry, which
makes the use of Proposition 15.2 possible. Note that also for n = 2, Theorem 10.3
is a special case of Conjecture 15.1.

Conjecture 15.1 If the dissimilarities di for i = 1, 2, ..., n, n + 1 satisfy n-way
symmetry, then

(n− 1)dn+1

c + dn+1

≤
n

∑

i=1

di

c + di

if (15.2) holds.
Proof for n = 2: It must be shown that the quantity a given by

a = (c + d1)(c + d2)(c + d3)

[

d1

c + d1

+
d2

c + d2

−
d3

c + d3

]

= d1(c + d2)(c + d3) + d2(c + d1)(c + d3)− d3(c + d1)(c + d2)

= c2(d1 + d2 − d3) + 2cd1d2 + d1d2d3

is positive. Since d3 ≤ d1 + d2 by Proposition 15.2, the quantity a is positive, which
completes the proof for n = 2.
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Proof for n = 3: It must be shown that the quantity a given by

a =(c + d1)(c + d2)(c + d3)(c + d4)

[

d1

c + d1

+
d2

c + d2

+
d3

c + d3

−
2d4

c + d4

]

=d1(c + d2)(c + d3)(c + d4)+

d2(c + d1)(c + d3)(c + d4)+

d3(c + d1)(c + d2)(c + d4)− 2d4(c + d1)(c + d2)(c + d3)

is positive. Expanding the equation in polynomial form we obtain

a =c3(d1 + d2 + d3 − 2d4)+

c2(2d1d2 + 2d1d3 + 2d2d3 − d1d4 − d2d4 − d3d4)+

3cd1d2d3 + d1d2d3d4.

The coefficient of c3 is positive if 2d4 ≤ d1 + d2 + d3. The coefficient of c2 is positive
if d3 ≤ d1 + d2, since it can be written as

d1(d2 + d3 − d4) + d2(d1 + d3 − d4) + d3(d1 + d2 − d4).

Thus, the quantity a is positive by Proposition 15.2, which completes the proof for
n = 3.
Proof for n = 4: It must be shown that the quantity a given by

a =
5

∏

i=1

(c + di)

[

4
∑

i=1

di

c + di

−
3d5

c + d5

]

=d1(c + d2)(c + d3)(c + d4)(c + d5)+

d2(c + d1)(c + d3)(c + d4)(c + d5)+

d3(c + d1)(c + d2)(c + d4)(c + d5)+

d4(c + d1)(c + d2)(c + d3)(c + d5)− 3d5(c + d1)(c + d2)(c + d3)(c + d4)

is positive. Expanding the equation in polynomial form we obtain

a = c4(d1 + d2 + d3 + d4 − 3d4)

+ 2c3(d1d2 + d1d3 + d1d4 + d2d3 + d2d4 + d3d4 − d1d5 − d2d5 − d3d4 − d4d5)

+ 3c2(d1d2d3 + d1d2d4 + d1d3d4 + d2d3d4)

− c2d5(d1d2 + d1d3 + d1d4 + d2d3 + d2d4 + d3d4)

+ 4cd1d2d3d4 + d1d2d3d4d5.

The coefficient of c4 is positive if 3d5 ≤ d1 + d2 + d3 + d4. The coefficient of c3 is
positive if 2d4 ≤ d1 + d2 + d3, since it can be written as

d1(d2 + d3 + d4 − 2d5) + d2(d1 + d3 + d4 − 2d5)+

d3(d1 + d2 + d4 − 2d5) + d4(d1 + d2 + d3 − 3d5).

Alternatively, the coefficient of c3 is positive by Proposition 15.4.
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The coefficient of c2 is positive if d3 ≤ d1 + d2, since it can be written as

d1d2(d3 + d4 − d5) + d1d3(d2 + d4 − d5) + d1d4(d2 + d3 − d5)+

d2d3(d1 + d4 − d5) + d2d4(d1 + d3 − d5) + d3d4(d1 + d2 − d5).

Thus, the quantity a is positive by Proposition 15.2, which completes the proof for
n = 4.
Proof for n = 5: It must be shown that the quantity a given by

a =
6

∏

i=1

(c + di)

[

5
∑

i=1

di

c + di

−
4d6

c + d6

]

is positive. Quantity a can be written as

a = d1(c + d2)(c + d3)(c + d4)(c + d5)(c + d6)

+ d2(c + d1)(c + d3)(c + d4)(c + d5)(c + d6)

+ d3(c + d1)(c + d2)(c + d4)(c + d5)(c + d6)

+ d4(c + d1)(c + d2)(c + d3)(c + d5)(c + d5)

+ d5(c + d1)(c + d2)(c + d3)(c + d4)(c + d5)

− 4d6(c + d1)(c + d2)(c + d3)(c + d4)(c + d5).

Expanding the equation in polynomial form we obtain

a = c5

[

5
∑

i=1

di − 4d6

]

+ c4

[

2
4

∑

i=1

5
∑

j=i+1

didj − 3d6

5
∑

i=1

di

]

+ c3

[

3
3

∑

i=1

4
∑

j=i+1

5
∑

r=j+1

didjdr − 2d6

4
∑

i=1

5
∑

j=i+1

didj

]

+ c2

[

4
2

∑

i=1

3
∑

j=i+1

4
∑

r=j+1

5
∑

s=r+1

didjdrds − d6

3
∑

i=1

4
∑

j=i+1

5
∑

l=j+1

didjdl

]

+ 5c
5

∏

i=1

di +
6

∏

i=1

di.

The coefficient of c5 is positive if 4d6 ≤
∑5

i=1 di. The coefficient of c4 is positive if
3d5 ≤

∑4
i=1 di, since it can be written as

d1(d2 + d3 + d4 + d5 − 3d6) + d2(d1 + d3 + d4 + d5 − 3d6)+

d3(d1 + d2 + d4 + d5 − 3d6) + d4(d1 + d2 + d3 + d5 − 3d6)+

d5(d1 + d2 + d3 + d4 − 3d6).

Alternatively, the coefficient of c4 is positive by Proposition 15.4.
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The coefficient of c3 is positive if 2d4 ≤
∑3

i=1 di, since it can be written as

d1d2(d3 + d4 + d5 − 2d6) + d1d3(d2 + d4 + d5 − 2d6)+

d1d4(d2 + d3 + d5 − 2d6) + d1d5(d2 + d3 + d4 − 2d6)+

d2d3(d1 + d4 + d5 − 2d6) + d2d4(d1 + d3 + d5 − 2d6)+

d2d5(d1 + d3 + d4 − 2d6) + d3d4(d1 + d2 + d5 − 2d6)+

d3d5(d1 + d2 + d4 − 2d6) + d4d5(d1 + d2 + d3 − 2d6).

The coefficient of c2 is positive if d3 ≤ d1 + d2, since it can be written as

d1d2d3(d4 + d5 − d6) + d1d2d4(d3 + d5 − d6)+

d1d2d5(d3 + d4 − d6) + d1d3d4(d2 + d5 − d6)+

d1d3d5(d2 + d4 − d6) + d1d4d5(d2 + d3 − d6)+

d2d3d4(d1 + d5 − d6) + d2d3d5(d1 + d4 − d6)+

d2d4d5(d1 + d3 − d6) + d3d4d5(d1 + d2 − d6).

Hence, a is positive, which completes the proof n = 5.
Outline general proof: It must be shown that the quantity

a =
n+1
∏

i=1

(c + di)×

[

n
∑

i=1

di

c + di

−
(n− 1)dn+1

c + dn+1

]

is positive. Due to Proposition 15.2 each metric inequality also implies all weaker
metric inequalities. The quantity a can be written as a polynomial function of
cn, cn−1, ..., c2, c and a constant

∏n+1
i=1 di. The coefficient belonging to the linear part

c and the constant
∏n+1

i=1 di are always positive. It must be shown that the remaining
(n− 1) coefficients are also positive. The coefficient corresponding to cn appears to
be positive if the metric inequality (n− 1)dn+1 ≤

∑n

i=1 di holds.

15.4 Epilogue

Theorem 10.3, which states that if two-way dissimilarity d satisfies the triangle in-
equality, then so does the function d/(c + d), was generalized to the multi-way case
in this chapter. In the first generalization, Proposition 15.1, multi-way metrics were
considered that are characterized by inequality dn+1 ≤

∑n

i=1 di. In the second at-
tempt, Conjecture 15.1, we tried to proof the generalization for the stronger class
of multi-way metrics characterized by (n − 1)dn+1 ≤

∑n

i=1 di. The proof of Propo-
sition 15.1 turned out to be straightforward, especially in contrast to the proof of
Conjecture 15.1.


